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Works of Dehn [De] and Brooks, Smith, Stone, and Tutte [BSST] have noted a classical

correspondence between planar electrical networks and square tilings of a Euclidean rect-

angle. In this thesis, a generalization of this result is proven for a closed, orientable surface

Σg of genus g ≥ 1 with a CW decomposition Γ, and a generic non-zero first homology

class. From these data, a square-tiled flat cone metric on Σg is produced. The construc-

tion utilizes a discrete harmonic representative, and a discrete Poincaré-Hopf theorem is

obtained in the process.

Similar results for non-generic non-zero homology class are also obtained where the

metric and tiling are constructed on a surface of equal or lower genus. Additionally,

we obtain similar constructions of square-tiled metrics on surfaces with boundary via

modification of the harmonicity conditions. Finally, it is simple to obtain rectangle-tiled

flat cone metrics with the extra data of a resistance function r on the edges of Γ, and the

necessary changes are described.
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Chapter 1

Introduction

Constructing geometric structures on surfaces from combinatorial data has a long history

in geometry and topology. In this thesis, we introduce and investigate one such method

that produces flat cone metrics on surfaces arising from square tilings.

1.1 A classical result

The first insight in this direction was made by Dehn [De] and expounded upon by Brooks,

Smith, Stone, and Tutte [BSST]. These authors discovered a correspondence between

planar electrical networks and square tilings of a rectangle. Here is an illustrative example:

B

A

Y = 5

Figure 1.1

Let us begin with the simple definitions of a planar electrical network and a square
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tiling of a rectangle.

Definition 1.1.1. A planar electrical network is a triple (G, b, Y ) consisting of a planar,

connected, directed graph G, a non-loop edge b ∈ G to designate the battery edge, and a

number Y ∈ R to denote the voltage to be applied over b.

In such a network, each edge is thought of as having unit resistance, giving us a unique

circuit solution to Kirchhoff’s laws. Letting E denote the set of edges of G, we denote this

circuit solution with a function c : E \ {b} → R, describing the current through each edge.

Note that the directions on the edges of the graph are suppressed in Figure 1.1 above. We

also note that for the statement of their result, we will fix an embedding of G into the

plane, such that b is a boundary of the exterior face.

Definition 1.1.2. A square tiling of a rectangle is a covering by squares with disjoint

interiors, of a Euclidean rectangle with designated top, bottom, left, and right sides. Note

that a square may also be a point, with empty interior.

With designated sides, we may also refer to horizontal and vertical line segments within

such a tiling, which are connected subsets composed of the horizontal and vertical sides

of the square tiles, respectively.

Let us briefly describe how a square tiling is associated with a planar network, and

its circuit solution. In short, each resistor edge e corresponds to a square whose side

length is the magnitude of the current through the edge. Furthermore, each vertex in

the circuit corresponds to a horizontal segment, and each face with boundary made up of

resistor edges corresponds to a vertical segment. Lastly, the positions of the squares and

the segments with respect to each other reflect the topology of the network. In essence,

the tiling becomes a nice visual representation of the circuit solution.

In Figure 1.1, the segment correspondences are color-coded, and the diagram serves

as a clear example of these principles. The precise definition of a tiling being associated

with a network has been deferred for the sake of brevity. It is given as Definition 2.4.1.

In [BSST], the authors’ methods produce an associated square tiling for any planar
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electrical network, proving the following theorem holds:

Theorem 2.5.1. (Brooks, Smith, Stone, Tutte [BSST]) Given a planar electrical

network (G, b, Y ) with a unique circuit solution c : E \ {b} → R, and a fixed embedding

of G in the plane, there is a unique associated square tiling of a rectangle of height Y and

width I, the total current through the network.

1.2 Our generalization

In this thesis, the main result is an extension of Theorem 2.5.1 to the case of oriented,

closed surfaces, following ideas of Calegari [Cal] and Kenyon. We consider a surface, Σg,

of genus g ≥ 1, with a CW decomposition Γ. If we consider a generic non-zero homology

class [σ] ∈ HΓ
1 (Σg,R) (the cellular homology with respect to Γ), it will have a unique

discrete harmonic representative σh with non-zero coefficients for each edge. The edges of

Γ may be thought of as being analogous to the planar network, while σh may be thought

of as a local circuit solution.

From σh, a square-tiled flat cone metric is produced. An illustration of this metric for

g = 2 and a particular CW decomposition is shown in the following diagram:
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Figure 1.2

The tiling that is produced consists of marked squares which are Euclidean squares

with designated top, bottom, left, and right sides. These sides are closed sets, so that a

pair of sides may share a corner point. If a square si is in a tiling, then we denote these

sides with sti, s
b
i , s

l
i, and sri , respectively. A marked square in a surface with a flat cone

metric is defined to be the image of a continuous map on a marked square which is an

isometric embedding on the interior. Again, we allow that a marked square s may be a

point, with empty interior, in which case sti = sbi = sli = sri = s.

Definition 1.2.1. A marked oriented square tiling of a flat cone metric d on a closed surface

Σg is a covering by marked squares s1, s2, . . . , sm, with disjoint interior so that:

m⋃
i=1

sti =

m⋃
i=1

sbi &
m⋃
i=1

sli =
m⋃
i=1

sri

In any such tiling, we again use the terminology of horizontal and vertical line segments

to refer to connected subsets composed of the horizontal and vertical sides of the square
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tiles. For any such tiling, the cone points of the flat cone metric d must have angles in

2πN, and branching of the horizontal and vertical segments in such a tiling can occur at

these cone points.

Analogous to the classical case, there is a definition for a marked oriented square tiling

to be associated with a discrete harmonic 1-chain σh. The precise statement is again

deferred (Definition 3.2.1), but it may be easily described if we think of σh as designating

a current flow along the edges of Γ. In particular, the coefficient ci of each edge ei may

be thought of as describing the current flow along ei. Then we again have the structural

correspondences between edges, vertices, and faces of Γ and squares, horizontal segments,

and vertical segments. Their relative positions again reflect the topology of Γ.

The result that we prove is below:

Theorem 3.3.1. Given a closed, oriented surface Σg of genus g ≥ 1, a generic [σ] ∈

H1(Σg,R)\{0}, and a CW decomposition Γ with oriented edges, there exists a marked

oriented square tiling of a flat cone metric d on Σg that is associated with σh, the unique

harmonic representative of [σ] in the cellular homology.

The generic condition on [σ] merely requires that σh have non-zero coefficients ci for each

edge ei.

The proof of the theorem is by construction, utilizing information from σh to identify

marked squares along their boundaries by isometric orientation-reversing identifications.

A slight modification of this construction allows for a simple proof of a discrete Poincaré-

Hopf theorem. Lastly, the tiling and metric produced in the construction are just one of a

family of such tilings and metrics. It is conjectured that this family forms a contractible

(2g− 2)-dimensional CW complex. Details of these statements and more are given in the

third chapter.

Lastly, we’d like to make a note on interpretation of these results. The marked oriented

square tiling gives rise to a holomorphic 1-form and a complex structure on Σg. This

result, along with the classical one, may be viewed as discrete realizations of the intuition
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of Klein, as cited by Poincaré [P]. He obtains a complex structure locally on a surface by

identifying it with a metallic sheet and passing current through it. The current flow lines

and equipotential lines at any point on the surface give locally orthogonal coordinates,

and thus a complex structure.

1.3 Further generalizations

In the last chapter, we investigate further generalizations of Theorem 3.3.1, which we

mention briefly here. First, we consider the non-generic case, where [σ] has a harmonic

representative σh with some zero coefficients. In this case, we may still perform our

construction, but the resulting metric and marked oriented tiling lies on a surface Sσ of

equal or lesser genus. To determine the topology, a canonical graph Gg related to Σg and Γ

is investigated, along with particular connected subgraphs {Hj}lj=1 derived from the zero

coefficients. Additionally, we need to include information about vertices incident only to

edges with zero coefficients, and faces bounded only by edges with zero coefficients. We

denote these sets with V0 and F0, respectively. Ultimately, we obtain a formula for the

genus in terms of |V0|, |F0|, and the Euler characteristics, χ(Hj). The main result here is

the following theorem:

Theorem 4.1.1. Given a closed, oriented surface Σg of genus g ≥ 1, a non-generic [σ] ∈

H1(Σg,R)\{0}, and a CW decomposition Γ with oriented edges, there exists a marked

oriented square tiling of a flat cone metric d on a surface Sσ of genus g0 ≤ g that is

associated with σh, the unique harmonic representative of [σ]. The genus g0 is given by

the formula:

g0 = g +
1

2

l∑
j=1

(χ(Hj)− 1) +
|V0|+ |F0|

2

Secondly, we investigate modifying the harmonic condition at certain vertices and faces.

In particular, we may ask that a 1-chain fail to be closed at certain vertices and co-closed

on certain faces. Not all such conditions are achievable, but we determine which ones are,

and define these conditions to be modified harmonic conditions. Given such conditions,
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we again find an identification between such modified harmonic 1-chains and homological

classes, and we denote the modified harmonic 1-chain with σmh. After performing our

construction, this gives rise to boundary components for each vertex and face at which

harmonicity fails, and we obtain square-tiled flat cone metrics on surfaces with boundary.

In particular, we prove the following theorem:

Theorem 4.2.1. Given a closed, oriented surface Σg, a generic [σ] ∈ H1(Σg,R)\{0}, and a

CW decomposition Γ with oriented edges, there exists a marked oriented square tiling of

a flat cone metric d on Σg,n that is associated with σmh, where n is the sum of the number

of vertices and faces at which σmh fails to be harmonic.

