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Figure 1: Robustness test. We picked five models from a recent benchmark [Myles et al. 2014] that several state-of-the-art methods consis-
tently failed to address. The constrained optimization method of [Aigerman et al. 2014] failed due to infeasibility. CETM [Springborn et al.
2008] failed to flatten the metrics due to triangle inequality violation. Lastly, we applied the ARAP − L∞ [Levi and Zorin 2014] approach
which always produces a layout, but the parametrizations were not locally injective. Variant V1 of our method converged to a flat cone metric,
resulting in a locally injective parametrization with bounded isometric distortion (as can be seen by the highest values in the histogram and
the color visualization). The distortion values plotted are the

√
τ values for each triangle (see Section 3.2.1).

Abstract

We present a framework for global parametrization that utilizes the
edge lengths (squared) of the mesh as variables. Given a mesh
with arbitrary topology and prescribed cone singularities, we flatten
the original metric of the surface under strict bounds on the met-
ric distortion (various types of conformal and isometric measures
are supported). Our key observation is that the space of bounded
distortion metrics (given any particular bounds) is convex, and a
broad range of useful and well-known distortion energies are con-
vex as well. With the addition of nonlinear Gaussian curvature con-
straints, the parametrization problem is formulated as a constrained
optimization problem, and a solution gives a locally injective map.
Our method is easy to implement. Sequential convex programming
(SCP) is utilized to solve this problem effectively. We demonstrate
the flexibility of the method and its uncompromised robustness and
compare it to state-of-the-art methods.
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1 Introduction

Parametrization is a classic problem in computer graphics and ge-
ometry processing with abundant uses and applications such as
remeshing, texture mapping, shape correspondence, rotational sym-
metry fields-and-patterns design, and compression.

A continuous and (locally) injective map of a surface to the plane
exists only for topological disks (possibly with holes). A global
parametrization of an orientable surface with arbitrary topology can
be obtained by equipping the surface with a metric which is flat ev-
erywhere except at isolated cone singularities with nonzero Gaus-
sian curvature. The surface is then cut to a disk, such that the cut
passes through all cones and a layout of the cut-to-disk surface can
be uniquely defined (up to rigid motion).

Other than altering the topology of the surface, introducing cuts can
lead to dramatic reduction in the metric distortion of the map. How-
ever, finding a flat metric with prescribed cone angles that has min-
imal and/or bounded distortion is still highly challenging. In fact,
even the simpler task of parametrizing the cut-to-disk surface, such
that the induced map is locally injective (regardless of the amount
of distortion) is still a hard problem. A wide variety of approaches
exist with different success rates but the underlying optimization
problems are inherently nonconvex and guaranteeing a valid solu-
tion without altering the mesh connectivity or the cone structure
[Myles et al. 2014] is elusive.

A key insight in this paper (Sections 4.2.1 & 4.3.1) is that for a sim-
plicial mesh manifold of arbitrary dimension n ≥ 2, the space of
discrete metrics with bounded conformal and isometric distortion is
a convex set. We focus on the special case of triangular mesh sur-
faces, for which the bounded distortion space can be characterized
by the intersection of multiple (convex) second-order cones.

The majority of existing parametrization methods, use measures of
metric distortion that can be characterized in terms of the singular
values of the Jacobian Jf of a continuous piecewise linear map f .
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Based on the singular value decomposition (SVD), it is easy to ver-
ify that these singular values, σa ≥ σb ≥ 0 are in fact the square
roots of the eigenvalues of the so-called metric tensorMf = J>fJf .
Current approaches for mesh parametrization mostly work with the
spatial coordinates (the u and v coordinates of the vertices in the
parametric domain) as variables. Our point of departure is to pro-
pose alternative variables, which allow for better control over the
distortion. These variables are the edge lengths squared, which are
linear expressions in the entries of the metric tensor Mf , and can
be viewed as the discrete metric.

We draw inspiration from the work of [Chen et al. 2013], which
linearly blends the edge lengths squared of two meshes in order to
perform planar shape interpolation with bounded conformal distor-
tion. To the best of our knowledge, using the metric directly as
variables for the sake of mesh parametrization was not considered
before. We design an algorithm for computing a bounded distortion
global parametrization of an orientable triangle mesh with arbitrary
topology (high genus, open/closed) with prescribed cone singulari-
ties.

As noted, the finite-dimensional space of bounded distortion dis-
crete metrics on the mesh is shown to be convex in our variables, al-
lowing us to directly control the distortion of our candidate metric.
Bounding the distortion is attained through convex second-order
cone inequality constraints. A variety of well-known energies that
strive to reduce the maximal and/or the average metric distortion,
are shown to be convex in our variables. In order to parametrize the
mesh, however, additional prescription of the Gaussian curvature is
required. The curvature constraint is unfortunately, not convex, but
it can be effectively enforced by a simple iterative algorithm.

We apply the sequential convex programming (SCP) method [Dinh
and Diehl 2010] to solve the optimization problem. The algorithm
is remarkably simple and boils down to iterating two simple steps.
First, the nonlinear curvature function is approximated locally by a
linear function; then, this linearized curvature constraint is incorpo-
rated into the solution of a second-order cone program (SOCP). The
success of the approach is justified by the ability to solve the convex
subproblems efficiently and accurately with the help of modern in-
terior point solvers [ApS 2015]. Moreover, the nonlinear curvature
function is smooth and well-behaved due to the existence of the dis-
tortion bounds which prohibit degeneracies and triangle inequality
violation.

Once the metric is flattened, the mesh is cut to a disk and laid down
in the plane. Flatness at vertices not on the cuts ensures local in-
jectivity. Also, since cutting is not done a priori, the transition
along the seams are rigid transformations, and scale (metric) con-
sistency across the two sides of the seam is automatically obtained.
The algorithm supports arbitrary cone angle prescriptions, includ-
ing angles that are multiples of 90 degrees (so-called seamless pre-
scriptions [Myles and Zorin 2012]), though we do not address in
this work the problem of cone placement or angle rounding, or the
quantization of cone positions in the parameter space [Campen et al.
2015]. Our main focus in this work is on computing a new metric
with bounded distortion, given prescription of the Gaussian curva-
ture at all the vertices. Our method can be seen as solving a general-
ization of the problem addressed by conformal methods [Kharevych
et al. 2006; Ben-Chen et al. 2008; Springborn et al. 2008], which
aim to parametrize while staying in the more restricted space of
conformally equivalent metrics.

2 Previous Work

Due to the abundance of literature on mesh parametrization, we will
focus only on the most relevant approaches to ours, and in partic-
ular on methods that produce locally injective maps and provide

bounds on the induced distortion. For in-depth reviews, we refer
the reader to [Floater and Hormann 2005; Hormann et al. 2007]
for mesh parametrization and the related topics of quad remeshing
[Bommes et al. 2013b] and directional field design [Vaxman et al.
2016].

The most common approach to mesh parametrization is to asso-
ciate spatial coordinates (ui, vi) ∈ R2 for each mesh vertex and
then solve an optimization problem in which these are variables,
such that a certain objective function is minimized and/or additional
constraints are satisfied. With these approaches, handling a surface
which is not homeomorphic to a disk is done by cutting the mesh a
priori to a topological disk, before it is mapped to the plane. Dis-
continuity of the map across the two sides of the cut (sometimes
referred to as the seam) is unavoidable, and without special treat-
ment, artifacts arise [Lévy et al. 2002]. Scale consistency between
edges of the seam that are split, can be obtained if the transition
functions between the two parts of the seam are forced to be rigid
motions (e.g. [Kälberer et al. 2007; Bommes et al. 2009; Myles and
Zorin 2012]).

Working with spatial coordinates presumably offer some comfort
for parametrization since the image of the mapped surface is im-
plicitly forced to lie in R2. However, that alone does not imply that
the metric induced by the planar coordinates is flat. An interior ver-
tex with coordinates (ui, vi) ∈ R2 is flat, only if the sum of angles
of incident triangles is precisely 2π. Alternatively, the flatness con-
dition can be characterized by the local injectivity of the map from
the mesh to the plane. Such a piecewise linear map is locally injec-
tive if each 1-ring neighborhood of the mesh is mapped bijectively
(one-to-one and onto) to the plane. A common misconception is
that positive orientation of image triangles (no triangle “flips”) en-
sures local injectivity. While this is a necessary condition, it is not a
sufficient one. Loosely speaking, positive orientation only implies
positivity of angles, but the 1-ring can wind twice around the center
vertex, leading to angle sums of 4π (see Figure 1 in [Weber and
Zorin 2014] for an illustration). Methods that address local injec-
tivity while working with spatial coordinates, approach the prob-
lem by forcing only the necessary condition. To guarantee local
injectivity, they must start from a locally injective map (e.g. by us-
ing a barrier method [Schüller et al. 2013]) and perform homotopic
changes that preserve the orientation of the triangles.

