Singularity-Free Frame Fields

for Line Drawing Vectorization

Olga Guțan*, Carnegie Mellon University Shreya Hegde*, Amherst College Erick Jimenez Berumen, Caltech Mikhail Bessmeltsev, Université de Montréal Edward Chien, Boston University

Methods from

2D Image Processing

Vectorization of Line Drawings

Vectorization of Line Drawings

Why Vectorize?

Resolution Independent

Why Vectorize?

Resolution Independent

Compact Size

Why Vectorize?

Resolution Independent

Compact Size

Easy to Edit

Bézier Curves
$+$
Control Points

Vector curves

Why Vectorize?

Resolution Independent

Compact Size

Easy to Edit

Input to Algorithms

Bézier Curves $+$
Control Points

Vector curves

Vectorization is Very Useful!

Commercial Methods are not Accurate Enough

Input
[Adobe Illustrator 2021]

Vectorization is Difficult (and Popular!)

Vectorization is Difficult (and Popular!)

- YouTube
- https://www.youtube.com > watch

Convert Any Photo Into Vector Graphics! (Photoshop ...

in this Tutorial Tuesday video, you will learn how to turn any photo into a vector graphic using both adobe photoshop and illustrator ...

YouTube • Charley Pangus • Sep 20, 2022

10 key moments in this video \checkmark

Sticker Mule

https://www.stickermule.com) blog , how-to-convert... \vdots
6 ways to convert any image to vector (free \& paid) | Blog
Apr 3, 2023 - 4) Convert images to vector in Illustrator • Open a new document in Adobe
Illustrator. - On the menu bar, click on File, and then Place. Find the ..

Sponsored

4/ Vector Design US
https://www.vectordesign.us , vectorize-image !
\$5 Vectorizing an Image - Same Day Pricing Starts at \$5
Pro Vector Redraw Service Starts \$5. We Vectorize by Hand - No Auto Tracing - Let's Starts
Get Free Quote • Works Sample • Best Vectorize Services • Contact US

Vectorization is Difficult (and Popular!)

- YouTube
https://www.youtube.com $>$ watch !

Convert Any Photo Into Vector Graphics! (Photoshop ...

Convert Image to Any Format for Free
How to convert image into any file format - Launch Canva. Open Canva on your mobile device or desktop to start a project. Upload your images. Upload the photo .

0 GitHub
https://github.com ; visioncortex , vtracer :
visioncortex/vtracer: Raster to Vector Graphics Converter visioncortex VTracer is an open source software to convert raster images (like jpg \& png) into vector graphics (svg). It can vectorize graphics and ...

wikiHow

https://www.wkihow.com , ...) Software , Graphics :
2 Ways to Convert JPG to SVG (Vector)
Dec 26, 2022 - Using Adobe Illustrator ... Open Adobe Illustrator. The simplest way to convert a JPG to a vector image is to use Adobe Illustrator. Illustrator ...
vر online-converting.com
https:/l/online-converting.com > vectorize ;
Free vector converter. Vectorize your image to AI, SVG, PDF ...
Our converter can not only convert vector graphics, but also raster. This allows you to quickly convert any images, eg. PNG to vector (for example, PNG to SVG).

Wondershare
https:/Videoconverter:wondershare.com , convert ; v... :
Best 10 Vector Converters Alternative Online Free May 12, 2023-1. Autotracer - 2. Vector Magic - 3. Vectorizer - 4. Convertio - 5. Free Online Converter - 6. Online Convert.
(Recent!) Past Work

1-Skeleton Methods: Suitable for Clean Digital Input Only

Input
[Noris et al. 2013]

Region-Based Skeleton: Oversimplifies Vectorization

Input

[Favreau et al. 2016]

Frame-Fields-Based Methods

Polyvector Fields Vectorization: Does Not Capture Details

Input

- Dull corners
- Spurious lines
- Interrupted tracing
[Bessmeltsev and Solomon 2019]

Parameterization: Relies on the Absence of Singularities

[Stanko et al. 2020]

Polyvector Flow: Incorrectly Resolves Junctions

Input
[Puhachov et al. 2021]