The definitions for a marked oriented square tiling and for such a tiling to be associated

to a modified harmonic 1-chain must be changed slightly in the case of surfaces with

boundary. These are given in subsection 4.2.2.

Finally, it is simple to generalize our construction to obtain rectangular tilings with the

additional data of a resistance function r on the edges of Γ. The resistance on each edge

gives the aspect ratio of the corresponding rectangle. The statement of these results are

simple adjustments to the theorems already stated, so we save them for the last chapter.

1.4 Related works and further studies

In this section, we quickly mention several related works that have informed and inspired

us. Previously, one perspective on square tilings has been to view them as discrete vertex

extremal metrics, as pioneered by Schramm [S] and Cannon, Floyd, and Parry [CFP]. In

these works, a topological disc is triangulated and the boundary is partitioned into four

segments (the designated top, bottom, left, and right), and vertex metrics realizing discrete

extremal length are used to produce square tilings of the disc. Our initial investigations

into generalizing this led to our current result. Interpretations of our resulting tilings in

terms of discrete extremal vertex metrics would be of great interest.

Our work is also closely related with that of Hersonsky [H1, H2, H3, H4], which is
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attempting to use rectangular tilings to approximate holomorphic maps. Our data is

merely combinatorial at this point, but one might ask to incorporate geometric data via

an appropriate choice of the resistances r : E → R+. Hersonsky is nearing the completion

of such a program for multiply-connected domains in the plane and has made initial steps

toward doing this for surfaces.

There are also interesting investigations by Kenyon [K] in which he develops an in-

variant, which he calls the J-invariant, associated to a rectilinear polygon, which gives

information about the square tileability of the polygon. He uses it to determine the

square-tileable Euclidean tori and determines necessary conditions for square-tileability of

surfaces. We plan to read this article carefully and see if our construction has anything

more to say about such surfaces.

We would also like to acknowledge the ideas of Calegari [Cal], whose interpretations

of Kenyon’s pictures led us to the current result. He brings up some interesting questions

about the image of our tiling construction, which we would like to investigate.

The work of Mercat [M1, M2] has previously investigated discrete harmonic 1-chains,

and has tied them to the study of statistical physics. The connections between our work

and his deserve further study.

Lastly, we note the potential for applications of our construction in the study of trans-

lation surfaces. These are flat cone metrics resulting from identification of plane polygons

along parallel sides. By construction, our flat cone metrics are translation surfaces, result-

ing from identifications of squares or rectangles along parallel sides. We plan to investigate

the extensive literature beginning with the following references: [Ma, MT, Z].
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Chapter 2

Planar Electrical Networks and Square Tilings

In this chapter, we explain more fully the classical result in [BSST]. Recall that we consider

a planar electrical network (G, b, Y ), which has a unique circuit solution to Kirchhoff’s

laws c : E \ {b} → R. This function describes the current flow through each edge given

voltage Y applied over edge b. We begin by stating explicitly these circuit laws.

2.1 Kirchhoff’s laws

We note first that c(e) may be negative, and that the sign of c(e), in conjunction with the

direction on e, describes the direction of current flow through the edge. In particular, if

c(e) > 0, then current is flowing with the direction on e, and if c(e) < 0, then it is flowing

against the direction on e. The directionality on each edge is an arbitrary choice to allow

clear statement of the circuit laws. As most often stated, there are three of them:

2.1.1 Ohm’s law

The simplest law states that for all non-battery edges e ∈ E \ {b}, we have that the

voltage drop over the resistor is equal to the current times the resistance. Since we are

assuming unit resistances, this law may be trivially satisfied by allowing current quantities

to also represent the voltage drop quantities as they are the same. As mentioned in the

introduction, with non-unit resistances, rectangle tilings result. The typical statement of

Ohm’s law is contained in subsection 4.3.1 where such tilings are discussed.
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2.1.2 Current law

Consider a vertex v, which is not an endpoint of b, the battery edge. Let I(v) and O(v)

denote the edges that end and start at v, respectively. The current law states that the

incoming current is equal to the outgoing current for all such vertices:∑
e∈I(v)

c(e) =
∑

e∈O(v)

c(e)

2.1.3 Voltage loop law

Consider a simple loop γ in the undirected graph underlying G, so that edges in G may

be traversed backward, from end point to start point. The battery edge b may also be

in γ. Let F(γ) and B(γ) denote the edges that are traversed forward and backward,

respectively.

The voltage loop law states that the voltage drops sum to 0 as γ is traversed. As we

are considering unit resistances, voltage drops are merely current values for non-battery

edges. For b, it adds a contribution of Y to one sum below, depending on the direction in

which it is traversed. If b ∈ F(γ), let β = 0, and if b ∈ B(γ), let β = 1. Then the voltage

loop law is expressed with the following formula:

(−1)βY +
∑

e∈F(γ)\{b}

c(e) =
∑

e∈B(γ)\{b}

c(e)

Note that this will also hold for loops γ that are not simple by adding the appropriate

number of terms for edges that are traversed multiple times.

2.2 Existence and uniqueness of c

Let us briefly sketch an argument for existence and uniqueness of c, the circuit solution.

This proof outline is from [CFP]. Let |V | and |E| denote the number of vertices and edges

in G. Note that Kirchhoff’s laws are all linear conditions on |E| − 1 variables, which take

the values c(e) for e 6= b. For the current law, we obtain |V | − 2 conditions from the

current law, one for each vertex that is not an endpoint of b.
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For the voltage loop law, there are an infinite number of conditions, as there are an

infinite number of loops in G. However, there is a finite basis for the space spanned by

these conditions. To obtain this basis, take a maximal tree T (with edges of G being viewed

as non-directional) containing b as an edge. For every edge not in T , there is a voltage

loop condition, and these conditions will be independent and generate the condition for

any loop in G. This is left as a simple exercise for the reader.

We can express the cardinality of this basis of conditions by noting that G is homotopic

to a wedge of S1’s, and the number of circles is equal to the number of edges not in T .

Thus, a simple Euler characteristic calculation shows that there are |E| − |V | + 1 basis

conditions.

As a result, we have |E| − 1 conditions to satisfy from Kirchhoff’s laws and we see

that finding c is equivalent to solving this nonhomogeneous square linear system (nonho-

mogeneity comes from assuming Y 6= 0). So, it will suffice to show that the kernel of our

system is trivial, to get the desired result.

This corresponds to solving the system when Y = 0. In this case, suppose a solution

has a non-zero current flow c(ei) on an edge ei. Suppose that the flow along ei does not

end at a battery node. Then by the current law, there will be an edge from the same

vertex with non-zero current flow away from that vertex. A similar argument will work

for the starting vertex of the flow along ei. In this way, we may construct a sequence of

edges that have a consistent flow of current in one direction. The process will terminate

when this flow starts and ends on the battery nodes. If it starts and ends on the same

node, we obtain a contradiction of the voltage loop law. If it starts and ends on different

nodes, then we may complete the loop with b and also obtain a contradiction, as we’ve

assumed Y = 0.
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2.3 Total current

Let us also quickly define the total current through the network, I, by looking at the

terminal point of b, which we’ll denote s1. We will let I(s1) and O(s1) denote non-battery

edges that have s1 as a terminal point and starting point, respectively. Assuming Y is

non-negative then:

I :=
∑

e∈I(s1)

c(e)−
∑

e∈O(s1)

c(e)

If Y is negative, then we may take the negative of the above quantity.

2.4 Associated square tilings

Recall Definition 1.1.2 of a square tiling of a Euclidean rectangle. Recall also that hor-

izontal and vertical line segments within such a tiling refer to connected line segments

composed of the horizontal and vertical sides of the square tiles, respectively. Let us now

give the precise definition of such a tiling being associated with a planar circuit network

and its circuit solution c.

Definition 2.4.1. We say that a square tiling of a rectangle is associated to a circuit

solution c of a planar electrical network if two sets of conditions are met. First, the

following correspondences must hold:

1. Each resistor edge e corresponds to a square se with side length |c(e)|.

2. Each vertex v corresponds to a horizontal segment hv with length
∑

e∈I(v) c(e) =∑
e∈O(v) c(e), the total current through v.

3. Each face f whose boundary consists of resistor edges, forming a simple loop denoted

∂f , corresponds to a vertical segment uf with length
∑

e∈F(∂f) c(e) =
∑

e∈R(∂f) c(e).

Secondly, the tiling must reflect the topology of G and the circuit solution. In the

following conditions, recall that the sign of c(e) in conjunction with the direction on e will

determine the direction of current flow.
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4. If an edge e carries current flowing out of (into) vertex v, then the bottom (top) side

of se is contained in hv.

5. If an edge e is carrying current clockwise (counterclockwise) about face f , then the

right (left) side of se is contained in uf .

We reproduce the example first presented in the introduction, for simpler digestion of

this definition.

B

A

Y = 5

Figure 2.1

As noted before, the vertex and face correspondences of conditions 2 and 3 are color-

coded in Figure 2.1. Then, the edge to square correspondence of condition 1 is implicitly

clear with the second set of topological conditions.

2.5 The result

We restate the result from [BSST], first stated in the introduction:

Theorem 2.5.1. (Brooks, Smith, Stone, Tutte [BSST]) Given a planar electrical

network (G, b, Y ) with a unique circuit solution c : E \ {b} → R, and a fixed embedding
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of G in the plane, there is a unique associated square tiling of a rectangle of height Y and

width I, the total current through the network.

