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Figure 1: Models parametrized with our method. Checkerboard textures are pulled back via the parametrizations and heat maps illustrate
the symmetric Dirichlet energy Ejs, = 0.5(6% + sz + G% +0, 2). The left three models contain between 40,000-100,000 triangles, and have
cone singularities (colored spheres). Each took about a second to compute. The rightmost result contains 38,726 triangles, has no cones, and
was computed in less than half a second. These represent an order-of-magnitude speedup over the solver of HGP [BCW17].

Abstract

We present a fast algorithm for low-distortion locally injective harmonic mappings of genus 0 triangle meshes with and without
cone singularities. The algorithm consists of two portions, a linear subspace analysis and construction, and a nonlinear non-
convex optimization for determination of a mapping within the reduced subspace. The subspace is the space of solutions to the
Harmonic Global Parametrization (HGP) linear system [BCW17], and only vertex positions near cones are utilized, decoupling
the variable count from the mesh density. A key insight shows how to construct the linear subspace at a cost comparable to that
of a linear solve, extracting a very small set of elements from the inverse of the matrix without explicitly calculating it. With
a variable count on the order of the number of cones, a tangential alternating projection method [HCWI17] and a subsequent
Newton optimization [CWI17] are used to quickly find a low-distortion locally injective mapping. This mapping determination
is typically much faster than the subspace construction. Experiments demonstrating its speed and efficacy are shown, and we
find it to be an order of magnitude faster than HGP and other alternatives.

CCS Concepts

e Computing methodologies — Mesh models; Mesh geometry models; ® Mathematics of computing — Topology;

1. Introduction

The efficient computation of a surface parametrization lies at the
foundation of geometry processing, and its solution is of great
importance to many applications in graphics. Examples include
remeshing, texture mapping, shape correspondence, fields-and-
patterns design, compression, and high-level learning tasks, to
mention just a few.

The problem is challenging because its mathematical formula-
tion boils down to solving a nonconvex optimization problem in
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which the number of degrees of freedom is proportional to the num-
ber of mesh elements. In the common and important case of triangle
meshes, models may consist of thousands to millions of elements,
and each of these adds to the computational cost and complexity of
parametrization.

The standard optimization problem that arises is minimization
of some quality measure for angular distortion, area distortion, or
smoothness over triangles. The measures that lead to the most sat-
isfactory results are nonlinear/nonconvex. This poses an algorith-
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) HATP |#Newton| SUPSPAC | \rp ime | Newtom | 1O HGP [Chien 2016]
Model name #Triangles | #cones . . construction . algorithm . Speedup . Speedup
iters iters . (sec) time (sec)| . time (sec) time (sec)
time (sec) time (sec)
retinal 7,282 18 2 12 0.06 0.00 0.07 0.14 0.81 X6 137 x1,005
homer 10,202 82 24 17 0.19 0.04 0.13 0.36 1.16 x3 43 x120
bumpy_sphere 11,444 10 1 9 0.07 0.01 0.06 0.15 1.22 x8 113 x756
smooth-feature 12,350 10 1 10 0.08 0.00 0.05 0.14 1.18 x8 113 x804
moai 20,000 24 2 14 0.14 0.00 0.09 0.23 1.97 x8 71 %304
pear 21,504 14 1 17 0.13 0.00 0.11 0.24 4.07 x17 1,174 x4,810
horse 39,698 52 4 17 0.30 0.00 0.11 0.42 4.75 x11 1,114 x2,684
armadillo 43,160 137 5 15 0.67 0.02 0.15 0.84 5.58 x7 477 x566
screwdriver 54,300 26 3 15 0.35 0.00 0.09 0.45 74.74 x166 199 x442
dilo 54,344 62 7 17 0.40 0.01 0.12 0.53 7.41 x14 6,143 x11,702
blade 58,546 70 3 16 0.50 0.01 0.11 0.62 26.91 x44 267 X432
uu-memento 100k 99,932 107 19 16 0.98 0.02 0.13 1.13 11.00 x10 12,833 x11,387
sediapatchl_100K 99,968 36 4 15 0.65 0.00 0.10 0.75 12.48 x17 4,730 x6,298
pierrot100k 99,970 58 3 15 0.77 0.01 0.11 0.88 12.24 x14 892 x1,018
bimbal 00K 100,000 99 8 17 0.94 0.01 0.14 1.10 14.83 x14 1,138 x1,039
buste 100,000 71 5 16 0.74 0.01 0.12 0.86 11.70 x14 1,377 x1,594
camille_hand100K | 100,000 72 4 15 0.81 0.01 0.11 0.93 12.44 x13 920 %994
eros 100K 100,000 102 5 15 1.00 0.01 0.12 1.14 11.45 x10 5,348 x4,712
igea 100,000 80 5 14 0.89 0.01 0.11 1.01 17.43 x17 4,771 x4,753
magalie_hand 100,000 61 22 17 0.72 0.01 0.12 0.84 12.64 x15 905 x1,074
pensatore 100,000 64 3 15 0.83 0.01 0.11 0.94 11.67 x12 3,953 x4,201
ramses 100,000 32 3 15 0.66 0.00 0.09 0.76 35.10 x46 5,808 x7,652
torso 100,000 73 14 14 0.84 0.01 0.11 0.95 16.49 x17 16,886 x17,738
bunnyBotsch 111,364 44 1 9 0.87 0.00 0.06 0.94 131.76 x141 727 x778
santa 151,558 82 10 13 1.19 0.01 0.10 1.30 21.15 x16 14,339 x11,038
awakening 250,153 509 4 13 4.07 0.15 0.51 4.74 Fail - > 6 hours -

Table 1: Runtimes on a selection of 26 models with cone singularities from our experiments. Our method is an order of magnitude faster
than HGP [BCW17], and 2—4 orders of magnitude faster than [CLWI16]. Note that the majority of the runtime is spent during subspace
construction, with ATP (alternating tangential projections) and PN (projected Newton) steps being very efficient.

mic challenge as even small nonconvex problems are notoriously
hard to solve. In the past decade, much work has been aimed at
developing methods that are fast, robust, and can achieve strict
constraints or guarantees of validity on the obtained result. Exam-
ple constraints/guarantees include local injectivity conditions, user-
specified bounds on the induced map distortion, as well as strict
curvature constraints on the boundary or at singularities (cones).

These recent methods have constantly increased in robustness
and speed, but are still significantly slower than “naive” meth-
ods that do not have quality or validity guarantees. Such methods
are typically based on minimization of convex quadratic energies
(e.g. [LPRMO02,ZLS07,BGB08]) with or without additional linear
constraints. Hence, their computational cost is dominated by that
of solving a large sparse linear system with variable count propor-
tional to the number of triangles. On the other hand, the recent ro-
bust nonconvex methods require solving tens or even hundreds of
linear systems internally and are thus slower to compute.

There are several unique cases in which a linear method is both
robust and capable of some guarantees on output. These can be
limited in their scope and applicability. For example, the classic
method of Tutte’s [Tut63, Flo97] maps a disk-like mesh to a con-
vex region bijectively and harmonically. The method of [GGT06]
can parametrize a closed genus 1 surface bijectively via a discrete
harmonic map. [AL15] uses the former result and generalizes the
bijection such that it can be applied to genus 0 surfaces with either
3 or 4 cone singularities of a specific nature. As a last example,
the recent method of [SC17] computes a discrete approximation to

the unique conformal parametrization, given arbitrary prescription
of cone singularities. It is more general than the former methods at
the expense of not having strict injectivity guarantees (though it is
empirically shown to be very robust).

We aim to develop a method with robustness and generality
comparable to that of nonconvex methods, with a computational
cost similar to that of linear methods. We search within the lin-
ear space of discrete harmonic maps with arbitrary (not convex)
boundaries, and any number of cones with user-prescribed curva-
ture. This space is a superset of the space of conformal maps (in a
smooth sense) and was recently introduced by the Harmonic Global
Parametrization (HGP) method [BCW17]. The additional desired
constraint of local injectivity is nonconvex, but an efficient search
is possible with a maximal convex subset, based on principles bor-
rowed from [Lip12]. In HGP, the linear harmonicity constraints are
softened with a quadratic error term, and the resulting convex pro-
gram is solved with Mosek [ApS17], an off-the-shelf second-order
cone solver. HGP is 1-2 orders of magnitude faster than alternative
methods with similar robustness such as [CLW 16], which also uses
convex programming but requires solving many convex problems.
Our algorithm provides an additional significant acceleration over
HGP (Table 1).

