Singularity-Free Frame Fields for Line Drawing Vectorization

Olga Guțan*, Carnegie Mellon University Shreya Hegde*, Amherst College Erick Jimenez Berumen, Caltech Mikhail Bessmeltsev, Université de Montréal Edward Chien, Boston University

Symposium on Geometry Processing 2023 | July 3, 2023

Methods from Discrete Differential Geometry

2D Image Processing

Vectorization of Line Drawings

Vectorization of Line Drawings

Resolution Independent

Resolution Independent

Compact Size

Commercial Methods are not Accurate Enough

[Adobe Illustrator 2021]

Input

Vectorization is Difficult (and Popular!)

Vectorization is Difficult (and Popular!)

YouTube https://www.youtube.com > watch :

Convert Any Photo Into Vector Graphics! (Photoshop ...

in this Tutorial Tuesday video, you will learn how to turn any photo into a vector graphic using both adobe photoshop and illustrator ...

YouTube · Charley Pangus · Sep 20, 2022

10 key moments in this video v

Sticker Mule https://www.stickermule.com > blog > how-to-convert...

6 ways to convert any image to vector (free & paid) | Blog

Apr 3, 2023 - 4) Convert images to vector in Illustrator · Open a new document in Adobe Illustrator. · On the menu bar, click on File, and then Place. Find the ...

Sponsored

Vector Design US https://www.vectordesign.us > vectorize-image

\$5 Vectorizing an Image - Same Day Pricing Starts at \$5

Pro Vector Redraw Service Starts \$5. We Vectorize by Hand - No Auto Tracing - Let's Starts

Get Free Quote · Works Sample · Best Vectorize Services · Contact US

Get the Job Done. Task Possible

ine | Fiverr

Try Fiverr's Logo Maker · Graphics & Design Artists · Level Up Your Skills · Music & Audio

Vectorization is Difficult (and Popular!)

vector files: SVG, EPS, and PDF. Pricing: A paid subscription is ...

s Logo Maker · Graphics & Design Anists · Level Op Tour Skins

(Recent!) Past Work

1-Skeleton Methods: Suitable for Clean Digital Input Only

[Noris et al. 2013]

Input

Region-Based Skeleton: Oversimplifies Vectorization

Input

[Favreau et al. 2016]

Frame-Fields–Based Methods

Polyvector Fields Vectorization: Does Not Capture Details

Input

[Bessmeltsev and Solomon 2019]

Parameterization: Relies on the Absence of Singularities

Polyvector Flow: Incorrectly Resolves Junctions

Input

[Puhachov et al. 2021]

Frame-Fields-Based Vectorization Pipeline

1 – Isolate Algorithm Domain

1. Preprocessing

2 – Compute Frame Fields for Each Domain Pixel

1. Preprocessing 2. Frame Field Design

2 – Frame Fields Indicate Directions

1. Preprocessing 2. Frame Field Design

3 – Compute Streamlines from Directions

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing

4 – Compute Vector Curves from Streamlines

1. Preprocessing 2. Frame Field Design

3. Streamline Tracing 4.

4. Vectorization

How to Construct Frame Fields?

Orthogonal Cross Fields

Nonorthogonal Frame Fields

Orthogonal

Nonorthogonal

Nonorthogonal Frame Fields

Polyvector Singularities: Axis Switch

Polyvector Singularities: Axis Switch Details

Smaller orange axis vanishes + switches with the blue one

Polyvector Singularities: Zero Singularity

Polyvector Singularities: Zero Singularity Details

Representative vector: nonzero counterclockwise rotation

Tracing Errors due to Singularities

[Bessmeltsev and Solomon 2019]

Contribution

Contribution

Guarantees:

- No singularities!
- Qualitatively Improved Fields
 - Even when starting singularity-free

Frame Fields with Singularities

Singularity-Free Frame Fields

Current Vectorization Pipeline: Polyvector Fields

With singularities

Our Vectorization Pipeline: Singularity-Free Fields

Our Method: Vectorizations Closer to Input Drawings

Our Method: Correctly Resolves Y-Junctions

[Puhachov et al. 2021]

[our method]

Input

Background

Vectorization Pipeline

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing 4. Vectorization

Primal and Dual Mesh

Narrowband

Primal Mesh

Dual Mesh

Preprocessing

Primal and Dual Mesh + Discrete Differential Operators

Preprocessing

Indices of Singularities

Background: Poincaré-Hopf Theorem (x = 2)

Source: Jacopo Bertolotti

Poincaré-Hopf Theorem: Broadly

Theorem:

