
Repetition-Aware Content Placement in Navigational
Networks

Dóra Erdös Vatche Ishakian
∗

Azer Bestavros Evimaria Terzi
Boston University Raytheon BBN Technologies Boston University Boston University

Boston, MA Cambridge, MA Boston, MA Boston, MA
edori@bu.edu vishakia@bbn.com best@bu.edu evimari@bu.edu

ABSTRACT
Arguably, the most effective technique to ensure wide adop-
tion of a concept (or product) is by repeatedly exposing in-
dividuals to messages that reinforce the concept (or promote
the product). Recognizing the role of repeated exposure to
a message, in this paper we propose a novel framework for
the effective placement of content: Given the navigational
patterns of users in a network, e.g., web graph, hyperlinked
corpus, or road network, and given a model of the relation-
ship between content-adoption and frequency of exposition,
we define the repetition-aware content-placement (RACP)
problem as that of identifying the set of B nodes on which
content should be placed so that the expected number of
users adopting that content is maximized. The key contri-
bution of our work is the introduction of memory into the
navigation process, by making user conversion dependent on
the number of her exposures to that content. This depen-
dency is captured using a conversion model that is general
enough to capture arbitrary dependencies. Our solution to
this general problem builds upon the notion of absorbing
random walks, which we extend appropriately in order to
address the technicalities of our definitions. Although we
show the RACP problem to be NP-hard, we propose a gen-
eral and efficient algorithmic solution. Our experimental
results demonstrate the efficacy and the efficiency of our
methods in multiple real-world datasets obtained from dif-
ferent application domains.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
data mining

Keywords
Optimization, Markov chains, Navigational networks

∗This work was completed while the author was a PhD student
at Boston University

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
KDD’13, August 11–14, 2013, Chicago, Illinois, USA.
Copyright 2013 ACM 978-1-4503-2174-7/13/08 ...$15.00.

1. INTRODUCTION
Motivation: There is ample evidence in the literature that
the probability of internalizing a concept or buying a prod-
uct (user conversion) is dependent on the number of times
that an individual user is exposed to information or adver-
tisement related to that concept or product. As Artistotle
put it “it is frequent repetition that produces a natural ten-
dency”. In education, repetition is recognized as an effective
pedagogical tool; repetition deepens and hastens students’
engagement and understanding processes [5, 22]. In mar-
keting, repeated exposure to a product is key to the success
of marketing campaigns [17]. In politics, repeating specific
messages in stump speeches or in mass media advertisements
is effective in influencing public opinion, and thus critical to
the success of political campaigns [1, 21]. The effects of rep-
etition are not always positive: while repeated exposure to
a message increases one’s ability to internalize a concept in
an educational setting, it may yield undesirable outcomes in
a different setting – for example, the probability of purchas-
ing a product decreases dramatically with repeated exposure
(more than twice) of the product to a customer 1.

Problem: Motivated by the role that repeated exposure
to content plays in these various settings, in this paper
we define and study the repetition-aware content-placement
(RACP) problem in navigational networks, i.e., networks in
which the (directed) edges represent the potential of users
to transition from one node to another as they navigate
through the network. Broadly speaking, given the naviga-
tional patterns of users in such a network, and given the
relationship between the level of user exposure to content
and the probability of user conversion, the RACP problem is
that of identifying the set of k nodes on which content should
be placed so that the expected number of users adopting the
content (i.e., the conversion rate) is maximized.

Applications: Instances of RACP occur in multiple do-
mains. For example, consider the problem of superimposing
content on the navigational network defined by the hyperlink
structure of the web. Here, the challenge is the identification
of the set of k web pages (nodes of the navigational graph)
on which content should be placed in order to maximize
the impact of an advertisement campaign, e.g., placement
of slogans that raise awareness about a social issue, or place-
ment of advertisement about a product or a political party.
As another example, consider the problem of providing rec-
ommendations for additional content to readers of on-line

1http://www.mediabizbloggers.com/bill-harvey/
50150992.html

corpora. Here, the reader (a student) navigates a body of
knowledge (an on-line textbook) – not necessarily serially
– by following links that underscore dependencies between
units of the corpus (e.g., sections and chapters), and the
challenge is to identify the best set of units where addi-
tional content (further readings, references, exercises) could
be linked or recommended so as to maximize the probability
of access to such additional content. The RACP problem is
applicable to offline physical navigational networks as well –
the canonical example being road networks. Here users nav-
igate a set of interconnected locations, and the challenge is
the placement of billboard advertisements at the right loca-
tions, so as to maximize the impact on travelers/commuters.

