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Figure 1: Example deformations with our alternating tangential projections (ATP) method. The source domains are shown on the left, while
the deformations are shown on the right. These deformations were easily constructed via real-time cage-based interaction and user-controlled
distortion bounds. The distortion bounds for these images were Ck = 0.4, Ca = 2, and Cb = 0.5.

Abstract
We present a planar harmonic cage-based deformation method with local injectivity and bounded distortion guarantees,
that is significantly faster than state-of-the-art methods with similar guarantees, and allows for real-time interaction. With a
convex proxy for a near-convex characterization of the bounded distortion harmonic mapping space from [LW16], we utilize
a modified alternating projection method (referred to as ATP) to project to this proxy. ATP draws inspiration from [KABL15]
and restricts every other projection to lie in a tangential hyperplane. In contrast to [KABL15], our convex setting allows us
to show that ATP is provably convergent (and is locally injective). Compared to the standard alternating projection method,
it demonstrates superior convergence in fewer iterations, and it is also embarrassingly parallel, allowing for straightforward
GPU implementation. Both of these factors combine to result in unprecedented speed. The convergence proof generalizes to
arbitrary pairs of intersecting convex sets, suggesting potential use in other applications. Additional theoretical results sharpen
the near-convex characterization that we use and demonstrate that it is homeomorphic to the bounded distortion harmonic
mapping space (instead of merely being bijective).

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems; Hierarchy and geometric transformations I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Animation G.1.6 [Numerical Analysis]: Optimization—Convex programming

1. Introduction

The problem of shape deformation and mapping is fundamental in
computer graphics, and often one requires that such deformations
are locally injective and of low distortion. These guarantees are
difficult to achieve and there have been many works in recent years

that have aimed to produce deformations or mappings with these
guarantees [Lip12, WMZ12, AL13, APL14, PL14, LZ14, KABL14,
CW15, KABL15, CLW16, FL16]. Only one recent work [LW16]
(and the closely related [CCW16]) has achieved a convex char-
acterization of this problem, for the subspace of harmonic planar
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mappings, producing useful bijections between the bounded dis-
tortion mapping space (BD) and convex or near-convex spaces.
None of the aforementioned methods is fast enough for real-time
interaction. In this work, we solve this speed problem, producing
a cage-based deformation method which produces locally injective
bounded distortion harmonic mappings with framerates of 35-45
fps on standard problem sizes.

For this, we utilize the Lν space from [LW16], which charac-
terizes such a mapping with the logarithm of its first Wirtinger
derivative l = log fz, and the second complex dilatation ν = fz̄/ fz.
To project to this near-convex space, [LW16] convexified and dis-
cretized this space, and performed a convex optimization problem
which is effective, but too slow for interactive deformation. A key
insight in our paper is that this problem may be solved approxi-
mately with a local-global strategy [SA07, LZX∗08], implemented
as an alternating projection method. In the local step, the quantities
l and ν are projected to the bounded distortion constraint space,
which has a product structure that allows for a fast parallelized pro-
jection, implemented with a GPU kernel. The global step, projects
to a linear subspace of holomorphic l and ν, which corresponds
to solution of a least squares problem, and is also parallelizable.
Finally, inspired by [KABL15], we enhance this global step by re-
stricting it to be orthogonal to the previous local step, making it a
tangential projection (when the local step reaches a smooth point).
We provide a theoretical proof that this algorithm (referred to as
ATP) will converge to a bounded distortion harmonic mapping. Ex-
perimentally, on standard problem sizes, it results in speedups of
4-5x and 200-400x over the standard alternating projection method
and direct convex optimization, respectively, and approximates the
geometric projection well (see Fig. 9).

In addition to the contributions of a parallelized, improved,
and provably convergent alternating projection method, we note
that our cage-based deformation method naturally extracts l and
ν values from the cage data, and better reflects user intent than
projection-based methods (in addition to being faster). These meth-
ods take in a computed mapping that is not bounded distortion and
attempt to project it to a bounded distortion space (something our
framework is also capable of), but our method circumvents the need
for computation of a mapping and directly infers the suitable l and
ν values from the user manipulation of the cage (see Fig. 2). In
relation to other cage-based barycentric methods for deformation,
our approach shares their efficiency due to our optimized methods,
but additionally allows for direct distortion control, which these do
not have.

Lastly, we have additional theoretical contributions: the proof
of convergence for ATP extends beyond the domain of our spe-
cific problem to arbitrary pairs of intersecting closed convex sets
(Appendix A), and we strengthen the bijection between BD and
Lν found in [LW16] by showing it is also a homeomorphism (Ap-
pendix B). The first is important as ATP is a general strategy that
may have applications in other problems that take alternating pro-
jection solutions, and the second shows that the bijection used in
this paper preserves nearness relationships, for which [LW16] pro-
vided ample experimental evidence of.

ATP

[Lipman12]

[Chen15]

CauchySource

[Kovalsky15]

Figure 2: Comparison to projection methods. We compare ATP to
three projection methods: [Lip12], [CW15], and [KABL15]. The
input mapping for the projection methods is labelled “Cauchy” and
is a linear combination of Cauchy basis functions [WBCG09]. As
can be seen, ATP avoids the poor input mapping, better detects user
intention, and distorts the source domain to a lower degree. Note
also that [KABL15] fails to correct the lack of local injectivity in
the input mapping. The distortion bounds used with all methods
were Ck = 0.4, Ca = 2, and Cb = 0.5.

2. Previous Work

Barycentric coordinates provide a general tool for cage-based shape
deformation. The computation of the coordinates is done in pre-
processing making the evaluation of the mapping at runtime very
efficient. This is achieved by a dense matrix-vector multiplication,
where the matrix is fixed and the vector varies based on the posi-
tion of the vertices of the so-called polygonal cage. This product is
embarrassingly parallel and uses a highly regular memory access
pattern which allows for efficient GPU implementation.

The linearity and simplicity of barycentric mappings has its
price, as these methods lack control over the metric distortion in-
duced by the mapping. Furthermore, a barycentric mapping be-
tween a source and a target polygon is, in general, not a bijec-
tion [Jac13]. The majority of barycentric methods possess the La-
grange property, hence they interpolate the target cage [HF06,
JMDG07,LKCOL07,WBCGH11]. Methods that relax this require-
ment by allowing the image of the boundary under the mapping
to approximate the target cage, typically enjoy preferable qual-
ity [LLCO08, WBCG09, WG10], but still lack direct control over
distortion. Our method belongs to this class of cage-based deforma-
tion methods. It is competitive in terms of efficiency yet provides
full control over distortion and injectivity. For a review of a broader
class of linear deformation methods, we refer the reader to [BS08].

