
Olga Guțan*, Carnegie Mellon University
Shreya Hegde*, Amherst College
Erick Jimenez Berumen, Caltech
Mikhail Bessmeltsev, Université de Montréal
Edward Chien, Boston University 

Singularity-Free Frame Fields 
for Line Drawing Vectorization 

Symposium on Geometry Processing 2023 | July 3, 2023



Methods from 
Discrete Differential Geometry 

2D Image Processing 



Vectorization of Line Drawings

Pixel Grid 

Raster 
drawing



Vectorization of Line Drawings

Vector curves 

Bézier Curves
+ 

Control Points

Pixel Grid 

Raster drawing Vectorization



Why Vectorize?

Vector curves 

Bézier Curves
+ 

Control Points

Resolution Independent



Why Vectorize?

Vector curves 

Bézier Curves
+ 

Control Points

Resolution Independent

Compact Size



Why Vectorize?

Vector curves 

Bézier Curves
+ 

Control Points

Resolution Independent

Compact Size

Easy to Edit



Why Vectorize?

Vector curves 

Bézier Curves
+ 

Control Points

Resolution Independent

Compact Size

Easy to Edit

Input to Algorithms



Vectorization is Very Useful! 

Architecture



Vectorization is Very Useful! 

Industrial Product Design



Vectorization is Very Useful! 

Fashion Industry



Vectorization is Very Useful! 

Art Industry



Commercial Methods are not Accurate Enough

[Adobe Illustrator 2021]Input



Vectorization is Difficult (and Popular!) 



Vectorization is Difficult (and Popular!) 



Vectorization is Difficult (and Popular!) 



(Recent!) Past Work



1-Skeleton Methods: Suitable for Clean Digital Input Only 

[Noris et al. 2013]Input



Region-Based Skeleton: Oversimplifies Vectorization

[Favreau et al. 2016]Input



Frame-Fields–Based Methods



Polyvector Fields Vectorization: Does Not Capture Details

[Bessmeltsev and Solomon 2019]Input

● Dull corners 
● Spurious lines 
● Interrupted tracing 



Parameterization: Relies on the Absence of Singularities 

[Stanko et al. 2020]Input

Singularities 



Polyvector Flow: Incorrectly Resolves Junctions

Input [Puhachov et al. 2021]

Wrong Y-junctions



Frame-Fields–Based Vectorization Pipeline



1. Preprocessing

1 – Isolate Algorithm Domain



1. Preprocessing 2. Frame Field Design

2 – Compute Frame Fields for Each Domain Pixel



1. Preprocessing 2. Frame Field Design

2 – Frame Fields Indicate Directions 



1. Preprocessing 2. Frame Field Design 3. Streamline Tracing

3 – Compute Streamlines from Directions 



4 – Compute Vector Curves from Streamlines

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing 4. Vectorization



How to Construct Frame Fields? 



Orthogonal Cross Fields 

Cross Field Line Field

w u

θ θ

arg (w) = 4θ arg (u) = 2θ 

Im

Re

Im

Re

w

w

w

w

u, w = representative vectors
axes = component vectors

u

u



Nonorthogonal Frame Fields

Orthogonal Nonorthogonal

Im

Re

w

θ

Im

Re



Nonorthogonal Frame Fields

Im

Re

[Bessmeltsev and Solomon 
2019]

[Puhachov et al. 2021]u

v



Polyvector Singularities: Axis Switch 



Polyvector Singularities: Axis Switch Details
Smaller orange axis vanishes + switches with the blue one 



Polyvector Singularities: Zero Singularity



Polyvector Singularities: Zero Singularity Details

Matching fails

Representative vector: nonzero counterclockwise rotation



Tracing Errors due to Singularities 

[Bessmeltsev and Solomon 2019]

Singularities 



Contribution



Contribution

Frame Fields 
with Singularities 

Singularity-Free 
Frame Fields 

Guarantees:

● No singularities!

● Qualitatively Improved Fields
– Even when starting singularity-free

Past Work Our Method



Current Vectorization Pipeline: Polyvector Fields

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing 4. Vectorization

With singularities



Our Vectorization Pipeline: Singularity-Free Fields

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing 4. Vectorization

With NO singularities



Our Method: Vectorizations Closer to Input Drawings 

Input [our method][Bessm. and Sol. 2019]



Our Method: Correctly Resolves Y-Junctions

Input [Puhachov et al. 2021] [our method]



Background

Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections



Vectorization Pipeline

1. Preprocessing 2. Frame Field Design 3. Streamline Tracing 4. Vectorization

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections



Primal and Dual Mesh

Preprocessing

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Narrowband Dual MeshPrimal Mesh