Model: The main components of our setting are the user’s
navigational and conversion models. The navigational model
assumes that user’s navigation through the nodes of the net-
work is modeled by a Markov chain, i.e., a random walk over
the navigational graph. The conversion model specifies the
probability of a user adopting content as a function of the
number of times that content is shown to the user within a
single walk over the navigational network. Our incorpora-
tion of a conversion model fundamentally changes the nature
of content placement by making user conversion dependent
on the number of times that content is shown to the user.
Said differently, the novelty of our work is the introduction
of memory into the navigation process. In our work, rather
than focusing on a particular type of relationship between
number of views and probability of content adoption, we
consider generic conversion models that handle arbitrary de-
pendencies between the number of views and the probability
of content adoption.

Contributions: Problems of picking important (or target)
nodes in networks have been studied extensively in the past,
both in information-flow (or social) networks [7, 9, 11, 16],
in transportation [2, 3, 13, 14, 20] and in navigational net-
works [6, 8]. A thorough examination of this related work is
presented in Section 2. The key difference between that prior
work and ours is that the former assumes memoryless navi-
gation or information flow processes, and as a result has an
implicit conversion model that presumes the independence
of number of views and conversion probability. The explicit
modeling of this dependence and the flexibility of our model
to capture arbitrary forms of this dependency makes our
work more general in the sense that prior work represents
a subset of the scenarios that are possible to consider using
our approach. Another salient feature of our work is that
our formulation and algorithmic treatment of the RACP
problem are general in the sense that they apply to any
conversion model as long as the conversion probability can
be expressed as a function of the number of times content
is presented to the user in a single random walk over the
navigation graph. The incorporation of an arbitrary con-
version model (memory) into a navigation (random walk)
process raises new modeling as well as computational chal-
lenges, which comprise the main technical contributions of
our paper. We address this new class of problems by build-
ing upon the notion of random walks with absorbing states.
More specifically, we propose solutions to our RACP prob-
lem based on analysis using absorbing random walks, and we
demonstrate that our techniques are scalable and thus useful
for real-world data-analysis tasks. To the best of our knowl-
edge we are the first to leverage such techniques not only in

the context of content placement in navigational networks,
but also in the context of node-selection in general.

2. RELATED WORK
Although, to the best of our knowledge, we are the first to

propose and solve the RACP problem, which encompasses
both a navigational and a general conversion model, our
work is related to a large body of existing work on informa-
tion, transportation and online navigational networks.

Information networks: Recently, there has been a lot of
work in the computer-science literature on identifying a set
of nodes of a social network to advertise a product or to
immunize so that the spread of the product or the spread of
an epidemic in the network is maximized or minimized. Dif-
ferent assumptions about how information items propagate
in the network has led to a rich literature of node-selection
methods [7, 9, 11, 16, 18, 19]. The key difference between
our work and all these methods is that the latter assume that
the underlying network is an information network on which
items (rather than users) propagate. As a result, the models
adopted in such existing work are information-propagation
models and thus, cannot be used to model the navigation
of users in a navigational network. Hence, despite the fact
that at a high level we also need to pick a subset of the
nodes of our network, our objective – i.e., the maximization
of users’ conversion rate – does not have an analogue in the
social-network literature. More specifically, the models we
propose here are specific to navigational networks and lead
to problem definitions that require the development of new
machinery in order to be solved.

Transportation networks: Related to ours is the work
on the flow-capturing location allocation problem (FCLA) in
transportation networks. This problem has originally been
introduced in 1990 by Hodgson [13]. In the FCLA prob-
lem, the input consists of a network as well as the customer
traversals in the form of flows between source and destina-
tion pairs. The objective is to locate facilities in a set of
k nodes so as to maximize the number of customers who
encounter at least one facility in their flow through the net-
work. In his original paper, Hodgson proves that this version
of the location-allocation problem is NP-hard, but empiri-
cally shows that a greedy algorithm can be quite efficient in
solving it. The problem we study here is different from this
original version of the FCLA problem in three ways: First,
while in FCLA the repetition of interceptions (i.e., multiple
encounters of customers with facilities) is ignored, our work
focuses on optimizing the interception of the users’ naviga-
tion given the impact that repetitions have on the users’
tendency to convert. Second, Hodgson assumes that the in-
terception of a flow is a deterministic process, i.e., a flow is
either intercepted or not, hence set-cover type of reasoning
works for his approach. In our case the paths of users is only
intercepted in a probabilistic sense. Third, in our work we
assume the navigation model is Markovian, while in FCLA
the navigation paths of users from sources to destinations
are a priori known and deterministically defined. As a re-
sult, both our model as well as the computational challenges
we need to resolve are different from those that arise in the
FCLA problem.