Conformal deformation methods [WG10, CPS11, VMW15] are
locally injective by construction. They prohibit angular distortion
completely but lack control over isometric distortion which is un-
satisfactory. The larger linear space of harmonic mappings contains
conformal mappings and also possesses many of the same useful
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Figure 3: Comparison to other cage-based deformations. We compare ATP to several cage-based deformation methods using various kinds
of barycentric coordinates: [WBCG09] in (c), [HF06] in (d), [JMDG07] in (e), and [WBCGH11] in (f). Our deformation is of low confor-
mal and isometric distortion (measured with τ = max(σa,1/σb)), and is qualitatively superior. Additionally, it is the only locally injective
deformation. The distortion bounds used with ATP were Ck = 0.5, Ca = 5, and Cb = 0.2.

properties, making it a popular choice. Harmonic methods have
been in use for some time, for problems aiming to achieve local
injectivity (or global bijectivity). Tutte [Tut63] presented a semi-
nal method for embedding a planar graph into a convex subset of
the plane, and [Flo97] generalized this method and utilized it for
globally bijective mesh embedding. Several other works use these
mappings as an intermediate for constructing bijections between
nonconvex domains [WZ14, APL14] . Chen and Weber [CW15]
present necessary and sufficient boundary conditions for a planar
harmonic mapping to be locally injective and to have conformal-
and-isometric bounded distortion. These conditions, however, are
nonconvex and enforcing them is challenging. Levi and Weber
[LW16] parametrized the space of locally injective and bounded
distortion planar harmonic mappings, and show that it can be char-
acterized via convex alternative spaces.

The bounded distortion method of Poranne and Lipman [PL14]
supports general types of smooth planar mappings that can be ex-
pressed as linear combinations of radial basis functions. More gen-
erally, bounded distortion and/or locally injective methods that re-
strict the mapping to be continuous piecewise linear are very pop-
ular due to their flexibility. These are usually also suitable for
handling curved surfaces. Such methods are nonsmooth by con-
struction and are typically orders of magnitude slower than our
method. Moreover, none of the existing methods is readily suit-
able for a GPU implementation. Approaches that are based on a
barrier term [SKPSH13, SS15, FLG15, RPPSH17] require a valid
initialization to operate successfully. Similarly, methods that con-
vexify the nonconvex bounded distortion space [Lip12, KABL14],
rely on proper initialization (frame choices) and often suffer from
feasibility issues. Aigerman and Lipman [AL13] project a map-
ping to the bounded distortion space by approximating the bounded
distortion space using a convex space in the vicinity of the ini-
tial mapping and iteratively adjust the approximation. Kovalsky et
al. [KABL15] solve a similar projection problem more efficiently
using alternating projections. [AL13, KABL15] are not guaranteed
to converge and even upon convergence, they produce orientation
preserving mappings which are not necessarily locally injective.
Moreover, [KABL15] does not support control over isometric dis-
tortion. Our method (ATP) draws inspiration from [KABL15], yet
in contrast, is guaranteed to converge to a locally injective mapping
with user-specified conformal and isometric distortion bounds due
to the convex nature of the space we operate within [LW16]. ATP

outperforms the conic solver used in [LW16] by up to 3 orders of
magnitude.

2.1. Alternating Projection Methods

In this small subsection, we briefly mention some of the relevant
works on alternating projection methods. The study of such meth-
ods began with von Neumann [vN50], who was considering lin-
ear subspaces, and proved the convergence of alternating geomet-
ric projections onto the subspaces to their intersection. Moreover,
he showed that the limit point was equal to the geometric projection
to the intersection. We refer to this "method of alternating projec-
tions" by the acronym MAP. MAP was later extended to arbitrary
closed convex sets, and potentially more than two such sets.

Our suggested modification, ATP, which adds tangential projec-
tions, is provably convergent for two such sets with nontrivial in-
tersection, so we note that the corresponding proof for MAP is pro-
vided in [BB93]. Our proof is a variation of their argument. There
is a large body of work around MAP exploring its correctness, con-
vergence speed, and variants, so we refer to the excellent survey by
the same authors: [BB96].

As already noted, we took inspiration for our modification from
[KABL15] who apply the same method in a setting with non-
convex sets. There is an additional recent work [SS16] where the
authors apply this method for the purposes of structured low-rank
approximation. In their setting, one of the spaces is not convex,
but a smooth variety, and they prove local quadratic convergence.
For us, the boundary of one of our sets (B, see Section 4.2) is not
smooth, so their proof does not apply in our case.

As noted in [KABL15], the tangential modification is inspired by
Newton’s method for root-finding, and by Gauss-Newton methods
for nonlinear least squares problems. These ideas have appeared in
other places in the graphics literature as well: in [BDS∗12] which
used alternating projections, and in [TSG∗14] which used Gauss-
Newton optimization methods. Lastly, we note that many works in
graphics springing from [SA07, LZX∗08] adopt related alternating
energy minimization approaches.

3. Bounded Distortion Harmonic Mappings

In this section, we briefly review some basic definitions, and the
construction of the Lν space from [LW16], to set notation. For a
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more detailed introduction to some of the preliminary material on
bounded distortion harmonic mappings and the relevant complex
analysis, we refer to Section 3 of [CCW16]. A more complete de-
scription of the Lν space is in [LW16].

A harmonic function u : Ω→ R defined on a domain Ω⊆ R2 is
one which satisfies the Laplace equation:

∆u =
∂

2u
∂x2 +

∂
2u

∂y2 = 0

at each point in the domain. The value of a harmonic function is
intuitively the average of its nearby values, and thus achieves ex-
trema on its boundary (see the Mean Value Property and Maximum
Principle [Dur04]).

A planar harmonic mapping is a mapping f : Ω→ R2 for which
both component functions u and v (where f = (u,v)) are harmonic.
We may characterize local injectivity and quantify distortion of
these mappings in terms of their first and second Wirtinger deriva-
tives at each point, denoted fz and fz̄. These are representative of
the closest similarity and antisimilarity matrices to the Jacobian,
J f . In particular, we have the following formulae:

det(J f ) = | fz|2−| fz̄|2 (1)

σa = | fz|+ | fz̄| , σb =
∣∣∣ | fz|− | fz̄| ∣∣∣ (2)

k =
| fz̄|
| fz|

. (3)

Equation (1) implies that local injectivity is equivalent to | fz|> | fz̄|
(and that fz 6= 0 throughout Ω for a locally-injective mapping). The
quantities in equations (2) are the singular values of J f and quantify
the isometric distortion. They are equal to the lengths of the major
and minor axes of the image ellipse J f (S1) and satisfy 0 < σb ≤
σa <∞. In the setting of locally-injective maps, the second of these
equations simplifies to σb = | fz| − | fz̄|. The quantity in equation
(3) denotes the conformal distortion and satisfies 0 ≤ k < 1 in the
locally injective setting. In light of these formulae, we switch to
complex notation from now on and consider Ω⊆ C.

With these definitions, we may define the space of bounded dis-
tortion harmonic mappings, denoted BD (as done in [LW16]). For
a triplet of distortion bounds (Ck,Ca,Cb) where Ck ∈ [0,1) and
0 < Cb ≤ Ca <∞, consider the set of harmonic mappings satis-
fying the following:

k(z)≤Ck ∀z ∈Ω

σa(z)≤Ca ∀z ∈Ω

σb(z)≥Cb ∀z ∈Ω.

(4)

BD is this space and is non-empty for any suitable choice of
(Ck,Ca,Cb), as any scaling map z 7→ sz for Cb ≤ s ≤Ca will be in
the space. Finally, we note the following observation from [CW15]:

Observation 1 When Ω is simply-connected, an equivalent set of
conditions to equations (4) is obtained if you enforce the distortion
bounds only on ∂Ω and ask that fz 6= 0 within Ω.

  C  = 10Source a C  = 5a  C  = 2.5a  C  = 1.25a

Figure 4: Efficacy of distortion bound variation. Four results of our
ATP deformation method are shown, with differing max isometric
distortion bounds Ca, the values of which are denoted below each
result. The other distortion bounds used with ATP were Ck = 0.5
and Cb = 0.2.

