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Figure 1: For a given bitmap image (a), state-of-the-art line drawing vectorization algorithms [BS19, SBBB20, PNCB21] rely on frame
fields (b) aligned with the curve directions in the image. In [BS19], for instance, those are used to trace streamlines (c), leading to the final
vectorization (d,e). We develop a novel framework producing singularity-free frame fields, which can be combed globally (f), allowing for a
more robust resolution of directions of intersecting curves, better streamlines (g), and ultimately, better vectorization (h,i) without changing
the rest of the vectorization algorithm. Input image ©Tracie Kiernan, https://stepbysteppainting.net/.

Abstract

State-of-the-art methods for line drawing vectorization rely on generated frame fields for robust direction disambiguation, with
each of the two axes aligning to different intersecting curve tangents around junctions. However, a common source of topological
error for such methods are frame field singularities. To remedy this, we introduce the first frame field optimization framework
guaranteed to produce singularity-free fields aligned to a line drawing. We first perform a convex solve for a roughly-aligned
orthogonal frame field (cross field), and then comb away its internal singularities with an optimal transport–based matching.
The resulting topology of the field is strictly maintained with the machinery of discrete trivial connections in a final, non-convex
optimization that allows non-orthogonality of the field, improving smoothness and tangent alignment. Our frame fields can serve
as a drop-in replacement for frame field optimizations used in previous work, improving the quality of the final vectorizations.

CCS Concepts
• Computing methodologies → Parametric curve and surface models; Shape analysis;

1. Introduction

Line drawing vectorization is a foundational tool for converting
hand-drawn concepts into resolution-independent, compact, and
easy-to-edit curves, producing output amenable to geometry pro-
cessing algorithms. Traditional line drawing vectorization algo-
rithms fail to faithfully vectorize the geometry of junctions and
sharp corners, or create spurious branches in line drawings, often
making the final results unacceptable [BS19].

† Corresponding author
‡ Joint first author

State-of-the-art vectorization algorithms address this challenge
by using frame fields — a smooth assignment of two axes per
pixel where at least one is always aligned to the depicted curve
tangent (Fig. 1b). This helps disambiguate directions around junc-
tions more robustly [BS19,PNCB21,SBBB20]. However, the qual-
ity of the final vectorization depends heavily on the quality of the
underlying frame field. A fundamental limitation of the methods
above is that their frame fields contain singularities — points where
matching of the directions is inconsistent or one of the frame direc-
tions is zero, leading to axis switching (Fig. 2a). Singularities man-
ifest as artifacts in the final results (Fig. 1d). Precisely, singularities
can lead to inconsistent topology and geometry, such as gaps or
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Figure 2: Axis switch and zero singularities from polyvector fields
of [BS19], and their resulting traces. (a) and (b) show an axis
switch singularity where the smaller orange axis nearly vanishes
and noisily switches with the blue. (c) and (d) show a zero singu-
larity where the matching fails across the dashed line. [BS19] omits
tracing through these singularities to avoid difficulties.

spurious connections, for both tracing-based [BS19, PNCB21] and
parameterization-based vectorization methods [SBBB20].

In many cases, singularities of vector fields or frame fields are
topologically inevitable due to the Poincaré-Hopf theorem. We ob-
serve, however, that our domain, the set of all dark pixels in the
image that we call the narrowband, is planar and has boundaries.
Thus, any topological winding of the field may be pushed to these
boundaries, resulting in singularity-free frame fields (e.g., Fig. 1f,
4d). Guided by this observation, we propose a new design and opti-
mization for line drawing–aligned frame fields that contain no sin-
gularities, thus frequently improving final vectorization quality.

We begin with a convex optimization for a cross field, i.e., a
frame field with orthogonal axes, that is smooth and attempts to
align one of its axes with the curve tangent at each point. This field
is almost certain to contain interior singularities, so we comb these
singularities out of the field by matching singularities of opposite
indices, or by pushing them to the narrowband boundaries. This
matching is done with optimal transport in a fashion reminiscent
of [SV19], albeit with a different transportation cost (Sec. 2.3),
which aims to localize the field modifications and minimize the in-
crease in field smoothness. Finally, the frame field is represented
as a pair of line fields in a novel nonconvex optimization, which
allows for nonorthogonality and produces robust tangent alignment
at curve junctions. The absence of singularities, as well as values
of boundary indices informed by the field combing, are enforced as
linear constraints in the framework of discrete trivial connections
[CDS10]. Furthermore, a barrier term prevents the line fields from
crossing each other and developing axis switch singularities.

We validate our approach by qualitatively comparing the vec-
torizations and fields produced against the state-of-the-art frame
field designs, using the original frame-field–based vectorization al-
gorithm of [BS19] and the PolyVector flow of [PNCB21].

Overview. Our system takes as input a bitmap line drawing, for
which we first identify interior and exterior boundaries (Sec. 3.3).
We then employ a quadratic solve to compute an initial cross field,

likely with singularities (Sec. 4.1). Next, we determine field in-
dices and correct the initial cross field to have zero singularities
inside the domain, thus finding a trivial connection (Sec. 4.2). The
obtained indices, after a simple conversion (Sec. 4.2), are used as
constraints for the nonconvex optimization (Sec. 4.3), which gener-
ates the final frame fields as pairs of nonorthogonal line fields. We
validate our method on line drawing vectorization using the meth-
ods of [PNCB21] and [BS19] (Sec. 4.4, 5) with our frame fields.

2. Related Work

2.1. Line Drawing Vectorization

Vectorization of bitmap images with curves has been studied ex-
tensively in multiple disciplines. Some algorithms, e.g., for vec-
torizing medical imaging output or reconstructing road maps from
GPS traces, rely on domain knowledge inapplicable to line draw-
ings [BLW16, CFL13, TBA∗13]. In contrast to technical draw-
ings composed of straight lines or a small number of primitives
[HT06, EVA∗20], we focus on freeform line drawings containing
piecewise smooth curves, which may or may not be closed.

