A topological space \(M\) is a topological \(n\)-manifold if:
For manifold with boundaries replace \(\mathbb{R}^n\) with \(\mathbb{H}^n\).
\[V - E + F = \chi = 2-2g-n\]
\[ 2E \approx 3F \approx 6V \] (first relation is equality if there are no boundaries)
Wikipedia: Cross Product
Voronoi cells provide better approximation than barycentric cells, but are more complex to compute
Compute Gaussian curvature \(K\):
-by discretizing Gauss-Bonnet Theorem
Compute mean curvature \(H\):
-by discretizing Laplace-Beltrami operator
Compute min and max curvatures:
-from \(H\) and \(K\) we can compute \(\kappa_1\) and \(\kappa_2\)
Integral of Gaussian curvature over a surface \(\Omega\) and the geodesic curvature on its boundary \(\partial \Omega\) is a topological invariant
\[ \int_\Omega K \, dA + \int_{\partial \Omega} k_g \, ds = 2 \pi \, \chi(\Omega) \]For \(\Omega\) with disk topology \(\chi(\Omega)=1\) and
\[ \int_\Omega K \, dA = 2 \pi - \int_{\partial \Omega} k_g \, ds\]Wikipedia: Gauss-Bonnet Theorem
Compute Gaussian curvature \(K\):
-by discretizing Gauss-Bonnet Theorem
Compute mean curvature \(H\):
-by discretizing Laplace-Beltrami operator
Compute min and max curvatures:
-from \(H\) and \(K\) we can compute \(\kappa_1\) and \(\kappa_2\)
Wikipedia: Divergence Theorem , Laplace Operator
\[ \begin{align*} \int_{\partial A_i \cap T} \grad f(\vec{u}) \cdot \vec{n}(\vec{u}) \mathrm{d}s & \;=\; \frac{1}{2} \grad f(\vec{u}) \cdot (\vec{x}_j - \vec{x}_k)^{\perp} \\ & \;=\; \begin{split}\left(f_j-f_i \right) \frac{\left(\vec{x}_i-\vec{x}_k \right)^{\perp} \cdot \left(\vec{x}_j-\vec{x}_k \right)^{\perp}}{4 A_T} \\ \;+\; \left(f_k-f_i \right) \frac{\left(\vec{x}_j-\vec{x}_i \right)^{\perp} \cdot \left(\vec{x}_j-\vec{x}_k \right)^{\perp}}{4 A_T}\end{split}\\ & \;\;\vdots\; \\ & \;=\; \frac{1}{2} \cot \gamma_k \left(f_j - f_i \right) \;+\; \frac{1}{2} \cot \gamma_j \left(f_k - f_i \right) \end{align*} \]
For a full derivation see Chapter 3.3.4 of PMP book
Cotangent discretization
\[ \laplace_{\set{S}} f\of{v_i} \;:=\; \frac{1}{2A\of{v_i}} \sum_{v_j \in \set{N}_1\of{v_i}} \left( \cot \alpha_{ij} + \cot \beta_{ij} \right) \left( f\of{v_j} - f\of{v_i} \right)\]Problems
Still the most widely used discretization
Compute Gaussian curvature \(K\):
-by discretizing Gauss-Bonnet Theorem
Compute mean curvature \(H\):
-by discretizing Laplace-Beltrami operator
Compute min and max curvatures:
-from \(H\) and \(K\) we can compute \(\kappa_1\) and \(\kappa_2\)
The Laplacian is the central concept in this course!