3.1. The Lν Space

In [LW16], three different characterizations of BD were con-
structed. We use the Lν space as it was found to have performed
the best qualitatively, of the three. To introduce it, we need a fact
about harmonic mappings:

Observation 2 When Ω is simply-connected, we have a decompo-
sition: f = Φ+Ψ, where Φ and Ψ are holomorphic functions. This
decomposition is unique up to a complex constant added to one of
Φ and Ψ and subtracted from the other.

Essentially, one obtains this decomposition by integrating the
pointwise decomposition of the Jacobian into similarity and anti-
similarity parts. A detailed proof is found in [Dur04]. Note that
fz = Φz and fz̄ = Ψz, so f may be recovered up to a constant by
complex integration if fz and fz̄ are known.

We may also further manipulate fz and fz̄. In particular, we may
take the logarithm of fz, as it is never 0 for a locally injective map.
For this, we pick a point z0 ∈ Ω and ask that log( fz(z0)) takes the
value of the principal branch, and compute the rest of the logarithm
by integration of f ′z/ fz (for details, see Section 3.5 of [CCW16]).
We denote this quantity l for shorthand.

Similarly, we construct ν= fz̄/ fz, the second complex dilatation,
whose modulus is k our conformal distortion measure. It is the only
holomorphic function (up to global rotation) that shares the same
modulus as the Beltrami coefficient. Note again that from l and ν,
it is possible to reconstruct f up to a complex translation constant,
as fz = el and fz̄ = νel .

Thus, for a harmonic mapping f , we can transform conditions
(4) into conditions on l and ν. This leads us to the definition of the
Lν space, a subspace of Hol×Hol, where Hol denotes the set of
holomorphic functions on Ω. A pair of functions (l,ν) is in Lν if
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the following conditions hold for a valid choice of (Ck,Ca,Cb):

k(z) = |ν(z)| ≤Ck ∀z ∈ ∂Ω (5)

σa(z) = eRe(l(z))(1+ |ν(z)|)≤Ca ∀z ∈ ∂Ω (6)

σb(z) = eRe(l(z))(1−|ν(z)|)≥Cb ∀z ∈ ∂Ω.. (7)

For a consistent choice of constants (Ck,Ca,Cb), and a fixing of
integration constants, it is shown in [LW16] that Lν is in bijec-
tion with BD. The argument makes precise the informal discussion
above. In Appendix B, we strengthen this bijection and show that it
is a homeomorphism, preserving the topological structure of these
functional spaces.

4. Convexification & Discretization

In this section, we convexify and discretize the Lν space, allowing
provably convergent alternating projection methods to be used.

4.1. Convexification

As noted in [LW16], conditions (5) and (7) are convex conditions,
while (6) is not. This is most easily seen by viewing things in the
Re(l) and |ν| plane, as done in Fig. 5. Note that conditions (6) and
(7) may be rearranged as:

Re(l)≤ log(Ca)− log(1+ |ν|) (8)

Re(l)≥ log(Cb)− log(1−|ν|). (9)

As done in [LW16], we convexify (8) by linearizing log(1+ |ν|) at
ν = 0. Additionally, we replace (9) by a constraint that is linear in
|ν|, and we are left with our convexified Lν space, denoted Lconv

ν :

|ν| ≤Ck (10)

Re(l)≤ log(Ca)−|ν| (11)

Re(l)≥ log(Cb)−
log(1−ξ)

ξ
|ν| . (12)

In the above equations, ξ = min
(

Ck,1−W
(

eCb
Ca

))
where W is

the Lambert W function. The intuition behind this equation is that
a linear bound is enforced which runs between (0, log(Cb)) and the
point (in the Re(l) and |ν| plane) where condition (9) meets either
condition (10) or condition (11), whichever comes first. Again, we
refer to Fig. 5 for illustration. The linear bound is enforced for ease
of projection, as explained later in Section 6.2. Lastly, it is implicit
above that all of these conditions are enforced along ∂Ω.

Before moving on to discretization, note that unlike many
other convexification approaches, this one has no parameters (e.g.,
frames) and the conditions keep the same form everywhere along
∂Ω. Additionally, it is guaranteed to be nonempty, as for any
Cb ≤ s ≤ Ca, the scaling map z 7→ sz satisfies the constraints (so
feasibility is guaranteed).

4.2. Discretization

To discretize Lconv
ν , we enforce these distortion constraints at m

densely sampled points {p1, p2, . . . , pm} ∈ ∂Ω and use n Cauchy
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Figure 5: A schematic illustrating both the Lν and Lconv
ν spaces in

the Re(l) and |ν| plane with distortion bounds Ck = 0.4, Ca = 2,
and Cb = 0.5. The inequalities defining Lν: (5), (6), and (7), are
illustrated in green; while those defining Lconv

ν : (10), (11), and
(12), are illustrated in blue. The distortion bounds label the cor-
responding inequalities (the conformal inequalities are the same).
For discretization of Lconv

ν , one considers the bounded distortion
space at a sample point pi, a subset of C2, given by l and ν values
satisfying inequalities (10), (11), and (12). To visualize this space,
one rotates the shaded region Ri about the Re(l) axis (obtaining
a 3-dimensional volume), and then products the result with R to
account for the possible values of Im(l).

basis functions from an offset cage to form an n-dimensional sub-
space of holomorphic functions from which l and ν will be taken:

l(z) =
n

∑
j=1

s jC j(z) & ν(z) =
n

∑
j=1

t jC j(z).

The C j(z) are the Cauchy basis functions [WBCG09] and the s j
and t j are complex coefficients which specify l and ν. We assume
that m > n, as would be expected for practical use.

With these let us define a linear transformation T : Cn→Cm that
takes in complex Cauchy basis coefficients and returns the values
of the resulting function at the sample points. The matrix entries
are (T )i j =C j(pi).

Now, we may see that the resulting discretized Lconv
ν space is

a convex subspace of C2m and is the intersection of two convex
sets. The first is im(T̃ ) where T̃ : C2n→ C2m is a linear map with
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matrix
(

T 0
0 T
)

and describes the possible sample point values for l
and ν arising from choices of s j and t j .

The second is the product space arising from enforcement of the
Lconv

ν conditions (10), (11), and (12) at each of the sample points pi.
If we let Bi denote the pointwise spaces, then we may denote this
second space with B= Π

m
i=1Bi. From Fig. 5, we may visualize an

individual Bi by rotating the shaded region Ri about the Re(l) axis,
and producting with R to represent the possible values for Im(l).

In this discretized setting, the problem of deformation (or projec-
tion) is that we are given input data: l and ν values from a cage or
mapping specifying a point in C2m, and would like to project to the
discretizedLconv

ν space. One method for doing so, is to use standard
convex optimization techniques. As we shall see, this method is ef-
fective, but quite slow compared to alternating projection methods
for this problem.

5. Alternating Projections

In this section, we briefly describe the standard method of alternat-
ing projections (MAP), and our modified version: alternating tan-
gential projections (ATP). This is done in a fairly general setting,
as the basic idea may be applicable to other problems. A detailed
proof of convergence is given for ATP.