Discretized curl
d0 = el + e  - e - e

               0          l       k

                1          1       2        3     4 
  e

                3

            k                  l     

Primal and Dual Mesh + Discrete Differential Operators

Preprocessing

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Narrowband Dual Mesh

Discretized gradient
d   = vl - vk e = k l      v           v     

                        k            l

Primal Mesh

e

e

e

                1

                2
                4

                            
f              



Indices of Singularities

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

-1 0 +1



Background: Poincaré-Hopf Theorem (χ = 2)

Source: Jacopo Bertolotti



Poincaré-Hopf Theorem: Broadly

Theorem: 
  A smooth vector field on a manifold satisfies the following index formula: 

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Singularity indices 
Winding around the 

boundaries 



Poincaré-Hopf Theorem: 2D + Boundaries

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Narrowband Boundaries No singularities



Poincaré-Hopf Theorem: 2D + Boundaries

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Narrowband Boundaries No singularities

Push winding
to boundaries



Boundary Indices Examples

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

1

3

Exterior: -5
In our work, integer indices only,

because: 
rotations of representative vector

Green: one particular component vector
Red: discontinuity in the matching

Process:
1. Find component vector rotation
2. Multiply by 4
3. Obtain representative vector rotation

1 + 3 - 5 = 2 - 3 Number of 
Boundaries 



Boundary Indices Framework (If needed)

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections



Trivial Connections: On Triangle Mesh 

[Crane et al. 2013]

Work with derivative of field, rather than field itself ⇒ index constraints become linear

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Rotation angle on dual edge 

Intuition: change in angle of field along each edge



Trivial Connections: On Pixelated Planar Domain

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

[Crane et al. 2013]



Express Index Constraints as Linear System

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

(Submatrix of) 
Discrete Gradient Operator

No singularities on the domain interior



Express Index Constraints as Linear System

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

(Submatrix of) 
Discrete Gradient Operator

Describes the boundary winding 

Exterior 
boundary

Interior
boundary



Next: Method 

| Definitions ✅ | Motivation ✅ | Background ✅ | 



An initial quadratic solve 
for a roughly-aligned 

cross field with 
singularities

Method Overview



An identification and combing of the 
singularities

An initial quadratic solve 
for a roughly-aligned 

cross field with 
singularities

Method Overview



An identification and combing of the 
singularities

A non-convex solve to 
obtain a smoother, 

better-aligned 
non-orthogonal 

singularity-free field

An initial quadratic solve 
for a roughly-aligned 

cross field with 
singularities

Method Overview



Convex Initialization

● Linear solve to optimize a quadratic energy 
● Produce a cross field aligned with the drawing, but likely having singularities



● Linear solve to optimize a quadratic energy 
● Produce a cross field aligned with the drawing, but likely having singularities

Convex Initialization

Dirichlet energy to 
measure field 
smoothness 



● Linear solve to optimize a quadratic energy 
● Produce a cross field aligned with the drawing, but likely having singularities

Dirichlet energy to 
measure field 
smoothness 

Expresses alignment to the 
image gradient

Convex Initialization



● Linear solve to optimize a quadratic energy 
● Produce a cross field aligned with the drawing, but likely having singularities

● Quadratic optimization results in a linear KKT system which is solved via 
conjugate gradients

Dirichlet energy to 
measure field 
smoothness 

Expresses alignment to the 
image gradient

Convex Initialization



Convex Initialization

Aligns well in most regions



Aligns well in most regions

But many internal singularities, 
often arising at junctions and 
curve endpoints

Convex Initialization



How to comb singularities?

● Push singularities by modifying interpolation

● When we push a singularity over an edge i j 



● Push of a positive/negative singularity leads to an increase in smoothness by

(αcrs ∓ 2π)2 − (αcrs)2 = 4π (π ∓ αcrs)

● Two directed graphs for pushing positive and negative singularities:

● Push +/- singularities to either match each other or go the boundaries
● These weights give us the costs for our optimal transport problem

How much does pushing singularities cost?



● We have a transport matrix 

● Unbalanced transport problem due to the boundary acting as infinite source 
and sink 

● The linear program solves for T

● This optimization problem has a binary solution

● Partially inspired by Justin Solomon and Amir Vaxman’s work1

Optimal transport problem

1. Solomon and Vaxman 2019



Nonconvex field optimization 

● Our representation: two line fields
● Encode the frame field as three unknowns

○ ɸ: absolute rotation of the root for each component 
○ α: connection angle per dual edge
○ θ2: relative angles between the representative vectors 

● Linear index constraints: Ax=b



Objective function



Objective function



Objective function



Alignment



Alignment

Local minimum achieved when one of the line fields is:
● Parallel to the local tangent, or
● Perpendicular to the normalized image gradient g