Even in the domain of transportation networks, the as-
sumption that all source-destination flows are known a pri-
ori proved impractical. As a result, there exists work on

variants of the original FCLA problem where partial flow
information is assumed [2, 3]. In these cases, the available
navigation information specifies the fraction of flows that
pass through every node and its neighbors. Despite the fact
that this navigation model resembles ours, existing work still
ignores the effect of repetitive interceptions on users. As a
result, the underlying combinatorial problems that appear in
existing work [2, 3] are different from ours. After all, the al-
gorithms used for solving these existing variants of FCLA are
based on non-linear integer programming and total-reward
Markov decision processes, while our solution is based on
deploying Markov chains with absorbing states.

Navigational networks: More recent work on node - se-
lection in online navigational networks includes the work of
Chierichetti et al. [8] and Charikar et al. [6]. In their work
Charikar et al. [6] assume a similar propagation model and
objective to ours, in that users traverse a Markov chain and
the ultimate goal is to assign content to certain states in this
chain. Despite the similar objective function, the underly-
ing problem they solve is completely different from ours; in
their setup users can either be in a targeted or non-targeted
population and the goal is to intercept the largest possible
fraction of the targeted population. In their setting, inter-
ception of users’ is deterministic and repetition does not
play any role. As opposed to this, in our work users are
only intercepted with some probability in chosen states and
this probability may change with the number of times an
interception happens.

Chierichetti et al. [8] assume a user-navigation model sim-
ilar to ours and their goal is to find an optimal placement
of online advertisements. In their setting, ads are placed
to the nodes of the navigation network and there is a util-
ity assigned to a user seeing an ad, that depends both on
the state and the specific ad that is shown. When an ad is
shown the user may stop with some probability (go to an
exit state of the chain) or continue traversing. While the
user propagation model of Chierichetti et al. is similar to
ours, their conversion model is different. In special, they
do not distinguish between the first and subsequent views
of the same ad. They propose a very elegant LP solution
for their problem. However, the method they derive is in-
adequate to solve the RACP problem. Due to the fact that
in our setting the conversion probabilities are affected by
repeated traversal through the same state, the size of the
corresponding LP program in their solution would blow up.

3. PROBLEM DEFINITION
The input to our problem consists of the navigational and

the conversion model. The navigational model is a network;
the nodes of this network correspond to entities; the user
navigates through the entities by following the links of the
underlying graph (directed or undirected) based on prob-
abilities associated with the links. The conversion model
quantifies the relationship between the number of times a
user views a particular content and the probability of her
adopting the content (or converting to the content). The
objective of our work is to place content in the network at
locations so as to maximize the probability of conversion.

Throughout the paper, we assume as input a navigational
graph G = (S, E), which is a directed or undirected graph
with nodes S, edges E and |S| = n.

Navigational model: We assume that the users’ traversal

of the network follows the traditional Markov model; users
navigate between a set of states in a randomized way, tran-
sitioning between states with given probabilities, such that
the transition probabilities define a Markov chain on this set
of states. Let M = 〈S,P〉 denote this Markov chain, set S
contains n states S = {s1, s2, . . . , sn} and P contains the
transition probabilities P(i, j) of a user moving from state
si to state sj . We think of P as an n×n matrix, that is the
transition matrix of M. Note that the state space S of the
Markov chain is simply the set of nodes of the navigational
graph G = (S, E).

For the rest of the discussion, we will assume that M is
irreducible and aperiodic, and thus has a stationary distribu-
tion π2. Finally, in order to make our model more realistic,
we assume that there is an upper bound on the maximum
number of hops the user is taking, i.e., this bound encodes
that the user quits his navigational session in finite time.
We denote this bound by Mmax.

Conversion model: This model depicts the user’s behav-
ior upon being exposed to some content in one of the states.
Upon viewing content c the user has two possible actions:
either convert (i.e., click on the link, adopt some view or
buy the advertised product) and quit the traversal of the
network or continue without taking any action. The con-
version model provides the probability with which the user
chooses in any given situation between these two options.
Note, that a user may only quit the navigation by either
converting or by exceeding the maximum number of hops.

In this paper, we focus on memory-full conversion mod-
els, i.e., conversion models for which the probability of a
user converting to the content c depends on the number of
times she has been exposed to this content before – while it
does not depend on the specific path that the user has fol-
lowed. To describe this model in more detail we introduce
the notion of levels.