Rough line drawings containing oversketching can be vector-
ized by preprocessing with blurring kernels [BCF∗07, KLC07,
CGBG13] or neural networks [SSISI16, SSII18, XXM∗21]. These
approaches only produce raster output, they do not vectorize im-
ages. In the context of vectorization, they can be used to simplify
an oversketched bitmap drawing prior to vectorization.

Alternative approaches for line drawing vectorization in-
clude optimal transport [GCSAD11], region-based approaches
[CDQM18], Delaunay-based merging of parallel strokes [PPM18],
or an expensive graph-based optimization [FLB16]. In contrast
to [FLB16], we focus on the task of precise vectorization of each
drawn stroke without simplification.

Historically, methods for clean line drawing vectorization have
relied on 1-skeletons or raw image gradients to extract junctions
and connectivity [NS19, NHS∗13, DCP17, DCP19, BLW16]. Both
approaches are unreliable in the presence of noise and lead to ar-
tifacts [FLB16, PNCB21]. [DCP17] explores improving vectoriza-
tion by leveraging Pearson’s correlation coefficient with Gaussian
kernels. This method does not reconstruct the drawing topology —
instead it relies on the topology of a one-pixel-width-skeleton, an
approach prone to local artifacts, as discussed by [FLB16]. To alle-
viate the effect of the noisy gradient, [BF12,CLMP15a,CDQM18]
generate a smooth tangent direction field, which they use for trac-
ing. While more robust to noise, a tangent field is unable to capture
the full collection of directions present at a junction point, render-
ing methods such as [CLMP15b] reliant on user interactions to cor-
rectly solve the junctions.

More recently, researchers have leveraged deep learning ma-
chinery towards image vectorization [EVA∗20, GZH∗19, GTG∗19,
LWKF17, ZQM19, DYH∗21, LHES19, CDAT20, LLMRK20,
RGLM21, KWOG18, MSSG∗21]. These approaches either formu-
late vectorization as a segmentation task [KWOG18] or predict a
fixed number of curves [CDAT20, LHES19]. Other deep learning
methods improve those works by designing recurrent neural
networks predicting splines from images [GTG∗19, RGLM21].

submitted to Eurographics Symposium on Geometry Processing (2023)



O. Gut,an, S. Hegde, E. Jimenez Berumen, M. Bessmeltsev, E. Chien / Singularity-Free Frame Fields for Line Drawing Vectorization 3

Unfortunately, the available training datasets lack complexity,
thus rendering the algorithms capable of vectorizing only simple
images. Furthermore, these works do not aim to reconstruct correct
drawing topology, making the final drawings inconvenient for
editing and other downstream applications [PNCB21].

We build upon the state-of-the art series of works that rely on
frame fields [BS19, SBBB20, PNCB21]. Frame fields are a natu-
ral extension of tangent fields, specifying two directions per pixel,
where at least one aligns to the curve tangent. The frame field
helps disambiguate the directions of X- and T-junctions, captur-
ing the directions of the two intersecting curves. [BS19] gener-
ates the frame field via a linear solve, then traces integral curves
(streamlines) along a frame field aligned with the input drawing.
These streamlines are then grouped, forming a graph that is cleaned
and converted into a final vectorization. [SBBB20] starts from a
similar frame field, but replaces the tracing component with a uv-
parameterization of the narrowband, and uses the parameteriza-
tion isolines. More recently, [PNCB21] uses the same frame field
from [BS19], augmenting it with the extraction of curve endpoints,
intersections, and sharp corners via deep learning machinery. The
extracted keypoints are then connected to each other with curves
aligned to the frame field via a geometric flow. These approaches
fall short due to their reliance on the quality of the generated frame
fields, prone to errors generated by singularities.

Our work improves the core component of the methods above:
the underlying frame fields. Singularities in the frame fields lead
to artifacts and incorrect vectorization topology. Our framework
is guaranteed to produce frame fields with no singularities, thus
improving the quality of subsequent vectorizations. We demon-
strate that our method improves markedly upon the frame fields
of [BS19], also used for the PolyVector flow of [PNCB21].

2.2. Cross Fields, Frame Fields and Line Fields

Cross fields, or an assignment of two orthogonal directions per
point, have found many graphics uses over the past few decades,
e.g., crosshatch rendering [HZ00], texture synthesis [PFH00,
LH06], pattern tiling [MV21], parametrization [RLL∗06], and quad
meshing [BLP∗13]. They may be generated in multiple ways, tar-
geting smoothness while specifying singularities, or prescribing di-
rectional constraints [RVAL09, CDS10, PZ07]. Recent work has
made use of the Ginzburg-Landau energy to automatically gener-
ate cross fields with sparse singularities [VO19]. In our application,
we aim to capture junction directions more flexibly for line drawing
vectorization, so we use a more recent non-orthogonal generaliza-
tion: frame fields [PPTSH14, DVPSH15].

Frame fields are 4-PolyVector fields composed of two inter-
changeable 2-RoSy fields [DVPSH14]. Initially, frame fields have
been used for anisotropic [PPTSH14] or planar quad remeshing
[LXW∗11], but they have since found additional uses. For exam-
ple, [IBB15] aims to reconstruct 3D objects from curvature lines
by generating a frame field in the space between the input curves.

Unlike [IBB15], we follow [BS19] and compute our frame fields
exclusively on the dark pixels of the narrow band, as it provides
significant computational advantage. Furthermore, instead of using
the PolyVector representation for frame fields [DVPSH14] featured

in [BS19,PNCB21,SBBB20], we encode a frame field as a pair of
line fields, allowing us to explicitly control and eliminate singu-
larities. In the previous two paragraphs, we have cited a collection
of works on vector fields and vector-field-like objects that is per-
haps most related to our method, but we have undoubtedly missed
many. A survey which provides additional context and applications
is [VCD∗16].

2.3. Singularity Matching via Optimal Transport

[SV19] is the only other work that we are aware of, which matches
singularities of fields with an optimal transport framework. Their
goal is the abstract one of interpolating vector fields over trian-
gle meshes. Their method operates by interpolating parts of the
Hodge decomposition of the connection 1-form, generating global
interpolations of the two input fields. In contrast, our singularity-
combing procedure is aimed at producing localized interpolations,
and the connection 1-forms are only modified along matching paths
in the pixel mesh. The ground metric directly reflects the increase
in smoothness energy that would result from pushing a singularity
along edges. This maintains alignment of the field to the sketch,
and fixes the noisy singularities that [VO19] also aims to tame.