Their basic method of proof involves giving coordinates for every square. The vertical

coordinates are given by defining a voltage function on the vertices. For the horizontal

coordinates, they define a dual network in the expected fashion with battery edge dual

to the original battery edge. A potential is defined for this, giving these coordinates. For

details, the reader is referred to [BSST].
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Chapter 3

Generalization to Surfaces

Let us describe more fully, and present the proof of, our generalization of the classical

result. Recall that we start with a closed, oriented surface of genus g ≥ 1 and a non-zero

homological class [σ] ∈ H1(Σg,R)\{0}. Analogous to the network, we consider a CW

decomposition Γ. There is then a unique harmonic representative σh ∈ CΓ
1 (Σg,R) in the

cellular homology with respect to Γ. Let us begin with a careful discussion of this fact.

3.1 Harmonicity

We start with the definition of harmonicity. Recall the typical setup for cellular homology

and cohomology and the ∂ and δ operators. Coefficients in R are assumed, and the spaces

below are for chains and co-chains in the cellular homology and cohomology of Σg with

respect to Γ. This information will be assumed for the remainder of this section to simplify

notation.

CΓ
0 CΓ

1 CΓ
2

C0
Γ C1

Γ C2
Γ

∂

φ1

∂

δ δ

Let V , E, and F denote the vertices, edges, and faces (0-cells, 1-cells, and 2-cells) of

Γ. Thus, |V |, |E|, and |F | will be the dimensions of CΓ
0 , CΓ

1 , and CΓ
2 (and C0

Γ, C1
Γ, and

C2
Γ), respectively.

In the above diagram, we need to specify φ1, an isomorphism between CΓ
1 and C1

Γ.

Let us index the edges arbitrarily E = {e1, e2, . . . , e|E|}, and let their dual elements in C1
Γ

be denoted e∗1, e
∗
2, . . . , e

∗
|E|, where these elements are defined by the relation e∗i (ej) = δij .
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This allows us to simply define φ1(ei) := e∗i and extend to all 1-chains in CΓ
1 by linearity.

In addition, later on, we will need to refer to explicit ∂ and δ maps, so we give the

edges and faces orientations derived from their explicit attaching maps. For the edges,

the orientation we impose is arbitrary, but for the faces, we ensure that the orientations

agree with a given orientation of Σg. With respect to this orientation, we will take the

convention that the boundaries of the faces are to be traversed counterclockwise.

Definition 3.1.1. A 1-chain σ ∈ CΓ
1 is harmonic if ∂σ = 0 and δφ1(σ) = 0. In other words,

if σ is both closed and co-closed.

3.1.1 Harmonic 1-chain as local circuit solution

A harmonic 1-chain σ may be thought of as a local solution to Kirchhoff’s laws. Let

σ = c1e1 + · · ·+ c|E|e|E|, and we take the coefficients ci, in conjunction with the directions

on the ei, to describe the current through each edge. Naturally, as in the classical case,

if ci > 0, then the current flows with the direction on ei, and if ci < 0, then the current

flows against the direction on ei.

Under this interpretation, we have that ∂σ = 0 corresponds to the current law holding

at each vertex. In particular, if we have ∂σ = a1v1 + · · · + a|V |v|V |, where the vj denote

the vertices of Γ, then we may express the coefficient aj as the total current through vj .

As in the classical case, we let I(v) and O(v) denote the edges that end and start at v,

respectively.

aj =

 ∑
ei∈I(v)

ci

−
 ∑
ei∈O(v)

ci


Similarly, we have that δφ1(σ) = 0 corresponds to the voltage loop law holding around

each face. If f1, f2, . . . , f|F | denote the faces of Γ, let f∗1 , f
∗
2 , . . . , f

∗
|F | denote the dual

elements of C2
Γ that satisfy the relation f∗i (fj) = δij . Then we have that δφ1(σ) =

d1f
∗
1 + · · ·+d|F |f

∗
|F | for some coefficients dk, and we may express these as the total current

around fk. As before, let F(∂f) and B(∂f) denote edges in the boundary of f that are
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traversed forward and backward, respectively.

dk =

 ∑
ei∈F(γ)

ci

−
 ∑
ei∈B(γ)

ci


At this point, we make a remark about notation. For the remainder of the thesis,

we will use ci to denote the coefficient for edge ei in a 1-chain σ, potentially without

referencing the edge or 1-chain nearby in the text.

3.1.2 Unique harmonic representative

Now, let us show that each homological class has a unique harmonic representative:

Lemma 3.1.2. For a homological class [σ] ∈ HΓ
1 (Σg,R), there is a unique harmonic repre-

sentative σh.

Proof. Consider the inner product on CΓ
1 where the ei form an orthonormal basis. This

gives an orthogonal decomposition CΓ
1 = im(∂)⊕ im(∂)⊥. Then for an arbitrary represen-

tative σ ∈ [σ] we may consider it in this decomposition as σ = ∂α + σh, where α ∈ CΓ
2 .

From this, it is clear that ∂σh = 0. To see that δφ1(σh) = 0, let us consider its value on

any face f :

δφ1(σh)(f) = φ1(σh)(∂f) = 〈σh, ∂f〉 = 0

where the inner product is the same as the one inducing the orthogonal decomposition.

To show uniqueness, consider a different representative σ′ for [σ], with an orthogonal

decomposition σ′ = ∂α′ + σ′h. Taking their difference we find that:

σ − σ′ = ∂(α− α′) + σh − σ′h

As both σ and σ′ are representatives of [σ], their difference must lie in im(∂), implying

that σh − σ′h ∈ im(∂). As this difference also lies in im(∂)⊥, it must be zero.
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In our tiling construction, to be described shortly, we start with a square for each edge

ei and the absolute value of the coefficient |ci| will denote the side length. Thus, care must

be taken with zero coefficients. For example, if [σ] = 0, then the harmonic representative

is σh = 0, and there is no sensible corresponding tiling in this case. For this reason, we

only consider non-zero homological classes. Generically, σh will have ci 6= 0 for all edges

ei. This will be referred to as the generic case, and when there are zero coefficients, this

will be referred to as the non-generic case. The generic case is treated in this chapter,

with the non-generic case treated in the first part of the next chapter.

3.2 Associated square tilings of surfaces

Recall Definition 1.2.1 where we defined marked oriented square tilings. We make some

remarks about the definition and describe how a marked oriented square tiling may be

associated with a discrete harmonic 1-chain σh.

3.2.1 Definition remarks

In spirit, the second two set equality conditions state that the top sides of squares only

intersect with the bottom sides of other squares and left sides of squares only intersect

with the right sides of other squares. However, this is not strictly true, with this rule

being violated at the corners of the rectangles and at the cone points of d, as is already

clear in Figure 1.2. The definition, as it is given, allows for these exceptions.

Note that this interpretation of the set equality conditions also makes it clearer that

the cone angles for any underlying flat cone metric of such a tiling must be in 2πN.

3.2.2 Associated tilings

Interpreting the coefficients of the discrete harmonic 1-chain as representing current through

the edges of Γ, the definition of a tiling being associated to σh is nearly identical to that

for the circuit solution to a planar electrical network, with the coefficient ci replacing c(e).
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Just as in the planar case, horizontal and vertical line segments refer to connected subsets

composed of the horizontal and vertical sides of the square tiles, respectively.

One important note to make here is that generically, the tiling and flat cone metric

will reside on Σg, where σh is a discrete harmonic 1-chain with respect to Γ. However, this

is not always the case. More specifically, for the non-generic case, the tiling and flat cone

metric may be on a surface of lesser genus, which we prove in the next chapter. For this

reason, we use Sg to denote the closed, oriented surface on which the tiling and metric

reside, to differentiate it from Σg.

Definition 3.2.1. A marked oriented square tiling of a flat cone metric d on a surface Sg will

be associated to σh if two sets of conditions are met. First, the following correspondences

must hold:

1. Each edge ei corresponds to a marked square si with side length |ci|.

2. Each vertex v corresponds to a horizontal segment hv with length
∑

e∈I(v) ci =∑
e∈O(v) ci, the total current through v.

3. Each face f , with boundary loop denoted ∂f , corresponds to a vertical segment uf

with length
∑

e∈F(∂f) ci =
∑

e∈B(∂f) ci.

Secondly, the tiling must reflect the topology of Γ and σh. In the following conditions,

recall that the sign of ci in conjunction with the direction on ei will determine the direction

of current flow.

4. If an edge ei carries current flowing out of (into) vertex v, then the bottom (top)

side of si is contained in hv.

5. If an edge ei is carrying current clockwise (counterclockwise) about face f , then the

right (left) side of si is contained in uf .
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Note that in this surface case, horizontal and vertical segments will become branched

at the cone points with cone angle greater than 2π. We produce again the example from

the introduction for added clarity.

Figure 3.1

In this diagram, the colors do not color code any of the structural correspondences,

but rather denote identifications to be made between the squares in the construction of

the tiling and metric. The horizontal segment corresponding to the vertex is colored black,

grey, blue, and maroon; while the vertical segment corresponding to the face is represented

by the remaining colors. Note also that the squares are illustrated topologically, not

geometrically, with four sides meeting at the blue cone points giving a total angle of 4π,

though it looks otherwise. The branching phenomenon may be seen clearly at these points.

3.3 The result

Let us state our main result, for the generic case, as first stated in the introduction:
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Theorem 3.3.1. Given a closed, oriented surface Σg of genus g ≥ 1, a generic [σ] ∈

H1(Σg,R)\{0}, and a CW decomposition Γ with oriented edges, there exists a marked

oriented square tiling of a flat cone metric d on Σg that is associated with σh, the unique

harmonic representative of [σ] in the cellular homology.