In this paper, we construct a custom-made solver for search-
ing within the harmonic space of [BCW17] without relaxing these
harmonic constraints. We produce a method whose computational
cost is comparable to that of 1-2 linear solves. Following HGP, our
method is used to generate seamless parametrizations, but it may
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also be applied in the case of arbitrary cone angles and holonomies
(Observation 1 below holds by continuity in this case).

First, we perform a detailed algebraic analysis of the HGP lin-
ear system, Ahg,,z = 0, for genus 0 meshes, where z denotes a uv
layout (Section 3). Ay, is shown to be full rank and as it has
more columns than rows, we characterize its nontrivial null space,
N (Ahgp), the space of harmonic maps from HGP. The dimension-
ality of this space is very low and scales favorably with respect to
increasing mesh resolution: linearly with the number of cones and
boundary vertices. Next, we rely on the following two observations
to further reduce our problem:

Observation 1 For any harmonic map z, determination of local
injectivity can be formulated solely in terms of the behavior of the
map around the boundary and cones [BCW17, Theorem 6.1].

Observation 2 The conformal distortion of a (smooth) locally in-
jective harmonic map attains its maximum on the boundary of a
disk-like domain [CW15]. Furthermore, this result was recently ex-
tended to multiply-connected domains [CW17]. The latter result
can be immediately generalized to surfaces with cones which can
be interpreted as infinitesimal punctures.

These observations allow us to control global injectivity and dis-
tortion by focusing on just the vertices neighboring the cones and
boundary. For any basis element of N(Ajg,), we need only ex-
tract those entries (uv positions), and may impose injectivity con-
straints and minimize distortion on this very small subset of the
mesh. Again, this scales favorably with increasing mesh resolution.

This is referred to as a “reduced” subspace construction and ex-
traction of these entries is described in Section 4. We use an algo-
rithm that computes selected elements from the inverse of a non-
singular large sparse matrix [KL.S13, VCKS17]. To the best of our
knowledge this is the first use of a selected inversion algorithm for
geometry processing (see Section 2 for a brief discussion), and as
a service, Appendix D details our use of this algorithm in the PAR-
DISO package [Sch]. Straightforward computation of N(Ajg),)
in its entirety would be orders of magnitude slower, drawing the
method inefficient. Direct methods for null space basis computa-
tion such as: use of a sparse LU factorization, QR/SVD orthonor-
mal basis extraction, and the sparse LUQ algorithm from [J*18],
were tried and found to be much slower in our use case.

Once the reduced subspace is constructed, we impose local in-
jectivity constraints and minimize distortion. For local injectivity,
we again use the frames of [Lip12] to specify a maximal convex
subset of locally injective maps, as was done in HGP. A feasible
map in the intersection of this convex subset and A/ (Ahgp) is found
with an alternating tangential projection method [HCW17] (Section
5). The intersecting affine and convex subsets differ from the ones
used in [HCW17], but the guarantees and efficiency of tangential
projections are shared. It provably converges when the intersection
is nonempty, and robust methods for frame determination usually
achieve this (further discussion in Section 7.3). For distortion min-
imization, the projected Newton solver of [CW17] is used to drive
down the distortion of the initial feasible map by lowering isometric
energy (Section 6). The main advantage of this solver is its analytic
projection of the Hessian to the positive semidefinite cone.

In Section 7 we demonstrate that our solver is several orders of
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magnitude faster compared to competing nonlinear state-of-the-art
methods. The cost of finding an initial feasible map, and of dis-
tortion minimization is relatively negligible compared to that of
the reduced subspace construction (which is also very fast). The
speedup over other solvers is mostly attributed to the fact that they
internally perform a handful of linear solves while the cost of our
entire runtime is on the order of just 1-2 such solves.

2. Previous Work

The literature on mesh parametrization, or more generally the
computation of mappings, is vast. In the following we will re-
view only the previous approaches most relevant to ours and re-
fer the interested reader to the excellent surveys [FHOS, HLSO7]
for more complete expositions. We also recommend the surveys
[BLP*13, VCD™*16] for more specific global parametrization ap-
proaches, quadrangular remeshing, and directional field design as
these are closely related to the types of parametrization supported
by our method.

Similar to our method, a large range of parametrization tech-
niques restrict the space of admissible maps to a subspace. A pop-
ular choice is that of angle-preserving (conformal) maps. These
differ by the choice of variables in which the underlying op-
timization is formulated in. The angle-based flattening (ABF)
[SdS01, SLMBOS5] uses angles of the image triangles as variables
which result in a nonconvex optimization. [KSS06] uses triangle
circumcircle radii as variables, while [SSP08,BGB08] employ con-
formal scale factors at the vertices and aim at finding the scale that
will induce a new metric that is (discretely) conformally equiva-
lent to the original metric while having a prescribed Gaussian cur-
vature. The linear method of [BGBO0S§], which can be understood
as an approximation to [SSPOS], flattens the metric only approxi-
mately, but both methods tend to lack robustness in extreme cases
and are sensitive to the quality of the underlying mesh. On the other
hand, methods that use spatial coordinates result in a metric that is
completely flat as long as the induced map is locally injective. The
method of [SC17] tries to benefit from both worlds by first using
the conformal factors as variables to induce a nearly flat metric,
and then switches to the spatial variables in which conformality is
discretized based on the Cauchy-Riemann equations with a pair of
harmonic conjugate functions. We note that while conformal maps
possess elegant theory and many useful mathematical properties,
they are somewhat more restricted than necessary, sometimes en-
gendering large isometric (scale) distortion.

The space of harmonic maps offers a natural generalization to
conformal maps as each of the components of a conformal map is
harmonic. Methods that operate in this space are mostly based on
spatial variables [Tut63, Flo97, GGT06, TACSD06, WZ14, AL15,
CW15,CW17,BCW17], but recently, it was shown in [LW16] that
similar to conformal maps, alternative variables can be used, for
which the space of locally injective maps becomes convex. This
fact was further used by [HCW17] for shape deformation and by
[CCW16a] for shape interpolation.

More general parametrization and deformation methods operate
in the larger space of continuous piecewise affine maps. They al-
low each vertex of the mesh to move freely. Since they cannot
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Figure 2: Qualitative and Distortion Comparison to HGP [BCW17]. Textured results from our database are shown, with heat maps depicting
symmetric Dirichlet energy Ejs, and the conformal distortion k : |fz| / | fz|. Our method is slightly better on Ejs,, and three times better (on

average) on k, and achieves these results much faster.

rely on underlying properties of a specific family of maps, they re-
quire more care in order to guarantee certain properties such as lo-
cal injectivity and/or bounded distortion. Namely, such constraints
should be applied to every individual element of the mesh. The
method of [Lip12] forces such constraints with a convex framework
by carving a convex piece out of the nonconvex high-dimensional
space of bounded distortion mappings with the help of frames. The
algorithm uses sequential convex programming, where at each it-
eration a convex program is solved followed by an update of the
frames which enables gradual exploration of the nonconvex space.
A similar approach was used in [APL14, APL15] for computing
shape correspondences. The advantage of these methods is that they
can generate arbitrary maps including nonsmooth maps, and have
the potential for a larger feasible space. This comes at a higher com-
putational cost. The method of [CCW16a] uses the metric directly
in the form of edge lengths squared. Distortion is convex in these
variables, but the curvature conditions are not. A sequential convex
programming is employed in order to gradually flatten the metric
while adhering to the distortion bounds.

Another line of works that use the complete space of continu-
ous piecewise affine maps, addresses injectivity without explicitly
formulating a constraint. Instead, the optimization starts from a lo-

cally injective configuration and an energy with a builtin barrier
term is used. An unconstrained minimization is applied based on
either first order approximation [SS15,RPPSH17,CBSS17] or sec-
ond order approximation [FLG15, SPSH*17,CW17]. In Section 6
we employ such a method to further optimize our map. In [ZBK18],
the authors develop a barrier filter for descent direction that avoids
collapse of elements more efficiently. A large number of addi-
tional works develop acceleration techniques for optimizations in
this more general space including: momentum acceleration and a
quadratic proxy [KGL16]; progressive modification of the refer-
ence mesh [LYNF18]; and analytic Newton projection and initial-
ization scaling [GSC18].

