Fast Planar Harmonic Deformations with Alternating Tangential Projections

EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER

BAR-ILAN UNIVERSITY, ISRAEL

The Mapping Problem

- Desirable properties:
 - Locally-injective
 - Bounded conformal distortion
 - Bounded isometric distortion
 - Real-time

$$f: \Omega \to \mathbb{R}^2$$

Previous Work

• Cage based methods (barycentric coords):

[Hormann and Floater 2006] [Joshi et al.2007] [Lipman et al. 2007] [Weber et al. 2011] [Weber et al. 2009]

...

Bounded distortion:

[Lipman 2012]

...

[Kovalsky at al. 2015]

[Chen and Weber 2015] [Levi and Weber 2016]

Notations

- Planar mapping: $f: \Omega \to \mathbb{R}^2$
- Jacobian:

$$J_f = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} + \begin{pmatrix} c & d \\ d & -c \end{pmatrix}$$

Similarity

Complex Wirtinger derivatives:

 $f_z = a + ib$

$$f_{\overline{z}} = c + id$$

- Distortion measures:
 - Singular values of J_f

Bounded Distortion Harmonic Mappings

• The BD space: $\forall z \in \Omega$

Non-convex space

conformal
$$k(z) = \frac{\sigma_a - \sigma_b}{\sigma_a + \sigma_b} = \frac{|f_{\bar{z}}|}{|f_z|} \le C_k$$

isometric $\sigma_a(z) = |f_z| + |f_{\bar{z}}| \le C_a$
 $\sigma_b(z) = |f_z| - |f_{\bar{z}}| \ge C_b$
 $\tau = \max$

Source $C_a = 2.5$

 $\left(\sigma_{a}, \frac{1}{\sigma_{b}}\right)$

• Harmonic mapping \Rightarrow enforce bounds only on $\partial \Omega$ [Chen and Weber 2015]

The \mathcal{L}_{v} Space [Levi and Weber 2016]

• Change of variables:

• BD homeomorphic to \mathcal{L}_{v}

The \mathcal{L}_{ν} Space

• Near convex space

 $\forall w \in \partial \Omega$

$$\begin{aligned} k(w) &= |\nu(w)| \le C_k \\ \sigma_a(w) &= e^{Re(l(w))}(1 + |\nu(w)|) \le C_a \\ \sigma_b(w) &= e^{Re(l(w))}(1 - |\nu(w)|) \ge C_b \end{aligned}$$

Discretization

n vertices

- Enforce distortion constraints on m densely sampled points
- Use Cauchy complex barycentric coordinate :

$$l(z) = \sum_{j=1}^{n} s_j C_j(z) \quad \& \quad v(z) = \sum_{j=1}^{n} t_j C_j(z) \quad s_j, t_j \in$$

- Subspace of holomorphic functions
- 4n-dimensional

m sample points

Affine

C

Our problem

Our problem

- Input: l and ν values from cage data
- Find the closest point in the intersection of an affine space and a convex space

Alternating Projections

Alternating Projections

Large-Scale Bounded Distortion Mappings

[Kovalsky et al. 2015]

- Alternating Projections between an affine space and non-convex space
- No convergence guarantees
- Upon convergence, not necessarily locally injective
- Only bounds the conformal distortion and not isometric

Gathering Input Data

- Extract l and ν values from cage data
- Linear transformations $e_i \mapsto \widehat{e_i}$ that preserves the unit normal

Implementation

• Local:

- Project each sample point to the bounded distortion space
- GPU kernel

• Global:

- Linear + fixed left hand side
- GPU Matrix-Vector products using cuBLAS

Results

Near-optimality of alternating projection methods

Near-optimality of alternating projection methods

Speedup

Summary

- Planar deformation
- GPU accelerated speedup of 3×10^3
- Guaranteed local injectivity and bounded distortion
- Homeomorphism of BD and \mathcal{L}_{ν}
- General proof of convergence

• Future Work:

- Positional constraints
- Extension to 3D / parametrization of surfaces