5.1. Method Statements

Consider two closed convex sets A,B ⊆ Rd with A∩B 6= ∅. The
method of alternating projections (MAP) takes an arbitrary point
p ∈ Rd and returns a nearby point in A∩B, and does this by alter-
nating projections onto A and B.

To be more precise, for a closed convex set C ∈ Rd let projC :
Rd → C denote the projection map which takes a point in Rd and
maps it to the unique closest point in C. Letting 〈,〉 denote the stan-
dard inner product on Rd , we have that projC(x) is the only point
in C satisfying Kolmogorov’s criterion (also see Fig. 6):

For a closed convex set C ⊆ Rd and an arbitrary point x ∈ Rd ,

〈x−projC(x),projC(x)− c〉 ≥ 0, ∀c ∈C. (K)

x

proj (x)c

c
C

Figure 6: A schematic illustrating Kolmogorov’s criterion (K).

MAP forms sequences of points (a1,a2,a3, . . .) in A and
(b1,b2,b3, . . .) in B with the projection maps:

a1 = projA(p)

bi = projB(ai), i≥ 1

ai+1 = projA(bi), i≥ 1

It is well-known that the sequences (ai)
∞
i=1 and (bi)

∞
i=1 will con-

verge to a point p∗ ∈ A∩B [BB93].

In our applied setting, we have that A = im
(
T̃
)

is a linear sub-
space and B = B is a full-dimensional compact convex subset,
so we assume that A and B are of this type. These conditions
are not entirely necessary for convergence, but we maintain them
here for pedagogical reasons. This setting is quite similar to that
of [KABL15], and inspired by their approach, we propose a method
which restricts the projection to A to the hyperplane containing bi
and with normal vector ai− bi. See Fig. 7 for a useful schematic.
When B is smooth around bi, this is the tangent plane to ∂B at bi,
thus we refer to it as the method of alternating tangential projec-
tions. It is inspired by Newton’s method for root finding, and by
Gauss-Newton approaches to non-linear least squares problems.

B

A

Hi

ai

ai+1

bi

Figure 7: A schematic illustrating the tangential projection step.
The projection of bi to A is restricted to Hi (with normal vector
ai−bi illustrated as well). Note that the resulting ai+1 is closer to
A∩B than the result of unrestricted projection of bi to A.

To be precise, let us define gi(x) := 〈ai− bi,bi− x〉 and let Hi
denote the hyperplane given by the zero set:

Hi = {x ∈ Rd : gi(x) = 〈ai−bi,bi− x〉= 0}

ATP constructs sequences (ai)
∞
i=1 in A and (bi)

∞
i=1 in B according

to the following equations:

a1 = projA(p)

bi = projB(ai), i≥ 1

ai+1 = projA∩Hi
(bi), i≥ 1

Note that if we ever have ai = bi, then both are in A∩B and the
process has converged to a limit point, so Hi will always be a hy-
perplane when the limit point has not been reached. We prove a
small lemma to show feasibility of the method.
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Lemma 3 If A∩B 6= ∅, then for each tangential step of ATP:

A∩Hi 6= ∅.

Proof Consider a point q ∈ A∩B and consider the line between q
and ai. Note that gi(ai) =−‖ai−bi‖< 0 and that gi(q)> 0 by (K)
(if q = bi a limit point has been reached). As gi is continuous (in
fact, affine), there must be a point r on the line between q and ai
for which gi(r) = 0. As A is convex, r ∈ A and as gi(r) = 0, r ∈Hi.

Experimentally, we will see that the convergence of this method
(ATP) is faster than that of the standard MAP method in Section 7.
But first, we give a proof that ATP will converge to a limit point in
A∩B.

5.2. Convergence Proof

The proof follows the strategy of [BB93] in showing that the se-
quences are Fejér monotone with Kolmogorov’s criterion (K). In
order to be self-contained, we present an entire argument here with-
out discussing Fejér monotonicity. The reader uninterested in this
theoretical argument need only read Theorem 5 and may skip this
section otherwise.

We first argue that for any point q ∈ A∩ B, bi = projB(ai) is
closer to it than ai.

‖ai−q‖2 = ‖ai−bi +bi−q‖2

= ‖ai−bi‖2 +2〈ai−bi,bi−q〉+‖bi−q‖2

≥ ‖ai−bi‖2 +‖bi−q‖2

(13)

The final inequality follows from (K).

In the proof of convergence for MAP, an analogous argument
would be used to show that ai+1 is closer to q than bi, but the fact
that ai+1 is restricted to Hi requires us to modify our argument.

Lemma 4 For each tangential step in ATP:

‖ai+1−q‖2 ≤ ‖bi−q‖2−‖bi−ai+1‖2 .

Proof As with equation (13), we again have that:

‖bi−q‖2 = ‖bi−ai+1 +ai+1−q‖2

= ‖bi−ai+1‖2 +2〈bi−ai+1,ai+1−q〉+‖ai+1−q‖2 (14)

We again aim to show that 〈bi− ai+1,ai+1− q〉 ≥ 0. For this, let
us define g̃i(x) := 〈bi−ai+1,ai+1−x〉, and argue by contradiction:
suppose that g̃i(q)< 0. For intuition, the reader is referred to Figure
8.
As in the argument for Lemma 3, we may consider the line between
q and ai and the value of gi along it, to find a point r ∈ A∩Hi.
Similarly, we may consider the value of g̃i along this line, and note
the following:

g̃i(ai) = 〈bi−ai+1,ai+1−ai〉+0

= 〈bi−ai+1,ai+1−ai〉+ 〈bi−ai+1,ai−bi〉
= 〈bi−ai+1,ai+1−bi〉

=−‖bi−ai+1‖2 < 0

(15)

As g̃i(q) < 0 and g̃ is affine, we have that g̃i(r) < 0. This violates

Kolmogorov’s criterion (K) when applied to Hi ∩ A as a convex
subset of Hi.

Figure 8: A guide to the proof of Lemma 4. This schematic depicts
an impossible scenario, with g̃i(q) < 0. Note that A and B are not
illustrated above, but Hi ∩A is (its boundary in Hi is in blue). The
planes defined by gi = 0 (Hi) and g̃i = 0 are orthogonal with normal
vectors ai− bi and bi− ai+1, respectively. As argued in the proof,
we see that a line from q to ai will intersect Hi at some point r for
which Kolomogorov’s criterion (K) restricted to Hi is violated.

With Lemma 4 and equation (13), we may easily prove the fol-
lowing:

Theorem 5 If A,B ⊆ Rd are a linear subspace and a full-
dimensional compact convex subset, respectively, with A∩B 6= 0,
then the sequences (ai)

∞
i=1 and (bi)

∞
i=1 constructed with ATP con-

verge to a limit point p∗ ∈ A∩B.

Proof Note first that Lemma 4 and equation (13) imply that the
sequence (‖ai−q‖ ,‖bi−q‖ ,‖ai+1−q‖ , ...) converges (for any
q ∈ A∩B), as it is decreasing and bounded below by 0. Further-
more, this implies that:

ai−bi→ 0 & bi−ai+1→ 0.

The remaining argument is a basic analytical one. As each step
of ATP brings us closer to any q ∈ A∩ B, the sequence (ai)

∞
i=1

lies in a compact set, and has a limit point. Let aik → a∗ denote
a subsequence converging to this limit point, which must lie in A
by closedness. Closedness of B also allows us to easily see that
a∗ ∈ B as d(aik ,B)≤ ‖aik −bik‖→ 0 and:

d(a∗,B)≤
∥∥a∗−aik

∥∥+d(aik ,B) ∀ik.