Many parametrization methods address the problem of seamless
parametrization specifically by incorporating cone placement and
holonomy determination. These include [BGB08, BZK09, MZ12,
MZ13,MPZ14,DVPSH15,CLW16,BCW17]. In our paper, we as-
sume similarly to [FL16,CLW16,BCW17] that the cone points and
their angles have been given, and aim to achieve these.

Selected inversion is a family of methods used to compute
a user-specified subset of A~ without computing it in its en-
tirety. A sparse direct method was initially shown in [Tak73].
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However, efficient algorithms for general matrices (with public
implementations) have only been developed in the past decade
[LYM*11,KLS13,JLY17, VCKS17]. These methods use a sparse
factorization of A (LU or LDLT depending on whether the matrix is
symmetric or not) and compute supersets of the required elements
efficiently and in parallel. We have used the implementation that
is provided by the PARDISO parallel direct solver [Sch] which is
based on the algorithms described in [KLS13, VCKS17]. Within
graphics, the work of [HDA17] used sparse Cholesky factorization
insights to perform fast parametrization of localized patch mesh re-
gions. In contrast, the structure of our problem is non-local, with
boundaries spanned along the entire surface and cones scattered all
over the mesh. Instead, we are able to leverage observations 1 and
2, as well as the selected inverse algorithm, for global parametriza-
tion with discrete harmonic maps.

3. HGP System Analysis

We begin with a deeper analysis of the linear harmonic system
from [BCW17]. In this paper, a seamless global parametrization of
an oriented triangular mesh surface S = (V,E, T), potentially with
boundary 9S = (dV,0E), is desired. An example is illustrated in
Figure 3. A seamless global parametrization consists of a piecewise
linear map f: Sc — R?, where S, is a mesh disc obtained by cut-
ting S along a seam graph Gy = (Vy, Es). Furthermore, for each edge
e;j € Eg, f must map the duplicates (from cutting) effi, ef’j to image
segments that differ by an orientation-preserving isometry of R?,
with rotational part ¢’ (mi/2) (with R? = C implicit). If f is locally
injective over the interior of Sc, then the integers r;; € {0,1,2,3}
determine the holonomy for the cone metric induced by pullback
by f. Correspondingly, given a cone metric with holonomies that
are /2 (also called seamless), cutting it to a disc and laying it flat
will produce a seamless global parametrization.

Let us recall briefly the Harmonic Global Parametrization (HGP)
system. The variables are denoted z; := f(v;), where we have again
utilized the standard homeomorphism R? = C to allow for more
compact notation. Let C C Vi denote the set of cones and Vo=
V\ (Vs UdV) denote the interior vertices of S¢. Further notational
explanation follows presentation of the system.

Z?—Z?:ei%(zﬁ—z?% ejj € G (1)
Y, wilzi—z) =0, ViEV 2)
v;EN(v)
0
Y wia —z)
viEN* ()
+ Y wid T @ —z) =0, weV\(CUV) G)

viEN*(v})

Conditions (1) are the rotation constraints for seam edges e;; € Es,
where v{ &/ and v &v}} denote the endpoints of ¢; and ef’j, re-
spectively. In [BCW17], the integers r;; were determined by solv-
ing a linear system from Appendix B of [MZ12], and the same is
done here. Conditions (2) are the standard harmonic constraints for
interior vertices of S¢, where N(v;) denotes the set of adjacent ver-
tices of v; in S¢, and w;; denote cotangent weights for the Laplacian.
Conditions (3) are the rotated harmonicity constraints for seam ver-
tices, and have only been expressed for vertices of degree 2 (in Gy),
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for simplicity. Such vertices have two duplicates v? and v,»1 after cut-
ting, with images denoted z? and z,~1. Figure 3 contains a schematic
explaining the notation. Generally, for a vertex of degree d, cutting
results in d duplicates, and the analogous equations are quiet cum-
bersome to state, but simple to understand. We refer the reader to
Appendix A of [BCW17] for more details but note here that there is
no need to explicitly construct conditions (3) in order to implement
our method, as explained in Section 4.

Following Observation 1, it is sufficient, but not necessary, that
the weights w;; be positive for guarantee of local injectivity (assum-
ing injectivity at boundary and cones). One possibility is to utilize
the mean value coordinates [FloO3]. However, we opted for use of
cotangent weights due to their convergence properties with respect
to smooth harmonic maps, as well as the fact that their symmetry
property leads to easier implementation and simplified analysis and
construction of the harmonic subspace. To guarantee positivity of
the cotangent weights, it is possible to construct an intrinsic Delau-
nay triangulation [FSSBO7]. Nonetheless, we found in our experi-
ments (Section 7) that the method is rarely influenced by negative
cotangent weights and when it is, a few isolated flipped triangles
emerge. We fixed these locally by repositioning a single vertex.

3.1. System Dimensions & Interpolation Conditions

The linear system presented by Equations (1)—(3) has fewer equa-
tions than variables and forms a homogeneous linear equation
Apgpz = 0. In the next two subsections, we aim to characterize the
null space NV (Ahg ,,). Having a basis for this null space will allow
us to parametrize the space of solutions. Doing it efficiently is a
key contribution in this paper. We begin with a simple determi-
nation of the dimensions of Ay, assuming that § is a sphere or
a multiply-connected disc (so is of genus 0, with n € N boundary
components). While the theory of [BCW17] is readily applicable to
the higher genus case, we leave its characterization and algebraic
analysis for future work.

3.1.1. Sphere Case

Suppose S has no boundary components, so that it is topologically
a sphere. We first note the following lemma:

Lemma 3 For § 2 S?, the seam graph Gj is a tree, and thus ¥(G;s) =
Vs — |Es| = 1.

Proof Cutting along G, results in a disc Sc. If Gy is disconnected,
multiple boundaries result, giving a contradiction. Furthermore, Gy
may have no cycles, otherwise cutting would yield a disconnected
set. Finally, all trees have Euler characteristicy = 1. [

The number of complex variables in the system is the number of
vertices of Sc. There is one for each interior vertex and deg(v)
copies for each v € V. Thus, the column dimension of Apgp 1s
|‘°/| + 2 |E;|. For the row dimension (number of relations), we get
|Es| + ]V| + (|Vs| = |C|), with each term from relations (1)—(3), re-
spectively. The difference in row and column dimension is then
|Es| — |Vs|+|C| = |C|] — 1 by Lemma 3.

In Section 3.2, we will argue that A, is full rank, by arguing
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Figure 3: An example seamless global parametrization, and a schematic illustrating notation for Equation (3). Figure from [BCWI17]. The
mesh surface S is mapped with parametrization f, and the image of S¢ is depicted on the right. Cone points are represented by colored dots
and the seam graph Gy is illustrated by colored edges. The resulting duplicate vertices and edges are correpondingly colored on the right
(some repeat of colors). The upper half of the figure establishes notation for Equation (3) for a non-cone seam vertex v; of degree 2. As can
be seen, cutting along the seam splits its neighborhood into two components, and these rotated harmonicity conditions ask that f be locally

harmonic up to the appropriate rotational correction.

this for an augmented matrix:

Ar3
Aaug = <12th) = A |,
Aint

where we’ve used A3 and A; to denote the submatrices corre-
sponding to Equations (2), (3) & Equations (1), respectively. The
submatrix A;,; contains |C| — 1 interpolation conditions that “com-
plete” A, and make Aaug square.

To specify these interpolation conditions, first we find a cone that
is of degree 1 in Gy. This must exist as G; is a tree, and we may
assume there are no non-cone leaves (these would unnecessarily
introduce extra variables). For each of the other |C| — 1 cones, we
specity its position under f (or the position of one of its duplicates,
if deg(v) > 1 in Gy). This results in A;,, consisting of rows that are
all zero except for a 1 in the appropriate column index. Any solu-
tion z to (’:’:ﬁ:’) = (C‘gz ), where cjn; € €I, gives an element
of N(Ajg,). Linearly independent choices of cin result in linearly
independent solutions z, allowing us to characterize N/ (Ahg,,). The
positions of the cones (or one of their duplicates) under f are “har-
monically” interpolated by the solution to the augmented system,
motivating the “interpolation” moniker.