Bounded distortion convexification. The condition for positive
orientation of a triangle in the (u, v) plane, can be expressed as a
nonconvex quadratic inequality in the (ui, vi) variables. A success-
ful line of methods that were developed in recent years force pos-
itive orientation (or more sophisticated distortion bounds) by con-
vexification, that is, the nonconvex constraint is substituted with a
more strict convex constraint. [Lipman 2012; Bommes et al. 2013a]
use it in the context of surface parametrization, while [Aigerman
et al. 2014] use it for bijective maps between surfaces. [Koval-
sky et al. 2014] generalizes [Lipman 2012] to volumetric maps.
[Poranne and Lipman 2014; Chen and Weber 2015] apply similar
ideas in the context of planar shape deformation for the meshless
setting. Similarly to our paper, all these methods solve a sequence
of convex programs: quadratic (QP), second-order cone (SOCP),
or semidefinite (SDP) programming, where at each iteration, the
convex subspace is altered according to the solution to the previous
iteration. In contrast to ours, these methods require careful initial-
ization of a choice of a local frame per triangle. Improper initializa-
tion may lead to an empty convex subspace (in the first iteration).
The (convex) problem becomes infeasible, and no solution is avail-
able. Alternative approaches approximate the bounded distortion
space rather than convexify it [Aigerman and Lipman 2013]. These
can be accelerated [Kovalsky et al. 2015] and, in contrast to the
convexification approach, have the advantage that they always pro-
duce a map (though not necessarily a locally injective one). [Liu



et al. 2016] also identifies the risk of complete failure due to in-
feasibility of the constrained optimization approaches and designed
a penalty-type solver to address positive orientation of elements in
two-and-three dimensions.

Due to the inherent nonconvexity of the underlying problem, none
of the existing methods can guarantee a valid solution in every sce-
nario. Our method is no exception and cannot always succeed.
Nonetheless, it deviates from existing methods for computation of
bounded distortion maps by several aspects. First, we solve the
problem in the space of metrics rather than the space of maps.
Somewhat surprisingly, the bounded distortion metrics are shown
to be a convex space within the space of metrics. We cast all the
nonconvexity aspects of the problem into one place, namely the cur-
vature constraint. Forcing flatness (a 2π angle sum) at non-cut ver-
tices ensures local injectivity, avoiding the injectivity issues faced
by use of spatial coordinates. This leads to a robust optimization
procedure that frees the user from choosing a “good” initialization
(we simply start by evolving the original metric). In contrast to con-
vexification approaches, our convex subproblems are always feasi-
ble. A failure of our method can only occur if the optimization
cannot flatten the metric completely. Our experiments show that
this rarely happens, yet, if a failure occurs, we can always provide
a partial recovery. After each iteration, the obtained metric (which
may be nonflat) is guaranteed to satisfy the distortion bounds. Upon
potential failure to converge to a flat metric, the partially flat metric
can be used as an input to any other algorithm. For example, the
conformal method of [Springborn et al. 2008] which addresses a
similar setting by solving a convex problem.

Angle-based approaches. Methods that use triangle angles as vari-
ables are closely related to our metric approach, as the angles of a
mesh are directly determined from its edge lengths. In contrast to
our problem, curvature constraints are linear (sum of angles around
a vertex). Albeit, determining mesh edge lengths from a collection
of angles is not always possible. Redundancy occurs as there are
twice the number of angles than edges (in a closed mesh). Angle
based flattening (ABF) [Sheffer and de Sturler 2001] provides the
necessary and sufficient conditions for the successful recovery of a
flat metric from angles. Namely, the angles should all be positive
(linear inequality constraint), they should sum to π on each triangle
(linear equality), and similarly to our problem, needs to satisfy a
single nonlinear equality constraint per vertex (a product of sines in
ABF). In spite of being a nonconvex problem, ABF is quite robust
and effective in approximating conformal maps, yet direct control
over scale in terms of angles requires an additional integral nonlin-
ear condition. [Bobenko et al. 2015] notes a variational principle
for discrete conformality based on angles, and performs a convex
unconstrained energy minimization to solve for them.

Metric-based approaches. Better control over scale can be ob-
tained by using different variables. [Kharevych et al. 2006] uses
triangle circumcircle radii, while [Ben-Chen et al. 2008; Spring-
born et al. 2008] use the so-called logarithmic conformal scale fac-
tors. While, the scale on the boundary can be prescribed, these
approaches allow only for a conformal change of the metric, which
greatly limits the space of plausible maps, and typically leads to
excessive variation in scale.

[Myles and Zorin 2012; Myles and Zorin 2013] utilize conformal
metric flattening [Ben-Chen et al. 2008] for automatic placement
of cone singularities in order to reduce isometric distortion. The
ARAP [Liu et al. 2008] energy is approximated based on the con-
formal factor. We propose to work with the discrete metric directly
(edge lengths squared), with access to the complete space of valid
metrics, where smaller portions of the space (metrics with low dis-
tortion) can be picked easily by posing convex constraints.

Closely related methods to ours are [Chen et al. 2013] and [Chien
et al. 2016] which utilize the metric tensor for shape interpolation
of simply-connected planar domains. The main idea in [Chen et al.
2013] is that linearly blending the metric tensor of two flat sur-
faces produces a new metric (a symmetric matrix) whose condition
number is bounded by that of the input. The condition number of
the metric is a measure for conformal distortion. Chen et al. ob-
served that while in general, the blended metric will not be flat,
it can be flattened conformally, to save the conformal distortion
bounds. [Chien et al. 2016] on the other hand, deals with C∞ har-
monic planar maps. They are able to maintain isometric distortion
bounds, in addition to conformal distortion bounds. Their interpo-
lation scheme blends the smooth metric only on the boundary of the
domain. Nonetheless, for harmonic maps, that is sufficient to en-
sure that the distortion is globally bounded [Chen and Weber 2015].

3 Mathematical Background

In the interest of being somewhat self-contained, we review in
this section some basic facts on geometric distortion measures,
their relation to the pullback metric tensor, and on convex-
ity/quasiconvexity. For more detailed information on these topics,
we refer to [Chien et al. 2016], [Lee 1997], and [Boyd and Vanden-
berghe 2004], respectively.

3.1 Geometric Distortion

Consider a linear map T : R2 → R2 given by a matrix A, so that
T (v) = Av for v ∈ R2. T maps the unit circle S1 to an ellipse
T (S1) centered at the origin. The lengths of the axes and the ec-
centricity of this ellipse reflect the geometric distortion of T . The
lengths are given by the square roots of the eigenvalues of AA>

and A>A, which share the same spectrum. These values are the
singular values of A and are denoted σa and σb, with σa ≥ σb.
Clearly, σa is the length of the major axis, while σb is that of the
minor axis. See Figure 2 for illustration. The two singular values

Figure 2: Local distortion. The unit disk is distorted to an ellipse
under a linear map. The lengths of the major and minor axes are
the singular values σa and σb respectively.

together quantify the isometric distortion, while their ratio, denoted
K = σa

σb
∈ [1,∞), quantifies the eccentricity of T (S1) and the

conformal distortion. Another common quantity to measure con-
formal distortion is the small dilatation k ∈ [0, 1) which is related
to K monotonically by k = (K − 1)/(K + 1) and is 0 iff the map
is conformal.

3.1.1 Local Distortion for Differentiable Maps

More generally, we may consider a C1 map f : Ω ⊆ R2 → R2

and consider these distortion quantities for the Jacobians Jf at each
point in the domain Ω. These offer a pointwise description of the
local geometric distortion of f .



The singular values of the Jacobian at a point are easily expressed
in terms of the Wirtinger derivatives, fz = 1

2
(fx − ify) and fz̄ =

1
2
(fx + ify):

σa = |fz|+ |fz̄| , σb =
∣∣∣ |fz| − |fz̄| ∣∣∣.

For orientation-preserving locally-injective maps, we have that
det(Jf ) = |fz|2 − |fz̄|2 ≥ 0, so the second equation reduces to
σb = |fz| − |fz̄|. For a review of these facts and Wirtinger deriva-
tives and their geometric meaning, we refer to Section 3 of [Chien
et al. 2016].

3.2 The Metric Tensor and Geometric Distortion

A metric tensor on a region Ω gives a local notion of distance, and a
differentiable planar map f , as above, may be used to assign such a
metric tensor via the pullback construction of differential topology.
Intuitively, this gives the domain Ω the geometry of f(Ω) under the
standard Euclidean metric tensor. For example, if Ω is a triangle
and f is an affine map, then Ω with the pullback metric tensor will
have the geometry of the image triangle f(Ω), i.e., the same edge
lengths and angles. This example will be quite relevant for our basic
discrete setting, described further in Section 4.1.

More concretely, the pullback metric tensor is denoted by Mf and
is easily calculated in terms of the Jacobian: Mf := J>f Jf . For
brevity, we refer to the pullback metric tensor as simply the metric
tensor, as the map under consideration is usually implicit. Given
that the singular values of a matrix A are determined by the eigen-
values of A>A, it is not surprising that the distortion measures for
f are nicely expressed in the entries of this metric tensor.