3. Background

3.1. Frame Fields: Representations & Singularities
Im

Im
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To specify potential curve directions at a pixel, we
use cross fields or pairs of line fields. One can pa-
rameterize the space of cross fields at a pixel with a
single complex number w [KCPS13], termed a rep-
resentative vector. The four component vectors of
the cross field are the set of complex fourth roots

4
√

w, see inset figure (a). Analogously, the space
of line fields at a pixel is parameterized with a sin-
gle representative vector, given by complex number
u. The component vectors are the complex square

roots
√

u, see inset figure (b). These representations are special
cases of the PolyVector representation of [DVPSH14], whereby
component vectors of a field are roots of a complex polynomial.
The polynomials generating the fields above are z4 −w and z2 −u.

For the cross and line fields above, a 2π rotation of the represen-
tative vectors w and u leads to a π

4 and π

2 rotation of the component
vectors, respectively. Nonzero rotations of the representative vector
fields as you circulate (counterclockwise) about a point denote zero
singularities. These correspond to the indexed point singularities at
zeros of a smooth vector field. An example of these singularities for
non-orthogonal frame fields generated via the method of [BS19]
may be seen in Fig. 2. Such singularities may cause errors in the
downstream tracing of such fields.

In this work, the index of cross and line field singularities is the
number of full (2π) rotations that the representative vector field per-
forms as you circulate counterclockwise about the singularity. Note
this differs from a common convention where this index is divided
by 4 and 2 for cross fields and line fields, respectively, to reflect
rotation of the component vectors. As we are looking at discretized
vector fields, we consider points to be singularities only if they have
nonzero index; see the inset figure in Sec. 3.3.
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Figure 3: Narrowband (a), primal mesh (b), and dual mesh (c).

[BS19] uses a specific 4-polyvector space to parameterize two
sets of axes, given by complex polynomials of the form z4 +c2z2 +
c0. These factor into products (z2 −w)(z2 − u) showing the repre-
sentative vectors of the two axes. In this representation it is possible
to have the w and u axes switch or pass through each other, as illus-
trated in Fig. 2a. This is an axis switch singularity, and it can also
cause serious errors in downstream tracing (Fig. 2b) of these fields.
In Sec. 4.3, we describe a particular frame field representation and
optimization objective that avoids these singularities.

3.2. Domain & Discrete Differential Operators

The domain of our algorithm is the narrowband of the image, de-
noted Ω: the union of pixels with greyscale value above a user-
specified threshold τ ∈ [0,255). We form a primal mesh and a dual
mesh of the narrowband, illustrated in Fig. 3. The primal mesh (Fig.
3b) has quadrilateral faces F , which are the narrowband pixels, with
edges E and vertices V representing the boundaries and corners of
these pixels. The dual mesh (Fig. 3c) elements are in correspon-
dence with various primal mesh structures. Its quadrilateral faces
are centered at interior primal vertices Vint: those that are a corner
of four narrowband pixels. Each dual edge crosses a primal interior
edge: those separating two narrowband pixels; the set of which are
denoted Eint. Lastly, the dual vertices are centered at corresponding
primal faces: narrowband pixels.

The narrowband may be partitioned into connected components
of the dual mesh (also called 4-connected). For simplicity, most of
this paper assumes that Ω has just one connected component. This
is often not the case, but the appropriate generalizations to multiple
components are described in the relevant spots. Unless otherwise
noted, let m denote the number of connected components, and let
B denote the set of boundary components of the dual mesh, with
|B|= n.

To constrain singularities, we use the machinery of discrete ex-
terior calculus [CdGDS13]. The discrete gradient operator, d0 ∈
R|E|×|V |, is a sparse matrix with ±1 entries in positions (i, j),
where vertex j is an endpoint of edge i. The sign of the entry de-
pends on an arbitrary reference direction chosen for each primal
edge: +1 if j is the target, and −1 if j is the source. When d0 is
applied to a function over V , it finds the function difference over
each oriented edge, giving a discretized gradient of that function.

The discrete curl operator d1 ∈R|F|×|E| is a sparse matrix with
±1 entries in positions (i, j), where edge j is on the boundary of
face i. The entry is +1 if edge j is directed counterclockwise about
face i, and −1 if it is clockwise. When d1 is applied to a discretized
vector field (or 1-form) given as a function over oriented edges, it
calculates a discretized curl about primal mesh faces.

3.3. Trivial Connections

We specialize the method of [CDS10] to our planar pixel grid set-
ting, considering (primal) face-based fields over Ω. These fields are
specified by rotations to be applied (discrete connections) as one
traverses the edges of the dual mesh. Thus a connection 1-form is
given by a vector α ∈R|Eint|. Topological constraints like singular-
ities, their indices, and boundary indices become linear conditions
that α must satisfy.

For locally well-defined fields, we ask that
the sum of angle changes is a multiple of 2π

when summed around any four dual edges that
circulate about a primal interior vertex and
corresponding dual face. Examples are in the
inset figure: top – sum is 2π giving index 1;
bottom – sum is 0 giving index 0. This is a
discrete analogue to a connection having triv-
ial holonomy about a local loop. As our do-
main Ω is flat, we do not need to account for
any Gaussian curvature contained within our
cycle about a vertex, as done in [CDS10].

To avoid internal singularities, we ask that
the sum of angle changes is zero for every such loop. We express
this with a |Eint|× |Vint| submatrix dint

0 of d0, whose rows/columns
correspond to interior primal edges/vertices (respectively). Multi-
plication by (dint

0 )⊤ sums angle changes about interior primal ver-
tices, and (dint

0 )⊤α = 0 enforces no internal singularities.