The proof of our theorem is given in the construction process for this tiling. For the

remainder of this chapter, nearly all our 1-chains will be harmonic, so σ will be used to

denote a harmonic 1-chain, as opposed to σh for the sake of simplicity.

3.4 Constructing Σ̂g and dσ

The first half of our construction process involves constructing a topological pinched sur-

face, denoted Σ̂g, and assigning a metric dσ to it. There is also the additional data of

boundary loops, which is described.

3.4.1 Constructing Σ̂g

We first construct Σ̂g which is associated with Σg and its CW decomposition Γ. Let us

define a pinched surface:

Definition 3.4.1. A pinched surface is a Hausdorff topological space for which every point

has a neighborhood which is homeomorphic to an open set in a cone over a finite union

of intervals in R.

For a pinched surface P , we will define the boundary, denoted ∂P , to be the set of points

with no open neighborhood that is homeomorphic to R2. Points with open neighborhoods

homeomorphic to an open neighborhood of the end cone point, are referred to as pinch

points.

Now consider a marked disc Di for each edge ei ∈ Γ with four distinct marked boundary

points p1
i , p

2
i , p

3
i , and p4

i , labelled cyclically. Between any two points pji and pj+1
i , where

the subscripts are considered modulo 4, there is a side of the disc, a boundary segment not

containing other marked points. We denote this side with bji . We will eventually embed
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the interior of a marked square onto the interior of each disc Di such that b1i and b3i will be

vertical sides of the marked square, and b2i and b4i will be horizontal sides of the marked

square.

Now, an identification between two marked points on Di and Dj is made if edges ei

and ej share a vertex as an endpoint and a face that they both border. The following

diagram succinctly illustrates these rules, with the discs illustrated as squares, oriented

such that p1 is on the top right, p2 is on the bottom right, p3 is on the bottom left, and

p4 is on the top left:

v
f

ei

ej

v
f

ei

ej

v
f

ei

ej

v
f

ei

ej

Di Dj

Di

Dj

Dj Di

Dj

Di

Figure 3.2: Identification rules

In words, the identification rules are:

1. If ei starts from v and ej ends at v, and both are directed clockwise about f , then

we identify p2
i and p1

j .

2. If both ei and ej end at v, and ei is directed counterclockwise about f , then ej
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necessarily is directed clockwise about f , and we identify p4
i and p1

i .

3. If both ei and ej start at v, and ei is directed clockwise about f , then ej necessarily

is directed counterclockwise about f , and we identify p2
i and p3

j .

4. If ei ends at v and ej starts at v, and both are directed counterclockwise about f ,

then we identify p4
i and p3

j .

Note that if a vertex is of degree 1, or a face just has one boundary edge, then there

will be self-identification of a marked disc. It is clear that the result of these identifications

is a pinched surface, and we denote it with Σ̂g.

3.4.2 Assigning dσ and si

After construction of Σ̂g, there is a simple assignment of a metric dσ designated by our

harmonic 1-chain. For each Di, we give it the geometry of a Euclidean square of side

length |ci|. We also embed the interior of a marked oriented Euclidean square si of side

length |ci| onto the interior of each disc, with the orientation specified by the direction of

current flow along ei.

If ci > 0, so that current flow agrees with the given edge orientation, then b1i will be

sri , b
2
i will be sbi , b

3
i will be sli, b

4
i will be sti. If ci < 0, so that current flow is opposite the

given edge orientation, then the square will be flipped. In particular, b1i will be sli, b
2
i will

be sti, b
3
i will be sri , b

4
i will be sbi .

3.4.3 Boundary loops of Σ̂g

Lastly, there is additional data which consists of loops that cover ∂Σ̂g, one for each vertex

and face of Γ. These loops are composed of the sides of the Di. In particular, to each

vertex v, we associate the tops and bottoms of the Di corresponding to edges ei carrying

current to and from v, respectively. To each face f , we associate the left and right sides of

the Di corresponding to edges ei carrying current counterclockwise and clockwise about f ,
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respectively. If we let p denote either a vertex or a face, we will denote the corresponding

boundary loop with γp.

A diagram below illustrates an example of these loops for a vertex and a face. The

local picture of the current flow along the edges of Γ is on the left, while the corresponding

loops in Σ̂g are on the right. On the left, the directions on the edges denote the direction

of current flow, and may not reflect the direction on the edge. On the right, the loops are

colored in blue, and the letters denote the type of the side that is in the loop.

v

e1

e2

e3 e4

e5

D1

D2

D3 D4

D5
b

t t

b t

f

e1

e2 e5

e3 e4

D1

D2

D3 D4

D5
r

r l

l r

Figure 3.3: Boundary loop examples

Note that the loops will be disjoint, except for intersection at pinch points. At each
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pinch point, it will be a face loop intersecting with a vertex loop, due to the nature of our

identification rules.

3.5 Closing boundary loops

The second half of our tiling construction involves closing the boundary loops by isomet-

rically identifying the sti and the sbi at each vertex loop and the sli and sri at each face

loop. This must be done in a way that does not introduce any genus. Precise definitions

are made below.

3.5.1 Discrete index

We begin by defining the discrete index for a generic 1-chain τ about a vertex or face p, as

it will play into our description of these identifications. In particular, note that in any γp

in our construction, we may combine adjacent sides of the same type and group them into

an even number of segments consisting of sides of the same type. More precisely, we make

a CW decomposition of γp with an even number of 1-cells, such that each 1-cell consists

of sides of only one type, and this type alternates as you traverse the loop.

The number of 1-cells is equal to the number of times that the direction of current flow

changes as you travel cyclically around p. Let us denote this number with scgτ (p). Note

that this number makes perfect sense, even when τ is not harmonic. Then we may define

the discrete index at p:

Definition 3.5.1. For a 1-chain τ and a vertex or face p, the discrete index at p is denoted

Indτ (p), and is defined to be:

Indτ (p) := 1− scgτ (p)

2

Note also that as τ is generic, we have that scgτ (p) is a positive even integer, implying

that Indτ (p) is a non-positive integer.
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3.5.2 Loop closings

Now, let us define precisely what it means to close a boundary loop. Let l1, l2, . . . , l2n

denote the 1-cells in γp mentioned above (so that 2n = scgσ(p)), and let |l1|, |l2|, . . . , |l2n|

denote their lengths under dσ. They are labelled in a cyclic order, with an arbitrary start

segment, so that the segments with even index will be of one type, and the segments

with odd index will be of another type. Note that as σ is harmonic, we will have that

|l1|+ |l3|+ · · ·+ |l2n−1| = |l2|+ |l4|+ · · ·+ |l2n|.

Definition 3.5.2. A loop closing of a boundary loop γp will be a further decomposition of

the {li}2ni=1 into 1-cells {tj}2mj=1, and a pairing of these 1-cells of opposite type, designating

an orientation-reversing isometric identification of paired segments.

As mentioned previously, such identifications may introduce extra genus to our surface,

so we consider only those that do not do this. In particular, let us embed γp in R2 as

the boundary of a disc centered at the origin, and remove the interior of said disc, and

consider the resulting topology when the identifications are made.

Definition 3.5.3. A valid closing of a boundary loop γp will be a loop closing which results

in a space with the topology of R2, when γp is embedded as suggested above.

We mention two equivalent conditions briefly. The first is that the image of γp be a

metric tree under the quotient map of the identification. The second is that if two pairs

of points (x1, x2) and (y1, y2) on γp are identified, then the lines between them must not

cross when considered in the embedding into the plane.

For better digestion of this definition, we present diagrams of two examples of valid

closings. The boundary loops come from our genus 2 example, first presented in Figure

1.2. The top half presents the boundary loop and the image of the loop after a valid

closing for the vertex loop. The bottom half presents the corresponding objects for the

face loop. The boundary loops are on the left, and are in blue, while the images (metric

trees) under identification are shown on the right. Further explanation follows the figure.
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Figure 3.4: Valid closing examples

On the illustration of the boundary loop for the vertex, we have two black vertices,

which represent the 0-cells in the CW decomposition of the loop into 1-cells of different

types. The images of these vertices are also drawn in the image under identification on

the right.

For the illustration of the boundary loop for the face, we have 8 blue vertices, joined

by red lines. These red lines denote identifications of the endpoints. These blue vertices

are 0-cells of the further decomposition that defines the valid closing (though they are not

all of them). The further identifications are implicit and the image metric tree is shown



28

to the right.

As shown in this example, we note that there may be multiple valid closings for γp,

depending on the index at p. If the index is 0, the closing is unique, with a simple pairing

of l1 and l2 being the unique valid closing. This is shown in the example above with the

vertex loop. When the index is negative, this uniqueness disappears. This is hinted at in

the example with the face loop above. The conjectures in the final section of this chapter

address this loss of uniqueness.

3.5.3 Existence of valid closings

For now, we demonstrate existence of a valid closing for any boundary loop:

Lemma 3.5.4. For any boundary loop γp arising from a harmonic 1-chain σ, there exists

a valid closing.

Proof. Existence may be shown simply with the following algorithm, which simultaneously

decomposes the segments {li}2ni=1 and pairs the resulting 1-cells. Indices are considered

modulo 2n (so that l2n+1 = 1 and l0 = l2n).

1. Consider a shortest segment li and decompose it into halves ti− and ti+ , where ti−

intersects li−1 and ti+ intersects li+1.

2. Decompose li−1 into two segments, one of which is of length |li|2 and is adjacent to

li.