Frame-Fields-Based Vectorization Pipeline

1 - Isolate Algorithm Domain

1. Preprocessing

2 - Compute Frame Fields for Each Domain Pixel

1. Preprocessing 2. Frame Field Design

2 - Frame Fields Indicate Directions

1. Preprocessing 2. Frame Field Design

3 - Compute Streamlines from Directions

1. Preprocessing
2. Frame Field Design
3. Streamline Tracing

4 - Compute Vector Curves from Streamlines

1. Preprocessing
2. Frame Field Design
3. Streamline Tracing
4. Vectorization

How to Construct Frame Fields?

Orthogonal Cross Fields

$$
\begin{aligned}
& \text { Cross Field } \\
& \boldsymbol{\operatorname { a r g }}(\mathrm{w})=\mathbf{4 \theta}
\end{aligned}
$$

Nonorthogonal Frame Fields

Orthogonal
Nonorthogonal

Nonorthogonal Frame Fields

[Bessmeltsev and Solomon 2019]

[Puhachov et al. 2021]

$$
f(z)=\left(z^{2}-u^{2}\right)\left(z^{2}-v^{2}\right)=z^{4}+c_{2} z^{2}+c_{0}
$$

Polyvector Singularities: Axis Switch

Polyvector Singularities: Axis Switch Details

Smaller orange axis vanishes + switches with the blue one

Polyvector Singularities: Zero Singularity

Polyvector Singularities: Zero Singularity Details

Representative vector: nonzero counterclockwise rotation

Tracing Errors due to Singularities

[Bessmeltsev and Solomon 2019]

Contribution

Contribution

Past Work

Frame Fields with Singularities

Our Method

Singularity-Free Frame Fields

Guarantees:

- No singularities!
- Qualitatively Improved Fields
- Even when starting singularity-free

Current Vectorization Pipeline: Polyvector Fields

1. Preprocessing
2. Frame Field Design

3. Streamline Tracing
4. Vectorization

Our Vectorization Pipeline: Singularity-Free Fields

2. Frame Field Design

Our Method: Vectorizations Closer to Input Drawings

Input
[Bessm. and Sol. 2019]

[our method]

Our Method: Correctly Resolves Y-Junctions

Background

Domain | Poincaré-Hopf Theorem | Boundary Indices | Discrete Trivial Connections

Vectorization Pipeline

1. Preprocessing

Primal and Dual Mesh

Primal and Dual Mesh + Discrete Differential Operators

Preprocessing

Narrowband

Primal Mesh

Dual Mesh

Discretized gradient

$$
d_{0}=v_{1}-v_{k}
$$

$$
v_{\mathrm{k}} \longrightarrow \mathrm{v}_{1} \quad \mathrm{e}=\mathrm{kl}
$$

Discretized curl

$$
d_{1}=e_{1}+e_{2}-e_{3} e_{4}
$$

Indices of Singularities

-1

0

$+1$

Background: Poincaré-Hopf Theorem $(x=2)$

Poincaré-Hopf Theorem: Broadly

Theorem:

A smooth vector field on a manifold satisfies the following index formula:

Poincaré-Hopf Theorem: 2D + Boundaries

Narrowband

Boundaries

No singularities

Poincaré-Hopf Theorem: 2D + Boundaries

Boundary Indices Examples

In our work, integer indices only, because:
rotations of representative vector

Process:

1. Find component vector rotation
2. Multiply by 4
3. Obtain representative vector rotation

$$
1+3-5=2-3 \longleftrightarrow \begin{gathered}
\text { Number of } \\
\text { Boundaries }
\end{gathered}
$$

Green: one particular component vector
Red: discontinuity in the matching

Boundary Indices Framework (If needed)

Process:

1. Find component vector rotation
2. Multiply by 4
3. Obtain the rep vector rotation

$\chi=0$	Ext	Int
Cpt rotation	$\frac{\pi}{2}$	$-\frac{\pi}{2}$
Rep rotation	2π	-2π
Index	0	0