Smoothness



Smoothness



Smoothness

Change in the second line 
field over each dual edge



Barrier



Barrier



● Here are some of the parameters we used:        = 0.5,         = 5,       = 0.125  

● Optimize the non-convex energy using Newton’s method as implemented in 
IPOPT

Optimization method and setting



Results



PolyVector and PolyFlow comparison



PolyVector comparison

Bessmeltsev and Solomon 2019



PolyVector comparison

Due to zero 
singularities:

Tracing produces 
continuous 
streamlines

We no longer 
need heuristics

Fewer artifacts

Bessmeltsev and Solomon 2019



PolyVector comparison: Field quality

Bessmeltsev and Solomon 2019



PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021



Our frame fields 
produce 
vectorizations 
more precise at:

● Junctions
● Thick 

strokes
● Fills 

PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021



Also:

Improves 
resolution of 
Y-junctions

Correctly resolve 
ambiguous 
connectivity

Results: PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021



Processing time



Conclusions



Limitations and Future Work

● We work best on clean line drawings 

● Improve relatively long runtimes with more sophisticated optimization 
techniques 

● Improve upon the tracing pipelines

● Extend our work to different domains requiring higher-valence junctions

● Work on vectorization of complex hatching styles and fills

● Develop meaningful quantitative quality measures1

– Chamfer and Hausdorff distances are insufficient

1. Puhachov, Neveu, Chien, Bessmeltsev 2021



Conclusions

● We generate singularity-free frame fields, missing from state-of-the-art frame 
field–based vectorization algorithms

● Make use of trivial connections + simple frame field representation + convex 
solve for the initialization 

● No singularities inside the domain and improved frame fields → quality 
vectorizations



Thank you! Any questions?



Ablation Study (Optional) | Alignment 



Ablation Study (Optional) | Anti-Align



Ablation Study (Optional) | Anti-Align



Ablation Study (Optional) | Smoothness



SLIDE 
GRAVEYARD 
BELOW 



Introduction (perhaps w/ teaser image exemplar)



Related Work (short-ish, 2 slides)

● Some vectorization methods
○ Especially PolyVector & PolyFlow

● Fields stuff (more SGPish)
○ Trivial connections (maybe? Or just discuss later)
○ Lots of other stuff
○ Amir/Justin paper on matching of singularities via optimal transport (SV19)



Cross fields and line fields basics

● Representative vectors
● Singularities and indices (and boundary indices, example below)
● Note the different convention
● Poincare Hopf formula





Primal and dual mesh description

● Domain description
● D0 and d1 operators briefly, with intuition



Putting it all together: trivial connections 

● (for a field on a pixel grid)
● Discrete realization of index
● Write out the linear system (Eqn 10)
● Point out how Poincare Hopf shows up



Tracing Errors due to Singularities 



Existing Methods Produce Topological Artifacts 

Input

(Hand-Drawn Pencil Sketch)

Vectorization

● Dull corners 

● Spurious lines 

● Interrupted tracing 

[Bessmeltsev and Solomon 2019]



Primal and Dual Mesh + Discrete Differential Operators

Background: Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Discretized curl about 
primal mesh faces

Discretized gradient over 
each oriented edgePicture of what it does 

when u apply it on 
function / remove the 

definitions 

Remove the formulas 
with pictures 



SHREYA’S SLIDE GRAVEYARD BELOW 

RIP…



(OR) Convex Initialization (if time permits)

● Resulting linear KKT system:

● System matrix is sparse, symmetric, and positive semidefinite
● Solve the system via preconditioned conjugate gradients

Aligns well in most regions

But many internal singularities, 
often arising at junctions and 
curve endpoints



● We consider a cost matrix with d− and d+ that denoting distances on the +1 
and -1 directed graphs

● The resulting transport is going to be a binary matching of negative 
singularities and positive singularities, with some being pushed to 
boundaries

● The optimization problem has a binary solution

Field Combing 

SOLOMON J., VAXMAN A.: Optimal transport-based polar interpolation of directional fields. ACM Trans. Graph. 38, 4 (2019)



● regularizes alignment term
● ensures that local minima are nondegenerate
● pushes the line fields away from being aligned with each other

Alignment (if time permits)



Tangent selection
● Per-pixel selection of one of the axes needs to be the curve tangent

● Pipeline begins by tracing the frame field along the tangent directions

● We perform a simple smooth selection of axis that is most aligned with the 
tangent



Parameters we used



Effect of parameters (if time permits)

w controls the transition threshold between a T-junction and a Y-junction

*w = 0.125 in our experiments



Robustness

Determines correct topology despite a 
noisy narrowband



Robustness

Robust to changes in resolution
Determines correct topology despite a 

noisy narrowband