Thus, if we let p∗ = a∗, we have our result. Lemma 4 and equa-
tion (13) imply that ‖ai− p∗‖ is a decreasing sequence, and the
existence of a subsequence converging to 0, implies that the overall
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sequence does as well. We also have that bi→ p∗ as ‖bi− p∗‖ ≤
‖bi−ai+1‖+‖ai+1− p∗‖→ 0.

Before discussing the algorithms and implementation details, we
note that the restrictions on A and B for Theorem 5 are unnecessary,
and the arguments above merely use their convexity and closed-
ness. The ideas may also be used to prove convergence if you ask
for movement in an orthogonal direction for every step (instead of
just every other one). A brief discussion of this is in Appendix A.

Lastly, we note that only in the case where A and B are affine sub-
spaces, is it known that the standard MAP converges to projA∩B(p)
[vN50]. In practice, both MAP and ATP converge to points very
close to projA∩B(p) (see Fig. 9).

6. Our Algorithms

With the description of MAP and ATP, we may describe the algo-
rithms we have designed. These take in a point p = (pl , pν) ∈ C2m

as input, representing l and ν data at each of the m sample points
in ∂Ω. Then MAP or ATP is applied to p, successively projecting it
onto im

(
T̃
)

and B. The resulting point p∗ = T̃ (s1, . . . ,sn, t1, . . . , tn)
for some Cauchy basis coefficients s j and t j. Finally, l = ∑ j s jC j
and ν = ∑ j t jC j are used to reconstruct a locally injective bounded
distortion harmonic mapping via the appropriate algebraic manip-
ulations and numerical integration over Ω. The steps above are de-
scribed in greater detail in the subsections below.

As noted in Section 2.1, we may view our basic setting and
use of alternating projection methods as a local-global method
[SA07, LZX∗08]. Projection to B may be viewed as a local step,
ensuring local distortion bounds are satisfied, while projection to
im
(
T̃
)

may be viewed as a global step, ensuring that the l and ν

values at each step come from globally defined holomorphic func-
tions. For application of both MAP and ATP, we will see that both
local and global steps may be easily parallelized, resulting in the
speed which allows our method to be real-time. We denote the full
algorithms for shape deformation with the labels MAP-gpu and
ATP, with the change in the first label made to distinguish it from
the method of alternating projections, and to emphasize the paral-
lelized nature of the algorithm (shared by both methods).

6.1. Gathering Input Data

For our deformation methods, the user specifies a polygonal cage
about the figure, which serves as our domain Ω. A slightly offset
cage is utilized for user input, with handles between the polygonal
segments. In order to enrich the space, the offset cage is upsam-
pled uniformly to provide n Cauchy basis functions. Additionally,
m sample points are uniformly chosen on ∂Ω, where our data will
come from. Each sample point is associated to one of the original
polygonal segments. The number of sample points should exceed
the number of basis functions to ensure proper enforcement of the
distortion bounds. Experimentally, a ratio of m = 10n was found to
be sufficient under all practical circumstances.

To infer the input l and ν values from the target cage, we consider
for each sample point the unique affine transformation that takes its
source cage segment vector e j to its target cage segment vector
ê j, and maps the outward unit normals n j 7→ n̂ j to each other. The

linear part of this transformation may be considered as the com-
position of three linear transformations: P2 ◦ S ◦P1, defined below
utilizing complex notation (where a complex number z = x+ iy de-
notes a vector (x,y) ∈ R2).

P1(z) = ρ1z, ρ1 =

∣∣e j
∣∣

e j
i

S(z) = szz+ sz̄z̄, sz =

∣∣e j
∣∣+ ∣∣ê j

∣∣
2
∣∣e j
∣∣ & sz̄ =

∣∣e j
∣∣− ∣∣ê j

∣∣
2
∣∣e j
∣∣

P2(z) = ρ2z, ρ2 =−
∣∣ê j
∣∣

ê j
i

P1 is an orthogonal transformation that maps n j and e j into the
positive x- and y-axes, respectively. S performs a scaling in the y-
direction by

∣∣ê j
∣∣/∣∣e j

∣∣. Lastly, P2 is another orthogonal transforma-
tion which rotates S◦P1(n j) and S◦P2(e j), into n̂ j and ê j, respec-
tively. The similarity and antisimilarity parts of the unique affine
transformation may now be easily derived:

fz = ρ2szρ1 =
1
2

(∣∣ê j
∣∣+ ∣∣e j

∣∣∣∣ê j
∣∣

)
ê j

e j
(16)

fz̄ = ρ2sz̄ρ1 =
1
2

(∣∣ê j
∣∣− ∣∣e j

∣∣∣∣ê j
∣∣

)
ê j

e j

With these values, l is taken to be a logarithm of fz and ν is taken
to be fz̄/ fz. To choose the logarithm of fz for sample points on
segment e j+1, denoted l j+1, we base it upon the choice for sample
points on segment e j (likewise denoted l j). This avoids inconsistent
assignments due to poor branch choice. The formula l j+1 = l j +
d j+1 is used, where Im(d j) gives the corner angle difference for
the source and target cages:

d j+1 = Log

(
e j+1 f j+1

z

e j f j
z

)
−Log

(
e j+1

e j

)
.

Above, Log denotes the principal branch, and f j
z and f j+1

z denote
quantity (16) for the sample points on e j and e j+1, respectively. The
method presented here generalizes some of those given in [Web17],
which we refer to for additional discussion.

Lastly, we note that we may also use any existing cage-based
barycentric method to provide such input data, by taking the result-
ing mapping and using it to calculate the l and ν values. However,
it is more efficient to take data directly from the cage manipulation,
which also more accurately reflect the user’s intent. Evidence of
this may be seen in Fig. 3.

6.2. Local projections

For projection of a point p ∈ C2m to B = ΠiBi, we may use the
product structure to parallelize the projection. To be more specific,
let li and νi denote the l and ν values at sample point i, so that p =
(l1, . . . , lm,ν1, . . . ,νm). In addition, let (lb

i ,ν
b
i ) = projBi

((li,νi)).
Then we have:

projB(p) = (lb
1 , . . . , l

b
m,ν

b
1, . . . ,ν

b
m).

This follows from the fact that the standard inner product on C2m

is the sum of the componentwise standard inner products on the
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(a) Source (b) MOSEK (c) MAP-gpu (d) ATP

Figure 9: Near-optimality of projection by alternating projection methods. Deformations are computed after projection to the discretized
Lconv

ν space by three different methods. Column (a) illustrates the source domain. Column (b) illustrates the result of a convex optimization
with Mosek [ApS15], column (c) illustrates the result of our parallelized MAP-gpu method, and column (d) illustrates the result of ATP.
Column (b) represents the ground truth geometric projection, and the results of MAP-gpu and ATP are not numerically identical, but are
visually indistinguishable.

C2 factors. A dedicated GPU kernel performs these parallelized
projections.

To calculate (lb
i ,ν

b
i )= projBi

((li,νi)), we may also exploit some
special structure of Bi. In particular, constraints (10), (11), and (12)
cut out a subset of C2 which is a product of a rotationally symmetric
convex subset of R3, spanned by the Re(li), Re(νi), and Im(νi)
axes; and R, spanned by the remaining Im(li) axis. Thus, we only
need to do the projection in R3, and maintain the value of Im(νi).