In our work, integer indices only

$\chi=1$	Ext	Int $_{1}$	Int $_{2}$
Cpt rotation	3π	-2π	$-\pi$
Rep rotation	12π	-8π	-4π
Index	-5	3	1

Trivial Connections: On Triangle Mesh

Intuition: change in angle of field along each edge

Work with derivative of field, rather than field itself \Rightarrow index constraints become linear
[Crane et al. 2013]

Trivial Connections: On Pixelated Planar Domain

Express Index Constraints as Linear System

(Submatrix of)

Express Index Constraints as Linear System

(Submatrix of)
Discrete Gradient Operator

Describes the boundary winding

Next: Method

| Definitions $\vee \mid$ Motivation $\vee \mid$ Background $\vee \mid$

Method Overview

An initial quadratic solve for a roughly-aligned cross field with
singularities

Method Overview

An initial quadratic solve for a roughly-aligned cross field with singularities

An identification and combing of the singularities

Method Overview

An initial quadratic solve for a roughly-aligned cross field with singularities

An identification and combing of the singularities

A non-convex solve to obtain a smoother, better-aligned non-orthogonal singularity-free field

Convex Initialization

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

$$
\min _{f \in \mathbb{C}^{|F|}}\left(\frac{1}{A_{S}} f^{\top} \Delta \bar{f}+\frac{w}{A_{A}} \sum_{i: g_{i} \neq 0}\left|f_{i}-g_{i}^{4}\right|^{2}\right)
$$

Convex Initialization

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

$$
\begin{aligned}
& \left.\qquad \min _{f \in \mathbb{C}^{|F|}}\left(\frac{1}{A_{S}} f^{\top} \Delta \bar{f}\right)+\frac{w}{A_{A}} \sum_{i: g_{i} \neq 0}\left|f_{i}-g_{i}^{4}\right|^{2}\right) \\
& \text { ergy to } \\
& \text { eld } \\
& \text { s }
\end{aligned}
$$

Dirichlet energy to measure field smoothness

Convex Initialization

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

Dirichlet energy to measure field smoothness

Convex Initialization

- Linear solve to optimize a quadratic energy
- Produce a cross field aligned with the drawing, but likely having singularities

Dirichlet energy to measure field smoothness

- Quadratic optimization results in a linear KKT system which is solved via conjugate gradients

Convex Initialization

Aligns well in most regions

Convex Initialization

Aligns well in most regions
But many internal singularities， often arising at junctions and curve endpoints

How to comb singularities?

- Push singularities by modifying interpolation

- When we push a singularity over an edge $i j$

$$
\alpha_{i j}^{\mathrm{cmb}}= \begin{cases}\alpha^{\mathrm{crs}} \mp 2 \pi & \text { if } i j \text { is with edge orientation } \\ \alpha^{\mathrm{crs}} \pm 2 \pi & \text { if } i j \text { is against edge orientation }\end{cases}
$$

How much does pushing singularities cost?

- Push of a positive/negative singularity leads to an increase in smoothness by

$$
\left(a^{\mathrm{crs}} \mp 2 \pi\right)^{2}-\left(a^{\mathrm{crs}}\right)^{2}=4 \pi\left(\pi \mp a^{\mathrm{crs}}\right)
$$

- Two directed graphs for pushing positive and negative singularities:

$$
w_{i j}^{ \pm}= \begin{cases}\left(\left|f_{i}\right|+\left|f_{j}\right|\right)\left(\pi \mp \alpha^{\mathrm{crs}}\right) & \text { if } i j \text { interior, with orientation } \\ \left(\left|f_{i}\right|+\left|f_{j}\right|\right)\left(\pi \pm \alpha^{\mathrm{crs}}\right) & \text { if } i j \text { interior, against orientation } \\ \infty & \text { if } i j \text { boundary }\end{cases}
$$

- Push +/- singularities to either match each other or go the boundaries
- These weights give us the costs for our optimal transport problem