3.2.1 Distortion In Terms of Metric Tensor Entries

Instead of using the actual entries of Mf , which are not invariant
to precomposition with isometries of R2 (isometric choices of co-
ordinates or charts on R2), let us first develop some more meaning-
ful coordinates that are at least partially invariant to these choices.
Using the additive decomposition of Jf into similarity and anti-
similarity parts [Chien et al. 2016], we obtain a formula in terms of
fz , fz̄ , and a third quantity η := fz̄fz:

Mf =

(
|fz|2 + |fz̄|2 0

0 |fz|2 + |fz̄|2
)

+2

(
Re (η) Im (η)
Im (η) −Re (η)

)
.

In light of this expression, we define the useful quantity: A :=
|fz|2 + |fz̄|2, which is invariant under choice of charts. Note that
A = ‖Jf‖2F /2 where ‖ · ‖F denotes the Frobenius norm. We
also note that η is a geometrically relevant quantity which has the
same complex argument as the Beltrami coefficient µ = fz̄/fz ,
which encodes the (local) maximal stretch direction. Furthermore,
|η| is invariant under choice of charts, and as |η| → 0 the map
becomes more and more conformal, locally. See [Chien et al. 2016]
for further details on the aforementioned quantities.

The A and η coordinates are linear in the entries of the metric ten-
sor, and they lead to simple expressions for the isometric and con-
formal distortion quantities:

(σa)2 = |fz|2 + |fz̄|2 + 2 |η| = A+ 2 |η| (1)

(σb)
2 = |fz|2 + |fz̄|2 − 2 |η| = A− 2 |η| (2)

K2 =
(σa)2

(σb)2
=
A+ 2 |η|
A − 2 |η| . (3)

We also note here that sometimes the singular values (or their
squares) are combined to obtain a single measure that is used to

quantify the isometric distortion. Later on we will refer to two of
these measures, τ := max(σ2

a, 1/σ
2
b ) and β := σ2

a+1/σ2
b . Bound-

ing σ2
a from above and σ2

b from below with positive quantities pro-
duces bounds from above on these quantities, and vice versa.

The relatively simple form of the above expressions allows us to
easily see that they are all convex or quasiconvex in our A and η
coordinates.

3.3 Convexity and Quasiconvexity

The basic facts in this section are presented and simultaneously
used to determine the nature of the distortion quantities from the
previous section. As the entries of the metric tensor, A and η, and
the edge lengths squared (see Section 4.3) are all linear in terms
of each other, convexity/quasiconvexity of the quantities below are
the same in all these variables. The mathematical facts are stated
without proof or reasoning, but are justified within [Boyd and Van-
denberghe 2004].

A convex function g : R ⊆ Rn → R on a convex subset
R is a function such that for any pair p, q ∈ R, we have that
g ((1− t)p+ tq) ≤ (1 − t)g(p) + tg(q) for all t ∈ [0, 1]. The
definition of a concave function is the same but with the direction
of the inequality reversed.

Linear functions are both convex and concave, so we see that A
above is both convex and concave. Norms on vector spaces are
convex, so we see that |η| is convex. Multiplying a convex function
by a negative scalar results in a concave function, while doing the
same to a concave function results in a convex function. Thus −|η|
is concave. The non-negative weighted sum of convex functions is
convex, and such sums of concave functions are concave. With this,
we may see from (1) and (2) that σ2

a is convex and σ2
b is concave.

The reciprocal of a positive concave function is convex. This shows
us that 1/σ2

b is convex, implying also that β is convex. And finally,
the pointwise maximum (or supremum) of a set of convex functions
is convex, showing us that τ is convex. Analogously, the pointwise
minimum (or infimum) of a set of concave functions is concave, a
fact that we’ll need later.

A quasiconvex function g : R ⊆ Rn → R on a convex subset R is
one such that all its sub-levelsets:

Sc = {x | g(x) ≤ c},

for all c ∈ R are convex. There is an analogous definition for
quasiconcave functions. These definitions are generalizations of
convexity and concavity, and all convex and concave functions are
quasiconvex and quasiconcave, respectively.

The quotient of a positive convex function by a positive concave
function is quasiconvex, so we see from (3) that K2 is quasicon-
vex. Finally, for a positive quasiconvex/quasiconcave function, any
positive power of that function is quasiconvex/quasiconcave. With
this we see that σa andK are quasiconvex and σb is quasiconcave.

4 Bounded Distortion Metrics

In this section, we first describe our basic discrete setting, that of
piecewise linear maps on triangular mesh surfaces, and see that
distortion will be quantified per triangle. Then, it is seen that the
space of bounded distortion metrics for a single triangle is a convex
second-order cone space. Finally, we transit to edge length squared
coordinates to see that the same holds true for all bounded distor-
tion discrete metrics on a triangular mesh surface. Suitable gener-
alizations to higher dimensions are also mentioned briefly, where
appropriate.



4.1 Global Parametrization via Piecewise Linear Maps

Within the background section, we considered the pointwise dis-
tortion measures and how they relate to the metric tensor for a dif-
ferentiable planar map f . Throughout this paper, we work in a
discrete setting meant to approximate differentiable maps, that of
piecewise linear maps. For such maps from R2 → R2, as discussed
previously, we would take Ω to be triangulated densely and con-
sider maps f that are piecewise linear on the triangles (affine on
each triangle individually, and continuous overall). In this setting,
the Jacobians, and thus the metric tensors and distortion quantities,
are constant across each individual triangle. Within the rest of this
work, these quantities and other related ones are specified per trian-
gle, instead of pointwise over the domain to be parametrized.

For our work, the domain to be parametrized will not be planar; it
will be a triangular mesh surface S in R3. Below, we review some
basic definitions and constructions relevant to this scenario and the
discussion is modelled partially on Section 3 in [Myles and Zorin
2012]. Further details are contained there, and in its cited references
[Springborn et al. 2008; Ben-Chen et al. 2008; Lai et al. 2010].

Let g andm denote the genus and number of boundary components
of S. Unless g = 0 and m > 0, topological considerations imply
that there is no continuous locally injective map of S to R2. Thus,
our goal is to obtain a global parametrization of S, which is a se-
lection of cuts transforming S into a mesh disc Sc, and a piecewise
linear parametrization map f : Sc → R2. We use ∆i to refer to
the triangles of both S and Sc, between which there is an obvious
correspondence.

The parametrization map f induces a metric tensor on each trian-
gle ∆i given by the pullback of the standard Euclidean metric by
fi := f |∆i . Any edge within the cuts has two images in Sc and
for an arbitrary parametrization map f , there is no guarantee that
their lengths will agree in the induced metrics. If f does result in a
metric which agrees on all these pairs of edges, then it determines a
discrete metric on S. This is simply a cone metric on S whose cone
points are a subset of the vertices of S.

Conversely, if we consider a discrete metric on S and make a se-
lection of cuts that includes all the cone points, then the resulting
discrete metric on Sc has all pairs of images of cut edges having
length equality. This metric is induced by a parametrization map f
that is unique up to post-composition by isometries of R2. As the
cuts include all the cone points, the metric is flat at internal vertices
of Sc and f is locally injective. Finally, note the important fact that
the initial choice of discrete metric on S fully determines the dis-
tortion of ∆i by f , and the later choice of cuts does not affect it at
all.

Thus, we work in the realm of discrete metrics on S and restrict to
metrics of bounded distortion. The final parametrization is then ob-
tained by laying the triangles one-by-one in the parametric domain
by traversing the dual graph of the mesh [Springborn et al. 2008].
The result is automatically locally injective by flatness at internal
vertices.

For the coming discussions and implementation of our method, we
need explicit realizations of the metric tensors on each triangle. For
this, we may consider each ∆i and its eventual image f(∆i), in-
dividually. We make choices of local orthonormal coordinates on
each to obtain isometric charts gi and hi. It is key to note that
post-composition and pre-composition by rigid isometries leave the
distortion quantities invariant, so the choice of these charts is some-
what arbitrary. For derivation of relevant formulae, we use charts
such that hi ◦ f |∆i ◦ g

−1
i : gi(∆i) ⊂ R2 → R2 is the linear map

illustrated in Figure 3.

For the rest of the work, we use J if , M i
f , σia, σib, and Ki to denote

the Jacobians, metric tensors, and distortion quantities, respectively,
of the composition of maps above. Superscript and subscript i’s
will also be appended to other relevant quantities associated with
the map above.

Figure 3: Charts illustration.

4.2 The Bounded Distortion Space for ∆i

With all our relevant quantities being determined per triangle, let
us consider the space of bounded distortion metrics for a single
triangle. With theAi and ηi coordinates developed in Section 3.2.1,
we get a particularly nice picture of this space.

Note first from the defining equations that Ai ≥ 0 and ηi ∈ C. In
addition, the metric tensor has to be positive-definite, which corre-
sponds to the condition: Ai > 2|ηi|. Thus the space of all valid
metrics is a simple convex cone.