3.1.2. Disc & Punctured Disc Cases

The second case that we analyze is that of n > 0 boundary com-
ponents, where S is a disc or multiply-connected disc. We estab-
lish two small lemmas characterizing Gs. The first is argued just as
Lemma 3 is. The proof of the second lemma is more involved, and
left to Appendix A.

Lemma 4 For S of genus 0 and n > 0 boundaries, with G5 having m
connected components, Gj is a forest and % (Gs) = |Vs| — |Es| = m.

Lemma 5 For S of genus 0 and n > 0 boundaries, with Gy having
m connected components, |0V NVs| =n+ (m—1).

With the column dimension, we again have one complex variable
for each vertex of V and each vertex of V\V;. For vertices of
Vs\oV, there are deg(v) copies and corresponding variables. For
vertices in dV NV, there are deg(v) + 1 variables. Thus the col-
umn dimension is ‘c/] + |0V | + 2 |E;|. For the row dimension, we
have |Es| + ’V| + (|Vs| — |C| — |9V N Vs]), with each term from rela-
tions (1)—(3), respectively. Subtracting the two and utilizing Lem-
mas 4 and 5, we get a dimension difference of [0V |+ |C|+n— 1. If
we have n = 0 boundaries and are in the sphere case, this formula
matches the result from the previous subsection.

The interpolation conditions here are similar to those in the
sphere case. For each vertex of 0V, we specify its position (or that
of one of its copies if it’s also in Vj). For each cone, we do the same.
If n > 1, there are still additional rows of A;,; to specify: n—1 to
be exact. By Lemma 5, |0V NV;| = n+ (m — 1), and for each of
these vertices, there are at least two duplicate copies after cutting.
For n— 1 of these we will specify the positions of another duplicate
copy (one having already been specified). These are chosen such
that the remaining m elements of dV NV are distributed evenly
amongst the m components of G;. These constraints lead to rows of
zeroes with a 1 in the appropriate index, as was in the sphere case.

3.2. A KKT system

In this section, we make a detailed argument for full rank of the
augmented system. Consider the KKT system arising from the lin-
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early constrained quadratic minimization:

minimize | Dz||* @)
2=(21,22,..)

subject to (Al)zf (O)
) Aint Cint

where z denotes the images of the vertices of Sc under f; and D
denotes a pair of (square root) area-weighted gradient operators,
producing a pair of gradients for each triangle from the x- and y-
coordinate values (Re (z;) and Im (z;)) at the vertices. The objective
is the sum of Dirichlet energies for the component coordinates over
the mesh, and the energy’s Hessian 2D’ D is simply a pair of stan-
dard cotangent Laplacians, one over each component [BS07].

Written in terms of real variables x; := Re (z;) and y; := Im(z;),
the objective is positive-semidefinite with linear constraints. Thus,
KKT conditions are both necessary and sufficient for global opti-
mality [BVO04]. This produces a linear KKT system:

2D'D Aym) (z) ( 0 )
= , 5

(Alin 0 )\ Clin )

where Aj;, = ( 1?,-”1, >, Clin = ( cfi, ), and A are Lagrange multipliers.

3.2.1. Invertibility

Let K denote the square matrix in Equation (5). We may show
invertibility of K by arguing that Aj;, is full rank and N(D) N
N(Ajin) = 0. To see this, suppose there exists (%) € N(K) not
equal to zero. Then:

2D'Dz+ Al A =0 (6)
Alinz =0
Thus, we have z € N(Ay;,). If z = 0, then we have A € N(A};,)

which is nonzero, contradicting full rank of A;,. If z # 0, then
we can multiply Equation (6) on the left by z’, causing the sec-
ond term to disappear and implying that 2 ||Dz| 2=0. Thus, z €
N(D)NN(A;in), a contradiction.

Theorem 6 K is invertible, and optimization problem (4) has a
unique solution.

Proof Proposition 11 in Appendix B proves that A, is full rank.
For the other condition, note that (D) consists of the z that are
constant vectors, as this is the only way the gradients in each com-
ponent will vanish entirely. Of these, only the constant zero vector
is in W{Ay;,) due to the interpolation constraints, which pick out
the coordinates of the cone positions. []

3.2.2. Full Rank of Ay,

We now relate the KKT system to the augmented HGP system.
Consider a solution (}) of Equation (5). Looking at the rows of
K corresponding to interior vertices of Sc, it’s clear that z satisfies
Equations (2). A row of A;in (column of Ay;;,) is nonzero iff it cor-

responds to an index of a vertex in Gy or oV'.

For rows corresponding to vertices in Vy\(C UdV), the rows of
Al are non-zero and the equations satisfied contain Lagrange mul-
tipliers. In general, elimination of these Lagrange multiplier vari-
ables, will show that z satisfies Equations (3). The argument is te-
dious to express in general, so we simply demonstrate it specifically
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for an example with vertex v; from Figure 3. Notation is set in Fig-
ure 4. We use the x-, y-component real values to be more explicit.

Figure 4: Notation for an example of eliminating Lagrange multi-
plier variables. The —i denotes the rotation that should be applied
to match the two halves.

First we show the relevant relations from A (for seam edges e4 and
e1) and display the corresponding Lagrange multipliers (preceding
the equations):

Mo (3 (—yi+y) =0
N 08—+ —x)=0
Mo af =)+ =y +yD) =0
N 0f =)+ —xl)=0

This allows us to express the relations from the top half of the KKT
system corresponding to the components of z? and zl-l.

0 1 0 0 0 0
rowx; 5 eot(o) () —x1) +wip (6 —x2) +wiz(xi —x3)
1 0 0 x x _
+ 5 cot(az)(x; —xz) —Ag +A; =0
0 1 0 .0 0 0
row y; ECOt(Gz)()’i —yi)+wia(yi —y2) +wiz(yi —y3)
1 0 0 !
+ E COt((X:;)(y,‘ —y4) — }\fi +7\‘)l =0
1. 1 11 1 1
rowx; : 5 cot(as)(x; —xg) +wis(xi —xs) +wie(x; —xo)
1 !
+Ec0t(0c6)(x,-l —x) =M A =0
1, 1 11 1 1
row y; : ECOt((ls)()’i —y4) +wis(vi —ys) +wis(yi —¥s)

1
+ 3 ot(o) ! =)+ X5 -2 =0,

As can be seen, combining rows x,Q & y,-1 and rows y? & )c,~1 gives
us Equation (3) for vertex v;. In general, a vertex of degree k will
require 2k rows to be combined to achieve the corresponding rota-
tional conditions by eliminating Lagrange multipliers.

Finally, the bottom half of the KKT system is exactly Equations
(1) and the interpolation conditions, so it is clear that z also satisfies
these equations, and is a solution of Agyez = (Cg” ) . We have argued
for the following proposition:

Proposition 7 Given a solution (i) of the KKT system, z is a so-
lution of the augmented HGP system.

Invertibility of K also implies linear independence of its rows.
As noted, Equations (2), Equations (1), and the interpolation condi-
tions are already present as rows. Equations (3) can be obtained by
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elimination of Lagrange variables. This amounts to linear combi-
nations of the rows corresponding to duplicates of the seam vertex,
and the resulting equations will still be linearly independent. Thus,
via invertibility of K we have shown the following theorem:

Theorem 8 Ay is invertible, Ay, is of full rank, dim(/\f(Ahgp)) =
2(|oV|+ |C| +n — 1) (real-dimensional), and a basis for N'(Ag),)
may be found by solving Aaugz = ( C?”) for a set of ¢j,; that form a
basis for R2(19VI+ICl+n=1),

4. Subspace Construction

Theorem 8 and Proposition 7 give us a way to construct N/ (Ahg p).
In particular, for choices of cj;; from the standard basis for
R2(OV[+[Cl+n— 1>, we use the parallel selected inversion algorithm
[KLS13,VCKS17] to compute selected entries of the inverse of the
matrix K. Note that if ¢;,;; is an element of the standard basis, then
the solution to the system is merely a column of K ~!. The result-
ing z’s will form a basis and vectors of interpolation constraints in
R2VIHICI+1=1) gpecify elements of N(Angp)-

Using the KKT system formulation instead of the augmented
HGP system greatly eases implementation. This is because we do
not need to explicitly construct the cumbersome rotated harmonic-
ity conditions (3) (nor (2)). Instead, we simply construct the Dirich-
let energy’s Hessian 2D’ D over the cut-to-disk mesh S. in the same
fashion the standard Laplacian is constructed. Namely, we iterate
over all the triangles in S¢ and for each triangle, we add the 3 cor-
responding cotangent weights to the upper left block of K. These
correspond to the gradients of the Dirichlet energy with respect to
the function value at the triangle vertices.