For the projection in R3, we are projecting to a set which is the
rotation of Ri (see again Fig. 5) about the Re(li) axis. Thus, if we let(
projRi

(Re(li) , |νi|)
)

x and
(
projRi

(Re(li) , |νi|)
)

y denote the com-
ponents of this projection in the (|νi| ,Re(li))-plane, we get the fol-
lowing formula for projection to Bi:

projBi

(
Re(li) , Im(li) , |νi|ei arg(νi)

)
=
((

projRi
(Re(li) , |νi|)

)
y , Im(li) ,

(
projRi

(Re(li) , |νi|)
)

x ei arg(νi)
)
.

Lastly, we note that projRi
(li,νi) is a simple projection onto a

convex polytope in two dimensions and is easily accomplished.
Constraint (11) is utilized for this purpose, as the original constraint
(6) (still convex) does not allow for a simple closed-form solution
for the projection.

6.3. Global projections

For the global projections, MAP-gpu merely solves a least-squares
system. In particular, given a point bi ∈ B, one is after the least-
squares solution to T̃ x = bi where x = (s1, . . . ,sn, t1, . . . , tn). The
solution to this system is M̃−1T̃ t , where we establish the notation
M̃ := T̃ t T̃ and is invertible as T̃ is invertible. Recalling the block
nature of T̃ we get the following formula:

M̃−1T̃ t =

(
M−1T t 0

0 M−1T t

)
(17)

where M := T tT . This allows us to reduce the least-squares prob-
lem into two identical smaller least-squares problems, further
speeding the method. If we let bi = (li

1, . . . , l
i
m,ν

i
1, . . . ,ν

i
m), so that

li and ν
i denote the components of bi, then the solution to the least-

squares problem, denoted xi+1, takes the form:

xi+1 =

(
M−1T t li

M−1T t
ν

i

)
(18)

The final step is to set ai+1 = T̃ xi+1 (which may also be blocked
easily, left to the reader).

For ATP, the global projections are more complicated due to the
restriction to Hi. As in [KABL15], we use Lagrange multipliers and
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Figure 10: Detailed timings and iteration data. In this figure, we present timings (in milliseconds) and iteration data for computation of the
deformation (e), for varying problem sizes. In the charts, n and m denote the number of Cauchy basis functions and the number of sample
points on ∂Ω, respectively. For timings, we report data from three different methods: direct convex optimization with MOSEK [ApS15] in
(a), MAP-gpu in (b), and ATP in (c). For MAP-gpu and ATP, the number of iterations (pairs of local and global projections) needed for
convergence is also given in (d). Graphs on the right, (f) and (g) plot the values on the diagonal of the charts. The upshot is that MAP-gpu
tends to be orders of magnitudes faster than MOSEK, and ATP is 3-5 times faster than MAP-GPU. For a more detailed discussion, see
Section 7.2.

are in need of a solution to the following system:(
M̃ T̃ t~ni
~ni

t T̃ 0

)(
x
λ

)
=

(
M̃xi
~ni

tbi

)
. (19)

In the above system ~ni = ai− bi, xi denotes the solution from the
previous global step (T̃ xi = ai), and λ denotes the Lagrange mul-
tiplier. Note that the [KABL15] approach geometrically projects
ai instead of bi to Hi ∩A, but these approaches are equivalent as
‖ai− y‖2 = ‖ai−bi‖2 + ‖bi− y‖2 for any point y ∈ Hi (by the
Pythagorean theorem).

Performing the same analysis as was done in [KABL15], we ar-
rive at a solution xi+1:

xi+1 = xi−
‖~ni‖2

~ni
t T̃ M̃−1T t~ni

M̃−1T̃ t~ni (20)

Note here that we only require one linear solve, giving a matrix-
vector product M̃−1T̃ t~ni, as opposed to the two required in
[KABL15]. This simplification comes from the fact that the global
space in [KABL15] is not merely the image of a linear map, but

also has additional linear constraints (arising from positional con-
straints in their perspective). Additionally, we precompute M̃−1T̃ t ,
and may exploit the block structure in this calculation, equation
(17), and the one above. The final step in the tangential hyperplane
projection is to solve for ai+1 = T̃ xi+1.

Equations (18) and (20) for MAP-gpu and ATP, respectively,
were evaluated on the GPU. With both local and global steps de-
scribed, we also note that alternating projections for both meth-
ods will stop after ‖~ni‖ < ε for some small ε parameter. Once the
projections stop, the Cauchy basis coefficients are taken from xi =
(s1, . . . ,sn, t1, . . . , tn), and the resulting l = ∑ j s jC j and ν = ∑ j t jC j
are manipulated to obtain fz and fz̄. These are then numerically in-
tegrated over Ω to obtain the final map. This process is described
in great detail in [LW16], so we omit it here, for brevity. Any addi-
tional details not found here, may also be found there.

7. Results

For the results displayed in the figures, we implemented our al-
gorithm as a plug-in to Autodesk Maya 2016. The processor and

c© 2017 The Author(s)
Computer Graphics Forum c© 2017 The Eurographics Association and John Wiley & Sons Ltd.



Eden Fedida Hefetz, Edward Chien, & Ofir Weber / Fast Planar Harmonic Deformations with Alternating Tangential Projections

graphics card used were an i7-4770k core with Nvidia Quadro
K5000 GPU. NVIDIA CUDA Basic Linear Algebra Subroutines
(cuBLAS) were used for linear algebra operations on the GPU. We
used ε = 10−4 for the stopping criterion.

For the convex optimization results (Figs. 10 and 9), we used
CVX 2.1, with Mosek [ApS15] as the underlying solver. We now
discuss the figures, referencing them, as needed.

7.1. Figure Discussion

In Fig. 1, some example deformations are shown. They demonstrate
the efficacy of our ATP method. See caption for more.

In Fig. 2, we compare a deformation obtained with ATP to sev-
eral projection methods. These projection methods take as input
the top-center holomorphic mapping, computed with Cauchy ba-
sis functions [WBCG09], whereas ATP directly infers user intent
from the cage, as described in Section 6.1. As can be seen, ATP
produces qualitatively superior results, avoiding the poor initializa-
tion that the input mapping provides. The method of [KABL15]
fails to recover from the lack of local injectivity, and the methods
of [Lip12] and [CW15] are less reflective of the user’s desires.

In Fig. 3, we compare the results of our ATP method with sev-
eral cage-based deformation methods that utilize various kinds of
barycentric coordinates. Our deformation is the only locally injec-
tive one, is qualitatively superior, and has low distortion. Conformal
and isometric distortion are illustrated with heat maps.

In Fig. 4, the effect of distortion bound variation is shown. The
source domain and cage are shown, and the max isometric distor-
tion bound Ca varies from 10 to 1.25. As can be seen, the resulting
deformations fit the bound and continuously scale down.

In Fig. 9, we demonstrate the near-optimality of our alternat-
ing projection methods in projecting to the discretized Lconv

ν space.
Three representative examples are used, and we see that the results
of MAP-gpu and ATP are visually indistinguishable from those of
the ground truth, obtained via convex optimization with Mosek.
The maps are not truly identical and differences may be detected if
they are overlaid, but are hard to see. The image demonstrates that
the limit points of the alternating projection methods are quite near
the geometric projection to Lconv

ν .