Now let us see what subset of this space is selected by the distortion
inequalities. If we’d like a bound on σia, then this is equivalent to
asking that (σia)2 = Ai + 2 |ηi| < Ca for some Ca > 0, which
is equivalent to Ai < Ca − 2 |ηi|. Similarly, for a bound on σib,
we have Ai > Cb + 2 |ηi| for some Cb > 0. Note that positive-
definiteness is guaranteed by the condition of having σb bounded
from below.

For conformal distortion, we have that this is equivalent to asking
for K2

i = Ai+2|ηi|
Ai−2|ηi|

< CK for some CK ∈ (1,∞). Simple calcu-
lation gives:

Ai > 2 |ηi|
(
CK + 1

CK − 1

)
.

Note that positive-definiteness is also guaranteed by this condition.

Viewing things in the Ai and |ηi| plane (see Figure 4), we see that
the space of bounded distortion metrics for a single triangle is a
convex second-order cone space.

4.2.1 Generalization to Higher Dimensions

We have seen that the space of bounded distortion metrics for a
single triangle is a second-order cone space in the entries of the
metric tensor. We were guided by the intuition that the singular
values of A are obtained from the eigenvalues of A>A. We note
briefly here that the same intuition is of value in higher dimensions,
when we are considering the space of bounded distortion metrics
for a single n-simplex in Rn for any n ≥ 2.

More specifically, suppose we have a linear map given by a non-
singular matrix A that is distorting our n-simplex. The isometric



Figure 4: The bounded distortion space for ∆i. Left: a radial cross
section visualized as intersection of three half-planes (purple), one
from each of our distortion bounds. Right: the full space as a vol-
ume of revolution around the Ai axis.

distortion is quantified by the largest and smallest of the n eigen-
values of the metric tensor A>A and the ratio of these eigenvalues
quantifies the conformal distortion. Recall these eigenvalues are
squares of the singular values of A. By bounding the eigenvalues
from above and below, and by bounding their ratio from above, we
obtain a space of bounded distortion metrics for our n-simplex.

Theorem 1. The space of bounded distortion metrics for an n-
simplex, n ≥ 2, is convex in the entries of the metric tensor.

Proof. The largest and smallest eigenvalues of A>A, denoted λmax

and λmin satisfy the following equations:

λmax = max
u∈Sn−1

〈u, A>Au〉

λmin = min
u∈Sn−1

〈u, A>Au〉,

where 〈u, A>Au〉 is linear in the entries of A>A, so is both convex
and concave. Thus λmax is convex as a maximum of convex func-
tions, and λmin is concave as the minimum of concave functions.
As A>A is positive-definite, both of these values are positive, and
their ratio is quasiconvex.

The theorem has been noted before (without proof) outside the con-
text of bounded distortion maps [Boyd and Vandenberghe 2004, pg.
407]. The brief proof we have shown is a folklore proof that is
well-known to many. However, noting the connection to computa-
tion of a parametrization is completely novel. More about utilizing
this information is in Section 10.1. Finally, we note that convex-
ity by itself does not immediately imply that the problem can be
solved efficiently. However, as seen in Section 4.2, for a 2-simplex
(a triangle), the convexity is characterized by second-order cones
for which efficient solvers are available [ApS 2015].

4.3 Edge Length Squared Coordinates

To obtain a discrete metric on S, we also need that the metric ten-
sors on each individual triangle agree on shared edges. It is not
too hard to see that if ∆i and ∆j denote two triangles that share
an edge, the length equality under the different metric tensors M i

f

and M j
f is linear in the entries of these metric tensors. As noted in

[Chen et al. 2013], the edge length squared of a triangle ∆i is given
by v>M i

fv (v is the edge vector), which is a linear expression in
the entries of M i

f .

If we were to try to use the metric tensor entries, or Ai and ηi,
explicitly to describe the space of discrete metrics on S, then we
would need to add additional linear equalities to ensure this length
consistency. To avoid this, and to make these equalities implicit, we
use the edge lengths squared as variables.

Below, we present the expressions for Ai and |ηi|2 in terms of the
edge lengths squared, as they exhibit a nice symmetry that is re-
flective of the fact that they are independent of the choice of charts.
Both these and the expressions for Re (ηi) and Im (ηi) are derived
with the choice of charts mentioned previously and some basic
trigonometry. As Re (ηi) and Im (ηi) are not independent of the
choice of charts, they lack this symmetry and are less enlightening,
so are contained within Appendix A.

Let a0, b0, c0 denote the edge lengths squared of ∆i, and let
a1, b1, c1 denote the lengths squared of the corresponding edges
of f(∆i) (the induced edge lengths squared of ∆i). We choose to
use this notation, without the superscript 2’s, as it makes linearity
of the expressions for Ai and ηi more apparent.

Before giving the formulae, we also define a use-
ful quantity for compactly expressing these values,
T :=

√
2a0b0 + 2a0c0 + 2b0c0 − a2

0 − b20 − c20, and note
that it is four times the area of ∆i in S.

Ai =
1

T 2

(
(−a0 + b0 + c0) a1 + (a0 − b0 + c0) b1

+ (a0 + b0 − c0) c1

)
|ηi|2 =

1

T 4

(
(b0c0) a2

1 + (a0c0) b21 + (a0b0) c21

+ (c0(−a0 − b0 + c0)) a1b1

+ (b0(−a0 + b0 − c0)) a1c1

+ (a0(a0 − b0 − c0)) b1c1

)
.

For both expressions above, if one permutes the lengths squared
aj , bj , cj , we see that the expressions remain unchanged. In addi-
tion to this symmetry, note the linearity of Ai in a1, b1, c1; a prop-
erty that is shared by the expressions for Re (ηi) and Im (ηi) in
the appendix. This is expected as it is the inverse to the linear ex-
pressions for the edge lengths squared in terms of the metric tensor
entries (which are linear in Ai and ηi).

Before moving on, let us note that these expressions allow us to
impose bounded distortion conditions in the edge length squared
coordinates. Furthermore, if three edge lengths squared of a trian-
gle ∆i satisfy some bounded distortion conditions, then the edge
lengths are guaranteed to satisfy the triangle inequalities.

To see this, note that we have non-singular linear maps going back
and forth from theAi and ηi coordinates to the edge length squared
coordinates. If we have a positive-definite metric, withAi > 2|ηi|,
then the induced edge lengths squared will satisfy the triangle in-
equalities (or their square roots will, rather). Furthermore, taking
any triple of edge lengths satisfying the triangle inequalities, we
may achieve its edge lengths squared by integrating some positive-
definite metric tensor. Thus, we see that these linear maps create a
bijection between the second-order cones given by Ai > 2|ηi| and
the triangle inequalities (remember, they are not linear inequalities
in the edge length squared coordinates). If bounds are chosen on
the distortion quantities, we get subsets of these cones that are in
bijection with each other. Thus these bounds imply satisfaction of
the triangle inequalities.

4.3.1 The Bounded Distortion Space for S

With the expressions above, we have a full description of the
bounded distortion space of discrete metrics on S. From the ini-
tial viewpoint of Ai and ηi coordinates for each triangle, the space
would be the product of many cone spaces, one for each triangle,
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Figure 5: Symmetric isometric energies. A comparison of variants V1 and V2 of our method with [Aigerman et al. 2014], all optimizing sym-
metric isometric energies. The energies optimized in the two leftmost examples are equivalent (see Section 6.2.2). The mesh is a topological
disk, and lacks cones and cuts to stress test the methods. The left two results are nearly identical and serve as evidence of optimality (for
both methods). The result on the right shows our metric optimization for the β measure (Sections 6.2.1 and 8.1). The maximum isometric
distortion is higher but the average distortion is lower and the map is smoother.

with additional linear length (squared) equalities imposed, one for
every interior edge. The result is a convex second-order cone space
of dimension 3|F | − |Eint| = |E|, where F denotes the set of tri-
angles of S, and E and Eint denote the sets of edges and interior
edges, respectively.

With the use of edge length squared coordinates, we get a linear
reparametrization of this space, and the dimensionality of the space
is clearer. Each bounded distortion inequality is still a second-order
cone inequality, so it’s also clear in this setting that we have a con-
vex second-order cone space.

Finally, we note briefly here that Theorem 1 is easily used in the
same fashion to generalize this convexity to higher dimensions.
Given an n-dimensional simplicial complex Sn with manifold car-
rier and an initial discrete metric M0, the space of bounded dis-
tortion discrete metrics may be seen as the product of the convex
bounded distortion spaces for each n-simplex, intersected with ad-
ditional linear length squared equalities. There is also an analogous
parametrization of this space with edge length squared coordinates.

Theorem 2. The space of bounded distortion discrete metrics for
(Sn,M0) is convex in the entries of the metric tensors on each n-
simplex (and thus in the edge lengths squared as well).