3. Decompose li+1 into two segments, one of which is of length |li|2 and is adjacent to

li.

4. Pair ti− with the segment from step 2, and pair ti+ with the segment from step 3,

identifying them.

5. Consider a new loop where the segments identified in the previous step are removed,

and the other segments from steps 2 and 3 are combined. This new loop has two fewer
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segments, and the lengths of these new segments will be |l1|, |l2|, . . . |li−2|, |li−1| +

|li+1| − |li|, |li+2|, . . . |l2n|.

6. Repeat steps 1-5 (n−1) more times, changing the loop under consideration according

to step 5 each time.

In step 1, choosing the shortest segment ensures us that li−1 and li+1 have enough

length to be decomposed into two segments, one of which will be identified with half of li.

Also, it is clear that for step 5, in the new loop formed, the sum of the lengths of the odd

segments are equal to the sum for the even segments, as equal amounts of odd and even

segments are identified and removed. Full identification occurs after n total runs through

steps 1-5, as each iteration reduces the number of segments by 2.

It is clear that in the original loop γp that no two pairs of identified points have lines

that cross when embedded in the plane, so we have a valid closing.

3.5.4 Obtaining Sσ and the associated tiling

Given existence of these valid closings, we simply apply them to each boundary loop with

the algorithm above. The result will be a marked oriented square tiling of a closed surface,

which we denote with Sσ. In the construction, it is clear that the interiors of the squares

are disjoint, and the set union conditions will hold as each side of a square is decomposed,

with each piece identified to another of the opposite type.

Furthermore, it is clear that the tiling will be associated to our harmonic 1-chain σ.

For the structural correspondences, we already have a square for each edge of the right

size. The horizontal segment corresponding to any vertex v is the image of γv under

the identification. The vertical segment corresponding to any face f is the image of γf

under the identification. The topological conditions are automatically satisfied through

our construction.
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3.6 Proof of desired topology

To finish the proof, let us argue that Sσ is homeomorphic to Σg. For this we use a simple

topological fact about finite 2-dimensional CW complexes.

Lemma 3.6.1. For X, a finite 2-dimensional CW complex, and a subcomplex A whose

complement is a disjoint union of n open discs, we have that:

χ(X) = χ(A) + χ(X \A) = χ(A) + n

Proof. Consider a CW decomposition of X formed by augmenting the subcomplex A, with

the attachment of the n complementary discs along their boundaries, specified by their

position in X. These attaching maps are guaranteed to have image within the 1-skeleton

of A, as A ∩X \A = ∂A (A is closed) and ∂A must be within the 1-skeleton of A. It is

clear that the attachment of the n discs contributes n 2-cells to the alternating count for

the Euler characteristic, so the result holds.

It is clear that this generalizes to n-dimensional finite CW complexes, but we only

state this version here, as it is all we need. Now, for the desired result:

Lemma 3.6.2. Sσ is homeomorphic to Σg.

Proof. Consider that Sσ is homotopic to the space obtained by gluing discs into the bound-

ary loops of Σ̂g. In particular, the valid closing process is topologically the same as gluing

in a disc for each vertex and face.

We may now use Lemma 3.6.1 directly, with X being the space homotopic to Sσ and

A = Σ̂g. As before, we let |V |, |E|, and |F | denote the number of vertices, edges, and

faces in Γ. It is clear that X \A consists of |V |+ |F | open discs.

For the Euler characteristic of Σ̂g, there is an obvious CW decomposition, where each

Di is a 2-cell, each side of a disc Di is a 1-cell, and each pinch point is a 0-cell. Thus,

in this decomposition, there are |E| 2-cells and 4|E| 1-cells. For the 0-cells, we note that
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in constructing χ(Σ̂g), before we identify the Di, we have 4|E| 0-cells from the marked

points on the discs. Each identification creates a pinch point and quotients together two

of these 0-cells. The total number of identifications is equal to the sum of the degrees of

the vertices in Γ which is just 2|E|. Thus, there are 4|E| − 2|E| = 2|E| vertices in this

CW decomposition and χ(Σ̂g) = E − 4|E|+ 2|E| = −|E|.

Thus, we find ultimately that χ(Sσ) = −|E|+ |V |+ |F | = χ(Σg), and as closed surfaces

are classified by their Euler characteristic, we have the desired homeomorphicity.

3.7 A discrete Poincaré-Hopf theorem

With the topology of Sσ and Σ̂g established, we may now use some discrete geometry to

show a discrete Poincaré-Hopf theorem for generic 1-chains τ . Note that we do not require

τ to be harmonic in this case. Here, generic again refers to non-zero coefficients for each

edge in Γ. For this, we utilize a discrete Gauss-Bonnet theorem.

3.7.1 Discrete Gauss-Bonnet

Let us briefly introduce discrete curvature and state the discrete Gauss-Bonnet theorem.

We are considering discrete curvature for flat cone metrics on surfaces with boundary. For

a cone point w in such a surface S, let θ(w), denote the angle sum at w. Then the discrete

curvature at w is given by:

Kw :=

 2π − θ(w) if w /∈ ∂S,

π − θ(w) if w ∈ ∂S.

We may state the discrete Gauss-Bonnet theorem succinctly:

Theorem 3.7.1. For a flat cone metric on a surface with boundary S, we have the following

formula holding: ∑
w∈W

Kw = 2πχ(S)

The proof follows simply by a triangulation of the flat cone metric, decomposing it

into Euclidean triangles.
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3.7.2 Theorem and proof

Now we may go ahead and state and prove our discrete Poincaré-Hopf theorem:

Theorem 3.7.2. For a generic 1-chain τ on Σg with CW decomposition Γ, we have that:

∑
p∈P

Indτ (p) = 2− 2g

Proof. We consider a flat cone metric on a surface with boundary obtained by a partial

closing of the boundary loops of Σ̂g. In this case, as we are dealing with a generic 1-chain

τ , we assign a metric and squares si to Σ̂g as in subsection 3.4.2, but we do it with respect

to τ , as opposed to some harmonic 1-chain. For each given boundary loop, we still get a

decomposition into 1-cells l1, l2, . . . , l2n of alternating type, but the sum of the lengths of

the even and odd 1-cells may not be equal.

For the partial closing, we take a 1-cell with smallest length |lmin|, and we identify

adjacent 1-cells along segments with length |lmin|
3 . More precisely, for each 1-cell li, we

further decompose it into three 1-cells, labelling them in accordance with the cyclic order

as ti1 , ti2 , and ti3 . The first and third of these will have length |lmin|
3 , with the central 1-cell

taking up the remainder of the length. Now, for each pair of adjacent 1-cells li and li+1,

we identify ti3 and t(i+1)1 in an isometric orientation-reversing manner. A boundary loop

will remain, although it will be shortened. When the process is applied to each boundary

loop, we get a surface with boundary, which we denote Σ̂p
g, along with a flat cone metric.

It is clear that Σ̂p
g is homotopic to Σ̂g.

For the resulting flat cone metric on Σ̂p
g, all the cone points are in the boundary,

by construction. There is one for every pair li, li+1 of partially identified edges, and its

discrete curvature is −π, as it is the result of two squares being identified along part of
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their respective sides. Thus, if we let P denote the set of vertices and faces in Γ, we have:

−π
∑
p∈P

scgτ (p) = 2π(2− 2g − |V | − |F |)

∑
p∈P

1− scgτ (p)

2
= 2− 2g∑

p∈P
Indτ (p) = 2− 2g

If we return to considering harmonic 1-chains, recall that only boundary loops for ver-

tices and faces of zero index have unique valid closings. In particular, if we are considering

a surface of genus g = 1, then every boundary loop has a unique valid closing, and we get

the corollary that our construction is unique in the g = 1 case.

Corollary 3.7.3. Given a topological torus T 2, a generic [σ] ∈ H1(T 2,R) \ {0} = R2 \ {0},

and a CW decomposition Γ with oriented edges, there exists a unique marked oriented

square tiling of a flat cone metric d on T 2 that is associated with σh, the unique harmonic

representative of [σ] in the cellular homology.

3.8 A family of tilings

Earlier, we defined the discrete index of σ at a vertex or face p, and noted that there are

multiple valid closings for boundary loops corresponding to vertices and faces of negative

index. Here we make some conjectural remarks about this space of valid closings.

If the index is −n, then for a generic point in this space of valid closings, the image of

the boundary loop will be a metric tree with all non-leaf vertices having degree four, and

there will be n such vertices. At these non-leaf vertices, we may shift the partitioning of

the segments at that vertex, giving us one dimension of freedom for each such vertex. We

are currently working to obtain a precise description of this space of closings, so that we

may prove the following conjecture:
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Conjecture 3.8.1. For a boundary loop γp arising from a harmonic 1-chain σ, with Indσ(p) =

−n, the space of valid closings forms a contractible n-dimensional CW complex.

Any associated tiling is obtained by making a choice of valid closing for each boundary

loop, so the space of associated tilings is simply a product of the space of valid closings

for each loop.

Conjecture 3.8.2. Given a closed, oriented surface of genus g > 1, a generic [σ] ∈ H1(Σg,R)\{0},

and a CW decomposition Γ with oriented edges, there exists a family of marked oriented

square tilings of flat cone metrics d on Σg that is associated with σh, and this family forms

a contractible (2g − 2)-dimensional CW complex.
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Chapter 4

Further Generalizations

In this chapter, we investigate three further generalizations, non-generic homology classes,

tilings of surfaces with boundary, and rectangle tilings.

