
Bounded Distortion Harmonic Shape Interpolation

Edward Chien
Bar Ilan University, Israel

Renjie Chen∗

Max Planck Institute for Informatics, Germany
Ofir Weber

Bar Ilan University, Israel

Source
t=0

Target
t=1

Ours/Metric
t=0.5

[Chen15]
t=0.5

ARAP
t=0.5

Linear
t=0.5

Ours/
 t=0.5

Figure 1: Interpolation of the Giraffe.

Abstract

Planar shape interpolation is a classic problem in computer graph-
ics. We present a novel shape interpolation method that blends
C∞ planar harmonic mappings represented in closed-form. The
intermediate mappings in the blending are guaranteed to be locally
injective C∞ harmonic mappings, with conformal and isometric
distortion bounded by that of the input mappings. The key to the
success of our method is the fact that the blended differentials of
our interpolated mapping have a simple closed-form expression, so
they can be evaluated with unprecedented efficiency and accuracy.
Moreover, in contrast to previous approaches, these differentials are
integrable, and result in an actual mapping without further modifi-
cation. Our algorithm is embarrassingly parallel and is orders of
magnitude faster than state-of-the-art methods due to its simplicity,
yet it still produces mappings that are superior to those of existing
techniques due to its guaranteed bounds on geometric distortion.

Keywords: shape interpolation, animation, injective mappings,
harmonic mappings, bounded distortion, shape deformation

Concepts: •Computing methodologies → Computer graphics;
Animation; Image manipulation; Shape analysis;

1 Introduction

Traditional hand-drawn animation is a (rather tedious) technique
where each image frame is drawn by hand. It was the dominant
form of animation in cinema until the dawn of computer animation
which allowed for partial automation of the process. Computer ani-

∗Corresponding author
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA.
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925926

mation is a computer-aided process where an animator sets the tone
for the behavior of the animation in the form of keyframes, while
the computer automatically generates intermediate frames that in-
terpolate these keyframes. A good interpolation algorithm allows
the artist to increase the time between the keyframes by producing
natural and well-behaved intermediate frames that match the artist’s
expectations, hence reducing the amount of manual labor.

High-quality interpolation of rigid motions is fairly well under-
stood by the graphics community. Typically, translations are in-
terpolated based on a smooth space curve (e.g. a spline), and rota-
tions are interpolated in angle space (2D) or using quaternions (3D).
However, deformation-and-animation of soft bodies is significantly
more challenging. Hence, animating and interpolating shapes that
undergo large and complex deformation is an active research field
in computer graphics and geometry processing.

A modern computer animation system (e.g. character animation)
is composed of two major components. Given a source shape (e.g.
an image of a character), the first system component allows pos-
ing the character and inserting a keyframe at a specific point in
time. This is done by deforming the shape in a way that satis-
fies some constraints while preserving the geometric details and
local structure of the original shape. See Figure 1 for an exam-
ple. The head of the giraffe (left image) is pulled down while the
legs stay put (right most image). The second component of the sys-
tem is fully automatic and is in charge of blending the keyframe
shapes. There is a large amount of active research that targets the
first component of the system, i.e., designing efficient algorithms
for the computation of large and complex deformations, with an
ongoing focus in recent years on methods that provide strict guar-
antees on the geometric qualities of the deformed shapes. These
mostly include C0, mesh-based approaches [Lipman 2012; Weber
et al. 2012; Schüller et al. 2013; Aigerman and Lipman 2013; We-
ber and Zorin 2014; Levi and Zorin 2014; Kovalsky et al. 2014;
Kovalsky et al. 2015] but smooth meshless methods are also avail-
able [Weber and Gotsman 2010; Poranne and Lipman 2014; Chen
and Weber 2015]. These methods aim to produce mappings that do
not have inverted elements (flips) and that have bounded amount
of conformal and/or isometric distortion. Producing such mappings
is challenging since the underlying mathematical optimization is
nonlinear and nonconvex. Shape interpolation techniques are also
abundant, though methods with strict guarantees on quality are rare.

http://dx.doi.org/10.1145/2897824.2925926

An exception is the technique of Chen et al. [2013] that interpolates
flat triangle meshes in a way that produces mappings whose confor-
mal distortion is pointwise bounded by the distortion of the input.

We present a planar shape interpolation method that is designed to
produce C∞ harmonic mappings, which are the most widely used
type of mappings in graphics applications due to their smoothness
and appealing qualities. The input to our algorithm is two C∞

harmonic mappings that are “provably good” [Poranne and Lipman
2014] in the sense that they are smooth, locally injective and have
bounded conformal and isometric distortion. Such input mappings
can be generated using a recent method by Chen and Weber [2015],
though our method is applicable to any harmonic input regardless
of how it was generated. Our algorithm blends the input mappings
and produces a ”provably good” harmonic mapping such that its
geometric distortion is bounded by that of the input mappings. To
the best of our knowledge, this is the first interpolation algorithm
that provides bounds on both conformal and isometric distortion.

The most simple widely used interpolation approach is to linearly
blend the input mappings. Efficiency is paramount since mathemat-
ical optimization is not employed. Moreover, such a process is triv-
ial to parallelize and is typically implemented in the vertex shader
since the blending of each point is independent of other points. This
comes at a cost, as the quality of such interpolation tends to be quite
poor (see the shrinkage of the neck in Figure 1).

Our method has three variants. The first two variants (Section 5)
have the remarkable property (on top of its qualitative properties)
that their computational complexity is linear in the number of points
to be deformed. Just like the simple linear interpolation technique,
there is no need to solve an optimization and the process is em-
barrassingly parallel, allowing for an efficient implementation on
graphics hardware. The third variant (Section 6) offers some quali-
tative benefits over the first two under extreme deformations and is
just marginally more involved computationally as it requires solv-
ing a small dense linear system (which is done once in a preprocess
step for any given source domain). Our method is two orders of
magnitude faster than the state-of-the-art [Chen et al. 2013] which
requires solving a nonlinear optimization for each animation frame,
yet produces similar overall behavior with increased smoothness
(our method is meshless) and additional theoretical guarantees on
the isometric distortion bounds.

2 Previous Work

Due to the abundance of literature on shape interpolation and de-
formation techniques, we will restrict ourselves to the most relevant
approaches and concentrate on planar methods. We refer the reader
to comprehensive reviews of classic methods that are provided in
[Wolberg 1998; Alexa 2002]. Some shape interpolation methods
consider two (or more) shapes, denoted as source and target, as
input. Other methods take a more general point of view where a
domain Ω and mappings f0, f1 : Ω → R2 are given. We mostly
use the latter approach though sometimes it will be convenient to
refer to the former one by treating the source shape as our domain,
f0 as the identity mapping and f1 as the source-to-target mapping.
Most shape interpolation methods are based on three main steps:
(1) describing the input mappings in terms of some local differen-
tial quantities, (2) blending these quantities in a way that interpo-
lates the input, and (3) recovering a new mapping from the blended
quantities.

The As-Rigid-As-Possible (ARAP) approach [Alexa et al. 2000]
decomposes the 2 × 2 piecewise constant Jacobians of the input
mappings using the polar decomposition: Jf = R ∙ S, where R is
a rotation matrix and S is a symmetric positive-definite matrix. For
each triangle, a rotation angle θ is extracted from R and then S and

θ are blended linearly. Such blending in angle space, rather than
blending rotation matrices, typically leads to better control over the
local distortion. However, in practice, the distortion tends to be
significantly higher, as the Jacobians of the individual triangles are
blended independently and are, in general, not integrable. In other
words, a planar mapping with these Jacobians does not exist and a
least squares reconstruction is performed with no control whatso-
ever on the maximal error introduced. A similar approach is taken
by [Xu et al. 2006; Weber et al. 2007] where the reconstruction
step is shown to be equivalent to a solution to the Poisson equa-
tion. Another difficulty arises when the angles are extracted from
the rotation matrices due to 2πn ambiguities. Essentially, the (non-
smooth) principal branch of the matrix logarithm is computed and
blending it can lead to nonsmooth and highly distorted results when
large rotations are present. A partial remedy is obtained by using
a special procedure for consistently choosing rotation angles [Choi
and Szymczak 2003; Baxter et al. 2008].

An alternative approach to handling the rotation ambiguity is to use
differential coordinates [Kircher and Garland 2008]. Rather than
simply using the Jacobians, their ratio (which is invariant to rota-
tions) is interpolated. The reconstruction process first solves for
the Jacobians based on the differential coordinates, and then uses
a Poisson system to recover the mapping (the spatial coordinates).
None of the aforementioned methods is guaranteed to produce map-
pings that are globally or locally injective.

The methods by Surazhsky and Gotsman [2001; 2003] were specif-
ically designed to produce bijective mappings. The barycentric
coordinates of the vertices are blended linearly and then a glob-
ally bijective mapping is computed by embedding the intermediate
shape inside a convex boundary by using a variant of the celebrated
Tutte’s embedding theorem [Tutte 1963]. The method is simple (a
linear system is solved) and robust but the usability is limited due
to the convexity requirement. Efforts to overcome this limitation by
embedding a non-convex shape in an artificial convex support struc-
ture typically lead to distorted results. Moreover, global bijectivity
is too restricting and typically local injectivity is desired.

The state-of-the-art is [Chen et al. 2013] which provides guarantees
on local injectivity and a pointwise bound on conformal distortion.
That is, the conformal distortion of the mapping at each triangle is
not larger than the distortion of the corresponding triangle in the
input. The method bypasses both the rotation ambiguity and the in-
tegrability problem simultaneously. Rather than blending the Jaco-
bian Jf , it linearly blends the pullback metric Mf = JT

f Jf which
factors out the rotational part of Jf . Chen et al. proved that the
blended metric has pointwise bounded conformal distortion. Like
the common issue of non-integrable Jacobians, the blended metric
cannot be realized directly since its Gaussian curvature is usually
not zero. Previous methods addressed the non-integrability of the
Jacobian by solving the Poisson equation, which typically reverts
the distortion bounds obtained by the blending process. In contrast,
Chen et al. apply the innovative step of conformally flattening the
metric to embed it in the plane. A conformal scaling of the metric
ensures that the conformal distortion does not change, though ad-
ditional isotropic scaling is introduced in the process. In Section
6 we prove that blending the pullback metric linearly also leads
to bounded isometric distortion and show how to construct a pla-
nar harmonic mapping with both conformal and isometric distor-
tion bounds. Our algorithm is significantly faster than the nonlinear
optimization used in [Chen et al. 2013] as it only requires solving a
linear system with a constant left-hand side.