A smooth vector field on a manifold satisfies the following index formula:

Poincaré-Hopf Theorem: 2D + Boundaries

Poincaré-Hopf Theorem: 2D + Boundaries

Boundary Indices Examples

In our work, integer indices only, because: rotations of <u>representative vector</u>

Process:

- 1. Find component vector rotation
- 2. Multiply by 4
- 3. Obtain representative vector rotation

$$1 + 3 - 5 = 2 - 3$$
 \longrightarrow Number of Boundaries

Green: one particular component vector Red: discontinuity in the matching

Boundary Indices Framework (If needed)

$\chi = 0$	Ext	Int	In our work.	$\chi = 1$	Ext	Int_1	Int_2
Cpt rotation	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	integer indices	Cpt rotation	3π	-2π	$-\pi$
Rep rotation	2π	-2π	integer indices	Rep rotation	12π	-8π	-4π
Index	0	0	only	Index	-5	3	1

Trivial Connections: On Triangle Mesh

Work with **derivative** of field, rather than field itself ⇒ index constraints become linear

[Crane et al. 2013]

Trivial Connections: On Pixelated Planar Domain

[Crane et al. 2013]

Express Index Constraints as Linear System

No singularities on the domain interior

Express Index Constraints as Linear System

Describes the boundary winding

Next: Method

| Definitions 🔽 | Motivation 🔽 | Background 🔽 |

Method Overview

An initial quadratic solve for a roughly-aligned cross field with singularities

Method Overview

An initial quadratic solve for a roughly-aligned cross field with singularities

An identification and combing of the singularities

Method Overview

An initial quadratic solve for a roughly-aligned cross field with singularities

An identification and combing of the singularities

A non-convex solve to obtain a smoother, better-aligned non-orthogonal singularity-free field

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

$$\min_{f \in \mathbb{C}^{|F|}} \left(\frac{1}{A_S} f^{\top} \Delta \overline{f} + \frac{w}{A_A} \sum_{i: g_i \neq 0} |f_i - g_i^4|^2 \right)$$

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

• Quadratic optimization results in a linear KKT system which is solved via conjugate gradients

Aligns well in most regions

Aligns well in most regions

But many internal singularities, often arising at junctions and curve endpoints

How to comb singularities?

• Push singularities by modifying interpolation

• When we push a singularity over an edge *i j*

$$\alpha_{ij}^{\text{cmb}} = \begin{cases} \alpha^{\text{crs}} \mp 2\pi & \text{if } ij \text{ is with edge orientation} \\ \alpha^{\text{crs}} \pm 2\pi & \text{if } ij \text{ is against edge orientation} \end{cases}$$

How much does pushing singularities cost?

- Push of a positive/negative singularity leads to an increase in smoothness by $(\alpha^{crs} \mp 2\pi)^2 - (\alpha^{crs})^2 = 4\pi \ (\pi \mp \alpha^{crs})$
- Two directed graphs for pushing positive and negative singularities:

$$w_{ij}^{\pm} = \begin{cases} (|f_i| + |f_j|)(\pi \mp \alpha^{\text{crs}}) & \text{if } ij \text{ interior, with orientation} \\ (|f_i| + |f_j|)(\pi \pm \alpha^{\text{crs}}) & \text{if } ij \text{ interior, against orientation} \\ \infty & \text{if } ij \text{ boundary} \end{cases}$$

- Push +/- singularities to either match each other or go the boundaries
- These weights give us the costs for our optimal transport problem

Optimal transport problem

- We have a transport matrix $T \in \mathbb{R}^{(|\mathcal{S}^-|+1) \times (|\mathcal{S}^+|+1)}$
- Unbalanced transport problem due to the boundary acting as infinite source and sink
- The linear program solves for T

```
\begin{split} \min_{T} \langle C, T \rangle \\ s.t. \sum_{j} T_{ij} &= 1, \text{ for } 1 \leq i \leq |\mathcal{S}^{-}| \\ \sum_{i} T_{ij} &= 1, \text{ for } 1 \leq j \leq |\mathcal{S}^{+}| \\ T_{ij} &\geq 0, \forall i, j. \end{split}
```

- This optimization problem has a binary solution $T_{ij} \in \{0,1\}^{(|\mathcal{S}^-|+1)\times(|\mathcal{S}^+|+1)}$
- Partially inspired by Justin Solomon and Amir Vaxman's work¹
- 1. Solomon and Vaxman 2019
Nonconvex field optimization