5 Curvature Constraints

In this brief section, we describe the final set of constraints on our
desired space of discrete metrics, the curvature constraints. We
want to be able to prescribe particular vertices of S as cone points
and the cone angles at these vertices. Without such prescriptions, an
arbitrary bounded distortion discrete metric will likely have every
vertex as a cone point. This would require an extremely compli-
cated cut to be performed before obtaining the global parametriza-
tion map. So, we enforce a smaller selection of cone points and
cone angles. The values will need to satisfy the discrete Gauss-
Bonnet equation.

To be precise, we are using the angle deficit notion of discrete Gaus-
sian curvature, which resides at the vertices of a cone metric. Let
K(v) and αv denote the discrete curvature and angle sum, respec-
tively, at v.

K(v) =

{
2π − αv, if v is an interior vertex
π − αv, if v is a boundary vertex

A cone metric on a topological surface Σg,m (with genus g and m
boundary components) will obey the discrete Gauss-Bonnet equa-
tion. Let V denote the set of vertices (or cone points), and χ denotes
the Euler characteristic.∑

v∈V

K(v) = 2πχ(Σg,m) = 2π(2− 2g −m).

When we set the desired cone points and curvatures at the cone
points, they must satisfy the above equation.

We finish the section with the explicit ex-
pressions for the curvature at a vertex v in
terms of the edge lengths squared of the
discrete metric. To set notation, consider
the depicted diagram. The αi denote the
angles that make up the angle sum at v and
the ai and bi denote the edge lengths squared for triangles having v
as a vertex. Then the law of cosines gives us the following formula:

K(v) = 2π −
∑
i

αi,where (4)

αi = arccos

(
bi + bi+1 − ai

2
√
bibi+1

)
.

The expression for boundary cone points is the same, except 2π is
replaced with π. These expressions are clearly nonlinear and we
deal with them with sequential convex optimization (Section 7).

6 The Constrained Optimization Problem

The curvature constraints complete our framework, formulating a
constrained optimization problem that will help us achieve bounded
distortion global parametrization. We first state this general prob-
lem as the basic setup of our framework, and then describe its great
flexibility by discussing many of its variants.

6.1 The Framework

To state the framework precisely, we reiterate and set some new
notation. Let V,E, F denote the sets of vertices, edges, and faces
(triangles) in S. Furthermore, let e = (d1, d2, . . . , d|E|) denote the
edge lengths squared of the edges e1, e2, . . . , e|E|. In addition, we
let σia, σib,Ki denote the respective distortion quantities for triangu-
lar face ∆i, and let Ca, Cb, CK denote the desired global bounds
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Figure 6: Robust isometric energies. The aircraft model is a disk with no cones. The single boundary is the circular part at the front and
mapping it bijectively to the plane is highly challenging due to the extreme protrusions of the wings and tail. We compare the results of our
metric optimization using three types of isometric energies. The two images on the left show minimization of the maximal isometric distortion
which were produced with Aigerman’s method and variant V1 of our method (the energies optimized are equivalent; see Section 6.2.2). The
next two are the results of variants V2 and V3, optimizing β and the Green Lagrange energy, respectively (Sections 6.2.1 and 8.1). For
reference, we also ran [Springborn et al. 2008] which failed to converge and LSCM which produces a map with τ as high as 6000.

for these quantities. Lastly, we let Kj and K0
j denote the discrete

curvature of the cone metric and the desired discrete curvature at
vertex vj , respectively; and let Vc ⊆ V denote the points of S
where we’d like to have curvature constraints.

minimize
e∈R|E|

E(e) (5)

subject to (σia)2(e) ≤ Ca, i = 1, . . . , |F | (6)

(σib)
2(e) ≥ Cb, i = 1, . . . , |F | (7)

K2
i (e) ≤ CK , i = 1, . . . , |F | (8)

Kj(e) = K0
j , j = 1, . . . , |Vc| (9)

Above, we have purposefully left E, the objective function, as un-
specified, as we have many potential choices for it. This will be
discussed in the next section.

6.2 Framework Flexibility

The standard setup above is quite flexible and accommodates many
different formulations to attack different problems. The strength of
our variables is reflected in the many quantities that are nicely ex-
pressed with them. Most of the quantities listed below are highly
nonlinear in spatial coordinates, while they are convex or quasicon-
vex in our coordinates.

Given our setting of piecewise linear maps, we discuss these quan-
tities first per triangle ∆i, adding a subscript or superscript i to
emphasize this. To obtain the quantities over the entirety of S as a
function of the edge lengths squared, we may either take a weighted
sum with relative areas of the triangles as the weights, or we may
take a maximum over all the triangles of S. Examples may be seen
in Section 8.

6.2.1 Convex Quantities

Before listing several quantities that are linear, quadratic, or more
generally convex in the entries of the metric tensor (and thus the

edge lengths squared), we note that the summed quantities and the
maximums (over S) will also be convex as a result. These may then
be used as either energies to be optimized, or as additional convex
bounds in the framework, giving us many variations of the basic
framework. For each quantity, we also note whether they will tend
to produce near-isometric or near-conformal maps when minimized
or bounded. Such quantities will be referred to as isometric or con-
formal measures, respectively.

First, we note the Green-Lagrange tensor known in mechanics, in-
troduced to the graphics community for texture mappings in [Mail-
lot et al. 1993]:

EiGL = ‖M i
f − I‖2F .

The quantity is an isometric measure, as EiGL is locally zero when
the metric tensor equals the identity matrix I (implying that the Ja-
cobian is a rotation and the map is an isometry). It is nonlinear
and nonconvex when expressed in the spatial coordinates [Botsch
et al. 2010, Section 5.5.2], with many local minima, but fortunately,
it is a convex quadratic function in our variables. To see this, ex-
press EiGL in terms of the singular values and substitute with the
expressions given in Equations (1) and (2):

EiGL =
(

(σia)2 − 1
)2

+
(

(σib)
2 − 1

)2

= (Ai + 2|ηi| − 1)2 + (Ai − 2|ηi| − 1)2

= 2
(
(Ai − 1)2 + 4|ηi|2

)
.

Another example of a popular isometric measure is β which was
defined in Section 3.2.1:

βi = (σia)2 +
1

(σib)
2
.

It is nonconvex in the spatial coordinates. [Aigerman et al. 2014]
considered the square root of this measure, and convexified for each
iteration of their optimization. A closely related quantity was also



optimized in [Schreiner et al. 2004] by successive independent ver-
tex relaxations with random directions and a line search. As noted
in Section 3.3, βi is convex in our variables.

We also highlight the important fact that this measure is symmetric,
where symmetry of a distortion quantityEi is defined by having the
same value for fi and f−1

i , which simply inverts the singular values
and swaps their order, i.e. Ei(σa, σb) = Ei(

1
σb
, 1
σa

). This ensures
that the measure does not favor shrinkage over expansion and it
penalizes drastically collapsed elements, since the energy explodes
when the triangle area vanishes.

The isometric measure τi is another symmetric measure which is
convex in our coordinates, also noted in Section 3.3:

τi = max

(
(σia)2,

1

(σib)
2

)
.

The square root of this quantity was the quantity considered in
[Sorkine et al. 2002] which used it to measure the isometric distor-
tion, but did not optimize for it directly. The same energy was also
accommodated by [Aigerman et al. 2014], and as their approach
dictates, had to be convexified at each iteration. We may optimize
for τi directly in our coordinates (or bound it and add it to our con-
vex bounds).

We note one more quantity, which is obviously convex:

EiCONF =
1

2

(
(σia)2 − (σib)

2
)

= 2|η|.

This is quite similar to LSCM [Lévy et al. 2002], and is a conformal
measure (Figure 7). Finally, we note that squaring EiCONF is a
convex quadratic function in our variables, further simplifying it.

6.2.2 Quasiconvex Quantities

For quasiconvex per triangle quantities, we recall that the maximum
over the triangles of S will be quasiconvex, but the weighted sum,
in general, will not be. So for these quantities, we may utilize only
the maximum over triangles as energies to optimize or as bounds
to add. Quasiconvex programming [Eppstein 2005] is needed to
optimize such energies, which is computationally less efficient than
convex programming but is still tractable. Moreover, any of these
quasiconvex quantities may still effectively be utilized as a bound
in our framework, as these bounds are in fact convex.

We note first that the quantities
√
βi and

√
τi considered in [Aiger-

man et al. 2014] and [Sorkine et al. 2002] are quasiconvex, so if
we desire exact replication of these, we may accomplish this, al-
beit with the penalties mentioned above. Furthermore, we note the
following equalities:

max
∆i

√
βi =

√
max
∆i

βi & max
∆i

√
τi =

√
max
∆i

τi.

The practical meaning of these equalities is that since the square
root is a monotonic function, optimizing for the convex energies
(without the square roots) or the quasiconvex ones is equivalent (as
they have the same minimizers).

Now, let us note briefly two popular quantities from the literature
that are quasiconvex in our coordinates. The first is the ARAP [Liu
et al. 2008] energy, an isometric measure:

EiARAP = min
R∈SO(2)

1

2
‖J if −R‖2F .