All the methods we mentioned so far are mesh-based and produce
continuous piecewise-affine mappings which are not smooth. Visu-
ally smoother results can be potentially obtained by refining the un-
derlying meshes at the cost of longer computation time but conver-

gence properties are typically unknown and in most cases a smooth
analogue of the algorithm does not even exist. To the best of our
knowledge the only method that produces C∞ mappings with strict
quality guarantees is [Weber and Gotsman 2010] which interpolates
smooth conformal mappings by blending the so-called angular fac-
tor on the shape’s boundary, such that the intermediate mappings
are also conformal. The first two variants of our method (Section 5)
can be seen as generalizations of this approach to the broader class
of harmonic mappings.

3 Mathematical Background

For completeness and to set notation, we include a short introduc-
tion to basic concepts in complex analysis and planar mappings.
For further reading we refer to the books by Ahlfors [1979] and
Duren [2004].

3.1 The Complex Derivatives

Consider a planar mapping given by a C1 function f : Ω → R2

where Ω ⊆ R2 is a domain (open, connected set). It is simple
to verify that the Jacobian Jf at any point (or any 2 × 2 real ma-
trix) may be written uniquely as the sum of a similarity and anti-
similarity matrix. These sets of matrices are denoted below with S2

and A2, respectively:

S2 =

{(
a −b
b a

)∣∣
∣
∣ (a, b) ∈ R2

}

,

A2 =

{(
c d
d −c

)∣∣
∣
∣ (c, d) ∈ R2

}

.

The matrices in S2 apply a similarity transformation by rotating and
scaling R2, while the matrices in A2 perform such transformations
after a reflection through the x-axis is applied.

It is also easy to verify that for a given 2 × 2 real matrix, the parts
of the decomposition are the closest similarity and anti-similarity
matrices in the sense of the Frobenius norm. In addition, the closest
rotation (similarity transformation with determinant 1) is given by
normalizing the columns of the similarity part. For the remainder
of the paper, this unique decomposition of 2 × 2 real matrices will
be referred to as the additive decomposition.

When we identify R2 with C using complex notation z = x + iy,
we see that the linear transformation applied by a similarity ma-
trix is equivalent to complex multiplication of z by a + ib. Analo-
gously, the linear transformation applied by an anti-similarity ma-
trix is equivalent to complex multiplication of z̄ by c + id. For
the remainder of the paper, R2 and C will be used interchangeably,
with choices being made to assist the presentation.

This leads us naturally to the definitions of the Wirtinger deriva-
tives: fz := 1

2
(fx − ify) and fz̄ := 1

2
(fx + ify). When the

additive decomposition of Jf is considered, these formulae give
us the complex numbers corresponding to the similarity and anti-
similarity parts, with fz = a + ib and fz̄ = c + id.

3.2 Holomorphic (and Anti-holomorphic) Mappings

The set of planar mappings for which fz̄ = 0 (everywhere) are
called holomorphic functions, and are the central objects of study
in complex analysis. More commonly, we see this condition written
in a different fashion, with u and v denoting the components of
f = (u(x, y), v(x, y))

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −

∂v

∂x
.

These are called the Cauchy-Riemann equations. The additive de-
composition shows us that for holomorphic mappings, Jf is a simi-
larity transformation everywhere, equivalent to multiplication of C
by a complex number fz . This complex number is the complex
derivative of a holomorphic function, and is often denoted more
simply with f ′ := fz .

Let us note that such functions are actually differentiable and inte-
grable (on a simply connected domain) an infinite number of times.
These derivatives and anti-derivatives are all holomorphic as well.
In addition, sums, products and compositions of holomorphic func-
tions are also holomorphic, and the quotient of two holomorphic
functions is holomorphic wherever the denominator does not van-
ish. For proofs and details, we refer the reader to [Ahlfors 1979].

Planar mappings for which fz = 0 everywhere are called anti-
holomorphic functions. Each one is merely the complex conjugate
of a holomorphic function, so they are closed under the same arith-
metic operations, share the same differentiability and integrabil-
ity criteria, and satisfy a “flipped” version of the Cauchy-Riemann
equations with a negative sign added to one side of each equation.

3.3 Harmonic Planar Mappings

We now introduce harmonic planar mappings. If we have a real-
valued function u(x, y) : Ω → R, then it is harmonic if it satisfies
the Laplace equation

Δu =
∂2u

∂x2
+

∂2u

∂y2
= 0.

The value of a harmonic function is intuitively the average of nearby
values (for more see the Mean Value Property [Duren 2004]). A
planar harmonic mapping is a mapping f : Ω → R2 where f =
(u, v) and the component functions u and v are harmonic.

With the Cauchy-Riemann equations (and its “flipped” version), it
is easy to see that holomorphic and anti-holomorphic functions are
harmonic planar mappings, with their real and imaginary parts be-
ing harmonic. The converse is not generally true however, with
many harmonic planar mappings being neither holomorphic, nor
anti-holomorphic.

Instead we have that on a simply-connected domain Ω, any har-
monic planar mapping f may be written as the sum of a holomor-
phic and an anti-holomorphic function.

f(z) = Φ(z) + Ψ(z), (1)

where Φ and Ψ are holomorphic functions. Intuitively, the parts of
the additive decomposition of Jf may be integrated separately to
obtain Φ and Ψ, with harmonicity of f ensuring integrability (see
[Duren 2004] Section 1.2 for details). The above representation is
unique up to an additive complex constant that can be chosen by
setting e.g. Ψ(z0) = 0 for an arbitrary point z0 ∈ Ω.

Note that for such a mapping, fz = Φ′ is holomorphic and fz̄ = Ψ′

is anti-holomorphic. The converse also holds: a planar mapping is
harmonic if it has holomorphic fz and anti-holomorphic fz̄ .

3.4 Local Geometric Quantities

We return to considering C1 planar mappings and note that many
important quantities are easily expressed in terms of the Wirtinger
derivatives. First, we have that:

det(Jf) = |fz|
2 − |fz̄|

2 .

A mapping f is locally injective and sense-preserving (preserves
the orientation) at a point z if det(Jf (z)) > 0, so we get that f is
a locally injective and sense-preserving mapping wherever

|fz| > |fz̄| .

As a result, we restrict our attention to mappings that satisfy this
inequality everywhere. It is easy to see that we then also have
|fz| > 0 (also written fz 6= 0). For the special case of a holomor-
phic function g (so gz̄ = 0) satisfying this condition throughout its
domain, we have that g′ 6= 0 everywhere and it is called a confor-
mal mapping. Such a mapping preserves the angle between any two
intersecting curves under application of the mapping.

Our aim in this paper is to control the amount of angle and metric
distortion induced by a mapping. Most distortion measures can be
formulated in terms of the smallest and largest singular values of
Jf : 0 ≤ σb ≤ σa. These are the lengths of the minor and ma-
jor axes of Jf (S1) (see Figure 2) and are given by the following
equations:

σa = |fz| + |fz̄| , σb =
∣
∣
∣ |fz| − |fz̄|

∣
∣
∣.

For the mappings we are considering, the latter expression simpli-
fies to σb = |fz| − |fz̄| > 0.

Another relevant quantity is μ = fz̄
fz

, the first complex dilatation

(a.k.a. the complex Beltrami coefficient). Its modulus k = |fz̄ |
|fz |

is called the little dilatation and is often used to measure confor-
mal (angle) distortion. For the mappings under consideration, note
that 0 ≤ k(z) < 1 throughout the domain and k(z) = 0 iff f is
conformal.

The Beltrami coefficient μ also encodes other important geomet-
ric information. To interpret it appropriately, consider the singular
value decomposition (SVD) of the Jacobian: Jf = UΣV T and re-
call that the singular values are the diagonal entries of the diagonal
matrix Σ and U, V are orthogonal matrices. We use va and vb to
denote the columns of V , which are orthonormal vectors (lying on
the unit circle) that map to the major and minor axes of the ellipse
Jf (S1).

If μ 6= 0, it is a fact that 1
2
Arg μ (where Arg μ ∈ (−π, π] is the

principal value of the argument) is the angle of va or −va with
respect to the x-axis. We will refer to this value as the stretch di-
rection. If μ = 0, the mapping is conformal, Jf (S1) is a circle,
and there is no preferred stretch direction. The diagram in Figure
2 illustrates the case of μ 6= 0, and clarifies the discussion above.
Note that the stretch direction for non-zero μ only takes values in

Figure 2: The stretch direction illustration.

(−π
2
, π

2
], as maximal stretch really occurs along an entire axis.

Lastly, we note that the ratio of the singular values K = σa
σb

∈
[1,∞) (sometimes called the large dilatation) is also commonly
taken as a measure of conformal (angle) distortion. The equation

k = K−1
K+1

relates the two dilatations monotonically, and we see
that bounding one bounds the other.

3.5 Logarithms, Arguments, and the Hilbert Transform

We finish the background section with a quick review and introduc-
tion of the complex logarithm, arguments, and the Hilbert trans-
form. Lastly, we see how they interact to give us a necessary and
important result.

For a complex number z, we consider solutions x to the equation
ex = z. If z = 0, there is no solution, and if z 6= 0, then there are
a countable number of solutions of the form: {ln |z| + i(Arg(z) +
2πn) | n ∈ Z}.

A complex logarithm function on a domain Ω ⊂ C − {0} is a
continuous choice of one of these solutions for each z ∈ Ω. Such
a choice will be holomorphic [Ahlfors 1979]. Note also that the
imaginary part of any such function will give a continuous notion
of the “angle” between z as a vector and the positive x-axis. A
continuous choice of such an angle is a harmonic function and is
referred to as an argument function. When it is possible to choose
a complex logarithm it is possible to choose an argument, and vice
versa.

We may always make a continuous choice of both if Ω is simply-
connected, but it is not guaranteed otherwise. For example, it is not
possible to make such a choice for Ω = C − {0}. The standard
principal branch, which we denote Log, has imaginary part Arg,
and fails to be continuous (and holomorphic) on the negative x-
axis. However, it is a complex logarithm function on any domain
that avoids this set (and 0). Other typical branches arise by allowing
continuity to fail along different rays or curves from 0 to ∞. Lastly,
note that sometimes we will use ln to denote Log when the input to
the function is in R+, as a way of emphasizing this.