- Our representation: two line fields
- Encode the frame field as three unknowns
 - \circ ϕ : absolute rotation of the root for each component
 - \circ α : connection angle per dual edge
 - $\circ \quad \theta^{}_2$: relative angles between the representative vectors

• Linear index constraints: *Ax=b*

$$A = \begin{bmatrix} d_0^{\text{int}} \\ H \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ \mathbf{k} \end{bmatrix}$$

Objective function

$$f(\phi, \alpha, \theta_2) = \frac{1}{A_A} E_{\text{Alignment}}$$

Objective function

Objective function

Alignment

Alignment

Local minimum achieved when one of the line fields is:

- Parallel to the local tangent, or
- Perpendicular to the normalized image gradient g

Smoothness

$$f(\phi, \alpha, \theta_2) = \frac{1}{A_A} E_{\text{Alignment}} + \frac{w_B}{A_B} E_{\text{Barrier}} + \frac{w_S}{A_S} E_{\text{Smoothness}}$$

Smoothness

$$f(\phi, \alpha, \theta_2) = \frac{1}{A_A} E_{\text{Alignment}} + \frac{w_B}{A_B} E_{\text{Barrier}} + \frac{w_S}{A_S} E_{\text{Smoothness}}$$

$$E_{\text{Smoothness}} = \alpha^{\top} \alpha + \beta^{\top} \beta$$

Smoothness

$$f(\phi, \alpha, \theta_2) = \frac{1}{A_A} E_{\text{Alignment}} + \frac{w_B}{A_B} E_{\text{Barrier}} + \frac{w_S}{A_S} E_{\text{Smoothness}}$$

$$E_{\text{Smoothness}} = \boldsymbol{\alpha}^{\top} \boldsymbol{\alpha} + \boldsymbol{\beta}^{\top} \boldsymbol{\beta}$$
$$\boldsymbol{\beta}_{ij} = (\boldsymbol{\theta}_2)_j - (\boldsymbol{\theta}_2)_i + \boldsymbol{\alpha}_{ij}$$
$$\bigcup$$

Change in the second line field over each dual edge

Barrier

Barrier

Optimization method and setting

• Here are some of the parameters we used: $W_B = 0.5$, $W_S = 5$, W = 0.125

$$\min_{f \in \mathbb{C}^{|F|}} \left(\frac{1}{A_S} f^{\top} \Delta \overline{f} + \frac{w}{A_A} \sum_{i: g_i \neq 0} |f_i - g_i^4|^2 \right)$$

$$f(\phi, \alpha, \theta_2) = \frac{1}{A_A} E_{\text{Alignment}} + \frac{w_B}{A_B} E_{\text{Barrier}} + \frac{w_S}{A_S} E_{\text{Smoothness}}$$

 Optimize the non-convex energy using Newton's method as implemented in IPOPT

Results

PolyVector and PolyFlow comparison

PolyVector comparison

Bessmeltsev and Solomon 2019

PolyVector comparison

Due to zero singularities:

Tracing produces continuous streamlines

We no longer need heuristics

Fewer artifacts

Bessmeltsev and Solomon 2019

PolyVector comparison: Field quality

Bessmeltsev and Solomon 2019

PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021

PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021

Results: PolyFlow comparison

Processing time

	Fig.	[BS19]	# Dark	Cvx	OT	Ncvx	Vect
		Sings	Pixels	Opt (s)	(s)	Opt (s)	time (s)
Cup	6, 8	14	41k	12	5	259	46
Sketch1	6	8	25k	8	11	125	24
Sketch2	7	24	51k	48	447	1217	260
Donkey	6	8	30k	13	3	778	45
Elephant	S	12	35k	18	8	465	41
Goldfish	8	4	39k	12	10	461	53
Hippo	S, 8	24	25k	9	10	208	27
Horse	S	34	103k	280	192	618	132
Kitten	S	0	29k	8	13	668	40
Pig	S	43	28k	10	10	389	144
Rose	7	0	19k	4	3	194	50
Trumpet	S	12	14k	2	1	148	12

Conclusions

Limitations and Future Work

- We work best on clean line drawings
- Improve relatively long runtimes with more sophisticated optimization techniques
- Improve upon the tracing pipelines
- Extend our work to different domains requiring higher-valence junctions
- Work on vectorization of complex hatching styles and fills
- Develop meaningful quantitative quality measures¹
 - Chamfer and Hausdorff distances are insufficient

1. Puhachov, Neveu, Chien, Bessmeltsev 2021

Conclusions

- We generate singularity-free frame fields, missing from state-of-the-art frame field-based vectorization algorithms
- Make use of trivial connections + simple frame field representation + convex solve for the initialization
- No singularities inside the domain and improved frame fields → quality vectorizations

Thank you! Any questions?