For globally well-defined fields, the sum of angle changes along
any loop of dual edges (called cycles by [CDS10]) must be equal to
2πk, k ∈Z. As this is already enforced about local cycles, we need
only enforce it further on a set of homology generators for Ω. With
a planar narrowband, the boundary cycles of the dual mesh may
be chosen as a set of generators. Let (∂Ω)i denote the ith bound-
ary component, and let ki denote the integer number of rotations
induced by the connection about (∂Ω)i. The set of ki’s is topolog-
ically constrained by a discrete Poincaré-Hopf formula (Eq. 3). If
the sum of angle changes is a multiple of 2π for every loop of dual
edges, the connection is called trivial.

Connection Integration. Given a trivial connection on a con-
nected component of Ω, there is one more degree of freedom in
specifying a field: the field angle φ at some root pixel (dual vertex).
From there, one integrates the connection along a spanning tree in
the dual mesh to get a full vector field. In particular, let θi denote
the representative vector angle at a dual vertex vi, and let γi denote
the unique path to vi from the root of the spanning tree. Then an
expression for θi is:

θi = φ+ ∑
i j∈γi

αi j (1)

In the expression above, αi j =−α ji, so the orientation of the edge
is accounted for. In general, a narrowband domain consists of many
connected components, so there is an additional degree of freedom
φ j for each of these. They denote the field angle at each root pixel
in a spanning forest of the narrowband dual mesh.

Boundary Indices & Poincaré-Hopf. For a given oriented bound-
ary (∂Ω)i, we have that ki =

1
2π ∑i j∈(∂Ω)i

αi j. The direction of
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Figure 4: Field Optimization Overview. The first step of our field optimization generates a cross field (a) which aligns well with the tangent in
most places, but has singularities and fails near junctions and curve endpoints. Due to these singularities, one cannot extract a singularity-
free line field directly, as is seen in (b). Integrated field discontinuities are denoted with dashed green lines. Our optimal-transport-based
matching pairs singularities of opposite signs or pushes them to the boundary, e.g. (a), and the result post-combing is seen in (c). The final
nonconvex solve allows our fields to be non-orthogonal achieving a smooth, singularity-free, and aligned field.

boundary traversal follows convention, keeping the interior of Ω to
the left (thus, counterclockwise on exterior boundaries and clock-
wise on interior boundaries). Boundary indices are defined:

indα((∂Ω)i) =

{
1− ki if γ is an exterior boundary
−1− ki if γ is an interior boundary

(2)

Notably, the n boundary indices for a connected component of Ω

must satisfy the Poincaré-Hopf formula:
n

∑
i=1

indα((∂Ω)i) = χ(Ω) = 2−n (3)

where χ denotes the Euler characteristic. Note that this holds
over all connected components of our narrowband. Intuitively, the
boundary indices denote the number and kind of corners and sharp
turns implied by the frame field. Some simple examples are in the
supplementary materials, for readers unfamiliar with this concept.

Desired boundary indices may also be enforced with a linear
constraint. We construct a matrix H ∈ Rn×|Eint| where each row
corresponds to a boundary cycle (∂Ω)i:

H( j,k)=


1 if jk ∈ (∂Ω)i and jk is with traversal direction
−1 if jk ∈ (∂Ω)i and jk is against traversal direction
0 if jk /∈ (∂Ω)i

(4)
If we gather the desired ki into a vector k, the boundary index con-
straints are succinctly expressed as Hα = k.

4. Method

Our method follows a sequence of three steps: an initial quadratic
solve for a roughly-aligned cross field, an identification and comb-
ing of the singularities, and a last nonconvex solve to obtain a
smoother, better-aligned non-orthogonal field. An overview of how
this procedure operates near a junction is shown in Fig. 4.

4.1. Convex Initialization

Our main optimization (Sec. 4.3) is nonconvex, hence its final qual-
ity depends on the initial guess. In this section, we use a linear

solve to optimize a quadratic energy, and produce a cross field that
is aligned with the drawing, but likely has singularities.

A complex vector f ∈ C|F| represents a cross field on Ω, where
fi is the representative vector on pixel i (see Sec. 3.1). We formulate
the following objective, similar to [KCPS13]:

min
f∈C|F|

(
1

AS
f⊤∆ f +

w
AA

∑
i:gi ̸=0

| fi −g4
i |2
)
, (5)

where ∆ = dint
1 (dint

1 )⊤ is a discrete Laplacian for functions over
the pixels, and gi ∈ C is the normalized image gradient at pixel
i. Here, dint

1 is the |F| × |Eint| submatrix of d1, with columns cor-
responding to the interior edges of the primal mesh (and edges of
the dual mesh). The first term is a Dirichlet energy, measuring field
smoothness, and the second term expresses alignment to the image
gradient. We used w = 1/8 in our experiments, which is a relative
weighting parameter between these two terms. The two normaliza-
tion factors, AS and AA, are respectively the number of dual edges
and the number of pixels with non-zero image gradient.

The resulting linear KKT system is:(
1

AS
∆+

w
AA

P
)

f =
w
AA

Pg4, (6)

where P is a diagonal matrix selecting pixels with gi ̸= 0. The sys-
tem matrix is sparse, symmetric, and positive semidefinite, so we
solve the system via preconditioned conjugate gradients. An exam-
ple optimum may be seen in Fig. 4. The result tends to aligns well
in most regions, but there may be many internal singularities, often
arising at junctions and curve endpoints.

4.2. Field Combing for Index Extraction and Assignment

We ultimately represent our frame fields as pairs of line fields, and
require them to satisfy particular index constraints to avoid internal
singularities. In this step, we use the cross field to find one of these
line fields, and we “comb” away the singularities to determine the
boundary index constraints we will impose.

Having computed the representative vector field f of the opti-
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mal cross field, we compute the connection induced by this repre-
sentative vector field: α

crs
i j = Arg

(
f j
fi

)
. A naive attempt at finding

the connection for a non-singular line field would be to consider
α

crs
i j /2, as the representative vector for an axis of the cross field ro-

tates at half the rate of the representative vector for the cross field.
Unfortunately, this fails to represent a trivial connection for a line
field as can be seen in Fig. 4b.