Consider a non-zero function g : Ω → C−{0} defined on a simply-
connected domain Ω. In the course of this paper, we will need to de-
fine the logarithm of such a function. If g(Ω) is simply-connected,
we may simply choose a logarithm function log : g(Ω) → C such
that elog(g(z)) = g(z). If not, we may not be able to, so we define a
single function log g : Ω → C for which e(log g)(z) = g(z). This is
done by choosing a suitable initial value (log g)(z0) for some point
z0 ∈ Ω and then integrating:

log g(z) := (log g)(z0) +

∫ z

z0

g′(w)

g(w)
dw. (2)

Cauchy’s integral theorem asserts that the integration is indepen-
dent of the path from z0 to z as g′/g is holomorphic on Ω. Note
that the same problems exist in defining an argument function for
g, and taking the imaginary part of such a logarithm defined by in-
tegration gives us a single function arg g : Ω → R which solves
these issues.

We introduce very quickly the idea of harmonic conjugates and
the Hilbert transform. Given a harmonic function u defined on a
simply-connected domain Ω, we aim to find a holomorphic func-
tion g such that u = Re (g). To find a suitable imaginary part v,
we look to the Cauchy-Riemann equations for vx and vy . By har-
monicity of u, the vector field they form will be integrable, and will
determine v up to an integration constant. The procedure is anal-
ogous if one starts with a harmonic function v and would like to
find a holomorphic function g such that v = Im (g). These partner
harmonic functions are referred to as harmonic conjugates, and the
procedure of finding them is the Hilbert transform [Bell 1992].

Finally, let us consider a pertinent question: if the argument or
magnitude of a non-vanishing holomorphic function g on a simply-

connected domain is specified, to what degree is g determined?
First, suppose the argument is specified by a function v (harmonic,
of course). Then g will have a holomorphic logarithm for which
v is the imaginary part. Performing the (inverse) Hilbert transform
we get a harmonic conjugate u (determined up to an integration
constant C), and then we exponentiate to get g = eu+iv . We see
that g is determined up to global scaling by a positive constant eC .
A similar line of reasoning shows us that when the magnitude of g
is specified by a function |g| such that u = ln |g| is harmonic, then
g is determined up to a global rotation eiC (where C again denotes
an integration constant).

4 The Interpolation Problem

With the necessary mathematical background, we may explicitly
state the problem at hand. We note first that for simplicity of the
exposition and brevity, the problem (and the variants of our method
in later sections) are stated and described for an input of just two
mappings. The generalizations to multiple mappings are natural
and simple to produce.

Let f0, f1 : Ω → R2 denote two locally injective sense-preserving
harmonic mappings. We would like an interpolating function f :
[0, 1] × Ω → R2 that has at least the following properties (note the
domain of f):

1. (interpolation) f |{0}×Ω = f0 and f |{1}×Ω = f1

2. (harmonicity) f |{t}×Ω harmonic ∀t ∈ [0, 1]

3. (loc. inj.) f |{t}×Ω is loc. inj. sense-preserving ∀t ∈ [0, 1]

4. (smoothness) f |[0,1]×{z} is C∞ for all z ∈ Ω

The last two properties are desirable as the animator typically does
not want the interpolated shape to have singular points or local over-
laps, or to abruptly change the direction of motion over the course
of the animation.

In light of these properties, the following shorthand will be used
for the remainder of the article: f t := f |{t}×Ω. In general, for
the quantities discussed in Section 3.4 (and others to be introduced
later), the standalone character will represent the quantity for all t ∈
[0, 1], and the same shorthand superscript notation will be used for
the quantity for a specific t. For example, we let μ : [0, 1]×Ω → C

be defined by μ(t, z) =
ft

z̄(z)

ft
z(z)

and define μt := μ|{t}×Ω. For the
sake of brevity, such definitions will be used without reminder.

The properties above represent a bare minimum, and do not reflect
the fact that we would also like to have the conformal and isometric
distortion of f t bounded by their respective quantities for f0 and
f1. Ideally, we would like these quantities to be bounded pointwise:

5. (conf. distortion) kt ≤ max(k0, k1) for all t ∈ [0, 1]

6. (max scaling) σt
a ≤ max(σ0

a, σ1
a) for all t ∈ [0, 1]

7. (min scaling) σt
b ≥ min(σ0

b , σ1
b) for all t ∈ [0, 1]

We note here that isometric distortion is often denoted with a single
quantity such as σa + 1/σb or max(σa, 1/σb). Having both Prop-
erties 6 and 7 implies that any of these quantities will be bounded
and together form a stronger condition than a bound on any one of
these other quantities.

Lastly, we note that we may not have these exact properties un-
der all circumstances, so some loosening (say to global instead of
pointwise bounds) may be necessary. Additionally, we will see that
for intuitive behavior, additional properties will be desired. These
will be introduced as the discussion of our methods progresses.

4.1 A Basic Approach

As we are interested in preserving local geometric quantities, we
will look to interpolate the Jacobian Jf and then to integrate it
to obtain an interpolation. Furthermore, we would like the inter-
polation to be harmonic. The decomposition given by Equation
(1) suggests a general approach that will solve these problems si-
multaneously. In particular, we can interpolate the similarity and
anti-similarity parts of Jf separately by interpolating fz = Φ′ and
fz̄ = Ψ′, holomorphically and anti-holomorphically respectively.
As they are kept holomorphic and anti-holomorphic, they are in-
tegrable, and result in holomorphic and anti-holomorphic parts Φ
and Ψ. Summing these mappings to obtain the final interpolated
mappings, we see that they will be harmonic and Property 2 will
hold.

As might be noted, integration of Jf (or its parts) will result in
integration constants that will need to be set. At t = 0 and t = 1,
these integration constants will be chosen so that interpolation is
achieved, satisfying Property 1, and for intermediate times, they
will be chosen by linear interpolation. As a result:

Lemma 1. If fz and fz̄ have Property 4, f will have Property 4.

Lastly, by discussions in Section 3.4, we have:

Lemma 2. If |fz| > |fz̄| ≥ 0 ∀(t, z) ∈ [0, 1] × Ω, f will have
Property 3.

5 The First Two Variants: Parallel Methods

In this section, we present our first two variants, which are almost
entirely parallel. They both interpolate f0

z and f1
z logarithmically

to get an explicit formula for f t
z . This basically interpolates arg f0

z

and arg f1
z linearly while keeping f t

z holomorphic. Details are in
Section 5.1.

An anti-holomorphic formula for f t
z̄ is then determined by linear

interpolating geometrically relevant quantities that ensure differ-
ent desired properties. For the first variant, we introduce the sec-
ond complex dilatation ν, which ensures conformal distortion is
bounded (Property 5) when linearly interpolated. A full explana-
tion and validation is in Section 5.2.

This first variant sometimes leads to unintuitive behavior, so a new
property of stretch direction interpolation is formulated and ex-
plained in Section 5.3. The following section (5.4) introduces η,
which ensures satisfaction of this property when linearly interpo-
lated. This is the basis of our second variant.

It turns out that this basic approach may need to be modified to
ensure satisfaction of the distortion bounds (Properties 5-7) when
f0 and f1 differ greatly from each other. In particular, η may need
to be scaled down by a positive constant ρ < 1 (Section 5.5).

5.1 Logarithmic Interpolation of fz

Recall that for a planar mapping g, the quantity gz/ |gz| represents
the closest rotation transformation to Jg at that point (in the Frobe-
nius sense). Thus, it makes sense to have a formula for f t

z which
linearly interpolates the angle of the closest rotation transformation
by linearly interpolating arguments of f0

z and f1
z .

This is achieved precisely by linearly interpolating the logarithms
of f0

z and f1
z , which we refer to as logarithmic interpolation. It is

expressed succinctly in the following interpolation formula:

f t
z = (f0

z)1−t(f1
z)t. (3)

To determine the non-integer powers of f0
z and f1

z , we need to
clearly define logarithms log f0

z and log f1
z as described in Section

3.5. The particular choices made are detailed in the implementa-
tion section, but the manipulations below help develop the proper
intuition and make it clear that these logarithms are linearly inter-
polated:

f t
z = e(1−t) log f0

z et log f1
z

= e(1−t) log f0
z +t log f1

z

=
∣
∣f0

z

∣
∣1−t ∣∣f1

z

∣
∣t ei((1−t) arg(f0

z)+t arg(f1
z)).

As can be seen in the polar part of the expression above, the argu-
ment is linearly interpolated. Note also the key fact that f t

z remains
non-zero for all z ∈ Ω and all t, which will be necessary if we aim
to have Property 3.

Let us note also that f t
z is essentially unique in being a holomorphic

interpolation which linearly interpolates the argument. As shown
at the end of Section 3.5, a non-zero holomorphic function on a
simply connected domain with specified argument is determined up
to scaling by a positive global constant. f t

z is such a function, and
also has to interpolate f0

z and f1
z , so this scaling constant is fixed.

Before moving on, we make two final notes. First, we highlight
again that the following variants in this section may be viewed as
an extension of [Weber and Gotsman 2010]. Interpolation there was
restricted to conformal mappings and was performed with linear in-
terpolation of the argument of the derivative on the boundary. The
second important note is that we cannot use a logarithmic interpola-
tion approach for the anti-holomorphic part, as f0

z̄ and f1
z̄ typically

vanish at points in Ω, so we cannot sensibly define a logarithm for
them. In light of this, we look to interpolate different quantities that
reflect the local geometric distortion, and use those to determine f t

z̄ .

5.2 Bounding conformal distortion

If we are aiming to bound conformal distortion, then we may try
to linearly interpolate μ0 and μ1 to determine μ, and then solve
for f t

z̄ with the equation f t
z̄ = μtf t

z . Such an interpolation will
satisfy Property 5, as k = |μ| and the norm is a convex function
on C. Unfortunately, the result that we will get for f t

z̄ is likely not
anti-holomorphic, so will generally not be integrable.

Instead, for a planar mapping g, consider the second complex di-
latation ν := gz

gz
. This quantity satisfies |ν| = |μ| = k and will

be holomorphic as long as gz does not vanish. Thus, we linearly
interpolate this quantity with the simple equation:

νt = (1 − t)ν0 + tν1. (4)

As ν0 and ν1 are holomorphic, νt is holomorphic for all t. Thus,
we obtain:

f t
z̄ = νtf t

z , (5)

and we see clearly that we have an anti-holomorphic result.