7.2. Timings and Iterations Data

In Fig. 10, we have detailed timing and iteration data for a partic-
ular deformation shown in window (e). The distortion constraint
constants used for this image were Ck = 0.4, Ca = 2, and Cb = 0.5.
The statement of what is illustrated in each window is in the cap-
tion, and we give additional discussion here. In windows (a)-(d),
the blacked out cells correspond to n > m, having more Cauchy ba-
sis functions than sample points, which is undesirable for use, so
we omit this data. In window (a), the last three cells are blank as
the computer ran out of memory.

In comparing charts (a)-(c) and looking at graph (f), we see that
both of our alternating projection methods, MAP-gpu and ATP are
orders of magnitude faster than direct convex optimization with

Mosek, which is the strategy used by [LW16]. The speedup fac-
tors over Mosek are given in parentheses in charts (b) and (c). As
can be seen, the advantage grows as problem size grows. For prac-
tical purposes, standard problem sizes typically use between 100
and 200 basis functions and 1000 to 2000 sample points. In this
domain, we see that ATP is 3-5 times faster than MAP-gpu, and
this ratio does not vary too much for different problem sizes. This
serves as strong validation for the modification made to obtain ATP.

Further validation for ATP is obtained in chart (d) and graph
(g), which show the number of iterations (one iteration is a local
projection step, and a global projection step together) needed for
different problem sizes. As can be seen, MAP-gpu usually requires
6-7 times more iteration steps for standard problem sizes. While
each global projection step of MAP-GPU is slightly more efficient,
the fewer number of iterations required for ATP makes it faster
overall. It’s also interesting to note that the iteration numbers do
not vary too much as problem size changes. This suggests that the
Lν space is approximated well for many of these varying levels
of discretization. Lastly, the practical consequences of this timing
data is that on standard problem sizes, ATP achieves framerates of
35-45 fps on our machine.

8. Summary & Discussion

As can be seen from the results presented above, both MAP-gpu
and ATP are orders of magnitude faster than a direct convex opti-
mization. They produce real-time framerates on standard problem
sizes and are able to guarantee local injectivity and user-prescribed
distortion bounds. The methods share the efficiency and speed of
cage-based barycentric methods and guarantees of projection meth-
ods, combining the strengths of both. These gains are due to the
convexified framework that allows for straightforward GPU paral-
lelization, and our modified alternating projection algorithm.

On the theoretical side, we have provided a proof of convergence
for ATP that holds outside of our particular setting, and may find
use in other applied problems. Appendix B contains a strengthening
of the bijection from [LW16] into a homeomorphism.

8.1. Limitations & Future Work

We acknowledge that our method does not support positional con-
straints, as is desired by many deformation methods. In general, it is
an open problem to find a method which is capable of both bounded
distortion deformation and positional constraints. In particular,
given particular positional constraints and distortion bounds, such
a deformation may not even be possible. In the future, we may at-
tempt to incorporate hard or soft positional constraints into a related
method.

We also acknowledge that our method is restricted to planar de-
formations. As a surface immersed in R3 inherits a Riemannian
metric, and thus a notion of harmonicity for functions, we may look
to apply some of these ideas to parametrization of surfaces.

Lastly, as noted above, ATP and ANP (Appendix A) may find
use in other applications, and we intend to search for these. Addi-
tionally, theoretical questions on convergence rate and bounds on
the difference of the limit point from geometric projection remain
to be investigated.
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Appendix A: ATP Scope & Generalization

As mentioned at the end of Section 5, the proof of Theorem 5 only
requires that A and B be closed convex subsets of Rd . So we actu-
ally proved a more general theorem:

Theorem 6 If A,B⊆ Rd are closed convex subsets with A∩B 6= 0,
then the sequences (ai)

∞
i=1 and (bi)

∞
i=1 constructed with ATP con-

verge to a limit point p∗ ∈ A∩B.

Also, one might consider performing “tangential” projections for
every step, to even further lessen the number of iterations needed
for convergence. The reason for the quotes is that the projections
in such a method are no longer tangential projections, but are bet-
ter thought of as restrictions that force each step to be orthogonal
to the previous one. As such, we refer to this method as ANP for
alternating normal projections.

Adopting the definition of g̃i from the proof of Lemma 4, we
may define H̃i to be its zero set:

H̃i := {x ∈ Rd : g̃i(x) = 〈bi−ai+1,ai+1− x〉= 0}

Then ANP constructs sequences (ai)
∞
i=1 in A and (bi)

∞
i=1 in B ac-

cording to the following equations:

a1 = projA(p)

b1 = projB(a1)

ai = projA∩Hi−1
(bi−1), i≥ 2

bi = projB∩H̃i−1
(ai), i≥ 2

An analogue of Lemma 3 on feasibility may be proven in the
same way as was done in Section 5.1. A proof of convergence for
ANP goes through in a similar fashion, asking for an argument like
that of Lemma 4 for both restricted projection steps. The arguments
dovetail in an interesting way with the inequalities gi−1(q)> 0 and
g̃i−1(q)> 0 obtained in one such argument being necessary for the
success of the next one. We show this below, referencing Lemma 4
often:

Lemma 7 In ANP, for i≥ 2, the following inequalities hold:

‖ai−q‖2 ≤ ‖bi−1−q‖2−‖bi−1−ai‖2 , (21)

‖bi−q‖2 ≤ ‖ai−q‖2 − ‖ai−bi‖2 (22)

for any q ∈ A∩B.

Proof We argue only for equation (21) as the argument for equation
(22) is entirely analogous. We again have that:

‖bi−1−q‖2 = ‖bi−1−ai +ai−q‖2

= ‖bi−1−ai‖2 +2〈bi−1−ai,ai−q〉+‖ai−q‖2

which is just equation (14) with an index shift. As before, we aim
to show that g̃i−1(q) = 〈bi−1− ai,ai− q〉 ≥ 0, and argue by con-
tradiction.

If g̃i−1(q) < 0, consider the line between q and ai−1. For i = 2,
we have that g1(q) > 0 by Kolmogorov’s criterion (K). For i > 2,
we note that in arguing for equation (22) for the previous step (so
with index shifted back one), we proved gi−1(q) > 0. By defini-
tion, gi−1(ai−1) < 0, so there is a point r along the line for which
gi−1(r) = 0 and r ∈ Hi−1.

The rest of the argument proceeds as it does in the proof
for Lemma 4. We have the analogue of equation (15), which is
g̃i−1(ai−1) < 0. With our assumption g̃i−1(q) < 0 we get that
g̃i(r)< 0, which violates Kolmogorov’s criterion (K) when applied
to Hi−1∩A as a convex subset of Hi−1.

With Lemma 7 above, it is easy to establish the following:

Theorem 8 If A,B ⊆ Rd are closed convex subsets with A∩B 6=
0, then the sequences (ai)

∞
i=1 and (bi)

∞
i=1 constructed with ANP

converge to a limit point p∗ ∈ A∩B.

Lastly, we note that ANP was not used for the problem at hand
in this paper, as the local normal projection step would be of the
same difficulty as the overall problem, requiring one to project to
the intersection of an affine space and a convex set.