4.1. Reduced Variables

We do not need to use the selected inversion to extract all entries
of the relevant columns of K~'. Recall that the main theorem of
[BCW17] told us that a solution to the HGP system can be proven
to be locally injective (over the interior of S¢) by looking merely at
the behavior of the triangles near cone points and boundary points.
With positive Laplacian weights, the theorem was:

Theorem 9 Let f denote a solution of the HGP system for S, with
specified cone points and holonomy angles determining the rota-
tion constraints. If the cone and boundary triangles are mapped
in an orientation-preserving manner, and the induced metric on §
achieves the desired cone angles and turning angles, then f is lo-
cally injective (over the interior of S¢).

Specifically cone/boundary triangles refer to triangles of S contain-
ing cone/boundary vertices, respectively. We refer the reader to Ap-
pendix C of [BCW17] for a specific definition for turning angle, but
intuitively, it tracks the amount that the image of a boundary curve
(under f) turns. Above, we omitted some technical conditions (like
a 3-connected 1-skeleton) that practically always hold.

This theorem allows us to drastically reduce the number of vari-
ables when searching for a locally injective map by just tracking the
vertices of cone and boundary triangles. This decouples the variable
count from mesh density, and instead ties it to the number of cone
and boundary vertices.

Ultimately, we use the selected inversion to extract just the rows
corresponding to cone and boundary vertex positions. This method
of subspace construction leads to an order of magnitude speedup
over an approach where K is factorized and multiple linear solves
are performed to extract full columns of K ~!. The selected inver-
sion algorithm still requires a factorization of similar computational
cost, but is able to extract the greatly reduced number of variables
much more quickly than solving and throwing out elements.

Lastly, let us note that we never explicitly construct the full basis
for N(Ajgp)- In Sections 5 and 6, we optimize over the interpola-
tion constraints c;,s, and to obtain the final map, we solve the KKT
system with the optimized c;,, utilizing the factorization from ap-
plication of the selected inversion algorithm. This again gives us
greater computational efficiency.

4.2. Virtual Vertices for Boundaries

For closed meshes, the dimension of the subspace depends on the
number of cones but is independent of |V|. For open meshes, the
dimension depends on the boundary as well. While dV is typi-
cally significantly smaller than V (O(|0V|) = (9(|V|1/ 2) for a unit
disk) for very dense meshes with long boundaries, the dimension
increase may lead to a slowdown. To alleviate this, we specify
optional “virtual vertices” along dS, which are a small subset of
dV consisting of every k-th vertex along the boundary, where k
is a user-defined parameter. In the resulting mapping, the position
of any boundary vertex v between two virtual vertices v, and vy,
is constrained to a convex combination of the two. Specifically,
v=(1—1)vq+1vp, where 1 is the arclength along dS from v, to v di-
vided by the arclength from v, to v,. In the case that the mesh is not
3-connected, the virtual vertices should be selected more carefully
to avoid degeneracies. For example, if the mesh contains an “ear”
triangle, its 3 consecutive boundary vertices must be included in
the virtual vertices subset. More general treatment is almost never
needed in practice but is described in Appendix E for completion.

This procedure leads to a smaller subspace of /| (Ahg p), acceler-
ating computations. It is applied sparingly in our experiments (only
when there are > 1000 boundary vertices; see Table 2), and is only
needed for very large meshes with long boundaries. The quality of
the resulting map is usually not greatly affected, i.e., only in the
rare case when the boundary is very jagged. Our tactic is similar
to the “seam straightening” of [LFJG17], and distortion increases
might be mitigated with strategies similar to ones found there.

5. ATP in Reduced Variables

The method of Alternating Tangential Projections (ATP, for short)
was used in [HCW17] to converge to the intersection of a linear
subspace and a convex subset, projecting “globally” onto the sub-
space and then “locally” onto the convex subset. It differs from
standard alternating projection methods in that the global projec-
tion is normal to the previous local projection step (except the first
step, of course). This leads to faster convergence times empiri-
cally [HCW17], and is guaranteed to converge on a feasible in-
tersection point, if it exists.

In our setting, we apply this method with a focus on the
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Figure 5: A schematic illustrating ‘B;. Due to symme-
tries of inequalities (7) and (8), they are illustrated in the
(Re (£/2).|#])
solid black lines. The dashed lines are orthogonal to them, and the
green region represents *B;. In this image, k = 0.6 and 6, = 0.05.
To visualize the full space, one would rotate the shaded green re-

gion about the Re < fzi / C’) -axis and then product it with a copy of
R for the potential values of Im <le/§’>

-plane. The inequalities are represented by

cone and boundary triangles, denoted 7, henceforth. The sub-
sets we consider are within C27| = R#7el A point in this space
(7. ZIT"” S ,fZ‘T"’l) is to be interpreted as a candidate col-
lection of similarity and antisimilarity parts of the Jacobians for the
triangles of T,;,. These are the complex Wirtinger derivatives (see
[CCW16b, Section 3.1]). The linear subspace projected to globally
is the set of such Jacobian components which actually arise as so-
lutions of our HGP system. Ideally, the local projection would be

onto the set of orientation-preserving Jacobians fzi > f; , but this

is a nonconvex subset.

In order to try to achieve these aims, we find a maximal con-
vex subset dictated by convexification frames [Lip12]. The frames
are determined in a fashion which encourages the correct cone and
turning angles. In particular, we utilize frames determined with the
frame field from [BZK09], as was done in [BCW17]. Despite the
fact that the convexified set may not intersect with the global space,
the method appears to perform well empirically (see Section 7).

5.1. Local space and projection

Let us define the local space for triangle i, denoted by B; C c?,
with frame (' (a complex number with unit length). The following
inequalities define the space:

fz i

Re(§) -

£Y 1

(7))

where G; is a small positive constant and k is slightly less than 1.
As the notation suggests, the expressions above derive from the ex-

20 (N

£

(3
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pressions for the little dilatation [WMZ12] and the smaller singular
value of the Jacobian in terms of | f;| and | fz|. One simply replaces
| fz| with the component of f; in the direction of the frame. As this
is less than |f;|, we obtain injectivity guarantees and rough align-
ment with the frames. A schematic and a description of ‘B; is given
in Figure 5 and its caption. The full convex space is the product
space B =[];%5;.

As can be seen in Figure 5, projection to the boundary of %;
in one component (f;, f£) is reduced simply to projection in a 2-
dimensional plane. In each of the colored region, the projection

to the solid black curve is described by a simple formula, so we
omit it for brevity. Note that only Re ( 1/ C’) and |f2

while Im ( fzf / Ci ) and arg fzi remain unchanged. Projection to ‘B is

are changed,

achieved by component-wise projection to each of the 5;.

5.2. Global space and projection

The global space is defined as the image of a linear map. With the
selected inversion algorithm, we may collect the extracted vertex
positions at and adjacent to cones and boundaries for basis elements
of N'(Ajgp) as columns of a matrix H. This matrix has dimensions
2(|Vep|) x 2(]oV| 4 |C| +n — 1) where V,,;, denotes the vertices of
T,p in Sc. We compose this with another linear map J which calcu-
lates the Jacobian over triangles of 7;;, and decomposes them into
similarity and antisimilarity parts: f; and f; (this matrix is essen-
tially D from Equation (4), restricted to V,;, and up to a change of
basis). It is a simple matrix to derive, but if additional background
is desired, we refer the reader to Section 3 of [CCW16a]. Let us
use J := J o H to denote the composition which takes an element of
N(Ajg,) and produces the resulting f and £ for all 7.