With formulae for f t
z and f t

z̄ , this defines our first variant, which we
refer to as the ν variant. It satisfies many of our properties:

Theorem 3. The ν variant has Properties 1-5, 7.

Proof. Properties 1 and 2 hold by the discussion in Section 4.1 on
our basic approach.

As
∣
∣ν0
∣
∣ ,
∣
∣ν1
∣
∣ < 1, we have

∣
∣νt
∣
∣ < 1 for all t, which implies that∣

∣f t
z̄

∣
∣ <

∣
∣f t

z

∣
∣. So by Lemma 2, Property 3 holds.

As Equations 3 and 5 are smooth with respect to time everywhere,
Property 4 holds by Lemma 1.

Property 5 holds as kt =
∣
∣νt
∣
∣ and the norm is convex on C.

Finally, let us argue that Property 7 holds. Note first the equality:

σt
b =

∣
∣f t

z

∣
∣−
∣
∣f t

z̄

∣
∣

= (1 −
∣
∣νt
∣
∣)
∣
∣f t

z

∣
∣

= (1 −
∣
∣νt
∣
∣)eln|ft

z|.

Now suppose that a particular bound C > 0 is obeyed for a fixed

time t: C ≤ (1 −
∣
∣νt
∣
∣)eln|ft

z|. After some rearrangement we have

Ce− ln|ft
z| − 1 +

∣
∣νt
∣
∣ ≤ 0. Allowing t to vary, we see that

∣
∣νt
∣
∣

is a convex function, as is Ce− ln|ft
z|, since the exponent varies

linearly. Thus, if a bound C holds at the endpoints (t = 0 and
t = 1), then it will hold in between, and we see that by allowing
C = min(σ0

b , σ1
b) we have our desired result.

In addition to satisfying nearly all our desired properties, the sim-
plicity of the method is a great asset and ensures that this is compu-
tationally the fastest and easiest to implement of our methods.

With respect to Property 6, we do not have that it is guaranteed to
hold in general, but it is quite challenging to find a counterexample.
Nonetheless, we note that since σt

a can be expressed as (1+kt)
∣
∣f t

z

∣
∣

and since kt and
∣
∣f t

z

∣
∣ are pointwise bounded, their product is still

bounded by the product of the individual bounds.

5.3 Interpolating Stretch Direction

Despite all of its strengths, this method sometimes produces unin-
tuitive visual results if the keyframes are drastically different. The
reason for this is that the stretch direction is not interpolated prop-
erly, as can be seen in Figure 3.

(a) (b) (c) (d) (e)

Figure 3: Interpolation of the stretch direction. (a) is a square do-
main [−1, 1]2. (b) and (e) are the input mappings f0, f1, and each
stretches the rectangle along the y-axis (μ0 = μ1 = − 1

3
), while

f1 additionally rotates the domain by π/2. (c) is the interpola-
tion at t = 0.8. Note the stretch direction is slightly different than
that of f0, f1. (d) is arguably the expected result where the stretch
direction is maintained.

As a result, we might ask that the following properties hold for all
points z ∈ Ω:

8. (interpolation of stretch direction)

(a) If μ0 = μ1 = 0, then for all time t: μt = 0

(b) If μ0 = 0 (μ1 = 0), then ∀t ∈ (0, 1] (t ∈ [0, 1)):
μt = cμ1 (μt = cμ0) for some c ∈ R+.

(c) If μ0, μ1 6= 0, then for all time t:∣
∣
∣Arg

(
μt

μ0

)∣∣
∣+
∣
∣
∣Arg

(
μ1

μt

)∣∣
∣ =

∣
∣
∣Arg

(
μ1

μ0

)∣∣
∣.

When the mapping is conformal (μt = 0), the stretch direction
is ambiguous. The first two subproperties are specifically formu-
lated to deal with these situations. The first states that if the map-
ping is conformal at the endpoints, then it should remain conformal
throughout the interpolation. Note that this automatically holds as

a consequence of Property 5, but is included for clarity and com-
pleteness. The second states that if one mapping has a stretch di-
rection, while the other is conformal, the intermediate mappings
should have stretch direction matching the non-conformal mapping.

The third subproperty covers the most general case: when both end-
points have a well defined stretch direction. Here, we expect these
directions to be interpolated along the shortest angular path between
the stretch directions. The condition as written above expresses this
succinctly due to the fact that |Arg(z)| ≤ π for all z 6= 0, giving
us the following property.

Arg Property. Given z1, z2 ∈ C− {0}, the angular distance be-
tween z1 and z2 is |Arg(z1/z2)| = |Arg(z2/z1)|.

5.4 Introducing η

The desire for this property to hold leads us to a different quantity
which is still anti-holomorphic, but shares the same argument as
μ. For a planar mapping g, this quantity is η = gzgz = μ |gz|

2.
Note that up to scaling by a positive constant, this is the only anti-
holomorphic function which shares the same argument as μ (its ar-
gument is specified everywhere but the shared zeroes of μ and η).
The explicit formula for linear interpolation of this quantity is:

ηt = (1 − t)η0 + tη1 (6)

With this, we obtain an equation:

f t
z̄ =

ηt

f t
z

(7)

which is anti-holomorphic for all time t, and is thus integrable.

Given formulae for f t
z and f t

z̄ , this defines another variant, which
we will refer to as the unscaled η variant. It will be generalized in
the next section to give us the full method, but let us see that this
simplified version has Property 8.

Proposition 4. The unscaled η variant has Property 8.

Proof. First, note that if we replace every instance of μ with η in
Property 8, then this property would hold for the unscaled η variant.
This is true as η is simply linearly interpolated (so η/ |η| automati-
cally takes the shortest path in angle space).

Now, let us see that these properties are equivalent. By Equation 3,
we have that f t

z 6= 0 everywhere. So, we have that μt and ηt share
the same zeroes as f t

z̄ . Furthermore, we have ηt =
∣
∣f t

z

∣
∣2 μt, so that

their argument agrees everywhere. Thus, we have equivalence of
the properties and our desired result.

Unfortunately, without further modification, it fails to have bounded
conformal distortion in all cases. To see this, consider the special
case, where f0 is the identity mapping. In this case, formulae are
simplified, as f0

z = 1, f0
z̄ = 0, and η0 = 0. Then we have:

kt =

∣
∣
∣
∣

ηt

(f t
z)2

∣
∣
∣
∣ =

t
∣
∣η1
∣
∣

|f1
z |

2t .

Thus, to have bounded conformal distortion, we need
t/
∣
∣f1

z

∣
∣2t−2

≤ 1 (for t ∈ [0, 1] obviously). Some simple
analysis shows that this will occur only when

∣
∣f1

z

∣
∣ ≤

√
e. More

generally, bounded conformal distortion is only preserved if the
ratio

∣
∣f0

z

∣
∣ /
∣
∣f1

z

∣
∣ is not too far from 1.

This variant may also fail to be locally injective, and in rare cases
does not possess isometric distortion bounds. Fortunately, all of
these issues may be remedied in a fashion which still preserves in-
terpolation of stretch direction.

5.5 Scaling η

Local injectivity and the geometric distortion bounds may be re-
covered by scaling the linearly interpolated η. In particular, if these
properties fail for the unscaled η variant, then we may define a
scaled quantity η̃t := ρ(t)ηt, where ρ : [0, 1] → (0, 1] is a scaling
function such that ρ(0) = ρ(1) = 1. Then f t

z̄ is determined by the
following equation:

f t
z̄ =

η̃t

f t
z

. (8)

It is a fact that for a particular choice of ρ, we will have local injec-
tivity and the geometric distortion bounds desired. For the confor-
mal distortion bounds, one may see that if we allow ρ → 0, then
f t

z̄ → 0, and the mappings will become more and more conformal,
lowering the conformal distortion.

It turns out that the isometric distortion bounds (and local injectiv-
ity) may also be recovered by appropriate scaling, but the argument
is more technical. For better flow of the exposition, precise argu-
ments have been relegated to Appendix A for the interested reader.

This procedure defines the scaled η variant, which generalizes the
unscaled η variant by checking the geometric distortion bounds for
each time t and scaling η suitably to preserve the bounds, if neces-
sary. Equations (3) and (8) give us formulae for f t

z and f t
z̄ , which

are integrated to obtain the interpolated mappings. Figure 4 com-
pares the interpolated result on a bar model with and without the
scaling of η.

Theorem 5. The scaled η variant has Properties 1-3, 5-8.
Proof. Properties 1 and 2 hold by the discussion in Section 4.1 on
our basic approach.

Properties 3, 5-7 hold by the discussion in Appendix A.

Finally, Property 8 holds by Proposition 4 and the fact that scaling
a complex number by a non-zero real constant does not change its
argument.

Source
t=0

scaled
 t=0.5

unscaled
 t=0.5

Target
t=1

Figure 4: Scaling η. Comparison of the results with and without
scaling. The zoom-in shows the problematic area where the confor-
mal distortion for the unscaled η variant is unbounded.

The scaled η variant does not however guarantee smoothness with
respect to time (Property 4), as no restrictions are made on the dif-
ferentiability properties of ρ. It should be noted that with some
small effort, procedures could be developed that would smooth any
given ρ into various differentiability classes.

Finally we note that the global scaling by ρ sometimes leads to
a qualitative non-locality to the interpolation. The intense scaling
needed in one portion of a mapping may result in another portion
being scaled to near-conformality, even when this is not desired.
The decision to globally scale η was made in order to make sure
that it stays anti-holomorphic.

6 Metric Pullback Method

For the third variant, an alternate procedure for interpolating fz is
considered, while maintaining linear interpolation of η. The basis
of this method is linear interpolation of the metric tensor (first intro-
duced in [Chen et al. 2013]). Section 6.1 defines the metric tensor
precisely and shows that it preserves conformal and isometric dis-
tortion when linearly interpolated. Section 6.2 explicitly describes
the procedure for performing this linear interpolation (along with
linear interpolation of η) on the boundary to determine f t

z .

Linear interpolation of η then determines f t
z̄ and Section 6.3 verifies

that the procedure results in satisfaction of the geometric distortion
bounds in a global sense in addition to all other previously defined
properties. In addition to these guarantees, it seems to perform the
best qualitatively of our three variants. Further comparison is done
in Sections 8 and 9.