4.1 Non-generic [σ]

Recall that we referred to a [σ] ∈ H1(Σg,R)\{0} as generic if its unique harmonic repre-

sentative in the cellular homology with respect to Γ has non-zero coefficients for each edge.

In this section, we investigate the case of non-generic [σ], whose representatives have some

zero coefficients. As noted in the introduction, we can still carry out our construction, but

it may result in a tiling and flat cone metric on a surface of lower genus. Recall that V0

and F0 denote the vertices incident only to edges with zero coefficients and faces bounded

only by edges with zero coefficients, respectively. A formula for this genus is given in

terms of |V0|, |F0|, and the Euler characteristics of some graphs {Hj}lj=1 derived from the

set of edges with zero coefficients. In this section, we prove Theorem 4.1.1:

Theorem 4.1.1. Given a closed, oriented surface Σg of genus g ≥ 1, a non-generic [σ] ∈

H1(Σg,R)\{0}, and a CW decomposition Γ with oriented edges, there exists a marked

oriented square tiling of a flat cone metric d on a surface Sσ of genus g0 ≤ g that is

associated with σh, the unique harmonic representative of [σ]. The genus g0 is given by

the formula:

g0 = g +
1

2

l∑
j=1

(χ(Hj)− 1) +
|V0|+ |F0|

2
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We begin with a description of the modified construction, and then introduce the

{Hj}lj=1 and show that the formula holds. As in the previous chapter, all of our 1-chains

in this section will be harmonic, so we denote them with σ, instead of σh, for greater

simplicity.

4.1.1 Construction modifications

For the construction, we start again with Σg and a CW decomposition Γ, and use it to

construct Σ̂g by identification of discs. However, when we try to assign a metric to Σ̂g,

we must be careful about the discs Di that correspond to edges with zero coefficient, as

we cannot assign a metric that will make the disc a point.

So, let E0 denote the edges in Γ with zero coefficients, and we define another pinched

surface Σ̂o
g, which is obtained from Σ̂g by contracting (quotienting to a point, individually)

all discs Di for which ei ∈ E0. It is this contraction that can result in differing topology.

We then continue as before, assigning the metric dσ by giving each Di the geometry

of a Euclidean square of side length |ci|. This applies to edges in E0 as well, whose

corresponding discs are already points. In the same way as before, we also assign a

marked oriented square of the same side length to each disc, with orientation specified

by the direction of current flow along the edge. Note that for edges in E0, the assigned

square is a point with all marked points and sides coinciding, so discussion of orientation

is irrelevant.

We again have the data of boundary loops, but note that if a vertex has all incident

edges with zero coefficients, or a face has all boundary edges with zero coefficients, then

its boundary loop will have contracted to a point in Σ̂o
g. Furthermore, vertices not in

V0 incident to an edge in E0, or faces not in F0 with a bordering edge in E0, will have

boundary loops with points that are marked squares of side length 0, corresponding to

edges in E0. As noted, for these marked squares of side length 0, their sides all coincide

at the point square. Thus, the upshot is that this will not change the CW decomposition

into an even number of 1-cells of alternating type.
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By harmonicity, the boundary loops still have equal total lengths of 1-cells of opposite

type, so we may apply valid closings to all those remaining to obtain a marked oriented

square tiling of a closed surface, Sσ. As before, it is clear that we have a marked oriented

square tiling, and for the structural correspondences, the images of the boundary loops

under identification will be the horizontal and vertical segments. For vertices with all

incident edges in E0 and for faces with all boundary edges in E0, their corresponding seg-

ments will be the points that their boundary loops have contracted to in the construction

of Σ̂o
g.

4.1.2 Subgraph contraction and χ

Before we discuss the topology of the resulting Sσ from our construction, we present a

simple lemma on the relationship between subgraph contraction and Euler characteristic

for graphs. If we consider a finite graph G and a connected subgraph H, then the subgraph

contraction is merely edge contraction performed on each edge of H. All of H is identified

to a single vertex, and we call the resulting graph the quotient graph and denote it with

G/H.

Lemma 4.1.2. For a finite graph G and a connected subgraph H, and the quotient graph

G/H, we have the following relationship between their Euler characteristics:

χ(G/H) = χ(G)− χ(H) + 1

Proof. Let VG and EG denote the number of vertices and edges of G. Similarly, let VH

and EH , and VG/H and EG/H denote the number of vertices and edges of H and G/H,

respectively. Then we see that VG/H = VG − VH + 1 and EG/H = EG − EH . Thus,

χ(G/H) = (VG − EG)− (VH − EH) + 1 = χ(G)− χ(H) + 1.

More generally, we can consider the case of repeated contractions of multiple disjoint

connected subgraphs {Hi}ki=1. Each component Hi is contracted to its own vertex, and

we denote the result with G/H1/H2/ . . . /Hk.
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Lemma 4.1.3. For a finite graph G and disjoint connected subgraphs {Hi}ki=1, and the

quotient graph G/H1/H2/ . . . /Hk, we have the following relationship between their Euler

characteristics:

χ(G/H1/H2/ . . . /Hk) = χ(G)− (

k∑
i=1

χ(Hi)) + k

The proof is analogous to that of Lemma 4.1.2.

4.1.3 Topology of Sσ

We may now apply this lemma to the disc contractions performed on Σ̂g to obtain Σ̂o
g.

From this, we will be able to deduce the topology of Sσ, and prove the genus formula in

Theorem 4.1.1. We begin by modeling the contractions as graph contractions, so that we

may apply our lemma.

Consider a graph that is homotopic to Σ̂g, obtained by homotoping each disc Di to an

immersed cross subgraph. This graph has five vertices: one from the center of the disc

and the four marked points on the boundary, and the edges are given by the line segments

connecting the marked points to the center vertex. These cross subgraphs will usually be

embedded, but in some instances some of the marked boundary points may be identified.

We denote the union of the image of all these cross subgraphs with Gg.

Now, analogous to the disc contraction for edges in E0, we may perform a contraction

of the cross subgraphs for edges in E0 to obtain a quotient graph that is homotopic

to Σ̂o
g. If we consider the union of the cross subgraphs for edges in E0, we may use

{Hj}lj=1 to denote the connected components. Lemma 4.1.3 informs us that χ(Σ̂o
g) =

χ(Σ̂g)− (
∑l

j=1 χ(Hj)) + l.

To finish off the determination of the topology, we again use Lemma 3.6.1. Each valid

closing that we perform is again homotopic to gluing in a disc by its boundary. However,

note that the number of valid closings performed is no longer |V |+|F |, as certain boundary

loops may have contracted to points, precisely those corresponding to vertices and faces
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in V0 and F0.

Thus, we let A = Σ̂o
g and let X be the space obtained after attaching discs to Σ̂o

g

(homotopic to Sσ), and we get a formula for the topology of Sσ in the non-generic case:

χ(Sσ) = χ(Σ̂g) +

 l∑
j=1

1− χ(Hj)

+ (|V | − |V0|+ |F | − |F0|)

= χ(Σg) +

 l∑
j=1

1− χ(Hj)

− (|V0|+ |F0|)

A simple manipulation of the formula gives the formula for genus. Note also, that by

the geometry of a marked square tiling, we know that it is impossible to obtain a genus 0

surface.

Proof that g0 ≤ g

As a final argument, we need to ensure that g0 ≤ g. This is equivalent to demonstrating

that χ(Sσ) ≥ χ(Σg). Note first that if V0 = F0 = ∅, then it is clear. For any connected

graph, the Euler characteristic is less than or equal to 1, so we get that 1−χ(Hj) ≥ 0 for

all j.

When this is not the case, we must argue more carefully. Note that if we consider

an element of V0 or F0, the cross subgraphs corresponding to the edges incident to a

vertex, or bounding a face, belong to a particular connected subgraph Hj , as they all have

zero coefficients. Let us further partition V0 and F0 into subsets {V j
0 }lj=1 and {F j0 }lj=1,

respectively, according to this membership. In particular, vertices in V j
0 are those whose

incident edges have cross subgraphs that are in Hj . Faces in F j0 are those whose bounding

edges have cross subgraphs that are in Hj .

Then we may rewrite the Euler characteristic formula as follows:

χ(Sσ) = χ(Σg) +

 l∑
j=1

1− χ(Hj)− |V j
0 | − |F

j
0 |


Thus, it will suffice to demonstrate for each j that the term 1 − χ(Hj) − |V j

0 | − |F
j
0 | is

non-negative. This is equivalent to showing that rank(H1(Hj ,R)) ≥ |V j
0 |+ |F

j
0 |.
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Note first that each element of V0 and F0 has a boundary loop that is homotopic in

Σ̂g to a loop in one of the Hj . So, we just need to show that these loops are independent

in H1(Hj ,R) to show our desired inequality. For this, we consider an embedding of Hj in

Σg,n where n = |V j
0 | + |F

j
0 | + 1. If the loops are independent in H1(Σg,n,R), then they

will also be independent in H1(Hj ,R).

The embedding of Hj will come from the embedding of Gg in Σg, with punctures added

to create boundary components in accordance with V j
0 and F j0 . In particular, for each

vertex and face in these sets, add a boundary component, by excluding small open neigh-

borhoods of the vertices and the centers of the faces. For the last boundary component,

choose a face or vertex with a bounding or incident edge with non-zero coefficient. One

must exist as [σ] 6= 0. Finally, we see that the boundary components corresponding to the

vertices and faces in V j
0 and F j0 are linearly independent from the following basic lemma

from algebraic topology.