Failure occurs at internal singularities of the cross field, which
may be found by computing (dint

0 )⊤α
crs ∈ {−1,0,+1}|Vint|. Non-

zero elements denote interior singularities of those indices. Our sin-
gularity indices are bounded by 1 in absolute value because our
dual faces have four edges and |αcrs

i j |< π.

To eliminate these singularities, we perform an optimal-
transport-based matching of the positive and negative singularities
with each other, or with the boundaries. We then push these singu-
larities along their matching paths to eliminate each other or con-
tribute to a particular boundary index. Before getting into problem
formulation details, we note that we provide a few local examples
of this matching in the supplementary for intuition.

Pushing singularities. The initial cross field
is often well-aligned along the boundaries, so
we aim to keep the individual crosses the same
at each pixel. We achieve this while still shift-
ing singularities by modifying α

crs by incre-
ments of 2π as we cross each dual edge. This
may be seen in the inset figure, where one can
see that this is equivalent to reversing the di-
rection of interpolation of the representative
vectors. In particular, an index 1 singularity is
pushed upwards, subtracting 2π from the orig-
inal connection, and reversing the direction of
interpolation. We use α

cmb to denote the new
connection and when we push a singularity
over an edge i j the appropriate change is:

α
cmb
i j =

{
α

crs ∓2π if i j is with edge orientation
α

crs ±2π if i j is against edge orientation
(7)

In the above expression, the top/bottom operands correspond to
pushing of a positive/negative singularity, respectively.

These changes could lead to large increases in ∥α
crs∥2, so we

define two weighted directed graphs that specify the metric for our
singularity matching problem. They motivate smaller increases in
smoothness as we push singularities about Ω, and also incentivize
movement of singularities through regions where | f | is small. We
need a directed graph each for pushing positive and negative sin-
gularities, with weights denoted w+

i j and w−
i j , respectively. The ver-

tices and edges are those of the primal mesh.

In the push of a positive singularity depicted in the inset fig-
ure above, the increase in smoothness is (αcrs − 2π)2 − (αcrs)2 =
4π(π−α

crs). Similar calculations motivate the following weights
for our graphs:

w±
i j =


(| fi|+ | f j|)(π∓α

crs) if i j interior, with orientation
(| fi|+ | f j|)(π±α

crs) if i j interior, against orientation
∞ if i j boundary

The norm-based coefficients (| fi| + | f j|) motivate singularity
movement along paths where | f | is small. These weights are all
positive as α

crs ∈ (−π,π), so we use Dijkstra’s algorithm to calcu-
late distances on these weighted graphs.

Optimal transport matching. Let us define our optimal transport
problem, with S−,S+ ⊂Vint denoting the sets of positive and neg-
ative singularities, respectively. Let p−i and p+j denote the ith neg-

ative singularity and the jth positive singularity, respectively. Then
we consider a cost matrix C ∈R(|S−|+1)×(|S+|+1):

C(i, j) =


d−(p−i , p+j ) if 1 ≤ i ≤ |S−| and 1 ≤ j ≤ |S+|
d−(p−i ,∂Ω) if 1 ≤ i ≤ |S−| and j = |S+|+1
d+(p+j ,∂Ω) if i = |S−|+1 and 1 ≤ j ≤ |S+|
∞ if i = |S−|+1 and j = |S+|+1

In the above, d−(·, ·) and d+(·, ·) denote distances on the +1 and
-1 directed graphs. The resulting linear program solves for a matrix
T ∈R(|S−|+1)×(|S+|+1) as follows:

min
T

⟨C,T ⟩

s.t.∑
j

Ti j = 1, for 1 ≤ i ≤ |S−|

∑
i

Ti j = 1, for 1 ≤ j ≤ |S+|

Ti j ≥ 0, ∀i, j.

(8)

The narrowband boundary serves as an infinite source and sink
which turns this into an unbalanced optimal transport problem, with
a binary solution. It matches each singularity with one of the oppo-
site sign or to a nearest boundary vertex. A simple reformulation
and argument shows that the resulting transport is going to be a
binary matching of negative singularities and positive singularities,
with some being pushed to boundaries. See the appendix for a proof
of the proposition below.

Proposition 1 The optimization problem (8) has a binary solution
Ti j ∈ {0,1}(|S

−|+1)×(|S+|+1).

After the matches are found, we push the singularities along
their shortest paths, modifying α

crs into α
cmb as specified in Eq.

7. This eliminates interior singularities and adds contributions to
the boundary indices. In particular, when a singularity is pushed to
the boundary, its index is added to the boundary index of α

crs.

Next, we divide α
cmb by 2 in order to obtain a singularity-free

line field to start the nonconvex optimization (Sec. 4.3). Let us de-
note this connection α0 = α

cmb

2 . Lastly, for each boundary compo-
nent (∂Ω)i, we convert the cross field index indαcmb((∂Ω)i) into the
line field index indα0((∂Ω)i) with the following formula:

indα0((∂Ω)i) =

{
1
2 (indαcmb((∂Ω)i)+1), if (∂Ω)i exterior
1
2 (indαcmb((∂Ω)i)−1), if (∂Ω)i interior.

(9)

4.3. Nonconvex frame field optimization

Our final step is the nonconvex optimization that uses the con-
straints computed in the previous stages to avoid singularities and
starts from a feasible initial point computed in Sec. 4.2.
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Frame field representation. To allow for non-orthogonal frame
fields, we represent them with a pair of unit-norm line fields. As
discussed in Sec. 3.1, these may be represented by unit-norm rep-
resentative vectors, illustrated with dashed lines in the inset. We
choose an angle-based representation, with θ1 denoting the (com-
plex) argument of the first representative vector (blue), and θ1 +θ2
denoting the argument of the second representative vector (red).

θ2 θ1

For our optimization, we encode the frame
field as three unknowns: (1) φ ∈ Rm, i.e. one
value per connected component of the image,
(2) α ∈ R|Eint|, i.e. one value per dual edge,
and (3) θ2 ∈R|F|, i.e. one value per pixel. As
described in Sec. 3.3, φ encodes absolute rota-
tion of the root (for one of the line fields) for
each component and α stores the connection angles per dual edge.
θ2 are the relative angles between the representative vectors as in
the inset, and θ1 can be computed via integration of α over the tree,
as in Eq. 1. Note that for each root, θ1 = φ.