6.1 The Metric Tensor and Linear Interpolation

Consider a planar mapping h : Ω → R2. The metric tensor is the
matrix expression for the pullback metric h∗g• where g• denotes
the standard Euclidean metric given by the classical dot product. To
simplify notation and to match more closely with previous works,
we use Mh to denote this quantity. It is expressed simply in terms of
the Jacobian: Mh = JT

h Jh, and is clearly symmetric and positive-
definite (when Jh is nonsingular).

With some basic linear algebra it is simple to see that given the met-
ric tensor Mh at a point, there is an orientation-preserving Jacobian
Jh which realizes it, and it is determined up to post-rotation. As
one might note, there is no guarantee that a choice of such a Jaco-
bian at every point will be integrable, regardless of the choice of
rotation. As a result, a metric specified at every point may not be
the pullback metric of a planar mapping h. This issue is dealt with
later, so we continue forward with the following discussion holding
at a differential level, at a single point.

To investigate the geometric properties of the Jacobians associated
with a given metric tensor, we consider a more detailed formula for
Mh. Using the additive decomposition of Jh into similarity and
anti-similarity parts, we obtain a formula in terms of hz , hz̄ , and η:
(
|hz|

2 + |hz̄|
2 0

0 |hz|
2 + |hz̄|

2

)

+ 2

(
Re (η) Im (η)
Im (η) −Re (η)

)

(9)

In light of this expression, we define the useful quantity: A :=
|hz|

2 + |hz̄|
2. The isometric distortion constants are easily ex-

pressed in terms of this quantity and η:

σ2
a = |hz|

2 + |hz̄|
2 + 2 |η| = A + 2 |η| (10)

σ2
b = |hz|

2 + |hz̄|
2 − 2 |η| = A− 2 |η| (11)

A conformal distortion measure, the square of the large dilatation
K2, may also be easily expressed in terms of A and η:

K2 =
σ2

a

σ2
b

=
A + 2 |η|
A − 2 |η|

. (12)

Now, consider linear interpolation of the metric tensor. In partic-
ular, consider two planar mappings f0 and f1 and linearly blend
their metrics M0

f and M1
f to get the formula M t

f = (1 − t)M0
f +

tM1
f . The uniqueness of the additive decomposition in Equation

(9) implies that At = (1− t)A0 + tA1 and ηt = (1− t)η0 + tη1.
From Equations (10) and (11) it is clear that the isometric distor-
tion quantities are bounded as At is linear with respect to time and

∣
∣ηt
∣
∣ is convex with respect to time. We will also see that K2 is

quasiconvex with respect to time, but the argument is a little more
involved, so it is delayed until the proof of Theorem 6.

6.2 Interpolation on the Boundary

As we noted previously, the blending of the metric tensor every-
where may not give us metrics that are realizable as the pullback
metric for a planar mapping. In [Chen et al. 2013], this was dealt
with by using a discrete curvature flow to flatten the metric, which
preserves the conformal distortion bounds, but unfortunately inval-
idates the isometric distortion bounds.

In the variant we are presenting here, we effectively only blend the
metric linearly on the boundary of Ω, allowing us to preserve the
geometric distortion bounds there. As our resulting mappings are
harmonic, we obtain global bounds by the work in [Chen and Weber
2015].

This effective linear blending is accomplished by linearly blending
A and η on ∂Ω. This determines

∣
∣f t

z

∣
∣2 on the boundary as a root of

the following quadratic:

∣
∣f t

z

∣
∣2 +

∣
∣f t

z̄

∣
∣2 = (1 − t)A0 + tA1

∣
∣f t

z

∣
∣2 +

∣
∣ηt
∣
∣2

|f t
z |

2 = At

(∣
∣f t

z

∣
∣2
)2

−
∣
∣f t

z

∣
∣2 At +

∣
∣ηt
∣
∣2 = 0

This quadratic has two solutions, given by the equation below:

∣
∣f t

z

∣
∣2 =

At ±
√

(At)2 − 4 |ηt|2

2
(13)

It is a simple (but tedious) exercise to see that the discriminant is
positive, so there are two distinct real solutions.

If one were to solve for
∣
∣f t

z̄

∣
∣2 instead, the exact same quadratic

would be obtained. As At is to be blended linearly, a choice of one
solution for

∣
∣f t

z

∣
∣2 will mean that

∣
∣f t

z̄

∣
∣2 will take the other solution.

Thus, we take the positive root, so that
∣
∣f t

z

∣
∣ >

∣
∣f t

z̄

∣
∣.

With
∣
∣f t

z

∣
∣ specified on the boundary, we then solve the Dirichlet

problem to obtain a harmonic function u : Ω → R with value
ln
∣
∣f t

z

∣
∣ on the boundary. Next, the process described in Subsec-

tion 3.5 is used to obtain a harmonic conjugate v, and the resulting
log f t

z is exponentiated to obtain a formula for f t
z over all of Ω (and

for all time t). There is of course, an integration constant which
results in f t

z only being determined up to a global rotation eiC . The
integration constant is chosen at the endpoints to ensure interpola-
tion and is merely linearly interpolated for intermediate times.

Lastly, to obtain an anti-holomorphic formula for f t
z̄ , we maintain

linear blending of η everywhere (not just on the boundary). This
results in the same formula as that given in Equation (7) (though f t

z

is different). We refer to this variant as the metric variant.

An application of this variant is illustrated in Figure 5, along with
a comparison to our first two variants and ARAP. Qualitatively, it
can be seen that the metric and scaled η variants outperform the ν
variant and ARAP. The quantitative plots and comparison are dis-
cussed further in Section 8. Animations of some of these outputs
are also available in the accompanying video.

Source

Target

ARAP Ours/metric

0.5 10

2

4

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0 0.5 1

0.5

1

Ours/Ours/

Figure 5: S-2-U. Qualitative and geometric distortion comparison
for our variants and ARAP.

6.3 Variant Validation

As noted already, we use the results of Chen and Weber [2015]
(Theorem 4) to give us global bounds on conformal distortion
and isometric distortion. For a planar mapping g, we denote the
global bound on conformal distortion k̊ = supz∈Ω k(z) ∈ [0, 1).
Similarly, we let σ̊a = supz∈Ω σa(z) ∈ (0,∞) and σ̊b =
infz∈Ω σb(z) ∈ (0,∞) denote the global bounds on the isometric
distortion. Note that in our applications, the mappings are always
assumed to be defined on a region slightly larger than the compact
figure to be animated, so the supremums and infinums will always
be realized in Ω. Below are the modified properties on conformal
and isometric distortion:

5’. (conf. distortion) k̊t ≤ max(̊k0, k̊1) for all t ∈ [0, 1]

6’. (max scaling) σ̊a
t ≤ max(σ̊a

0, σ̊a
1) for all t ∈ [0, 1]

7’. (min scaling) σ̊b
t ≥ min(σ̊b

0, σ̊b
1) for all t ∈ [0, 1]

This variant has all of our essential properties, it interpolates stretch
direction and has the above modified distortion properties, and also.

Theorem 6. The metric variant has Properties 1-4, 5’-7’, 8.

Proof. Properties 1 and 2 follow by the discussion in the basic ap-
proach section and the short note about the eiC global rotation in
Section 6.2.

Property 3 will follow from Property 7’. It ensures us that σ̊b
t > 0

for all t so that σt
b(z) > 0 for all z and t, and we have the property

by Lemma 2.

For Property 4, note first that Equation (13) for
∣
∣f t

z

∣
∣2 is smooth.

This follows as
∣
∣ηt
∣
∣2 is smooth and the discriminant is positive (see

Lemma 7 in Appendix B). As At > 0, we have that
∣
∣f t

z

∣
∣2 > 0, so

∣
∣f t

z

∣
∣ =

√
|f t

z |
2 is smooth. Furthermore, we have then that ln

∣
∣f t

z

∣
∣ is

a smoothly varying boundary input to the Dirichlet problem, whose
solution in the interior will then vary smoothly. The Hilbert trans-
form is also a smooth operation, and we obtain a smooth formula
for f t

z . Finally, from Equation 7, we see that f t
z̄ is also smooth, so

we have the property by Lemma 1.

For Property 5’, we use reasoning that is analogous to that used to
prove Property 7 in Theorem 3. Note first that it is equivalent to
bound K2. We have the equality:

(Kt)2 =
(σt

a)2

(σt
b)

2
=

At + 2
∣
∣ηt
∣
∣

At − 2 |ηt|
.

This is just Equation (12) with t superscripts. Now suppose that a

particular bound C ≥ 1 is obeyed for a fixed time t: C ≥
At+2|ηt|
At−2|ηt| .

After some rearrangement we have (C−1)At−(C+1)2
∣
∣ηt
∣
∣ ≥ 0.

Allowing t to vary, we see that −(C + 1)2
∣
∣ηt
∣
∣ is a concave func-

tion, as is (C − 1)At since it is linear. Thus, if a bound C holds
at the endpoints (t = 0 and t = 1), then it will hold in between,
and we see that by allowing C = max((K0)2, (K1)2) we have
a pointwise bound on ∂Ω. Theorem 4 of [Chen and Weber 2015]
implies that if fz does not vanish inside (our fz is obtained by ex-
ponentiation) bounding the distortion on the boundary is sufficient
to bound it everywhere, which gives us Property 5’.

For Properties 6’ and 7’, recall that we argued at the end of Section
6.1 for pointwise bounds on ∂Ω. These followed as Equations (10)
and (11) were shown to be convex and concave, respectively. [Chen
and Weber 2015] is used again to show that the bounds are global.

Finally, we have that Property 8 holds as we are still linearly in-
terpolating η everywhere. As ηt is the same as it would be in the
unscaled η variant, Proposition 4 gives us this property.

7 Implementation

Our algorithm is implemented as a plug-in to Autodesk Maya 2016.
The GUI elements, such as keyframe insertion, are implemented
through Maya’s C++ API. The rendering is done in OpenGL and the
algorithm itself is implemented in Matlab (through Matlab’s COM
engine). We used Matlab’s built-in ability to parallelize vector op-
erations using Nvidia’s CUDA on the GPU. This is simply achieved
by using the gpuArray function which copies the vector to the GPU
memory. The rest is fully transparent to the programmer. Every
embarrassingly parallel operation such as computing the logarithm
of every entry in the vector or summing vectors is automatically
processed on the GPU. In fact, the same Matlab code can run on
the CPU in case a CUDA-enabled GPU is not available. The results
were obtained on an i7-3770 core with Nvidia Quadro K6000 GPU.