Lemma 4.1.4. If b1, . . . , bk are boundary components of a compact, orientable surface Y

such that ∂Y 6= ∪ki=1bi, then [b1], . . . , [bk] are linearly independent in H1(Y ).

4.2 Surfaces with boundary

As noted in the introduction, we may also consider asking what happens when our 1-chain

σ fails to be closed at a vertex, or co-closed at a face. In the interpretation of a 1-chain

as current flow, this is analogous to introducing current sources and sinks at vertices or

non-zero voltage sums around faces.

We may again carry out our construction and boundary components arise for each

vertex or face at which the 1-chain fails to be harmonic. In this section, we first characterize

what kinds of conditions on the vertices and faces are achievable by 1-chains, and refer

to these conditions as modified harmonic. For such conditions, we may identify a unique

1-chain for each homological class, that we denote with σmh, though this identification is

not canonical. Then we prove Theorem 4.2.1, as stated in the introduction:
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Theorem 4.2.1. Given a closed, oriented surface Σg, a generic [σ] ∈ H1(Σg,R)\{0}, and a

CW decomposition Γ with oriented edges, there exists a marked oriented square tiling of

a flat cone metric d on Σg,n that is associated with σmh, where n is the sum of the number

of vertices and faces at which σmh fails to be harmonic.

4.2.1 Modified harmonicity

Recall the definitions and notation of Section 3.1. For a 1-chain σ, we have σ = c1e1+· · ·+

c|E|e|E| and φ1(σ) = c1e
∗
1 + · · · + c|E|e

∗
|E|, where the ei and e∗i denote the edges and edge

functionals of Γ. Also, we have ∂σ = a1v1+· · ·+a|V |v|V | and δφ1(σ) = d1f
∗
1 +· · ·+d|F |f∗|F |,

where vj and f∗k denote the vertices and face functionals of Γ.

These notations give us explicit linear maps ∂ : R|E| → R|V | and δ : R|E| → R|F | with

the ei, vj , e
∗
i , and f∗k serving as bases for CΓ

1 , CΓ
0 , C1

Γ, and C2
Γ, respectively. We may direct

sum these maps together to obtain one map ∂ ⊕ δ : R|E| → R|V |+|F |, and as Definition

3.1.1 states, a 1-chain is harmonic if it is in the kernel of ∂ ⊕ δ.

We ask now for the image of ∂ ⊕ δ, which will give us the space of modified harmonic

conditions. This will tell us how we can ask σ to fail to be harmonic, at which vertices and

faces, and by how much. Under the current interpretation for 1-chains, this is analogous

to introducing source and sink vertices or faces in Γ.

Lemma 4.2.2.

im(∂ ⊕ δ) = {(a1, . . . , a|V |, d1, . . . , d|F |) |
∑|V |

j=1 aj = 0,
∑|F |

k=1 dk = 0}

Proof. Note that for a basis 1-chain ei, we have that ∂ei = vf −vs where vs and vf denote

the starting and ending vertices for ei. The coefficients sum to 0, and so by linearity, we

see that this will hold for any 1-chain. Note also that as the faces are oriented consistently,

for any ei, we have that δφ1(ei) = fl− fr, where fl and fr denote the faces to the left and

right of ei. Thus, by linearity, the coeffients of δφ1(σ) will sum to zero for any 1-cell σ.

So, one inclusion is clear.

For the other inclusion, the homology and cohomology of Σg give us the result by
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dimension considerations. As HΓ
0 (Σg,R) = R, im(∂) is precisely the space of 0-chains

with coefficients that sum to zero. Similarly, as H2
Γ(Σg,R) = R, im(δ) is precisely the

space of 2-cochains with coefficients that sum to zero.

Recall that the kernel of ∂ ⊕ δ denotes the space of harmonic 1-chains, and is of

dimension 2g. Thus, this tells us that for a modified harmonic condition, there will

be a 2g-dimensional space of 1-chains that satisfy them. There is no canonical choice

of identification between a homology class and a solution, but we may choose one by

projecting orthogonally to the kernel (with respect to the metric given by taking the ei as

an orthonormal basis). As stated earlier, we will denote this 1-chain with σmh.

Lastly, we note that we again restrict to generic modified harmonic 1-chains with all

coefficients being non-zero. Consideration of non-generic modified harmonic 1-chains leads

to predictably more complicated results, and we leave those aside in this thesis.

4.2.2 Associated square tilings of surfaces with boundary

Before we can proceed, we must define a marked oriented square tiling on a surface with

boundary, and what it means for it to be associated with a modified harmonic 1-chain

σmh.

Definition 4.2.3. A marked oriented square tiling of a flat cone metric d on a compact, ori-

ented, connected surface Σg,n is a covering by marked squares s1, s2, . . . , sm, with disjoint

interior so that: (
m⋃
i=1

sti

)
\ ∂Σg,n =

(
m⋃
i=1

sbi

)
\ ∂Σg,n

(
m⋃
i=1

sli

)
\ ∂Σg,n =

(
m⋃
i=1

sri

)
\ ∂Σg,n

Additionally, we require that each boundary component be a subset of one of the four set

unions above.

The last condition ensures that boundaries are only of one “type”, and consist of only

sides of one type, though again this is not strictly true, so we have stated it as given. Note
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also that with this definition, it is clear that any cone points on the boundary will have

cone angles in π + 2πN.

Now for the definition of such a tiling being associated with a modified harmonic 1-

chain. We adopt similar notation as that in subsection 3.2.2. Furthermore, to shorten the

statement, particularly in conditions 2 and 3, we assume that the edges are oriented such

that all coefficients are non-negative. We may do this, as these assignments are arbitrary,

and are simply made for the purpose of explicit ∂ maps.

Definition 4.2.4. A marked oriented square tiling of a flat cone metric d on a surface

Σg,n will be associated to σmh if two sets of conditions are met. First, the following

correspondences must hold:

1. Each edge ei corresponds to a marked square si with side length |ci|.

2. Each vertex v corresponds to a horizontal segment hv with length

max
(∑

e∈I(v) ci,
∑

e∈O(v) ci

)
.

3. Each face f , with boundary loop denoted ∂f , corresponds to a vertical segment uf

with length max
(∑

e∈F(∂f) ci,
∑

e∈B(∂f) ci

)
.

Secondly, the tiling must reflect the topology of Γ and σmh.

4. If an edge ei carries current flowing out of (into) vertex v, then the bottom (top)

side of si is contained in hv.

5. If an edge ei is carrying current clockwise (counterclockwise) about face f , then the

right (left) side of si is contained in uf .

The changes to conditions 2 and 3 account for the existence of boundary components

that may be part of these horizontal and vertical segments. In particular, we will seee

that if σmh fails to be closed or co-closed at a vertex or face, respectively, then the length

of the corresponding boundary component in the resulting flat metric will be equal to the

magnitude of this failure. If it is a vertex, the boundary component will be part of a

horizontal segment, and if it is a face, it will be part of a vertical segment.



44

4.2.3 Boundary loop closings

We now may proceed with the proof of Theorem 4.2.1 by construction. We again construct

Σ̂g in the same fashion, and assignment of dσmh
can be done analogously, with boundary

loops arising for each vertex and face. We again decompose them into an even number

of 1-cells that consist of sides of one type, which alternates as you traverse the loop. We

again use li denote these 1-cells and |li| to denote their lengths.

Note now that with the modified harmonic condition, we no longer have that total

lengths of the 1-cells grouped by type are equal. In particular, if our modified harmonic

condition at vertex vj requires that the coefficient for ∂σmh = aj , then we will have that

|l1| − |l2|+ |l3| − · · · − |l2n| = aj , assuming we started labelling with a 1-cell consisting of

tops of squares. An analogous statement holds for faces.

In order to close these boundary loops, we must make slight modifications to the

definitions in subsection 3.5.2. Again, we let p denote either a vertex or a face, and we

use ap to denote the desired coefficient for that vertex or face functional in the modified

harmonic condition.

Definition 4.2.5. An open loop closing of a boundary loop γp will be a further decompo-

sition of the {li}2ni=1 into 1-cells {tj}2m+1
j=1 , the last of which is of length |ap|, and a pairing

of the first 2m 1-cells of opposite type, designating an orientation-reversing isometric

identification of those paired segments.

We again would like to avoid the introduction of additional genus with a closing. As

before, let us embed γp in R2 as the boundary of a disc centered at the origin, and remove

the interior of said disc, and consider the resulting topology when the identifications are

made.

Definition 4.2.6. A valid open closing of a boundary loop γp will be an open loop closing

which results in a space with the topology of R2 \ D, when γp is embedded as suggested

above.

Again, we have two equivalent conditions. The first is that the image of the identified
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1-cells (so all but the last one) will be a metric tree under the quotient map of the

identification. A boundary loop of length |ap| will remain corresponding to this last

unidentified 1-cell. The second is the same as before: if two pairs of points (x1, x2) and

(y1, y2) on γp are identified, then the lines between them must not cross when considered

in the embedding into the plane.

We may prove existence of valid open closings in a manner analogous to the procedure

in the proof of Lemma 3.5.4.

Lemma 4.2.7. For any boundary loop γp arising from a modified harmonic 1-chain σmh,

there exists a valid open closing.

The proof is omitted, due to this similarity. We apply these valid open closings to each

boundary loop to obtain a marked oriented square tiling of a surface Sσmh
. To determine

the topology, we again use Lemma 3.6.1.

Lemma 4.2.8. Sσmh
is homeomorphic to Σg,n, where n is the number of vertices and faces

where the modified harmonic condition asks that being closed or co-closed fails.

