Kim, Rosignac: Geofilter: Geometric Selection of Mesh Filter Parameters, Eurographics 2005
\[ f\of{x} \;=\; a_0 + a_1 \cos\of{x} + a_2 \cos\of{3x} + a_3 \cos\of{5x} + a_4 \cos\of{7x} + \dots \]
\[F(\omega) = \int_{-\infty}^{\infty} f(x) \, \func{e}^{-2\pi\func{i}\omega x} \func{d}x\]
\[f(x) = \int_{-\infty}^{\infty} F(\omega) \, \func{e}^{2\pi\func{i}\omega x} \;\func{d}\omega\]
Wikipedia: Fourier Transform and \(L^2\) Inner Product
Smooth signal by convolution with a kernel function \[ h(x) \;=\; f * g \;:=\; \int f(y) \cdot g(x-y) \,\func{d}y \]
Example: Gaussian blurring
Smooth signal by convolution with a kernel function \[ h(x) \;=\; f * g \;:=\; \int f(y) \cdot g(x-y) \,\func{d}y \]
Convolution in spatial domain ⇔ Multiplication in frequency domain \[ H\of{\omega} \;=\; F\of{\omega} \cdot G\of{\omega} \]
\[ \matrix{\vdots \\ \laplace_\set{S} f\of{v_i} \\ \vdots} \;=\; \mat{L} \cdot \matrix{\vdots \\ f \of{v_i} \\ \vdots} \]
\[ \begin{align} \mat{M}_{ij} \;&=\; \begin{cases} \func{cot}\alpha_{ij} + \func{cot}\beta_{ij}, & i \ne j \,,\; j \in \set{N}_1\of{v_i} \\ - \sum_{v_j \in \set{N}_1 \of{v_i}}\of{ \func{cot}\alpha_{ij} + \func{cot}\beta_{ij} } & i=j \\ 0 & \text{otherwise} \end{cases} \\[2mm] \mat{D} \;&=\; \func{diag}\of{ \dots, \frac{1}{2A_i}, \dots} \end{align} \]
Levy, Zhang: Spectral Mesh Processing, SIGGRAPH Courses 2010
Levy, Zhang: Spectral Mesh Processing, SIGGRAPH Courses 2010
Levy, Zhang: Spectral Mesh Processing, SIGGRAPH Courses 2010
\[\mat{D} = \func{diag}\of{ \dots, \frac{1}{2A_i}, \dots}\]