Our method is formulated in the smooth case assuming that the
input is a C∞ harmonic mapping and as such, it is indifferent to
the particular underlying representation of the input. However, the
method of [Chen and Weber 2015] was used to generate the input
mappings in most of the examples in this paper, because the method
is guaranteed to produce bounded distortion harmonic mappings
expressed in closed-form.

Chen and Weber assume that the domain is bounded by a simply
connected polygon P which is offset in the outward normal direc-
tion to form the polygon P̂ = {z1, z2, ..., zn}, zj ∈ Cwhich is de-
noted as the cage. The infinite-dimensional space of harmonic map-
pings is spanned by Equation (1) where the holomorphic functions
are approximated by Φ and Ψ from the finite-dimensional space
spanned by the Cauchy complex barycentric coordinates [Weber
et al. 2009]:

Φ(z) =

n∑

j=1

Cj(z)ϕj , Ψ(z) =

n∑

j=1

Cj(z)ψj . (14)

Visualization of the mapping is achieved by applying a texture onto
a high resolution triangulation T of the domain (≈100, 000 tri-
angles were used for all the results presented in this paper). The
holomorphic basis functions Cj(z) possess a simple closed-form
expression, hence fz and fz̄ are given by a simple formula [Chen
and Weber 2015]. The blended derivatives: f t

z and f t
z̄ are holomor-

phic and anti-holomorphic functions respectively and are precisely
integrable. However, their antiderivatives do not in general belong
to the holomorphic subspace spanned by Equation (14). A similar
difficulty arises in [Weber and Gotsman 2010] and was treated by
least-squares projection of the derivatives into the Cauchy’s coor-
dinates subspace. While this is a viable approach that results in a

closed-form expression for the mapping f t, it can lead to violation
of the geometric distortion bounds.

Instead, f t(vi) is evaluated at the vertices of T using numerical
integration which can be done efficiently for any required accuracy.
At preprocessing, we compute a spanning tree for the graph induced
by T whose root vertex v0 (anchor) is chosen by the user. For each
directed edge ei,j of the spanning tree, we approximate the edge
difference using a simple trapezoidal quadrature rule:

Φt(vj)−Φt(vi) =

∫ vj

vi

f t
z(z)dz ≈

(vj − vi)(f
t
z(vj) + f t

z(vi))

2
.

This turned out to be extremely accurate and higher order rules such
as Simpson’s rule did not lead to noticeable improvement. Further-
more, since the Lipschitz constants for the derivative of the Cauchy
coordinates were derived by Chen and Weber, a bound on the max-
imal approximation error can be obtained. The evaluation is done
on the GPU for all edges in parallel (as explained at the beginning
of this section) and then these edge values are accumulated along
the branches of the spanning tree starting from v0. The value at v0

determines the degree of freedom of the integration constant. The
anchor position is interpolated linearly throughout the animation.
i.e. Φt(v0) = (1 − t)f0(v0) + tf1(v0), but it should be noted that
other choices (e.g., a user-defined trajectory curve) are possible.
Similarly, f t

z̄ is integrated to obtain Ψ by choosing Ψt(v0) = 0.

Source ARAP Ours/metricFFMP

0 0.5 1

1
2
3

0 0.5 1

0.5
1
1.5

0 0.5 1

0.5

1

0 0.5 1

0.5

1

0.5 10

2
4
6

0 0.5 1

5
10
15

0 0.5 1

0.5

1

0.5 10

0.5

1

Target

Ours/

Figure 6: Bar to ring. Qualitative and geometric distortion com-
parison.

7.1 Log-based Methods

In this subsection, we explain how the actual blending of
f t

z and f t
z̄ is done. In order to accelerate the computation,

we can separate quantities that are time-dependent from those
that are not. For example, the variants in Section 5 require
that ν0(vi), ν

1(vi), η
0(vi), η

1(vi), log(f0
z (vi)), log(f1

z (vi)) will
be evaluated at each vertex vi of T . These quantities depend only
on the input mappings f0, f1 and can be evaluated and stored dur-
ing the deformation phase. Alternatively, since the number of an-
imation frames between each two consecutive keyframes is typi-
cally large (say 50), the computation time of these quantities can be
amortized such that it become negligible. All these quantities are
stored in vector form on the GPU memory (using gpuArray).

On the other hand, νt(vi), η
t(vi), f

t
z(vi) given by Equations (4),(6)

,(3) respectively are time-dependent and are evaluated for every t ∈
[0, 1]. Given a specific time t ∈ [0, 1], the blendings of νt, ηt, f t

z

are computed in vector form, followed by the computation of fz̄

(Equation (5) or (7) depending on the particular variant).

7.2 Evaluating the Log

As explained in Section 3.5, since f0
z , f1

z are nonvanishing, a con-
tinuous logarithm branch exists. Matlab’s built-in complex loga-
rithm implementation is designed to compute the principal branch
which is not appropriate in most cases. Numerical integration is a
straightforward way to compute the logarithm (Equation (2)), how-
ever we can do better than that. For each edge ei,j of the spanning
tree we compute the difference between the desired values of the
log as follows:

log(fz(vj)) − log(fz(vi)) = Log

(
fz(vj)

fz(vi)

)

. (15)

Recalling the property of Arg = Im (Log) noted at the end of
Section 5.3, the above formula is exact as long as the difference
between the arguments at the edge’s endpoints is in the range
(−π/2, π/2). This should always be the case for any sensible in-
put. If theoretically, this is not the case, the edge can always be
subdivided. Finally, like before, edge values are accumulated along
the tree branches to form the vertex values. The value at the root
is determined by log(f0

z (v0)) = Log(f0
z (v0)) and log(f1

z (v0)) =

Log
(

f1
z (v0)

f0
z (v0)

)
+ log(f0

z (v0)), again utilizing the property of Arg

to ensure that the imaginary parts of these anchor values differ by
no more than π.

7.3 Scaling η

For scaling η, it is clear that it is best to minimize the amount of
scaling (or to maximize ρ) while still achieving the geometric dis-
tortion bounds. In order to achieve this, at each time frame t, the
bounds are experimentally checked on a dense set of points. We
pause here to note that in Appendix A, the algorithm was described
as checking for violation of distortion bounds throughout Ω, but in
practice, we only check on ∂Ω, as it is sufficient to ensure that the
distortion bounds hold everywhere, and is faster. With this modifi-
cation, the algorithm technically only guarantees the global distor-
tion bounds (Properties 5’-7’), but it is simple to modify the imple-
mentation to check throughout the interior of the domain as well.

For this section, the notation kt, σt
a, σt

b is used to denote the values
obtained with the unscaled η variant. Looking at Equations (16),
(17), and (18), we see that if the distortion measures are violated
at a point z, then the smallest respective scalings (or rather largest
scaling coefficients) needed to recover the bounds are:

ρt
k(z) =

max(k0, k1)(z)

kt(z)

ρt
a(z) =

max(σ0
a, σ1

a)(z) −
∣
∣f t

z(z)
∣
∣

|f t
z̄(z)|

ρt
b(z) =

∣
∣f t

z(z)
∣
∣− min(σ0

b , σ1
b)(z)

|f t
z̄(z)|

If any of the denominators in the above formulae are zero, the value
is simply set to 1, as no scaling is needed then.

Within the implementation, the violation is checked and the scaling
is computed simultaneously by the following formula.

ρ(t) = min
z∈∂Ω

(
min

(
ρt

k(z), ρt
a(z), ρt

b(z), 1
))

The scaling values are compared to each other and to 1 (in case
no violation occurs), and then this is minimized over all boundary
points.

Source ARAP FFMP Ours/Metric Target

0.5 1
0

1

2

0.5 1
0

0.5

1

0.5 1
0

20

40

0.5 1
0

50

100

0.5 1
0

0.5

1

0.5 1
0

0.5

1

Figure 7: Square bar, with input specified by harmonic coordinates. Qualitative and geometric distortion comparison.

7.4 Metric-based Method

The implementation of the metric variant does not require the eval-
uation of the log (Section 7.2) but is slightly more involved than
the log-based variants due to the need to compute the Hilbert trans-
form. Computing ηt is done as explained in Section 7.1. Next we
compute ln

∣
∣f t

z(wi)
∣
∣ on the boundary, which is done by evaluating

Equation (13) and then taking the square root and logarithm of the
result. These operations are performed on a set of dense uniform
sample points wi lying on P. As usual, all the computations are
done in vector-form on the GPU.

Our next goal is to find a harmonic function with ln
∣
∣f t

z

∣
∣ as bound-

ary values and then to find a conjugate harmonic function (the
Hilbert transform). This is done simultaneously using the Hilbert
complex barycentric coordinates as explained in Section 9 of [We-
ber and Gotsman 2010]. The computation is based on the complex-
valued boundary element method (BEM) and requires solving a
rather small dense linear system. Computing the Hilbert coordi-
nates is quite efficient and takes less than a second for all the models
we present here. But more importantly, it is done once in prepro-
cessing and is independent of the animation.

Obtaining log(f t
z) at the vertices of T boils down to a matrix-vector

multiplication. The matrix is stored on the GPU (using gpuArray)
and since it is dense, the multiplication is also embarrassingly par-
allel. Finally, log(f t

z) is exponentiated to obtain f t
z . f t

z̄ is obtained
by (7) and the actual mapping f t is realized by the integration pro-
cedure described earlier.

8 Results

In this section, we present experimental results that demonstrate
the relative speed and efficacy of our variants when compared with
several existing methods. In addition, they allow us to contrast
the three variants and talk about their relative strengths and weak-
nesses. We will also occasionally refer to the accompanying video,
as the problem at hand is an interpolation problem, and the best
way to appreciate the results is to compare the actual animations
with respect to the time domain.

We begin by referring to Figure 1, which compares the output of
several algorithms at time t = 0.5. The first shows the poor quality
of the linear interpolation at t = 0.5, which simply linearly inter-
polates the positions of all the points. This naive approach clearly
does not preserve geometric distortion, and rarely produces locally
injective mappings.

The second output shows the algorithm of [Chen and Weber 2015]
with the point-to-point (P2P) handles interpolated linearly. As can
be seen, the behavior is unintuitive despite its bounds on geometric
distortion. In order to obtain natural behavior, the trajectory of the
handles would clearly need to be non-linear. We also note that it is

not as robust as our variants, because the feasibility of the problem
is not guaranteed if there are too many handle points. For further
demonstration of this concept, we refer to the raptor and giraffe
examples in the video.