Lemma 10 J : R2(VI+(ClHn=1) _ p4lTo| hag 4 null space of di-
mension 2, consisting of constant complex vectors (x- and y- com-
ponents constant but perhaps not equal).

The proof is delayed to Appendix C, but it’s intuitively clear that
the elements of N/ (JN) consist of elements that co-locate all vertices
dictated by the interpolation constraints, so that Jacobians vanish.
It is sometimes useful to eliminate this null space and make our
global projections simpler, so we add one more complex row of all
ones. We denote this matrix J;.

As noted, the image of J defines the linear subspace that we per-
form global projections toward. The first step of the algorithm is a
simple global projection, without any restriction to a normal hyper-
plane. For this, we look for an area-weighted least-squares solution
to Jc = p, where p is our initial starting point. The point Jc will
be the result of global projection. This amounts to finding a solu-

_ 2
tion to the following minimization problem min, HWI/ 2(Je—p) H ,
where W denotes a diagonal matrix containing areas of the triangles

in T;. A simple matrix derivative shows that any least-squares so-
lution satisfies an area-weighted normal equation:

JWic=J7w p.
However, J'WJ is not invertible, with a 2-dimensional space of so-

lutions c. As we are only after their image Jc, we run through the
same analysis looking for a least squares solution to Jic = (),
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Figure 6: A comparison on a multiply-connected car mesh of our
method with CETM [SSP0OS8]. Conformal mapping of such annular
domains is difficult and fails to keep the map continuous, while ours
succeeds due to its use of spatial variables.

and then extract all but the last two rows of Jjc. The unique solu-
tion here is determined by the equation:

c= (W) Aiwip, ©

where W has its last two diagonal entries given a weight equal to
the average of the areas.

For subsequent global projections, we have a map that needs to
be restricted to the hyperplane H, := {q € R*| | (a; — b;)! (b, —
q) = 0}, where g; and b; denote the results of the most recent
global and local projections, respectively (mirroring notation from
[HCW17]). For brevity, we skip the minimization problem formu-
lation and derivation and give the formula directly:

nWn

t
n o o~ n
(01) WA ML Wy (01)

where ¢; denotes the previous least squares solution, M = J; Wy J},
and n; = a; — by, again mimicking notation from [HCW17]. The
derivation is similar to the one performed there for Equation 20. In
the same fashion, we may use just one linear solve M ' AAW; ()

~_ n
Clp1 =¢1— M wy <Ol> (10)

and precompute M~ lﬂ Wi.

With both global and local steps described, the method can be
applied. The frames given by [BZK09] determine the starting fz’
while the starting f% are set to 0. A concise outline of the ATP
method with relevant parameters is given in Section 7.1.

5.3. Boundary Case with Trivial Holonomy

The above ATP method was aimed at finding coordinates ¢ for a
locally injective map in our subspace. In the disc and punctured
disc case with trivial holonomy (e.g., Figure 6), this may be done
simply, with guarantees. We use the original result of [GGT06] and
place one boundary along the boundary of a convex set, and ask that
the other boundary vertices lie in the convex hull of their neighbors
(with the existing cotangent weights). This is a small dense linear
system in the variables corresponding to V,;, especially if virtual
vertices are being used (Section 4.2). The result is guaranteed to be
a locally injective member of our subspace.

6. Projected Newton Distortion Minimization

The last third of our method takes a locally injective map in our
subspace and uses a projected Newton method [TSIFO5] to op-

(a) After ATP

10 10
Eiso El'SO E
2l e 2

Avg:3.85  Avg: 0.03 Avg:2.29  Avg: 0.01

Figure 7: Example of Projected Newton (PN) Optimization. On
the left is our textured result without PN optimization, and the
right is our textured result after. The color maps show the sym-
metric Dirichlet energy Eis, and the conformal distortion k. Note
the marked improvement and distortion being maximized near the
cones and boundaries.

timize for an area-weighted symmetric Dirichlet energy Ejs, =
0.5(6% + 0;2 + G% + 0;2) over T;p,. A line search ensures that local
injectivity, and cone and turning angles are kept valid throughout.
As hinted at by Observation 2, minimizing this energy for triangles
in T, tends to minimize the energy over all triangles in S. This can
be seen empirically in Figure 7.

Note that this energy is non-convex, so the Hessian will not be
positive semi-definite (PSD) and a naive Newton method will not
work. One needs to first project the Hessian into the PSD cone, and
here we note that the Hessian is the sum of the per-triangle Hes-
sians, and if we can project these individually to PSD Hessians,
their sum will be PSD also. In other settings, the per-element Hes-
sians are small (say 3 x 3 of 6 x 6), but in our setup, we have the
entries of ¢ as variables, and not the vertex positions, so our per-
triangle Hessians are 2(|0V| + |C| +n — 1)-dimensional. To effi-
ciently make these Hessians PSD, we follow the route of [CW15]
and note that these per triangle Hessians are just (J;)' QJ; where J;
are the four rows of J giving the components of f} and f%, and Q
is the Hessian of Ejs, in terms of these components. An analytic
formula for projection of Q is present in [CW15].

Once the Hessian projection determines direction of travel, two
line searches are performed: one ensures preservation of local in-
jectivity while another ensures decreasing energy. Again this is de-
scribed in detail in [CW15].

7. Results

We begin with an overview of our method, and then present some
results of experiments.

7.1. Algorithm Overview and Parameters

Our algorithm consists of three parts: a subspace construction (Sec-
tion 4), a search for a locally injective map within it (Section 5),

(© 2019 The Author(s)
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and a Projected Newton (PN) distortion minimization step (Sec-
tion 6). Our code is available in a documented public repository at
https://github.com/eden-fed/HGP.

For the subspace construction, we leverage Theorem 8 and
Proposition 7 to determine A(Ajg), ), solutions to our HGP system.
The KKT system, Equation (5), may be solved for choices of ¢;,; as
standard bases vectors of R2(19VIFICl+n=1) The resulting z’s form
a basis and may be extracted as partial columns of K ~!. Moreover,
Theorem 9 from [BCW 17] allows us to restrict ourselves to extract-
ing only z; for vertices v; € V. In our experiments, we used the
selected inversion algorithm available in the PARDISO suite [Sch].
The documentation and interface for selecting elements is techni-
cally challenging, so a brief explanation is provided in Appendix
D. Finally, for dense meshes with boundary, virtual vertices may
be used to even further reduce dimensionality of our subspace.

For a locally injective map within N/ (Ahgp) in a general sce-
nario, we use an ATP method from [HCW17] operating in the space
of per-triangle Jacobians (expressed as complex derivatives f; and
fé). The space of locally injective derivatives is convexified using
frames taken from a frame field generated by [BZK09]. This choice
of frames encourages satisfaction of the cone and turning angle re-
quirements of Theorem 9. These frames also provide the initializ-
ing value for the fg , and fzf = 0 at the start. This starting point p is
projected first globally (Equation (9)), and then alternates between
local (described at end of Section 5.1) and global tangential pro-
jections (Equation (10)). For our experiments, the local projection
step is governed by bounds with k = 0.9 and 6, = 0.01, and pro-

jection terminates when HWl/znZH <1074 Finally, in the special

case of boundaries and trivial holonomy, we use the classical result
of [GGTO6], solving a dense linear system to guarantee a locally
injective map, as explained in Section 5.3.

For the PN distortion minimization step, a brief description was
already given in the previous section. To obtain the final map, once
we have a distortion-optimized cj,,, we use the factorization (from
the selected inversion algorithm) to solve the KK T system Equation
(5) for our final map z*, avoiding full construction of any basis

elements of N (Apg)).

7.2. Experiments

For the following experiments, our algorithm was implemented as a
plugin to Autodesk Maya 2018 and executed on a Windows 10 ma-
chine with Xeon E5-1650 3.60 GHz CPU, 32GB RAM and Nvidia
Quadro K6000 graphics processor.