Ablation Study (Optional) | Alignment

Removing the Alignment Term

Objective Function with All Terms

Ablation Study (Optional) | Anti-Align

Frame Field Objective: "Anti"-Alignment

Ablation Study (Optional) | Anti-Align

Frame Field Objective: "Anti"-Alignment

Ablation Study (Optional) | Smoothness

SLIDE GRAVEYARD BELOW

Introduction (perhaps w/ teaser image exemplar)

Related Work (short-ish, 2 slides)

- Some vectorization methods
 - Especially PolyVector & PolyFlow
- Fields stuff (more SGPish)
 - Trivial connections (maybe? Or just discuss later)
 - Lots of other stuff
 - Amir/Justin paper on matching of singularities via optimal transport (SV19)

Cross fields and line fields basics

- Representative vectors
- Singularities and indices (and boundary indices, example below)
- Note the different convention
- Poincare Hopf formula

N-FIELD SINGULARITIES

• The same definition, but index can be in multiples of $\frac{1}{N}$.

• Interpretation: field "returns to itself" but with a different *matching* of vectors. $L = \frac{1}{2}$ $L = \frac{1}{2}$ L = 0 $L = -\frac{1}{2}$

Primal and dual mesh description

- Domain description
- D0 and d1 operators briefly, with intuition

Figure 3: Narrowband (a), primal mesh (b), and dual mesh (c).

Putting it all together: trivial connections

- (for a field on a pixel grid)
- Discrete realization of index
- Write out the linear system (Eqn 10)
- Point out how Poincare Hopf shows up

Tracing Errors due to Singularities

[Bessmeltsev and Solomon 2019]

Existing Methods Produce Topological Artifacts

SHREYA'S SLIDE GRAVEYARD BELOW

(OR) Convex Initialization (if time permits)

• Resulting linear KKT system:

$$\left(\frac{1}{A_S}\Delta + \frac{w}{A_A}P\right)f = \frac{w}{A_A}Pg^4$$

- System matrix is sparse, symmetric, and positive semidefinite
- Solve the system via preconditioned conjugate gradients

Aligns well in most regions

But many internal singularities, often arising at junctions and curve endpoints

Field Combing

- We consider a cost matrix with d- and d+ that denoting distances on the +1 and -1 directed graphs
- The resulting transport is going to be a binary matching of negative singularities and positive singularities, with some being pushed to boundaries
- The optimization problem has a binary solution $T_{ij} \in \{0,1\}^{(|\mathcal{S}^-|+1)\times(|\mathcal{S}^+|+1)}$

$$\begin{split} \min_{T} \langle C, T \rangle \\ s.t. \sum_{j} T_{ij} &= 1, \text{ for } 1 \leq i \leq |\mathcal{S}^{-}| \\ \sum_{i} T_{ij} &= 1, \text{ for } 1 \leq j \leq |\mathcal{S}^{+}| \\ T_{ij} &\geq 0, \forall i, j. \end{split}$$

SOLOMON J., VAXMAN A.: Optimal transport-based polar interpolation of directional fields. ACM Trans. Graph. 38, 4 (2019)

Alignment (if time permits)

$$E_{\nu} = \sum_{i:g_i \neq 0} \left[-\cos((\theta_1)_i - g_i^2) + 1 \right] \left[-\cos((\theta_1)_i + (\theta_2)_i - g_{\theta_i}^2) + 1 \right]$$

- regularizes alignment term
- ensures that local minima are nondegenerate
- pushes the line fields away from being aligned with each other

$$\mathbf{E}_{\text{Alignment}} = \sum_{i:g_i \neq 0} \left[\nu \mathbf{E}_{\nu} + \left[\cos\left((\theta_1)_i - \arg(g_i^2)\right) + 1 \right] \times \left[\cos\left((\theta_1)_i + (\theta_2)_i - \arg(g_i^2)\right) + 1 \right] \right]$$

Tangent selection

- Per-pixel selection of one of the axes needs to be the curve tangent
- Pipeline begins by tracing the frame field along the tangent directions
- We perform a simple smooth selection of axis that is most aligned with the tangent

Parameters we used

Effect of parameters (if time permits)

w controls the transition threshold between a T-junction and a Y-junction

*w = 0.125 in our experiments

Robustness

Determines correct topology despite a noisy narrowband

Robustness

Determines correct topology despite a noisy narrowband

Robust to changes in resolution