The third and fourth outputs are the result of ARAP [Alexa et al.
2000] and our ν variant, and are quite similar qualitatively. We
note here that for all examples of the ARAP method, we used the
rotation angles obtained in Section 7.2 (θ = Im (log)) rather than
the principal branch (as the method suggests) as it performs poorly
otherwise. If one focuses on the upper portion of the giraffe’s neck
for these outputs, it can be seen that the stretch direction at the
halfway point is perpendicular to those of the source and target im-
ages (which run along the neck roughly). This contrasts with the
final output which is the result of our metric variant, and maintains
the stretch direction. Usually this variant produces the best qualita-
tive behavior of all of our variants, as is shown here.

Next, let us extend the comparison of our three variants and ARAP
presented in Figure 5 by discussing the plots of the geometric dis-
tortion for the interpolations within the figure. More specifically,
the plots are of normalized quantities k for conformal distortion,
and τ = max(σa, 1/σb) for isometric distortion, for 100 points of
high distortion. The quantities are normalized separately for each
point, with a simple linear scaling so that these values are 1 at time
1. Like most of the examples here, the source is the domain and
f0 is the identity mapping, so the distortion values are 0 at time 0.
More points were not plotted to prevent crowding of the plots.

We make two notes about these plots. The first (and most impor-
tant) is that ARAP clearly fails to have bounded geometric dis-
tortion, as many distortion values exceed 1 for intermediate time
values, and that all of our variants achieve bounded geometric dis-
tortion. The second is that for the plot of normalized k for the ν
variant, we see that it is strictly linearly interpolated, as it should be
when ν0 = 0.

Figure 6 is similar but replaces our ν variant with an output from
the FFMP algorithm [Kircher and Garland 2008]. Qualitatively,
our variants outperform both existing methods and we encourage
the reader to view the video to see this even more clearly. With
respect to the plots, we see again that ARAP fails to have bounded
distortion, as does FFMP. The distortion plots for FFMP are not sur-
prising, as the method is invariant to affine transformations, which
can certainly affect both conformal and isometric distortion. Lastly,
we note that if one looks closely at the distortion plots for the scaled
η variant, one can see where the method fails to be smooth at around
time t = 0.4. In general, this failure of smoothness is hard to notice
visually, but its presence is clear in this example from the plots.

In Figure 9, we compare running times with [Chen et al. 2013],
which produces high-quality results with bounded conformal dis-
tortion which are visually very similar to our metric-based variant.

t=1
Ours/Metric

t=0.5
Source

[Chen13]
t=0.5

t=0
Ours/
 t=0.5

Figure 8: Dragon, with moving tail. Ω in first image and f0 6= Id in second image. Qualitative comparison.

We compare the runtime of a single frame of our metric-based vari-
ant with that of Chen et al’s.

For fairness, we ran our method on the CPU as the Newton solver
needed for the nonlinear optimization of [Chen et al. 2013] cannot
run on a GPU. As can be seen from the graphs, our method is two
order of magnitudes faster. For high resolution meshes our GPU
implementation is, in addition, about 5 times faster than our CPU
one. We also use this opportunity to note that our variants are faster
than nearly all of the pre-existing methods: ARAP, FFMP, [Chen
et al. 2013], and [Chen and Weber 2015] with linearly interpolated
handles. Only the simplest and most naive method, linear interpo-
lation, is faster, and our simplest variant, the ν variant has similar
running times.

[Chen13]

Ours/metric

Figure 9: Running times for a single animation frame on the CPU.

The next two figures, Figures 7 and 8, show some examples that
come from a broader context of application. For the rest of the
examples in this section, the input mappings were generated with
[Chen and Weber 2015], but the input for Figure 7 was generated
with harmonic coordinates as described in Section 10 of [Weber
and Gotsman 2010]. It also demonstrates qualitative superiority of
the metric variant over ARAP and FFMP, as well as the fact that
these pre-existing methods do not have bounded distortion.

As noted previously, we have also used the source as the domain
and considered f0 to be the identity for nearly all the examples.
In Figure 8, we have a demonstration of the scaled η variant and
the metric variant on two input mappings which both differ from
the identity. They are also compared with [Chen et al. 2013]. This
example is useful for highlighting the qualitative similarity of the
metric variant with Chen et al’s method, and for noting the differ-
ence between the metric variant and the scaled η variant. We see
that the speed of rotation of the Dragon’s tail differs in each, likely
due to the fact that the scaled η variant linearly interpolates the an-
gle of the closest rotation while the metric variant does not.

Finally, we have Figure 10, which has a large collection of results
obtained by our metric-based variant, and serves as a further adver-
tisement for the video. As noted previously, this variant seems to
behave the best qualitatively.

9 Summary and Discussion

In this paper, we presented three variants of a novel shape inter-
polation technique for locally-injective harmonic mappings. The
basic method relies on Equation (1) which allows us to blend the
Jacobians in a fashion which keeps them integrable and keeps the
mapping harmonic for all intermediate times. The ν and scaled η
variants blend the similarity part fz of the Jacobian logarithmically,
and determine the anti-similarity part fz̄ by linearly interpolating
the geometrically relevant quantities in their names. The metric
variant determines fz by effectively linearly blending the metric
tensor on the boundary, while maintaining linear interpolation of η
(which determines fz̄). The mathematical simplicity of this basic
approach makes our variants simple to implement, largely parallel,
and efficient.

All three of our variants manage to bound the geometric distortion
with respect to the input mappings, to varying degrees. The ν vari-
ant achieves pointwise bounded conformal and σb distortion, and
usually achieves a pointwise bound on σa distortion. The scaled
η variant achieves pointwise bounds on all measures, and can be
loosened to obtain global bounds (via the work in [Chen and Weber
2015]). The metric variant also achieves these same global bounds
by achieving pointwise bounded conformal and isometric distortion
on ∂Ω.

Beyond their behavior with respect to the distortion, the variants
also possess other advantages and disadvantages. The ν variant is
simple and fast, but fails to interpolate stretch direction, leading to
unintuitive results when the keyframes differ greatly. The scaled η
variant properly interpolates stretch direction, but the global scal-
ing factor can lead to loss of locality, and it can fail to be smooth
with respect to time. The metric variant usually has the best qualita-
tive results, is smooth, and respects stretch direction, but is slightly
slower and less trivial to implement due to the Hilbert transform
which is approximated numerically using BEM.

In comparison to other existing methods, we would like to stress
that our variants are almost the only ones that provide mathemat-
ical guarantees on all three measures of geometric distortion with
the exception of [Chen and Weber 2015] which can fail due to fea-
sibility reasons. The algorithm of [Chen et al. 2013] has conformal
distortion guarantees, but no isometric distortion guarantees.

With respect to qualitative behavior, we feel that the variants that in-
terpolate stretch direction (scaled η and metric) outperform nearly
all other pre-existing methods, e.g., ARAP and FFMP. The only
algorithm which is comparable is that of Chen’s [2013], which is

t=1t=0.75t=0.5t=0.25t=0

Figure 10: Interpolation obtained by the metric-based method.

slower by a wide margin. In fact, save for the naive linear inter-
polation, our variants are faster than all other pre-existing methods.
In light of these comparisons, we feel that our algorithms offer a
strong combination of qualitative superiority, speed, and mathemat-
ical certification.

Source t=0.25 Targett=0.5 t=0.75

Figure 11: Application of our method (scaled η variant) to meshes.

9.1 Limitations

We are aware that the restriction to harmonic input (and output) that
is expressed in closed form may be viewed as a disadvantage if such
mappings are not available or desired. Investigations have begun
into applying the method to discrete harmonic and non-harmonic
mesh-based mappings. Figure 11 is the result of a method that fol-
lows the spirit of the basic method presented in this paper. The in-
puts for this image are two non-harmonic meshes, and the mappings
are piecewise linear, with piecewise constant quantities fz, fz̄, η for
each triangle. These were blended per triangle with the procedure
of the scaled η variant. With the mesh input, there is no guarantee
on integrability with this procedure, so a Poisson step had to be per-
formed as the final step before production of the mapping. As can
be seen, the output is quite natural.

Furthermore, experiments have been conducted with discrete har-
monic mappings on meshes (with cotangent weights). While our
method still fails to give exactly integrable discrete mappings, we
have noticed that the Poisson error converges to zero under refine-
ment of the mesh, as expected.

Finally, we acknowledge the limitation to planar mappings, and
will pursue further methods that are based on metric tensor blend-
ing, which generalizes to three dimensions (unlike the mathematical
machinery of complex analysis).

9.2 Future Work and Applications

There are several avenues for future work and applications of the
ideas and methods in this paper. First it would be interesting to
explore the use of our interpolation methods for 3D volumetric re-
construction from 2D slices (e.g. MRI data). In addition, the core
idea of splitting a harmonic mapping into holomorphic and anti-
holomorphic parts is also useful for shape deformation, as is done
in [Levi and Weber 2016]. Finally, [Knöppel et al. 2013] is an-
other work where this decomposition is used for vector field design
on meshes. It would be interesting to combine these works for the
sake of interpolation of vector fields.

Acknowledgements

This research was partially funded by the Israel Science Foundation
(grants No. 1869/15 and 2102/15) and by the Max Planck Center
for Visual Computing and Communication. We gratefully acknowl-
edge the support of NVIDIA Corporation with the donation of the
GPU. Finally we thank the anonymous reviewers for their valuable
comments and suggestions.

References

AHLFORS, L. 1979. Complex analysis, vol. 7. McGraw-Hill Edu-
cation.

AIGERMAN, N., AND LIPMAN, Y. 2013. Injective and bounded
distortion mappings in 3D. ACM Transactions on Graphics
(TOG) 32, 4, 106.

ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-
possible shape interpolation. In Proceedings of the 27th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., 157–164.

ALEXA, M. 2002. Recent advances in mesh morphing. In Com-
puter graphics forum, vol. 21, Wiley Online Library, 173–198.

BAXTER, W., BARLA, P., AND ANJYO, K. 2008. Rigid shape
interpolation using normal equations. In Proceedings of the 6th
international symposium on Non-photorealistic animation and
rendering, ACM, 59–64.

BELL, S. R. 1992. The Cauchy transform, potential theory and
conformal mapping, vol. 7. CRC press.