Linear index constraints. We now define the linear constraints
using the formalism of Sec. 3.3 that make our frame fields
singularity-free. Precisely, we require that (1) sum of angle changes
along a four-pixel loop around each interior primal vertex (i.e. pixel
corner) should be zero, and (2) along each boundary, the line field
should have the indices computed in Eq. 9. We only enforce those
constraints on the line field represented by θ1; the objective func-
tion below controls the behavior of the other line field.

We gather these constraints in the standard form as Ax= b, where
A ∈R|Vint|+n×|Eint| and b ∈R|Vint|+n defined as

A =

[
(dint

0 )⊺

H

]
, b =

[
0
k

]
(10)

where H is defined in Eq. 4, and k is defined in Sec. 3.3 with the
indices from Eq. 9.

Objective function. Within this constrained space, we are looking
for a smooth frame field aligned to the input drawing. Our objective
function is a sum of three terms, controlling alignment to the line
drawing, smoothness, and a barrier term preventing the two line
fields from passing through each other and switching:

f (φ,α,θ2) =
1

AA
EAlignment +

wB

AB
EBarrier +

wS
AS

ESmoothness, (11)

where wB = 0.5,wS = 5 for all our experiments.

ALIGNMENT. To express alignment to the line drawing, we aim
to have at every pixel at least one of the line fields parallel to the
local tangent, or, equivalently, perpendicular to the normalized im-
age gradient g represented as a complex number. The second sum-
mand term below expresses this condition as a product of non-
negative values. The first/second terms in the product vanish if the
first/second line fields are perpendicular to the image gradient, re-
spectively. A graph of this term may be seen in blue in Fig. 5.

EAlignment = ∑
i:gi ̸=0

[
νEν +

[
cos
(
(θ1)i − arg(g2

i )
)
+1
]

×
[
cos
(
(θ1)i +(θ2)i − arg(g2

i )
)
+1
]]

(12)

Figure 5: Regularizing effect of Eν. The left graph shows the sum-
mand terms for a pixel in Eq. (12), with the product term in blue
(taller peaks) and Eν in magenta (lower peaks, with an exaggerated
ν = 0.4 weight). The right graph shows the resulting sum EAlignment
in red, with clearly non-degenerate minima. Graphs created with
the GeoGebra graphing application [HBA∗23].

The first summand term Eν helps to regularize the alignment term
by ensuring that local minima are nondegenerate, and pushes the
line fields away from being aligned with each other.

Eν = ∑
i:gi ̸=0

[−cos((θ1)i −g2
i )+1][−cos((θ1)i +(θ2)i −g2

θi)+1]

(13)
The term introduces periodic peaks around function minima where
the line fields are aligned, and ν is a constant to scale the strength
of this term. A graph of Eν may be seen in Fig. 5 in magenta. We
used ν = 0.05 for all our experiments.
SMOOTHNESS. We express smoothness of the frame field as two
Dirichlet energy terms, one for each line field:

ESmoothness = α
⊤

α+β
⊤

β, (14)

where β is the change in the second line field over each dual edge.
As the absolute angle of the second line field is θ1 + θ2, and α

measures the change in θ1, for each dual edge (i, j) we define

βi j = (θ2) j − (θ2)i +αi j. (15)

BARRIER. Finally, we use the standard logarithmic barrier
(inset figure) to prevent the two axes from
crossing each other and generating axis switch
singularities (see Sec. 3.1):

EBarrier = ∑
i:gi ̸=0

− log(θ2)i − log(2π− (θ2)i)

(16)
With the axes unable to switch, the index con-

straints on the first line field are automatically imposed on the sec-
ond line field.

Optimization. We use Newton’s method with the linear con-
straints, continuing until the gradient norm of the objective func-
tion falls under 10−6. Our starting point is (φ0,α0,π1|F|) where
α0 was computed in Sec. 4.2 and θ2 = π for each pixel. φ0 at a root
pixel p of the spanning forest is Arg( fp)/2, so that we start with
the same underlying crosses as those obtained in the convex solve,
as seen in Fig. 4c.
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4.4. Tangent selection/Interface with rest of pipeline

The vectorization methods we used [BS19, PNCB21] also require
per-pixel selection of one of the axes to be the curve tangent, as
the pipeline begins by tracing the frame field along the tangent di-
rections. To this end, we first measure the per-pixel alignment of
each axis, comparing it with the axis perpendicular to the image
gradient, represented by −g2

i :

ρ1 = |eiθ1 +g2
i |2

ρ2 = |ei(θ1+θ2)+g2
i |2

(17)

However, certain pixels have gi = 0, e.g., in the middle of a stroke
when pixels are uniformly black, and others might contain local
noise affecting the image gradient and the local tangent direc-
tion. To alleviate these effects, we perform Laplacian smoothing
of ρ1,ρ2 by minimizing the following quadratic energy:

min
ρ′

i

1
2

λρ
′T
i ∆ρ

′
i +

1
2
(ρ′

i −ρi)
T P(ρ′

i −ρi), i = 1,2

In the above, ∆ is the Laplacian operator and P is the diagonal ma-
trix identifying pixels with gi ̸= 0, both used in Sec. 4.1. In our
experiments, λ = 5. Finally, we define the tangent axis to be the
one with the smaller ρ

′
i per pixel.

5. Results and Validation

We use our singularity-free frame fields as a drop-in replacement
for the frame fields used originally by [BS19] and [PNCB21], while
maintaining the rest of their pipelines. Several comparisons of the
vectorizations obtained with our frame fields and those obtained
with the original frame fields are in Figures 6-8. Our results high-
light clear improvements in the final vectorizations, but may still
contain artifacts and errors due to the tracing pipelines of [BS19]
and [PNCB21]. For this reason, we include full frame field compar-
isons in the supplementary materials, which demonstrate our supe-
rior fields.