Optimal transport problem

- We have a transport matrix $T \in \mathbb{R}^{\left(\left|\mathcal{S}^{-}\right|+1\right) \times\left(\left|\mathcal{S}^{+}\right|+1\right)}$
- Unbalanced transport problem due to the boundary acting as infinite source and sink
- The linear program solves for T

$$
\begin{aligned}
& \min _{T}\langle C, T\rangle \\
& \text { s.t. } \sum_{j} T_{i j}=1, \text { for } 1 \leq i \leq\left|\mathcal{S}^{-}\right| \\
& \quad \sum_{i} T_{i j}=1, \text { for } 1 \leq j \leq\left|\mathcal{S}^{+}\right| \\
& T_{i j} \geq 0, \forall i, j .
\end{aligned}
$$

- This optimization problem has a binary solution $T_{i j} \in\{0,1\}^{\left(\left|\mathcal{S}^{-}\right|+1\right) \times\left(\left|\mathcal{S}^{+}\right|+1\right)}$
- Partially inspired by Justin Solomon and Amir Vaxman's work ${ }^{1}$

Nonconvex field optimization

- Our representation: two line fields
- Encode the frame field as three unknowns
- ϕ : absolute rotation of the root for each component
- α : connection angle per dual edge
- θ_{2} : relative angles between the representative vectors

- Linear index constraints: $A x=b$

$$
A=\left[\begin{array}{c}
d_{0}^{\mathrm{int}} \\
H
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
\mathbf{k}
\end{array}\right]
$$

Objective function

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}
$$

Objective function

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}
$$

Objective function

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

Alignment

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

Alignment

Local minimum achieved when one of the line fields is:

- Parallel to the local tangent, or
- Perpendicular to the normalized image gradient g

Smoothness

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

Smoothness

$$
\begin{gathered}
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }} \\
\mathrm{E}_{\text {Smoothness }}=\alpha^{\top} \alpha+\beta^{\top} \beta
\end{gathered}
$$

Smoothness

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

$$
\mathrm{E}_{\text {Smoothness }}=\alpha^{\top} \alpha+\beta^{\top} \beta
$$

$$
\beta_{i j}=\left(\theta_{2}\right)_{j}-\left(\theta_{2}\right)_{i}+\alpha_{i j}
$$

Change in the second line field over each dual edge

Barrier

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

Barrier

$$
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
$$

Optimization method and setting

- Here are some of the parameters we used: $w_{B}=0.5, w_{S}=5, w=0.125$

$$
\begin{gathered}
\min _{f \in \mathbb{C} \mid}\left(\frac{1}{A_{S}} f^{\top} \Delta \bar{f}+\frac{w}{A_{A}} \sum_{i: g_{i} \neq 0}\left|f_{i}-g_{i}^{4}\right|^{2}\right) \\
f\left(\phi, \alpha, \theta_{2}\right)=\frac{1}{A_{A}} \mathrm{E}_{\text {Alignment }}+\frac{w_{B}}{A_{B}} \mathrm{E}_{\text {Barrier }}+\frac{w_{S}}{A_{S}} \mathrm{E}_{\text {Smoothness }}
\end{gathered}
$$

- Optimize the non-convex energy using Newton's method as implemented in IPOPT

Results

PolyVector comparison

Bessmeltsev and Solomon 2019

PolyVector comparison

Due to zero

 singularities:Tracing produces continuous streamlines

We no longer need heuristics

Fewer artifacts

Bessmeltsev and Solomon 2019

PolyVector comparison: Field quality

PolyFlow comparison

Puhachov, Neveu, Chien, Bessmeltsev 2021

PolyFlow comparison

Our frame fields produce
vectorizations more precise at:

- Junctions
- Thick strokes
- Fills

Puhachov, Neveu, Chien, Bessmeltsev 2021

Results: PolyFlow comparison

Also:

Improves resolution of Y-junctions

Correctly resolve ambiguous connectivity

Puhachov, Neveu, Chien, Bessmeltsev 2021

Processing time

	Fig.	BS19] Sings	\# Dark Pixels	Cvx Opt (s)	OT (s)	Ncvx Opt (s)	Vect time (s)
Cup	6,8	14	41 k	12	5	259	46
Sketch1	6	8	25 k	8	11	125	24
Sketch2	7	24	51 k	48	447	1217	260
Donkey	6	8	30 k	13	3	778	45
Elephant	S	12	35 k	18	8	465	41
Goldfish	8	4	39 k	12	10	461	53
Hippo	$\mathrm{S}, 8$	24	25 k	9	10	208	27
Horse	S	34	103 k	280	192	618	132
Kitten	S	0	29 k	8	13	668	40
Pig	S	43	28 k	10	10	389	144
Rose	7	0	19 k	4	3	194	50
Trumpet	S	12	14 k	2	1	148	12

Conclusions

Limitations and Future Work

- We work best on clean line drawings
- Improve relatively long runtimes with more sophisticated optimization techniques
- Improve upon the tracing pipelines
- Extend our work to different domains requiring higher-valence junctions
- Work on vectorization of complex hatching styles and fills
- Develop meaningful quantitative quality measures ${ }^{1}$
- Chamfer and Hausdorff distances are insufficient

Conclusions

- We generate singularity-free frame fields, missing from state-of-the-art frame field-based vectorization algorithms
- Make use of trivial connections + simple frame field representation + convex solve for the initialization
- No singularities inside the domain and improved frame fields \rightarrow quality vectorizations

Thank you! Any questions?

Ablation Study (Optional) | Alignment

$$
\mathrm{E}_{\text {Alignment }}=\sum_{i: g_{i} \neq 0}\left[\nu \mathrm { E } _ { \nu } \left[\begin{array}{c}
{\left[\begin{array}{c}
\left.\cos \left(\left(\theta_{1}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right] \\
\text { Vanishes if the first line } \\
\text { field is } \perp \text { to image gradient }
\end{array}\right] \times\left[\begin{array}{c}
\left.\cos \left(\left(\theta_{1}\right)_{i}+\left(\theta_{2}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right] \\
\text { Vanishes if the second line field } \\
\text { is } \perp \text { to image gradient }
\end{array}\right]}
\end{array}\right.\right.
$$

Removing the Alignment Term

Objective Function with All Terms

Ablation Study (Optional) | Anti-Align

Frame Field Objective: "Anti"-Alignment
$\mathrm{E}_{\text {Alignment }}=\sum_{i: g_{i} \neq 0}\left[\begin{array}{l}\left.\left[\nu \mathrm{E}_{\nu}\right]+\left[\cos \left(\left(\theta_{1}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right] \times\left[\cos \left(\left(\theta_{1}\right)_{i}+\left(\theta_{2}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right]\right] \\ \sum_{i: g_{i} \neq 0}\left[-\cos \left(\left(\theta_{1}\right)_{i}-g_{i}^{2}\right)+1\right] \times\left[-\cos \left(\left(\theta_{1}\right)_{i}+\left(\theta_{2}\right)_{i}-g_{\theta_{i}}^{2}\right)+1\right]\end{array}\right]$

Ablation Study (Optional) | Anti-Align

Frame Field Objective: "Anti"-Alignment

Ablation Study (Optional) | Smoothness

SLIDE

GRAVEYARD BELOW

Introduction (perhaps w/ teaser image exemplar)

Related Work (short-ish, 2 slides)

- Some vectorization methods
- Especially PolyVector \& PolyFlow
- Fields stuff (more SGPish)
- Trivial connections (maybe? Or just discuss later)
- Lots of other stuff
- Amir/Justin paper on matching of singularities via optimal transport (SV19)

Cross fields and line fields basics

- Representative vectors
- Singularities and indices (and boundary indices, example below)
- Note the different convention
- Poincare Hopf formula

$\chi=0$	Ext	Int	$\chi=1$	Ext	Int $_{1}$	Int $_{2}$
Cpt rotation	$\frac{\pi}{2}$	$-\frac{\pi}{2}$	Cpt rotation	3π	-2π	$-\pi$
Rep rotation	2π	-2π	Rep rotation	12π	-8π	-4π
Index	0	0	Index	-5	3	1

N-FIELD SINGULARITIES

- The same definition, but index can be in multiples of $\frac{1}{N}$.
- Interpretation: field "returns to itself" but with a different matching of vectors.

$$
I_{p}=\frac{1}{4}, K_{p}=\frac{2 \pi}{4}
$$

Primal and dual mesh description

- Domain description
- D0 and d1 operators briefly, with intuition

Figure 3: Narrowband (a), primal mesh (b), and dual mesh (c).