The subspace construction was implemented in C++ utilizing
the selective inverse implementation of PARDISO 6.0, while the
ATP and PN solvers were implemented in Matlab and were invoked
from C++ through Matlab’s engine. We note that in [HCW17] and
[CW17], the ATP and PN procedures were implemented in CUDA
and run autonomously on the GPU. Since in our case the cost
of these two nonlinear optimizations is relatively small compared
to that of the subspace construction (which is also very fast), we
opted for simplicity and implemented the solvers in Matlab. Fur-
ther speedup can be obtained by pursing the full GPU implemen-
tations [HCW17, CW17]. Our Matlab implementation of the ATP
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solver is purely CPU based. Unlike [CW17], we solve the dense
linear system that arises in each Newton iteration on the CPU, and
only the Hessian construction is partially GPU-accelerated by uti-
lizing Matlab’s gpuArray functionality.

The method was tested on 77 models, split into two groups: those
with cones and those without. Group A consists of 61 spheres and
disks, mostly from the benchmark dataset of [MPZ14] equipped
with prescription of cone singularities. There is only one addition
of the large (250K triangles) “awakening” model with 509 cones,
for stress testing. Group B is an assortment of 16 genus 0 models
with one or more boundaries, i.e. multiply-connected disk domains,
without cones.

Our algorithm succeeded in producing locally injective
parametrizations on 66 of these models. The resulting parametriza-
tions are available for download on the authors’ websites. Four
of these are illustrated in Figure 1. 9 had 2-3 localized foldovers
due to negative cotangent weights corresponding to badly-shaped
source mesh triangles. These were all fixed with a simple heuristic
that repositions a single vertex to the kernel of its 1-ring polygon.

Table 1 provides the timing of different steps of our algorithm
for a selection of models from group A (including “awakening”),
as well as a comparison of the total runtime to that of HGP and
the metric-based approach of [CLW16]. Our method is an order
of magnitude faster than HGP, and 2—4 orders of magnitude faster
than [CLW16]. Figure 2 shows that it produces at least comparable
and often higher quality maps compared to HGP, as HGP does not
optimize the map distortion.

Further timing comparisons to composite majorization (CM)
[SPSH*17] on selected group B models are in Table 2. Here, our
method also possesses a significant speedup, and can process large
models with millions of triangles in several seconds.

Figure 6 compares our harmonic parametrization of a group B
Beetle model with a conformal map obtained using [SSPO8]. The
conformal map fails to produce a continuous parametrization since
the obtained conformally equivalent flat metric cannot be immersed
in the plane without first cutting the mesh into a simply-connected
domain. The use of spatial variables ensures by construction the
continuity of our low distortion harmonic parametrization.

Finally, Figure 7 demonstrates the efficacy of the projected New-
ton (PN) step. As can be seen, both Ejy, and k are decreased, and
the distortion tends to bunch around cones and boundaries.

7.3. Robustness

For the following discussion, Laplacian weights are assumed to be
positive. This sufficient condition is often not necessary, and even
in cases where foldovers do occur, they are easy to fix in practice
(as explained above). Besides numerical issues, the only step in the
algorithm with failure potential is ATP. The subspace construction
is provably robust, and the PN solver is guaranteed to preserve local
injectivity if initialized with such a map, due to the use of the flip-
preventing line search. Models from group B (without cones) do
not use ATP for feasible initialization, instead relying on [GGTO06].
This guarantees an initial feasible map, hence, our algorithm is the-
oretically fully robust in this case. Experimentally, our algorithm
successfully parametrized all 16 models in group B.
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Model name #Triangles #Boun('iary 4DOF #N'ewton Subspaf:e construction I.Vewtom Totalll algorithm 4CM Iters CM time
vertcies iters time (sec) time (sec) time (sec) (sec)
aircraft 4,656 40 40 4 0.03 0.03 0.06 45 0.32
beetle refined 38,726 1,136 138 18 0.31 0.15 0.47 34 2.79
gargoyle 98,803 439 439 9 0.56 0.21 0.86 34 8.47
max_plank 100,000 222 222 15 0.37 0.16 0.53 23 5.83
bear 296,409 557 557 19 2.17 0.91 3.08 26 20.07
buddha 470,507 1,033 137 23 1.75 0.17 1.92 26 48.14
mask_650k 644,952 3,390 339 6 5.38 0.22 5.62 12 19.43
mannequin_mc_900k 847,959 687 687 4 5.29 0.47 5.78 17 58.78
mannequin-devil_2m 1,815,057 929 929 6 12.31 1.25 13.59 22 185.17
nicolo_da_uzzano_2m 1,933,918 3,438 394 14 16.51 0.50 17.05 12 101.17
julius_2.5m 2,510,341 2,529 253 7 15.21 0.13 15.34 12 172.83

Table 2: Time comparison to CM [SPSH* 17] on discs and multiply-connected discs without cones. Our method is significantly faster.

The 11 failure cases were all from group A. 2 failures were due
to inaccurate results from PARDISO. The remaining 9 were due
to lack of ATP convergence, which only occurs when the convex
space it is trying to converge to is empty [HCW17]. Thus, in these
cases N (Ahgp) N = () and the convexified space cut out by the
frames does not intersect our harmonic space of maps.

For models with cones, our method is thus less robust than HGP
which employs a series of helpful heuristics that we didn’t use,
such as: adjusting the Laplacian weights, updating the frames upon
failure in an iterative manner, and homotopy frame fixing. HGP
also softens the harmonicity constraints, satisfying them in the
least squares manner. This can be interpreted as searching within
a slightly larger space of biharmonic maps which further decreases
the chance for infeasibility. We argue that in the smooth case, the
space of harmonic maps is large enough to always contain a fea-
sible solution of a locally injective map with prescribed flat cone
metric. This is because for genus O surfaces, there exists such a
conformal map [BGBOS] which is in particular harmonic. Hence,
we speculate that adjusting the frames might be sufficient for ob-
taining increased robustness.

8. Conclusion

Our method provides a fast method for computing harmonic seam-
less global parametrizations via solutions of the HGP system. A full
analysis of this system was performed and an efficient method for
a low-dimensional subspace construction was developed, using a
selected inversion algorithm. An ATP method is utilized to quickly
find a locally injective mapping within this subspace, and the end
result is optimized for distortion with a Projected Newton method.
Ultimately, we produce a method which is comparable to nonlinear
methods, but has nearly the same cost as linear methods (on the
order of 1-2 linear solves).

For future work, we would like to extend our method to surfaces
with high genus. Another obvious direction for further investiga-
tion, is the development of better methods for frame determina-
tion, and other strategies to increase the robustness of the method
when applied to models with cones. Additionally, experiments with
multiply-connected disc models suggests that the additional flexi-
bility of harmonic maps (as opposed to conformal maps) will allow
for quick low-distortion mapping of such domains without tearing.

Finally, our methods also offer a possibility of allowing for posi-
tional constraints, something that may also be hard to handle in
the conformal setting. This may be useful for a quadrangulation, in
which cone positions are required to be integral.
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Appendix A: Proof of Lemma 5

Proof Consider a cell decomposition of S: G and dS serve as the
1-skeleton with the interior of S¢ giving a single 2-cell. The num-
ber of vertices is |0V |+ |Vs| — |0V N V|, while the number of edges
is |0E| + |Es|. To determine |0V N Vy|, consider each component of
G; at a time. For the first component, it will intersect k; bound-
aries, and may only intersect each boundary once, producing k;
elements of dV NV;. If there were multiple intersections with a sin-
gle boundary, cutting along it would produce a disconnected result.
Now if we cut along the component, we obtain a genus 0 mesh with
n —kj + 1 boundary components, with a new boundary consisting
of duplicate edges from the component and edges from the k| com-
ponents it intersected. Take next a component of Gy that touches the
new boundary, which intersects k, of the original boundaries. This
component may not intersect the first, and may only touch each
boundary once, producing 1+ k elements of dV N V;. This pro-
cess iterates until all components have been considered, counting
all elements of 0V N V;. We find that:

PVNVs| =k +1+ky+--+1+kn=n+(m—1),

where the second equality follows, as each new component con-
sidered may not intersect boundary components that have already
been touched, lest the result of cutting be disconnected. [

Appendix B: Full Rank of A,

Proposition 11 Ay;, is full rank.