This energy was also considered in [Levi and Zorin 2014], where
the Frobenius norm was substituted with the L∞ norm, i.e., the

maximum over the triangles was optimized for (so-calledARAP−
L∞ energy).

The second quantity is the LSCM energy [Lévy et al. 2002; Liu
et al. 2008], a conformal measure:

EiLSCM =
1

2
(σia − σib)2.

The ARAP energy is nonconvex in the spatial variables, while the
LSCM energy is quadratic and convex there (one of the few pop-
ular distortion measures that takes a simpler form when expressed
in spatial coordinates). For the sake of brevity, a proof sketch for
quasiconvexity of both quantities is relegated to Appendix B.

Finally, while we already use K2
i as a bound in our standard setup,

we note that max
∆i

K2
i and max

∆i

Ki are quasiconvex conformal en-

ergies. These are perhaps better measures of conformal distortion
than |ηi|, as they are symmetric and Ki is used as the de facto def-
inition of conformal distortion for smooth conformal maps. With
minimization of these, the method should produce extremal qua-
siconformal maps. However, we assert that due to sensitivity to
outliers, in the discrete case, a better approach for extremal quasi-
conformality should be based on Teichmüller maps [Weber et al.
2012] or strict minimizers [Levi and Zorin 2014].

6.2.3 Additional Variants

In addition to utilizing the sums and maximums over S of the above
quantities as energies and convex bounds, there are several other
variants of the framework that may be made to address different
scenarios.

We note first that with several of the quantities mentioned in the
previous two sections, if we are to minimize their maximum over
the triangles of S, then we may reasonably drop bounds from the
standard setup. For example, if max∆i(τi) is to be minimized, we
would drop the bounds on the isometric distortion constants σia and
σib since the tighter bound for these will be obtained automatically.
More details are in Section 8.

We may also project a given reference map to a bounded distortion
parametrization if the reference map is not satisfactory [Aigerman
and Lipman 2013; Kovalsky et al. 2015]. Let Ai0 and ηi0 denote
these various values for the reference map, and consider the follow-
ing quadratic energy:

EiGLD = (Ai −Ai0)2 + 4|ηi − ηi0|2, (10)

which strives to make the metric tensors of the reference map and
the projected one, as close as possible (in the least squares sense).
For the choice of identity map as the reference map, we getEiGL =
EiGLD . Note that due to the second term, it is essential to utilize
the same choice of parametrization chart to determine the ηi and ηi0
values. Furthermore, due to convexity, other norms such as L1 or
L∞ can be used instead of the L2 norm above.

Lastly, we note that if different bounds on the distortion quanti-
ties (or any of the convex or quasiconvex quantities mentioned) are
desired in different regions of S, then they may be specified per tri-
angle. To accomplish this, we could generalize the standard setup,
replacing Ca, Cb, CK in bounds (6) - (8), letting the trianglewise
bounds be denoted by Cia, Cib, C

i
K , and replacing Ca, Cb, CK with

these in bounds (6) - (8), respectively.

7 Sequential Convex Programming

Once the variant of our constrained optimization problem is cho-
sen, we attempt to solve it with sequential convex programming



(SCP). We give a brief overview of this useful method and describe
how it specializes to our framework. For details and more complete
expositions on SCP, we refer to [Dinh and Diehl 2010].

SCP aims to solve nonconvex problems of the sort:

minimize
x∈Rn

E(x)

subject to φi(x) ≤ 0, i = 1, . . . , p

ψi(x) = 0, i = 1, . . . , q

where all these functions are real-valued, E and the φi may be non-
convex, and the ψi may be nonlinear. In most cases, ψi need to be
sufficiently differentiable as well.

The basic approach to doing this is to begin at a reasonable guess
x0, and then to iteratively solve a convex approximation to this
problem to obtain a sequence xj . As support for this approach,
we note that under certain optimality conditions, convergence to a
local minimum is guaranteed with a good initial guess [Dinh and
Diehl 2010].

We now outline this approach more specifically. Let Êj denote a
convex approximation to E near xj , let φ̂ji denote the same for φi,
and let ψ̂ji denote a linear approximation to ψi near xj . Then the
convex subproblem we solve to obtain xj+1 is the following:

minimize
x∈Rn

Êj(x)

subject to φ̂ji (x) ≤ 0, i = 1, . . . , p

ψ̂ji (x) = 0, i = 1, . . . , q.

The realm of application for SCP is quite broad, but our problem
and its variants are considerably simpler. In particular, for us, the
function to be optimized, E, is already convex, as are the inequality
constraints (the φi), inequalities (6) - (8). Thus, to set up each
subproblem, we only require linear approximations of the equality
constraints (the ψi), equations (9). The subproblems are second-
order cone programs which can be solved efficiently using primal-
dual interior point method [ApS 2015].

7.1 Linearization of the Curvature Constraints

To formulate the convex subproblem, we need to linearize the non-
linear curvature constraints at el (we use l to index our sequence of
points to avoid conflict with the index in (9)). First, let us consider
the affine approximation:

~K(e) :=

 K1(e)
...

K|Vc|(e)

 ≈ K̂l(e) := ~K(el) + J lK(e− el).

Above, ~K gathers all the curvature functions for vertices in Vc, and
K̂l denotes its affine approximation near el. The Jacobian of ~K at
el is denoted with J lK, and we see that we are merely performing a
first-order Taylor expansion of ~K at el. The explicit formula for J lK
is contained within Appendix C.

Thus, the convex subproblem that we solve at each iteration to ad-
dress the standard setup is the following:

minimize
e∈R|E|

E(e) (11)

subject to (σia)2(e) ≤ Ca, i = 1, . . . , |F |
(σib)

2(e) ≥ Cb, i = 1, . . . , |F |
K2
i (e) ≤ CK , i = 1, . . . , |F |

K̂l(e) = ~K0, (12)

where ~K0 collects all of our desired curvature values K0
j into a

|Vc| × 1 column vector.

Before moving on, we explore the linearization further and note a
simplification. Writing out (12) and manipulating it, we see that:

K̂l(e) =~K(el) + J lK(e− el) = ~K0

=⇒ J lKe = ~K0 − ~K(el). (13)

In arriving at (13) we used the fact that J lKel = 0. This follows by
noting that ~K is invariant to scaling: ~K(ce) = ~K(e) for any scalar
c > 0 and e ∈ R|E|>0 . This makes sense if you note that scaling
all the edges of a triangle uniformly leaves the angles invariant.
Ultimately, the invariance under scaling implies that the Jacobian
of ~K at any point v, contains v within its kernel.

7.2 Additional Details

We note here a few more aspects of SCP and its specialization to
our framework. First, we should note that the convex subproblem
just mentioned may prove to be infeasible at times. This happens
when the bounded distortion constraints (6) - (8) are too strict, and
the bounded distortion space does not intersect the linear subspace
given by the linearized curvature constraints (12).

Thus, we soften this hard constraint to a soft constraint, and modify
the subproblem by removing (12) and replacing (11) with:

E(e) + λl

∥∥∥J lKe− (~K0 − ~K(el)
)∥∥∥
∞
,

where λl is a parameter that modulates the penalty for violating
the original hard constraint. Conversion to the soft constraint guar-
antees feasibility as the bounded distortion space of discrete met-
rics is always nonempty with suitable choices of distortion bounds
(Ca ≥ Cb). The parameter λl is dynamically set in each iteration
with the following formula:

λl =
100 E(el)∥∥∥~K0 − ~K(el)

∥∥∥
∞

,

which attempts to ensure that the soft constraint is weighted at ap-
proximately 100 times the value of the energy. This value can ob-
viously be tuned, but we found that this setting works well.

Secondly, we note that after the solution of the subproblem, we do
not take the solution right away, but employ a backtracking line
search to pick the next point el+1. For this line search, we priori-
tize satisfaction of the curvature constraints, and quantify this with
maxj

(∣∣Kj(e)− K0
j

∣∣), the L∞ norm of the difference between the
curvature and the desired values.

More specifically, let e∗l+1 denote the solution to the subproblem.
If the L∞ norm decreases, we accept the step and let el+1 = e∗l+1.
If not, halve the step size and consider again whether the L∞ norm
has decreased. This procedure is iterated until it completes.

Let us highlight the fact that el+1 will be bounded distortion. This
follows from the fact that both el and e∗l+1 are bounded distortion,
and the space of bounded distortion metrics is convex. Most appli-
cations of SCP would not be able to boast such a property, because
their inequality constraints are nonconvex.

Lastly, once a flat metric is obtained or a maximum number of 500
iterations is reached, the final parametrization is obtained by laying
the triangles one-by-one in the parametric domain by traversing the
dual graph of the mesh as described in [Springborn et al. 2008,
Section 3.3].