CHEN, R., AND WEBER, O. 2015. Bounded distortion harmonic
mappings in the plane. ACM Transactions on Graphics (TOG)
34, 4, 73.

CHEN, R., WEBER, O., KEREN, D., AND BEN-CHEN, M. 2013.
Planar shape interpolation with bounded distortion. ACM Trans-
actions on Graphics (TOG) 32, 4, 108.

CHOI, J., AND SZYMCZAK, A. 2003. On coherent rotation an-
gles for as-rigid-as-possible shape interpolation. In Proceedings
of the 15th Canadian Conference on Computational Geometry,
111–114.

DUREN, P. 2004. Harmonic mappings in the plane. Cambridge
University Press.

KIRCHER, S., AND GARLAND, M. 2008. Free-form motion pro-
cessing. ACM Transactions on Graphics (TOG) 27, 2, 12.

KNÖPPEL, F., CRANE, K., PINKALL, U., AND SCHRÖDER, P.
2013. Globally optimal direction fields. ACM Transactions on
Graphics (TOG) 32, 4, 59.

KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN,
Y. 2014. Controlling singular values with semidefinite program-
ming. ACM Transactions on Graphics (TOG), 4.

KOVALSKY, S. Z., AIGERMAN, N., BASRI, R., AND LIPMAN, Y.
2015. Large-scale bounded distortion mappings. ACM Transac-
tions on Graphics (TOG) 34, 6, 191.

LEVI, Z., AND WEBER, O. 2016. On the convexity and feasibil-
ity of the bounded distortion harmonic mapping problem. ACM
TOG 35, 4.

LEVI, Z., AND ZORIN, D. 2014. Strict minimizers for geometric
optimization. ACM Transactions on Graphics (TOG) 33, 6, 185.

LIPMAN, Y. 2012. Bounded distortion mapping spaces for triangu-
lar meshes. ACM Transactions on Graphics (TOG) 31, 4, 108.

PORANNE, R., AND LIPMAN, Y. 2014. Provably good planar
mappings. ACM Transactions on Graphics (TOG) 33, 4, 76.

SCHÜLLER, C., KAVAN, L., PANOZZO, D., AND SORKINE-
HORNUNG, O. 2013. Locally injective mappings. In Computer
Graphics Forum, vol. 32, Wiley Online Library, 125–135.

SURAZHSKY, V., AND GOTSMAN, C. 2001. Controllable morph-
ing of compatible planar triangulations. ACM Transactions on
Graphics 20, 4, 203–231.

SURAZHSKY, V., AND GOTSMAN, C. 2003. Intrinsic morphing of
compatible triangulations. International Journal of Shape Mod-
eling 9, 02, 191–201.

TUTTE, W. 1963. How to draw a graph. Proc. London Math. Soc
13, 3, 743–768.

WEBER, O., AND GOTSMAN, C. 2010. Controllable conformal
maps for shape deformation and interpolation. ACM Transac-
tions on Graphics (TOG) 29, 4, 78.

WEBER, O., AND ZORIN, D. 2014. Locally injective parametriza-
tion with arbitrary fixed boundaries. ACM Transactions on
Graphics (TOG) 33, 4, 75.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. In Computer
Graphics Forum, vol. 26, Wiley Online Library, 265–274.

WEBER, O., BEN-CHEN, M., AND GOTSMAN, C. 2009. Com-
plex barycentric coordinates with applications to planar shape
deformation. Computer Graphics Forum 28, 2, 587–597.

WEBER, O., MYLES, A., AND ZORIN, D. 2012. Computing
extremal quasiconformal maps. Computer Graphics Forum 31,
5, 1679–1689.

WOLBERG, G. 1998. Image morphing: a survey. The visual com-
puter 14, 8, 360–372.

XU, D., ZHANG, H., WANG, Q., AND BAO, H. 2006. Poisson
shape interpolation. Graphical models 68, 3, 268–281.

A Recovery of Bounds by Scaling η

As noted in Section 5.5, the scaling constant ρ is global, but we first
discuss the necessary scaling for a single point. Let f̃ t

z denote the
value defined in Equation (8) and revert to using f t

z̄ to refer to the
value obtained with Equation (7) in the unscaled η variant. Simi-
larly, let kt, σt

a, σt
b refer to the values obtained with the unscaled η

variant, and use k̃t, σ̃t
a, σ̃t

b to refer to the respective quantities ob-
tained with scaled η̃.

A.1 Recovery at a Point

It is easiest to see that the conformal distortion bounds can be
recovered. Suppose that for some fixed time t, we have kt =

|η|t /
∣
∣f t

z

∣
∣2 > max(k0, k1). We may assume max(k0, k1) > 0,

because if max(k0, k1) = 0, then kt = k0 = k1 = 0 (as
ηt = η0 = η1 = 0). Then it is clear to see that for some con-
stant ρ(t) ∈ (0, 1] we will have:

k̃t =

∣
∣η̃t
∣
∣

|f t
z |

2 = ρ(t)kt < max(k0, k1) (16)

For the bound on σa, suppose that for some t we have σt
a =

∣
∣f t

z

∣
∣+

∣
∣f t

z̄

∣
∣ > max(σ0

a, σ1
a). By Equation (8), we have

∣
∣
∣f̃ t

z

∣
∣
∣ = ρ(t)

∣
∣f t

z̄

∣
∣.

We desire a constant ρ(t) ∈ (0, 1] (likely different from the one
needed to bound conformal distortion), so that the following ex-
pression holds:

σ̃t
a =

∣
∣f t

z

∣
∣+ ρ(t)

∣
∣f t

z̄

∣
∣

≤ max(σ0
a, σ1

a) = max(
∣
∣f0

z

∣
∣+
∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z

∣
∣+
∣
∣f1

z̄

∣
∣).

(17)

It is clear that a suitable scaling ρ(t) will exist if
∣
∣f t

z

∣
∣ <

max(σ0
a, σ1

a). As we obtain f t
z by logarithmic interpolation, note

the following:

∣
∣f t

z

∣
∣ =

∣
∣f0

z

∣
∣1−t ∣∣f1

z

∣
∣t ≤ max(

∣
∣f0

z

∣
∣ ,
∣
∣f1

z

∣
∣)

≤ max(
∣
∣f0

z

∣
∣+
∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z

∣
∣+
∣
∣f1

z̄

∣
∣) = max(σ0

a, σ1
a).

Given that the distortion bounds are automatically achieved at the
endpoints, we may assume t ∈ (0, 1), and the first inequality be-
comes strict unless

∣
∣f0

z

∣
∣ =

∣
∣f1

z

∣
∣.

If this case occurs, then
∣
∣f t

z

∣
∣ =

∣
∣f0

z

∣
∣ =

∣
∣f1

z

∣
∣, and Equation (17) be-

comes equivalent to ρ(t)
∣
∣f t

z̄

∣
∣ ≤ max(

∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z̄

∣
∣). There is clearly

a suitable scaling here, unless max(
∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z̄

∣
∣) = 0, in which case∣

∣f t
z̄

∣
∣ =

∣
∣f0

z̄

∣
∣ =

∣
∣f1

z̄

∣
∣ = 0 and the distortion bound holds trivially.

An analogous argument shows that the bound on σb is recovered,
so we omit a detailed explanation. For use in Section 7.3 we note
the analogous equation to Equation (17). If the bound is violated at
a time t, we would like a scaling constant ρ(t) so that:

∣
∣f t

z

∣
∣− ρ(t)

∣
∣f t

z̄

∣
∣ ≥ min(

∣
∣f0

z

∣
∣−
∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z

∣
∣−
∣
∣f1

z̄

∣
∣). (18)

Lastly, we have that local injectivity follows automatically with
recovery of the bound on σb, as local injectivity is equivalent to
σb > 0.

A.2 Global Recovery

To obtain a suitable global scaling constant, we must ensure that
distortion bounds are respected at every point in the domain. In
particular, if a bound is violated for a fixed time t, we choose a ρ(t)
that is less than or equal to the minimum of the scalings required
at each point. Compactness of Ω ensures that a positive value will
suffice.

Finally, it must recover all of the distortion bounds, so some min-
imum of the recovery scaling factors for each quantity (kt, σt

a, σt
b)

needs to be taken. Further details are in Section 7.3.

B Lemma on Discriminant Positivity

Lemma 7. (At)2 − 4
∣
∣ηt
∣
∣2 > 0, ∀t ∈ [0, 1].

Proof. By the triangle inequality, we have that
∣
∣ηt
∣
∣ ≤ (1−t)

∣
∣η0
∣
∣+

t
∣
∣η1
∣
∣. This means that we have the following inequality:

(At)2 − 4
∣
∣ηt
∣
∣2 ≥ (At)2 − 4

(
(1 − t)

∣
∣η0
∣
∣+ t

∣
∣η1
∣
∣)2

= (1 − t)2(det J0
f)2 + t2(det J1

f)2

+ 2t(1 − t)
(
A0(σ1

b)2 + 2(σ0
b)2
∣
∣η1
∣
∣)

For the last equality, many manipulations have been omitted here
for the sake of brevity, but it may be easily checked by expressing
all quantities in terms of

∣
∣f0

z

∣
∣ ,
∣
∣f0

z̄

∣
∣ ,
∣
∣f1

z

∣
∣ ,
∣
∣f1

z̄

∣
∣. Now, note that the

three terms in the last expression are all non-negative for t ∈ [0, 1].
Furthermore, the first term is strictly positive when t 6= 1 and the
second term is strictly positive when t 6= 0.

	Introduction
	Previous Work
	Mathematical Background
	The Complex Derivatives
	Holomorphic (and Anti-holomorphic) Mappings
	Harmonic Planar Mappings
	Local Geometric Quantities
	Logarithms, Arguments, and the Hilbert Transform

	The Interpolation Problem
	A Basic Approach

	The First Two Variants: Parallel Methods
	Logarithmic Interpolation of fz
	Bounding conformal distortion
	Interpolating Stretch Direction
	Introducing
	Scaling

	Metric Pullback Method
	The Metric Tensor and Linear Interpolation
	Interpolation on the Boundary
	Variant Validation

	Implementation
	Log-based Methods
	Evaluating the Log
	Scaling
	Metric-based Method

	Results
	Summary and Discussion
	Limitations
	Future Work and Applications

	Recovery of Bounds by Scaling
	Recovery at a Point
	Global Recovery

	Lemma on Discriminant Positivity