Appendix B: BD Homeomorphic to Lν

In [LW16] the authors construct an operator F : BD→Lν, which
they show to be bijective under appropriate choices of integration
constaints. In this section, we quotient out by these integration con-
stants, and argue for continuity of the identifications induced by F
and its inverse, showing they are not merely bijections, but also
homeomorphisms, under all practical settings.

Technical Conditions

With our cage-based approach, the domain Ω is a compact region
bounded by a polygonal Jordan curve with a finite number of seg-
ments. As Ω is not open, harmonic and holomorphic functions on
Ω are those that are extendible to harmonic or holomorphic func-
tions on some open neighborhood of Ω. In the following arguments,
due to our setting, we consider these function spaces with domain
Ωλ = {z ∈ C : d(z,Ω) ≤ λ}, where λ > 0 is a small constant such
that Ωλ is simply-connected.

Additionally, due to the nature of Ω, Ωλ is of finite diameter
as a length space, meaning that the lengths of the shortest paths
(within Ωλ) between pairs of points in Ωλ is bounded above by
some positive constant.

Spaces and Maps

Let us define our functional spaces and the maps between them. We
must demonstrate two homeomorphisms:

HarLI
/

τ
∼= DHar

LI ∼= Holcyl×HolD (23)

HarLI is the set of locally-injective harmonic mappings on Ω:

HarLI :=
{

f : Ωλ→ R2
∣∣∣ ∆ f = 0 in Ωλ, det(J f )> 0 in Ω

}
.
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The quotient by τ, denotes that we are considering such maps up to
post-composition with translations z 7→ z+ c. DHar

LI is the space of
Wirtinger derivatives of locally-injective harmonic mappings:

DHar
LI :=

{
(φ,ψ) ∈ HolC−{0}×Hol

∣∣∣ |φ(z)|> ∣∣φ(z)∣∣∀z ∈Ω

}
.

Above, Hol and Hol denote the set of holomorphic and anti-
holomorphic mappings on Ωλ, respectively.

The maps Diff : HarLI→DHar
LI and Int : DHar

LI →HarLI
/

τ , which
are the differentiation and integration operators, define the first
homeomorphism in equation (23). Diff takes a harmonic map-
ping to its Wirtinger derivatives, which is invariant under post-
composition by a translation, so induces a well-defined map D̃iff :
HarLI

/
τ → DHar

LI . Int takes a pair of derivatives to a mapping (up
to translation), obtained after integration and summation.

For the second homeomorphism, we first define the notation:

cyl := C
/
〈z 7→ z+2πi〉

for the Riemann surface obtained by quotient of C by the group of
translations by integer multiples of 2πi. We may define Ξ : DHar

LI →
Holcyl×HolD:

Ξ(φ,ψ) =

(
log(φ),

ψ

φ

)
where no branch is needed for log due to the quotient in cyl. The
second component of Ξ is ν for a pair of Wirtinger derivatives.

First Homeomorphism

For the sake of brevity, we only argue for the first homeomorphism
of equation (23), and focus on the continuity arguments, leaving the
proofs of bijection to the reader. These bijection arguments are sim-
ilar (and simpler) than those made in [LW16] for the H space. To
fully mimic the results there, one will have to apply the appropri-
ate distortion constraints to each functional space given constants
(Ck,Ca,Cb). For the second homeomorphism, the continuity argu-
ments are easier and follow from compactness of Ωλ and its images
under continuous maps.

The standard compact-open topology is used on all of our func-
tional spaces. As all of our mappings are to a metric space C or
(some subset or quotient) and have compact domain Ω or Ωλ, the
standard compact-open topology is equivalent to the topology of
uniform convergence. This is just the topology induced by the L∞

norm, e.g., d( f ,g) = maxz∈Ωλ
| f (z)−g(z)| on HarLI . On DHar

LI , we
impose the L∞ norm where the maximum is taken over just Ω for
the sake of our argument. This is still a norm as holomorphic and
antiholomorphic functions agree entirely if they agree on an open
set, such as the interior of Ω.

Lastly, before continuing, recall that fz and fz̄ encode the sim-
ilarity and antisimilarity parts of the Jacobian, and that the real
and imaginary parts of fz and fz̄ are linear functions of ux,uy,vx,vy
(where f = (u,v), as always). In fact, the linear transformation is a
similarity transformation (in R4), and | fz|2+ | fz̄|2 = 1

2‖J f ‖2. Thus,
the topology on DHar

LI induced by the Frobenius norm is equivalent
to that induced by the standard complex norm on C2, and we may
also argue with the partial derivatives ux,uy,vx,vy.

Continuity of Diff

We show that the set Diff−1(Bε( fz, fz̄)) is open for any ( fz, fz̄) ∈
DHar

LI and ε> 0 (where Bε(·) is an open ε-ball). For this, we consider
a mapping g ∈ Diff−1(Bε( fz, fz̄)) and construct a δ > 0 such that
Bδ(g) ⊆ Diff−1(Bε( fz, fz̄)). We need to argue that bounding the
L∞ norm of a mapping bounds the L∞ norm of its derivatives, or
Jacobian, a fact that follows from the harmonicity of our mappings.

Note that ux,uy,vx,vy are all harmonic, and thus we may bound
their L∞ norm by considering their values on just the boundary.
The mean value property and Green’s Theorem gives us the follow-
ing inequality on the magnitude of ∂wu, the directional derivative
of u in the direction of a unit vector w:

|∂wu(z)| ≤ 2
r

max
z∈∂Br

|u|

for any r > 0. An analogous inequality clearly holds for directional
derivates of v in any direction w.

Consider h ∈ Bδ(g) so that |h−g| < δ on Ωλ.
By the previous inequality, with r = λ, we find that
|∂xRe(h−g)(z)| ≤ 2

λ
δ for all z ∈ ∂Ω. Analogous inequali-

ties hold for ∂yRe(h−g) ,∂xIm(h−g) ,∂yIm(h−g). These
inequalities together imply that the ‖D(h−g)‖ ≤ 8

λ
δ for all

z ∈ ∂Ω, where D(h− g) denotes the Jacobian. From this, we see
that a choice of δ < λε

8 implies that Bδ(g) ⊆ Diff−1(Bε( fz, fz̄)). It
is clear that this argument need not change when considering the
quotient topology on HarLI

/
τ .

Continuity of Int

As in the previous section, we show that a set Int−1(Bε( f ))
is open. Consider Bδ ((gz,gz̄)) for a pair of functions (gz,gz̄) ∈
Int−1(Bε( f )). Pairs of functions in this set represent Jacobians that
differ from that given by (gz,gz̄) by

√
2δ in Frobenius norm. Utiliz-

ing the finite diameter diam(Ωλ), and the fact that |
∫

h| ≤
∫
|h|, we

see that any integrated Jacobian will not differ from g by more than√
2δ diam(Ωλ). In essence, controlling the Jacobian difference al-

lows for control over the difference of the integrated values due to

the finite diameter. Thus, choosing δ < ε

(√
2 diam(Ωλ)

)−1
will

ensure that Bδ ((gz,gz̄))⊆ Int−1(Bε( f )). It’s not hard to to see that
this argument is compatible with the quotient topology.

The resulting theorem is:

Theorem 9 HarLI
/

τ
∼= Holcyl ×HolD in the standard compact-

open topology,

and this implies the homeomorphisms between BD and Lν by
translating the distortion constraints in one domain to the other, as
done in [LW16].
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