8 Implementation

We have implemented the algorithm in Matlab, where we utilized
the CVX [Grant et al. 2008] modeling system. The underlying
SOCP solver was Mosek [ApS 2015]. CVX is a perfect candidate
to explore the great flexibility of our approach, as it allows one to
formulate convex optimizations like ours through a simple model-
ing language. The constraints and objectives of any of our variants
are expressed as standard Matlab expressions and switching from
one type of energy (or constraint) to another, boils down to chang-
ing one line of code. In order for CVX to identify the model as
convex, the objective function and constraints have to adhere to the
Disciplined Convex Programming (DCP) rules. Fortunately, the ex-
pressions described in Section 6.2 already obey these rules, which
makes implementation rather simple.

8.1 Variants Implemented

With so many variants suggested in Section 6.2, we had to limit
ourselves to just a few to show results for. The ones we list below
perform well and provide a broad sampling of the possibilities of
our framework. The first three variants optimize an isometric mea-
sure, aiming to produce a map with as low isometric distortion as
possible. The fourth optimizes a conformal measure and prioritizes
minimization of conformal distortion. The final variant optimizes
a difference energy which projects a reference parametrization to a
bounded distortion space of parametrizations. In order to state these
variants briefly, we refer back to the framework presented in Sec-
tion 6.1, and describe the constrained optimization problem that is
solved in each variant. The curvature constraints (9) were included
in all variants, so this is implicit in the descriptions below.

The first variant (V1) utilized the following energy for (5):

τ(e) := max
∆i

τi(e).

As noted in Section 6.2.3, optimizing for this energyE produces ef-
fective bounds on isometric and conformal distortion bounds. Thus
the distortion inequalities (6) - (8) were dropped, resulting in greater
computational speed.

The second variant (V2) utilized a weighted sum as the energy E:

β(e) :=
∑
∆i

wiβi(e), where wi =
Area(∆i)

Area(S)
.

Note that the weight is a normalized area for ∆i under the initial
discrete metric. As E was a weighted sum, the distortion inequali-
ties were kept (6) - (8) with values Ca = 202, Cb = 1/202, CK =
202.

The third variant (V3) used the Green-Lagrange tensor as the en-
ergy:

EGL(e) :=
∑
∆i

wiE
i
GL(e).

It utilized the same distortion inequalities as V2.

The fourth variant (V4) used the following as the energy:

E(e) = max
∆i

|ηi(e)|.

For the distortion inequalities, only (7) was kept with Cb = 1. This
served dual purposes: it preserved positive-definiteness of the met-
ric (and thus the triangle inequality), and also prevented downward
scaling to the zero solution.

The fifth variant (V5) used a difference energy for projection:

EGLD(e) :=
∑
∆i

wiE
i
GLD(e).

For the distortion inequalities, the isometric inequalities (6) and (7)
were kept with values Ca = 3.52, Cb = 1/3.52.

8.2 Acceleration with CETM

With many models, our procedure initially moves quickly toward
the desired curvature values, needing only a few iterations to
roughly approximate them. Further iterations seem to make less
significant progress, so we employ CETM [Springborn et al. 2008]
as an acceleration technique. More specifically, we consider again
L∞ norm of the difference between the curvature and the desired
values: maxj

(∣∣Kj(e)− K0
j

∣∣), and stop the iterations when this
value reaches a threshold. For the results in this paper, we took
this threshold value to be 1 degree (2π/360 radians). When the
threshold is reached, CETM is invoked to obtain a completely flat
metric. This acceleration step greatly reduces the number of itera-
tions needed, and has little effect on the distortion overall, due to
the low threshold value. For specific data, see Section 9.3.

9 Results

The models used to produce our results, along with the field, the
cone angles and their positions are all taken, as is, from the bench-
mark of [Myles et al. 2014]. The statistics of these models (mesh
size, number of cones, genus, etc.) and a thorough comparison of
different parametrization methods are available for download on the
ACM website as supplementary material for [Myles et al. 2014].

We augment the comparison of [Myles et al. 2014] with imple-
mentations of the constrained optimization methods of [Aigerman
et al. 2014] and theARAP −L∞ approach [Levi and Zorin 2014],
as well as the conformal CETM method [Springborn et al. 2008].
[Aigerman et al. 2014] was generalized to cone manifolds with the
addition of seamless constraints (see [Bommes et al. 2009]), and
the frames for optimization were initialized based on the cross field.
The cross field from [Bommes et al. 2009] was also used to initial-
ize theARAP−L∞ method. CETM and our method have no need
for such a field. CETM is utilized for comparison to our conformal
variant, and does not accommodate isometric distortion bounds. Fi-
nally, we do not compare to the method of [Myles et al. 2014] as
unlike all other methods, they perform connectivity changes and
allow for additions and removals of cones.

9.1 Discussion of Figures

For all of the figures, conformal distortion is quantified with ki ∈
[0, 1). The choice of ki instead ofKi was made simply because the
potential range for values ofKi extends up to∞ and would be hard
to plot. For the figures with isometric distortion comparisons, this
is quantified by

√
τi and the axis in the histograms covers

√
τi ∈

[1, 5]. For the heat maps, dark blue represents no distortion, ki = 0
or τi = 1, and red represents high distortion, ki ≥ 0.4 or

√
τi ≥ 4.

We turn first to Figure 5 which compares the constrained optimiza-
tion of [Aigerman et al. 2014] (with the τ energy) with our V1
and V2 variants. The mesh is a topological disk and cones and
cuts are omitted to force high distortion and stress test the meth-
ods. All three methods are using symmetric isometric energies and
are targeted primarily at minimizing isometric distortion (though
an effective bound on conformal distortion arises). Comparing V1
with Aigerman’s, reveals that the results are nearly identical, which
serves as evidence of the optimality and efficacy of both methods
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Figure 7: Conformal maps. Top row: [Springborn et al. 2008]. Middle row: variant V4 of our method, minimizing the maximum of |η| over
all triangles (Sections 6.2.1 and 8.1). Bottom row: [Lipman 2012] with a bound k < 0.2. The histograms and color plots show the conformal
distortion k.

(as they are minimizing equivalent functionals). The result for V2
also has comparable distortion values, albeit with a higher maxi-
mum isometric distortion. This sacrifice seems to allow a visually
smoother parametrization however, which is oftentimes desirable.

Figure 6 is quite similar, but it also includes results from V3.
Again, we have a complicated mesh with disk topology and omit
cones and cuts to challenge the methods, and they all produce valid
parametrizations in these trying circumstances. We note here that
CETM failed to converge on this mesh. V1 and [Aigerman et al.
2014] again produce nearly identical results, advocating for their
optimality, and V2 has comparable distortion values with greater
variation, but visually smoother results. Finally, we can see that V3
has higher isometric distortion, comparable conformal distortion,
and visually smooth results.

Figure 10 presents comparisons on five models, demonstrating re-
sults for CETM, ARAP − L∞, [Aigerman et al. 2014], and V1
(going in order of the rows from top to bottom). These models are
not of disc topology and include cone points. We see that compa-
rable results are obtained for the last three methods, while CETM
has higher isometric distortion. This is not surprising, given that
CETM does not aim to minimize this kind of distortion.

Figure 7 demonstrates the ability of our framework to calculate con-
formal parametrizations and compares V4 to CETM and [Lipman
2012] over five models. The results are comparable, with CETM
producing the highest maximal conformal distortion but also the

lowest average conformal distortion.

In Figure 8 we show the application of our method for projecting a
reference map to the bounded distortion space. The energy of V5
strives to preserve the nature of the reference map, while pushing
the distortion down below a given threshold and ensuring that the
map is locally injective. We compare our result with that of [Aiger-
man and Lipman 2013].

Lastly, we arrive at Figure 1, which shows five difficult models for
which CETM, ARAP − L∞, and [Aigerman et al. 2014] all fail
in one way or another. CETM runs into violation of the triangle
inequality, ARAP − L∞ produces parametrizations with inverted
faces, and [Aigerman et al. 2014] fails due to infeasibility. V1 suc-
ceeds on all of these, and the resulting parametrizations are shown.