Since there is no perceptually aware metric available — which
would be the only true quantitative measure of visual vectorization
quality [PNCB21], we do not run the benchmark of [YVG20] on
our results. This benchmark uses purely geometric measurements
like Chamfer distance. In the supplementary materials, we show
that the Chamfer distances between our vectorizations and those
of [BS19] or [PNCB21] are very small (< 0.3 pixels) despite clear
visual differences. This brings into question the utility of such met-
rics for detecting geometrically small, but perceptually meaningful
differences in vectorizations.

We speculate that a useful metric of vectorization quality would
take into account both perceptually important differences, e.g., in
tangents, topology, and curvature, as well as usability of vectoriza-
tions. Usability is clearly tied to the number and connectivity of
curves. The challenging problem of quantifying and making pre-
cise this group of criteria is one that we leave to future work.

In [SBBB20], each singularity adds a cut in the parameteriza-
tion, increasing the number of integer variables and runtime. Their
performance, and resultant tracing quality might also benefit from
our frame fields. Since they use the same frame fields as [BS19]

and [PNCB21], we compare our method against these instead, as
the first frame-field–based vectorization method and the state of
the art, respectively.

5.1. Comparison to [BS19]

As our frame fields contain no singularities, tracing produces con-
tinuous streamlines throughout the entire domain, instead of inter-
rupted streamlines in [BS19] (Fig. 2b). Furthermore, their method
relies on heuristics to alleviate the effect of singularities, which we
no longer need.

In particular, [BS19] eliminates the singular points by relaxing
their alignment term in those areas, estimating that a total of 1%
of the dark pixels in the narrowband are affected. This procedure
successively reduces the number of singularities from hundreds to
tens, typically. Final singularity counts for [BS19] are given for
all displayed results in Table 1. This methodology discards infor-
mation about the image, often leading to imprecise alignment or
incorrect topology (Fig. 2b, 2d, 6, 7). We solve this issue by gener-
ating a higher-quality field, directly improving the streamlines and
resultant vectorization. Full streamline comparisons for our method
and [BS19] are in the supplementary material.

Using our frame fields in place of the original frame fields as in-
put to the tracing method of [BS19] results in fewer spurious vec-
torization branches, as shown in both Figs. 6 and 7. Our higher-
quality frame fields are also reflected in improved junction tracing,
e.g., in Fig. 6 (donkey, human). Here, the junctions and zigzags pro-
duced by our method yield vectorizations closer to the input image.
This is in contrast to the method of [BS19], which initially produces
a lower-quality field, yielding slightly inaccurate topology, propa-
gating the field error down the pipeline, and ultimately negatively
affecting the quality of these regions.

5.2. Comparison to [PNCB21]

The state-of-the-art line drawing vectorization algorithm of
[PNCB21] relies on frame fields both for the topology inference,
when finding paths between predicted keypoints, and for the curve
geometry in their polyvector flow. When run with our frame fields,
their method produces vectorizations which are topologically more
precise at junctions, thick strokes, and fills, as compared to their
original frame fields. In particular, our frame fields improve the
resolution of Y-junctions (Fig. 8, fish) and correctly resolve am-
biguous connectivity (Fig. 8, cup stem).

5.3. Parameters

Here we discuss the relative effect of the parameters in the con-
vex and nonconvex optimizations (Sec. 4.1, 4.3). We found that
the w weight measuring the relative importance of alignment ver-
sus smoothness in the convex solve (high w means more emphasis
on alignment) had the most impact on the final results. In partic-
ular, w controls the transition threshold between a T-junction and
a Y-junction, as can be seen in Fig. 9. A T-junction is one where
the intersecting curve tangents align to different field axes, and a
Y-junction is one where they align to just one field axis. In our ex-
periments, we used w = 0.125.
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Figure 6: Compared to the original results of [BS19] (left, red), the superior quality of the frame fields improves the results of their tracing
method (green curves, right). Input images: donkey from https://www.easy-drawings-and-sketches.com/ ©Ivan Huska, sitting gesture from
Sketch2Pose dataset [BB22]
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Figure 7: The vectorization method of [BS19] (red, left) vs our method (green, right). The singularities and other imperfections cause artifacts
in the final vectorizations of [BS19]. Our results do not suffer from these issues. Input images: rose from https://www.easy-drawings-and-
sketches.com/ ©Ivan Huska, sitting pose from Sketch2Pose dataset [BB22], ©Olga Posukh.

With respect to the wB and wS weights for the nonconvex op-
timization, we found them to have less pronounced influence. In
particular, it seems like the starting point of the nonconvex opti-
mization obtained via our convex solve and subsequent combing
results in similar end results even when varying wB and wS. Lastly,
we adjust the alignment term with the coefficient ν to ensure better-
conditioned local minima, increasing rate of convergence and of-
fering more stable alignment. In all of our experiments, we used
wB = 0.5,wS = 5,ν = 0.05.

Nonconvex ablation study. For completeness, we illustrate the
necessity of each term in our nonconvex objective by performing
an ablation study in Fig. 12. We do not omit the barrier term in our
study as it clearly allows for axis switch singularities (Fig. 2a, 2b)
in some instances.

5.4. Robustness

Our method is robust to various changes in image resolution, input
image topology, and input stroke width, as well as density. This
is partially due to the normalization terms within the optimization
objectives (Eq. (5), (11)). This is demonstrated across our example
inputs (Figs. 6-8), where, e.g., the stroke widths range from 1 pixel

to 19 pixels (parts of the pig, see supplementary materials). We also
have explicit tests of robustness to resolution (Fig. 11) and overlaid
Gaussian noise (Fig. 10).

5.5. Processing Time

We ran our experiments on a Lenovo IdeaPad 3i laptop, with an
Intel Core i3-1215U Processor with 8 GB of RAM. The initial con-
vex solve, the linear solve for the optimal transport (OT) match-
ing problem (Sec. 4.2), and the analytical computations of the
Hessians and the gradients have been computed in Matlab. Then,
we implemented the nonlinear optimization (Sec. 4.3) in C++ us-
ing the IPOPT library. Table 1 presents the run times in seconds,
where Opt. Time represents the time of the convex optimization,
the OT matching problem, and the nonconvex optimization time.
Vect. Time (vectorization time) represents the time (in seconds)
from when the frame field is entered into the vectorization pipeline
and until the vectorization algorithm produces an SVG file with the
tracing. Lastly, we also report for each input the number of singu-
larities that result from [BS19]’s method. Our output is singularity-
free.
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Figure 8: Compared with the results of Polyvector Flow by [PNCB21] with their original frame fields (left, orange/brown), using our frame
field design with their tracing method can substantially improve the final result (right, green). Since we kept the tracing method as is, all
the improvements are solely due to the absence of singularities and higher overall quality of the frame field. Inputs from https://www.easy-
drawings-and-sketches.com/ ©Ivan Huska.