Proof. Let Vm and Fm denote the vertices and faces, respectively, where the modified

harmonic condition differs from the typical harmonic condition. Then, as before, for each

vertex or face where σmh is still harmonic, a valid closing is homotopic to gluing in a disc.

At vertices and faces in Vm and Fm, valid open closings leave boundary components, and

no change is made, up to homotopy. As such, we apply Lemma 3.6.1 with X being the

space with disc attachments (homotopic to Sσmh
), and A = Σ̂g and find that χ(Sσmh

) =

−|E|+ (|V | − |Vm|) + (|F | − |Fm|) = χ(Σg)− (|Vm|+ |Fm|).

As a final note, we mention that the classical result may be obtained as a special case,

if we consider the embedded planar electrical network as a CW decomposition of Σ0 = S2

(the compactification of the plane). We consider the modified harmonic condition where

co-closure fails at the faces with b as a bounding edge, and the result of our construction

is an associated square tiling and flat cone metric on a cylinder Σ0,2. This tiling is the
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same as the tiling from the classical result if we remove the square corresponding to the

battery edge.

4.3 Rectangle tilings

In this short section, we briefly describe the necessary modifications to achieve rectangle

tilings. In general, this entails adding the data of a non-unit resistance on each edge,

which gives the aspect ratio of the corresponding rectangle.

4.3.1 The classical case

In the classical case, we may define a general planar electrical network, which includes the

additional data of a resistance function on each non-battery edge.

Definition 4.3.1. A general planar electrical network is a quadruple (G, b, Y, r) consisting of

a planar, connected, directed graphG, a non-loop edge b ∈ G to designate the battery edge,

a number Y ∈ R to denote the voltage to be applied over b, and a function r : E\{b} → R+

describing the resistance of each non-battery edge.

With the addition of this data, we must briefly generalize Kirchhoff’s laws.

Kirchhoff’s laws

To state them more generally, we define an additional function on the edges d : E → R,

which describes the voltage drop over each edge. With voltage Y being applied over the

battery edge b, we have that d(b) = Y .

With this new function, Ohm’ s law becomes simpler to state: for all non-battery edges

e ∈ E \ {b}, we have d(e) = c(e)r(e). The current law remains unchanged. The voltage

loop law is stated with the voltage drop function replacing the current function, as they

are no longer equal due to non-unit resistances:

∑
e∈F(γ)

d(e) =
∑

e∈R(γ)

d(e)
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With Ohm’s law, it is clear that the voltage loop law may be described in terms of

the current and resistance functions, so we may speak simply of searching for an appro-

priate current function c as the solution to Kirchhoff’s laws. The proof of existence and

uniqueness of this function remains the same.

Associated rectangle tilings

There is an obvious modification of the definition for a square tiling of a rectangle into a

rectangle tiling of a rectangle.

Definition 4.3.2. A rectangle tiling of a rectangle is a covering by rectangles with disjoint

interiors, of a Euclidean rectangle with designated top, bottom, left, and right sides.

Let us also make the proper modifications to Definition 2.4.1 to obtain the definition

for a rectangle tiling to be associated with a general planar electrical network.

Definition 4.3.3. We say that a rectangle tiling is associated to a circuit solution c of a

general planar electrical network if two sets of conditions are met. First, the following

correspondences must hold:

1. Each resistor edge e corresponds to a rectangle qe with width |c(e)| and height

|d(e)| = r(e)|c(e)|.

2. Each vertex v corresponds to a horizontal segment hv with length
∑

e∈I(v) c(e) =∑
e∈O(v) c(e), the total current through v.

3. Each face f whose boundary consists of resistor edges (forming a simple loop de-

noted ∂f), corresponds to a vertical segment uf with length
∑

e∈F(∂f) r(e)c(e) =∑
e∈R(∂f) r(e)c(e).

Secondly, the tiling must reflect the topology of Γ and the circuit solution. In the

following conditions, note that the sign of c(e) in conjunction with the direction on e will

determine the direction of current flow.
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4. If an edge e carries current flowing out of (into) vertex v, then the bottom (top) side

of qe is contained in hv.

5. If an edge e is carrying current clockwise (counterclockwise) about face f , then the

right (left) side of qe is contained in uf .

Then we get the following result:

Theorem 4.3.4. Given a general planar electrical network (G, b, Y, r) with a unique circuit

solution c : E \ {b} → R, and a fixed embedding of G in the plane, there is a unique

associated rectangle tiling of a rectangle of height Y and width I, the total current through

the network.

The proof follows with almost no modification, and this result is mentioned in [BSST].

4.3.2 The general case

As before, we begin with a closed, oriented, connected surface of genus g ≥ 1 with a CW

decomposition Γ. In addition, we now have a function r : E → R+ assigning a resistance

to each edge. Given a non-zero homological class [σ] ∈ H1(Σg,R)\{0}, we will again have

a unique harmonic representative σh ∈ CΓ
1 (Σg,R) in the cellular homology with respect

to Γ.

Harmonicity

As Kirchoff’s laws required modification and generalization, we must also generalize the

definition of harmonic, with the additional resistance data. As before, recall the typical

setup for cellular homology and cohomology and the ∂ and δ operators.

CΓ
0 CΓ

1 CΓ
2

C0
Γ C1

Γ C2
Γ

∂

φ1

∂

δ δ

Previously, we defined φ1 to take ei to e∗i . The data of the resistance function will

change this definition. In particular, we define φ1(ei) := rie
∗
i (where ri is shorthand for
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r(ei)) and extend to all 1-chains by linearity. With this change to φ1, there is no need

to change the statement of the definition of harmonicity, though the condition is clearly

more general.

Definition 4.3.5. A 1-chain σ ∈ CΓ
1 is harmonic if ∂σ = 0 and δφ1(σ) = 0. In other words,

if σ is both closed and co-closed.

As before, a harmonic 1-chain σ may be thought of as a local solution to Kirchhoff’s

laws generalized to accomodate non-unit resistances. For this, we still consider the coeffi-

cients ci as describing the current through each edge. With this, it is clear that ∂σ = 0 still

corresponds to the current law holding at each vertex, in the same way as it did before.

For the condition δφ1(σ) = 0, we will see that our redefinition of φ1, leads to this being

analogous to Ohm’s law and the voltage loop law holding around each face. Again, let

δφ1(σ) = d1f
∗
1 + · · ·+ d|F |f

∗
|F |, where the f∗k denote the face functionals in C2

Γ. Then, we

may express the coefficient dk as the total voltage drop around f .

dk =

 ∑
ei∈F(γ)

ciri

−
 ∑
ei∈B(γ)

ciri


Within this expression, we see that we are summing the local voltage drops as our

terms are the products of the currents and resistances. This is the manifestation of Ohm’s

law.

For the proof of a unique harmonic representative, we have the exact same proof,

except that we take the riei as a basis. The proof follows verbatim, otherwise.

Lemma 4.3.6. For a homological class [σ] ∈ HΓ
1 (Σg), there is a unique harmonic represen-

tative σh.

For this section, we only discuss generic σ with non-zero coefficients. The non-generic

results are easily modified, so we leave those results unstated.
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Associated rectangle tilings

Let us generalize the appropriate tiling-related definitions. The tilings that are produced

consists of marked rectangles which are Euclidean rectangles with designated top, bottom,

left, and right sides. Analogous to previous notation, we denote these sides of a rectangle

qi in a tiling with qti , q
b
i , q

l
i, and qri , respectively. A marked rectangle in a surface with

a flat cone metric is defined to be the image of a continuous map on a marked rectangle

which is an isometric embedding on the interior.

Definition 4.3.7. A marked oriented rectangle tiling of a flat cone metric d on a closed,

oriented surface Σg is a covering by marked rectangles q1, q2, . . . , qm, with disjoint interior

so that:
m⋃
i=1

qti =

m⋃
i=1

qbi &

m⋃
i=1

qli =

m⋃
i=1

qri

The definition for an associated rectangle tiling is modified just as it is in the classical

case. We include the definition for completeness.

Definition 4.3.8. A marked oriented rectangle tiling of a flat cone metric d on a surface

Sg will be associated to σh if two sets of conditions are met. First, the following corre-

spondences must hold:

1. Each edge ei corresponds to a marked rectangle qi with height ri|ci| and width |ci|.

2. Each vertex v corresponds to a horizontal segment hv with length
∑

e∈I(v) ci =∑
e∈O(v) ci, the total current through v.

3. Each face f , with boundary loop denoted ∂f , corresponds to a vertical segment uf

with length
∑

e∈F(∂f) ciri =
∑

e∈B(∂f) ciri.

Secondly, the tiling must reflect the topology of Γ and σh. In the following conditions,

recall that the sign of ci in conjunction with the direction on ei will determine the direction

of current flow.
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4. If an edge ei carries current flowing out of (into) vertex v, then the bottom (top)

side of qi is contained in hv.

5. If an edge ei is carrying current clockwise (counterclockwise) about face f , then the

right (left) side of qi is contained in uf .

The result

We may now state our result for rectangle tilings:

Theorem 4.3.9. Given a closed, oriented surface Σg of genus g ≥ 1, a generic [σ] ∈

H1(Σg,R)\{0}, a CW decomposition Γ with oriented edges, and a function r : E → R+,

there exists a marked oriented rectangle tiling of a flat cone metric d on Σg that is asso-

ciated with σh.

The proof is analogous to the previous one, so we omit discussion.

Finally, as we’ve hinted at a few times, we may combine any subset of the three

generalizations just discussed to obtain more complicated statements, but we have decided

to avoid such an exercise, for the sake of the reader.
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