Proof It suffices to show that the rows of A;;;, = ( ::) are linearly
independent. Let {ak}lli"‘] denote the rows of Aj, corresponding
to the rotation constraints associated with each seam edge e; € Ej

(and its duplicates in S¢). Let {al}ﬁvllﬂclﬂ_l denote the rows

of Ay, corresponding to the interpolation conditions specified in
Section 3.1. These are associated with vertices v; € CUJV (or
one or two of their duplicates). We consider a linear combination
of these rows a; and g; that equal 0, and argue that it must be the
trivial linear combination.

Recall that Aj;, and its rows are very sparse, and if a column of
Ay, contains only one non-zero entry in a row ay or a;, then the
coefficient in front of a; or a; must be 0. Similarly, if a column
has only a few non-zero entries, and if the coefficients for all but
one of the rows, a; or a;, is 0, then the coefficient in front of a;
or a¢; must also disappear. A chain of such deductions will show
disappearance of all row coefficients. We will argue separately for
the sphere and disc (potentially punctured) cases, but there are two
important common facts.

Fact 1 For two seam edges ¢ and e, sharing a non-cone non-
boundary seam vertex v of degree 2, the vanishing of the coefficient
for one of a; or ay | implies the vanishing of the other. This follows
as the columns of Aj;, corresponding to either duplicate copy of v
in S¢ only have two non-zero entries: in rows a; and a; 1. Chaining
together seam edges meeting at such vertices v into meta-edges, we
see that a vanishing coefficient in front of any component edge,
implies vanishing coefficients for all others in a meta-edge.

Fact 2 For a cone vertex v; and incident seam edges
{ex,€ks1,..-}: if any coefficient for an incident a; disap-
pears, then the coefficients in front of @; and all other incident
{ak+1,0542,...} must also disappear. When v; is degree 1 in G;,
this is clear as the column corresponding to v; contains only two
nonzero entries: in rows @; and a;. In the higher degree case, we
first consider columns corresponding to v; duplicates not associated
with g; (not having position specified). These contain only two
nonzero entries, in rows corresponding to two particular incident
edges. If incident relation a; has vanishing coefficient, it must be
in at least one such pair of rows for a v; duplicate column, and the
coefficient in front of the other row must vanish. Following these
columns, we may ‘“cycle” around v; and deduce that coefficients
for all incident {ay, a1, ...} must disappear. Finally, this implies
that the coefficient of a; must vanish by inspection of the column
corresponding to the copy of v; with position specified.

Using the above two facts, we may traverse dS and Gy, seeing that
the coefficients of all relations must disappear. For the sphere case,
in Section 3.1.1, we left one cone vertex ¢ of degree 1 without
its position specified. Thus, the coefficient for incident a; must
disappear, by inspection of the column corresponding to c. By
Fact 1, the coefficients for an entire meta-edge disappear until we
reach a cone vertex v;. By the second fact, the coefficient for g;
vanishes along with the coefficients for all adjacent seam edge
rows {ag,a.1,...}. These are part of outgoing meta-edges, and
the pattern continues until the entire tree of Gs; (Lemma 3) is
covered. Thus, all coefficients disappear.

In the case with boundaries, vertices v; € dV'\V have correspond-
ing columns with only one nonzero entry: in row a;, so these must
have vanishing coefficient. Thus, we are again simply looking for
traversal of G, and its m components. Unlike in the sphere case,
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there are not necessarily any cones to start from. Recall from Sec-
tion 3.1.2 that n — 1 vertices of dV NV have two of the positions of
their duplicate copies specified, and that each component of G was
left with at least one vertex having only one position specification.
For such a vertex vy, all coefficients for incident edge relations and
for a; must disappear (by reasoning similar to the argument for Fact
2). As in the sphere case, each of the m components may now be
traversed, and we see that all coefficients must vanish. []

Appendix C: Proof of Lemma 10

Proof As J calculates gradients, N(J) is 2r-dimensional where r
is the number of connected components of 7,;. Any element of
N{(J) co-locates all vertices in any such component to single points
(potentially differing across components). Thus, J(c) = 0 iff Hc
is in this null space. Recall that ¢ specifies a solution to the HGP
system, and any such solution implies a pair of discrete harmonic
1-forms on a 4-fold branched cover (see Section 5 of [BCW17]).
Arguments similar to those in Appendix B of [GGT06] imply that
any pair of such 1-forms inducing faces of zero area or edges of
zero length must vanish entirely. If Hc € N(J), then it has such
elements, so the map implied by Hc must be constant and co-locate
all r components to the same point.  []

Appendix D: PARDISO Selected Inversion Usage

We used PARDISO 6.0 [Sch] for the subspace construction. We set
mtype to —2 (real and symmetric indefinite) for the matrix from
Equation (5), and executed the following phases in PARDISO:

1. Phase 1: Fill-reduction analysis and symbolic factorization
2. Phase 2: Numerical factorization

3. Phase -22: Selected Inversion

4. Phase -1: Termination and Memory Release Phase

For the reported run-times we used the following flags, with the last
two recommended for highly indefinite symmetric matrices:

iparm(24)=0 : Parallel Numerical Factorization
iparm(28)=1 : Parallel reordering METIS

iparm(11)=1 : Scaling vectors

4. iparm(13)=1 : Improved accuracy using weighted matchings

Rl e

A matrix A is transferred to PARDISO in compressed sparse row
(CSR) format. If the matrix is symmetric, as in our case, only the
upper triangular part is transferred. A usage example of the CSR
format can be found in Figure 2 of the PARDISO manual. Note that
PARDISO expects diagonal elements to be present for symmetric
matrices, even if they are zero, e.g. element (6,6) in the example is
explicitly set to 0.0.

The selected inversion algorithm calculates by construction ev-
ery entry of the inverse matrix A~" which corresponds to a non-
zero entry in the factor L (lower triangle matrix) of the LDLT fac-
torization of A. In our setting, we need to calculate additional en-
tries of A~ which correspond to zero elements in the factor. This is
achieved by “selecting” the additional elements for calculation. Po-
tentially, this can be done by explicitly adding numerical 0.0 at cor-
responding entries in the factor L in the same fashion zero diagonal
elements are handled. Unfortunately, PARDISO does not provide
a user interface for altering L. To overcome this (purely technical)
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limitation, we utilize the fact that entries which are present in A
persist in L, and thus we set the numerical zeros in A.

For example, consider again the matrix from Figure 2 in the
manual and assume we would like to calculate the additional en-
try Al (3,6). To this end, we alter the nonzero structure of A by
adding a single element with 0.0 value. The corresponding CSR
representation is:

2131456789 (10[11|12{13|14|15|16|17|18|19
518|11|13|16{18[19|20

316({7(2]|3]|5(3|6|8[4|7|5|6|7[6[8|7]8
1.{2.|7.-4.18.12.11./0.]5.17.19.]5.]-1.|5.|0.]5.]|11.]5.

1
IA:] 1
JA:| 1
A |7.

The corresponding inverse matrix elements are returned “in place”,
and the selected elements can be easily extracted.

We note that changing the sparsity pattern of L indirectly through
A is suboptimal as it leads to denser than necessary L. Thus, we
hope that future versions of PARDISO will provide a direct means
for selecting elements for calculation. This will immediately pro-
vide additional speedup for the subspace construction.

Appendix E: Virtual Vertex Degeneracies

Figure 8 shows two examples of degeneracies that can occur when
meshes which are not 3-connected are used in conjunction with
wrong choice of virtual vertices. A “diagonal” is a vertex pair such

Figure 8: Wrong choice of virtual vertices (marked in red). Left:
source meshes where the cyan region is degenerated under the map
on the right. Top: (1,3) is a diagonal. Bottom: (4,8) is a diagonal.

that its removal would disconnect the mesh. We spot diagonals by
iterating over the boundary vertices V. For each v € dV, we look
for a neighbor vertex N(v) such that N(v) is on the boundary but the
edge (v,N(v)) is not. If such N(v) is found, we add v and N(v), as
well as an additional arbitrary vertex along the boundary between
them to the virtual vertices subset. This ensures that a locally injec-
tive harmonic map within the reduced space defined by the virtual
vertices exists.