Figure 9: The effect of the w weight can be seen on the final result-
ing field. Assigning greater importance to alignment means that
less of an angle is needed for a T-junction to become a Y-junction.

5.6. Limitations

Like other vectorization algorithms for line drawings from this cat-
egory, such as those of [BS19], [BLW16], [FLB16], [NHS∗13],
and [PNCB21], our method works best on drawings without exten-
sive shading. Furthermore, our method is dependent on determining

the narrowband, done as a simple color intensity threshold τ, which
may pose challenges on images with a very noisy background. Sim-
ilarly, our method suffers when contrast adjustment is poor, which
we demonstrate in the supplementary materials. These shortcom-
ings are shared by narrowband-based methods [BS19, PNCB21],
and we envision using more advanced learning-based approaches
for background/foreground extraction as a future remedy. Lastly,
we acknowledge that the current implementation of the method has
relatively long runtimes, and we might look to improve these with
more sophisticated optimization techniques in later investigations.

6. Conclusions and Future Work

Our method generates singularity-free frame fields, a foundational
component that had been missing from state-of-the-art frame field–
based vectorization algorithms. To this end, we leverage the frame-
work of trivial connections, coupled with a simpler frame field rep-
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Original image 10% noise 20% noise 30% noise

20% noise10% noise 30% noiseOriginal Image

Figure 10: Even when the narrowband is very noisy, our method is
able to discern the correct topology of the drawing.

335 x 361 252 x 271 168 x 181

335 x 361 252 x 271 168 x 181

Figure 11: Our method is robust to changes in resolution. At very
low resolutions, it is possible for some small details to be indistin-
guishable, and thus missing in the final vectorization. However, the
frame fields are consistently high-quality for all resolutions (bottom
row).

Fig. [BS19] # Dark Cvx OT Ncvx Vect
Sings Pixels Opt (s) (s) Opt (s) time (s)

Cup 6, 8 14 41k 12 5 259 46
Sketch1 6 8 25k 8 11 125 24
Sketch2 7 24 51k 48 447 1217 260
Donkey 6 8 30k 13 3 778 45
Elephant S 12 35k 18 8 465 41
Goldfish 8 4 39k 12 10 461 53
Hippo S, 8 24 25k 9 10 208 27
Horse S 34 103k 280 192 618 132
Kitten S 0 29k 8 13 668 40
Pig S 43 28k 10 10 389 144
Rose 7 0 19k 4 3 194 50
Trumpet S 12 14k 2 1 148 12

Table 1: Runtime statistics. Left to right, the runtime columns
show seconds taken for: the initial convex optimization, the opti-
mal transport matching, the nonconvex field optimization, and field
tracing and vectorization.

resentation, and an optimal-transport-based combing of a convex
solve for the initialization.

The results are noticeably improved frame fields in terms of
alignment and smoothness that are guaranteed to have no singu-
larities inside the domain. This assists in producing quality vector-
izations as can be seen in Sec. 5. Our frame fields may be used as a
drop-in replacement for the frame-field–based vectorization algo-
rithms. A natural avenue of future work would be to improve upon
the tracing pipelines of [BS19] and [PNCB21], to further leverage
our improved fields and remove the remaining artifacts that they
sometimes introduce.

It would also be interesting to extend our work to different do-
mains requiring higher-valence junctions and thus frame fields of
higher order. Furthermore, while we show our results on clean dig-
ital image drawings, pencil-based drawings with minor shading,
and parallel hatching (horse drawing, supplementary materials), we
leave vectorization of complex hatching styles and fills to future
work.
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(a) (b) (c) (d)

Figure 12: Ablation study: (a) the removal of the anti-align term (Eν) can sometimes lead to both field axes being partially aligned, (b)
disabling the smoothness term gives too-quickly varying fields that align with the noisy gradient, (c) disabling the alignment term leads to
completely unaligned fields, and (d) illustrates vectorization curves and the field when all terms are used. In cases (a)-(c), the deteriorated
field degrades the subsequent tracing and makes correct topology identification more difficult. For this particular example, the differences
between (a) and (d) are hard to spot, but a clearer example is given in the supplementary materials.
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Appendix A: Proof of Proposition 1

Let us use Cor. 11.3.1 and Prop. 11.3.15 of [All07] to argue that
we have a linear equality constraint matrix which is totally uni-
modular, and a space of feasible points that is bounded. First, let us
reformulate our problem:

max
T

−⟨C,T ⟩

s.t. ∑
j

Ti j = 1, for 1 ≤ i ≤ |S−|

−∑
i

Ti j =−1, for 1 ≤ j ≤ |S+|

Ti j ≥ 0, ∀i, j

Ti j = 0, for i = |S−|+1 and j = |S+|+1.

(18)

In particular, we have turned the optimization problem into a maxi-
mization, multiplied the second set of constraints by −1, and added
a simple constraint that eliminates the last variable (which imparts
infinite cost so does not change the problem). With the optimization
problem written as is, each undetermined Ti j appears no more than
twice in the constraints, and with opposite sign coefficients ±1, if
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it does. Thus, Prop. 11.3.15 implies that the equality constraint ma-
trix is totally unimodular. Furthermore, with the addition of the last
constraint, we have that the space of feasible points is bounded, as
Ti j ∈ [0,1] for all i, j. Thus, by Cor. 11.3.1, we have existence of an
integer solution to the problem, and that it is binary by the bounds
in the previous sentence.

submitted to Eurographics Symposium on Geometry Processing (2023)