Putting it all together: trivial connections

- (for a field on a pixel grid)
- Discrete realization of index
- Write out the linear system (Eqn 10)
- Point out how Poincare Hopf shows up

Tracing Errors due to Singularities

[Bessmeltsev and Solomon 2019]

Existing Methods Produce Topological Artifacts

Input

- Dull corners
- Spurious lines
- Interrupted tracing
[Bessmeltsev and Solomon 2019]

Primal and Dual Mesh + Discrete Differential Onerators Primal and Dual Mesh + Discrete Differential Operators

SHREYA'S SLIDE GRAVEYARD BELOW

RIP...

(OR) Convex Initialization (if time permits)

- Resulting linear KKT system:

$$
\left(\frac{1}{A_{S}} \Delta+\frac{w}{A_{A}} P\right) f=\frac{w}{A_{A}} P g^{4}
$$

- System matrix is sparse, symmetric, and positive semidefinite
- Solve the system via preconditioned conjugate gradients

- Resulting linear KKT system:
(AB
(a) $\times x$
 \rightarrow <

Aligns well in most regions But many internal singularities,
often arising at junctions and
curve endpoints But many internal singularities,
often arising at junctions and
curve endpoints But many internal singularities,
often arising at junctions and
curve endpoints 2

都

 rene , ,
 O
\qquad

Field Combing

- We consider a cost matrix with $\mathrm{d}-$ and $\mathrm{d}+$ that denoting distances on the +1 and -1 directed graphs
- The resulting transport is going to be a binary matching of negative singularities and positive singularities, with some being pushed to boundaries
- The optimization problem has a binary solution $T_{i j} \in\{0,1\}^{\left(\left|\mathcal{S}^{-}\right|+1\right) \times\left(\left|\mathcal{S}^{+}\right|+1\right)}$

$$
\begin{aligned}
& \min _{T}\langle C, T\rangle \\
& \text { s.t. } \sum_{j} T_{i j}=1, \text { for } 1 \leq i \leq\left|\mathcal{S}^{-}\right| \\
& \quad \sum_{i} T_{i j}=1, \text { for } 1 \leq j \leq\left|\mathcal{S}^{+}\right| \\
& T_{i j} \geq 0, \forall i, j .
\end{aligned}
$$

Alignment (if time permits)

$$
\mathrm{E}_{\nu}=\sum_{i: g_{i} \neq 0}\left[-\cos \left(\left(\theta_{1}\right)_{i}-g_{i}^{2}\right)+1\right]\left[-\cos \left(\left(\theta_{1}\right)_{i}+\left(\theta_{2}\right)_{i}-g_{\theta_{i}}^{2}\right)+1\right]
$$

- regularizes alignment term
- ensures that local minima are nondegenerate
- pushes the line fields away from being aligned with each other

$$
\mathrm{E}_{\text {Alignment }}=\sum_{i: g_{i} \neq 0}\left[\nu \mathrm{E}_{\nu}+\left[\cos \left(\left(\theta_{1}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right] \times\left[\cos \left(\left(\theta_{1}\right)_{i}+\left(\theta_{2}\right)_{i}-\arg \left(g_{i}^{2}\right)\right)+1\right]\right]
$$

Tangent selection

- Per-pixel selection of one of the axes needs to be the curve tangent
- Pipeline begins by tracing the frame field along the tangent directions
- We perform a simple smooth selection of axis that is most aligned with the tangent

Parameters we used

Effect of parameters (if time permits)

w controls the transition threshold between a T-junction and a Y-junction

Robustness

Determines correct topology despite a noisy narrowband

Robustness

Robust to changes in resolution
Determines correct topology despite a noisy narrowband