9.2 Robustness & Running Times

More generally, we found our methods to be very robust in terms of
failure rate, and slightly better than [Aigerman et al. 2014], which
seems to have the highest success rate among all the methods we
tried (including those methods under examination by [Myles et al.
2014]). On the benchmark of 114 models, we recognized that 7
models (filigree, helmet, raptor, seahorse2, vh-skin, brain, pegaso)
had impossible-to-realize cone angles with the given mesh connec-
tivity, and any method that does not alter connectivity is doomed
to fail on these models. Of the remaining 107 models, we ran V1
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Figure 8: Projection to the bounded distortion space. The results
on the left were computed by [Bommes et al. 2009] and are not
locally injective, containing 6 (Beetle) and 88 (Dancer) inverted
faces. These parametrizations were projected to the bounded iso-
metric distortion space with τ < 3.52 by the method of [Aigerman
and Lipman 2013] and variant V5 of our method. Both methods
produced maps that are free of inverted elements and adhere to the
distortion bound. However, Aigerman’s results failed to be locally
injective at several vertices, where the angles sums were altered by
2π. Our V5 converged to a metric with the prescribed cone angles,
corresponding to a locally injective map.

of our framework which succeeded on 103 of them, while [Aiger-
man et al. 2014] succeeded on 97 of them, and ARAP − L∞ on
93. These are relatively high success rates. For comparison, CETM
only produced valid metrics on 18 models (though we haven’t tried
the edge flips heuristic suggested in [Springborn et al. 2008]). We
note also that when [Aigerman et al. 2014] fails (due to infeasibility
of the convex program), a parametrization is very hard or impossi-
ble to recover. Similar to other metric flattening approaches (e.g.
[Ben-Chen et al. 2008; Springborn et al. 2008]), a failure of our
method is characterized by the inability of the method to produce
the prescribed cone metric up to numerical precision. If a flat met-
ric is obtained, the parametrization is obviously locally injective
and has the desired bounds. Moreover, if a flat metric is not ob-
tained, the partially flat metric is still valid and is guaranteed to have
bounded distortion. This allows for a quick recovery by feeding the
metric to a different method such as [Lévy et al. 2002], which al-
ways produces a final layout, at the price of violating the distortion
bounds. We emphasise that for all the 103 models mentioned above,
our method produced a flat metric and a locally injective map with
low bounded distortion.

As for computational efficiency, the running time of each iteration
of our algorithm are comparable to those of [Lipman 2012; Aiger-
man et al. 2014] which all solve second-order cone programs with
similar Laplacian-like sparsity patterns. For small mesh sizes of up
to 10K triangles, the entire running time of our unoptimized Matlab
implementation was typically less than 2 minutes. For the majority
of models, less than 15 iterations were required to reduce the cur-
vature, however, many models required larger amount of iterations
(Figure 9). For the large models in the data set with 100K triangles,
the average time for a single iteration was approximately 1 minute.
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Figure 9: Histogram of the number of iterations. The average num-
ber of iterations for V1 on the 114 models of [Myles et al. 2014]
was 43.7 and the median was 15.5. A single model (bozbezbozzel)
required the maximal number of iterations (500).

9.3 CETM Acceleration Effects

We note here that the use of CETM as an acceleration tactic does
not drastically affect the distortion or running time, while reducing
the number of iterations needed for our method overall. For the
103 models that variant V1 succeeded on, the median and average
percentage increases in the distortion were 0.122% and 2.667%, re-
spectively. The average was dragged up by 7 outliers with percent-
age increases that were above 5%. These outliers may be avoided
by decreasing the 1 degree threshold at the expense of additional
iterations.

As for running time, for all 103 models, the time spent on CETM
accounted for less than 1% of the total running time. For CETM
to complete, an average of only 2.5 iterations was needed, demon-
strating the propriety of the threshold value of 1 degree.

10 Summary and Discussion

We presented a novel framework for global parametrization which
utilizes the edge lengths squared as variables to describe the con-
vex space of bounded distortion discrete metrics. With the addition
of nonlinear curvature constraints, we obtain a constrained opti-
mization problem that can be used to calculate bounded distortion
global parametrizations with prescribed cone metric. The optimiza-
tion problem is solved with sequential convex programming (SCP),
and the simplicity of the problem leads to an effective and highly
robust method.

Many popular isometric and conformal measures, including sym-
metric measures (which are highly desirable) are shown to be con-
vex or quasiconvex functions in our variables. Variants of the basic
method are used to calculate maps that strives to be as isometric as
possible, as conformal as possible, or project a reference map with
special nature to the bounded distortion space. With the results in
the paper, we show that our method matches the state-of-the-art in
terms of quality and robustness, while introducing a refreshing ap-
proach to a hard problem.

10.1 Limitations and Future Work

Within our work, we have not discussed several parametrization
constraints that may be desirable; such as positional constraints,
cross-field alignment, alignment to sharp features, and prescription



of holonomy angles. The last two types may be easily implemented
with additional constraints over sum of angles of a type similar to
those already implemented. The positional constraints and cross-
field alignment are more difficult and would require more compli-
cated nonconvex constraints, and are not the main point of concern
with our approach. We note also that the output of our method may
be fed as input into other methods which are more suited to achiev-
ing these aims. Further work should clarify the strategies used to
achieve desirable parametrization constraints.

The observed convergence rate of the method was that the curva-
ture is reduced significantly after relatively low number of itera-
tions, while for some models it takes many iterations to reach a
completely flat metric. We view this as a limitation and feel that
future research and better design of optimization procedures will
allow for great improvements in the practical performance of the
method and its variants.

As a promising direction for further research, we would like to in-
corporate into the flattening process, an automatic way to insert
cone singularities at strategic positions, which will allow for even
lower bounds on the distortion to be realized.

Finally, we view as an exciting avenue of future exploration,
the possibility to compute bounded distortion maps of tetrahedral
meshes. The same philosophy in this paper should generalize in
light of Theorems 1 and 2.
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A Expressions for ηi

The same notation from Section 4.3 is used, and these are derived
with the choice of charts mentioned in Section 4.1.

Re (ηi) =

(
a0b0 + a0c0 − (b0 − c0)2

2a0T 2

)
a1

+

(
−a0 + b0 − c0

2T 2

)
b1 +

(
−a0 − b0 + c0

2T 2

)
c1

Im (ηi) =

(
b0 − c0
2a0T

)
a1 +

(
−1

2T

)
b1 +

(
1

2T

)
c1.

As before, note the linearity of the expressions in the edge lengths
squared of f(∆i) (the induced edge lengths squared).

B Quasiconvexity of ARAP and LSCM

For the sake of brevity, we merely sketch the proofs of quasicon-
vexity of EiARAP and EiLSCM . The basic approach is the same for
both. Let us first express both of these quantities in terms of our
usual metric tensor coordinates.

EiARAP =
1

2

(
(σia − 1)2 + (σib − 1)2

)
= Ai −

√
Ai + 2|ηi| −

√
Ai − 2|ηi|+ 1 (14)

EiLSCM =
1

2

(
(σia)2 + (σib)

2
)
− σiaσib

= Ai −
√
A2
i − 4|ηi|2. (15)

We get the initial equality in (14) from [Liu et al. 2008]. As can be
seen by the formulae, bounding these quantities from above results
in sublevel sets that are radially symmetric about the Ai axis. Our
goal is to show that these sets are convex. As in Figure 4, we gain
intuition by considering the cross sections in the Ai and |ηi| plane
(they may be easily graphed, but we omit these for brevity).

Noting the transition from cylindrical coordinates to Euclidean co-
ordinates, it is not hard to see that convexity for a radially symmet-
ric region with cross section Rcs is equivalent to convexity of Rcs
plus the following condition:

Rcs = R̂cs := {(|ηi|,Ai) | |ηi| ≤ x0 for some (x0,Ai) ∈ Rcs}.

The cross sections for the sublevel sets of EiARAP and EiLSCM
may be shown to be convex by showing that they are the hypographs
of concave functions expressing the boundaries of these cross sec-
tions (these graphs have Ai as the independent variable and |ηi| as
the dependent variable).

C Jacobian of Curvature Functions

The entries of the Jacobian consist of the
partial derivatives of Kj by edge lengths
squared. To deter confusion, we note that
the indices i, j chosen here are indepen-
dent of those in Section 7.1. This matrix
will be sparse, with the curvature at a ver-
tex only depending on the lengths of the edges in its 1-ring. To set
notation, we again utilize the figure to the right. In addition, the
following are helpful:

Area(∆i) =
1

4

√
2aibi + 2aibi+1 + 2bibi+1 − a2

i − b2i − b2i+1

Area(∆i−1) =

1

4

√
2ai−1bi + 2ai−1bi−1 + 2bibi−1 − a2

i−1 − b2i − b2i−1

where the areas are in terms of the induced metric (not the origi-
nal). With Kj denoting curvature at v, some calculation reveals the
following formulae:

∂Kj
∂ai

= − 1

4Area(∆i)

∂Kj
∂bi

=
1

2bi

(
ai + bi − bi+1

4Area(∆i)
+
ai−1 + bi − bi−1

4Area(∆i−1)

)
.

The above expressions are suitable for implementation, but the sec-
ond equation may be simplified for additional geometric insight:

∂Kj
∂bi

=
cot(γi) + cot(δi)

2bi
.
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Figure 10: Comparison of different methods on five models from [Myles et al. 2014]. The cone positions and angles, as well as the field,
were generated with [Bommes et al. 2009]. Top to bottom. [Springborn et al. 2008], ARAP − L∞ [Levi and Zorin 2014], [Aigerman et al.
2014], and variant V1 of our method. The histograms and color visualization refer to the isometric distortion

√
τ = max(σa, 1/σb). All four

methods produced locally injective parametrizations. While the conformal method (top) resulted in higher maximum and average isometric
distortion, the three other methods produced similar distribution of the distortion.