Definition 1. We say that a user is in level ` if she has
been exposed to content c exactly ` times.

A result of the above definition is that the user is in level
0 when she has not seen the content yet. That is, every user
starts her traversal of the network in level 0. When a user,
who is at level ` is exposed to the content but decides not
to convert, she moves to level (`+ 1).

The probability that a user converts to content c, when
presented with it in state s, depends on the state itself as
well as on the user’s level `, but not on the user’s path
during her navigation. We denote this probability by C(`, s).
Naturally, the probability that a user continues the traversal
– without converting – is (1− C(`, s)). We call C(`, s) the
conversion probability in state s at level `.

Note that the probability C(`, s) can be any arbitrary
function of s and `. For example, if the number of repe-
titions of the content’s viewings increases (resp. decreases)
the probability of adoption, then we will assume that C(`, s)
is monotonically increasing (resp. decreasing) with `. How-
ever, such monotonic relationship is not necessary for our
framework. Our intuition is that the probability of the user’s
conversion increases for the first couple of exposures to the
content and then it decreases.
2In fact, our method only makes use of the irreducibility
property of Markov chains. In our experiments we compute
the PageRank with a dampening factor [4] of states instead
of the stationary distribution.

The only assumption we make with respect to the de-
pendency of C(`, s) on ` is that there is a sufficiently large
number K, such that if the user did not convert after level
K, then the probability of conversion becomes infinitesimal
small. That is, C(`, s) → 0 for ` ≥ K and for any s. This
assumption also ensures that the number of different con-
version probabilities per state is at most K.

The dependency of C(`, s) on the state s may also be
arbitrary. In some cases, the conversion probability C(`, s)
may depend on the relevance of the content c, which we
are placing to the node s, and the content of the node s
itself. For example, an ad’s placement on a webpage depends
on the topic of the page. In other cases, the conversion
probability C(`, s) may only depend on factors irrelevant to
the content or the node.

Expected conversion rate: The objective in the RACP
problem is to maximize the expected probability of a user
converting to content c, given the navigational and conver-
sion models. We are now ready to give the formal definition
of this objective function.

For this, let M〈S,P〉 be the user’s navigational model.
Moreover, if L = {1, 2, . . . ,K} is the set of all possible levels
of a user then let C : L×S→ [0, 1] denote the input conver-
sion model. Finally, let R(`, s) denote the probability that
the user is encountering content c for the `-th time when
she is visiting state s. Note that since the user has not yet
quit the navigation she has neither converted to c, nor has
she reached the maximum number of steps Mmax. Although
the definition of R(`, s) is conceptually easy, computing the
value of R(`, s) is computationally challenging. In order to
maintain the smoothness of the flow of the paper, we assume
for now that R(`, s) can be computed and we give the details
of this computation in Section 4.2.

If copies of content c are placed on a subset of states A ⊆
S, then the expected conversion rate of content placement
A is given by the formula:

CR(A) =
X
s∈A

KX
`=0

R(`, s)C(`, s). (1)

Note that Equation (1) is the probability that a user reaches
a state s ∈ A and converts to content c, after having en-
countered content c for ` times in the past, where ` ∈ L.

Since our goal is to actually find the content placement A
for which Equation (1) is maximized, we define the RACP
problem as an optimization problem as follows:

Problem 1 (RACP). Given the navigational model
M = 〈S,P〉, the conversion model C(`, s) for every ` ∈ L
and s ∈ S, and a budget B, assign content to at most B
states A ⊆ S so that the expected conversion rate CR(A) is
maximized.

Theorem 1. The RACP problem is NP-hard.

Proof. We prove the theorem by reducing the decision
version of the Vertex Cover problem [12] to the decision
version of the RACP problem.

The decision version of the Vertex Cover problem takes
as input a graph G′ = (V ′, E′) and asks whether there exists
a set of vertices U ⊆ V ′ of size at most k such that every
edge in E′ is incident to at least one of the vertices in U .

We transform the above instance of Vertex Cover to an
instance of the decision version of our problem as follows.

We assume that our navigation graph G = (S, E) has the
same nodes as G′ (i.e., S = V) and the same set of edges as
E′ (the undirected edges in E′ become bidirectional edges
in E). Our navigational model is a simple Markov chain
defined on G. Further, we define our conversion model as
follows: for any state s ∈ S, the user converts to content c
the first time she encounters c. That is, for every s ∈ S we
have that C(0, s) = 1. We can now show that there exists a
vertex cover of size k in G′ iff in the above instance of the
RACP problem there exists a set of k nodes A ⊆ S such
that for Mmax = 1 the expected conversion rate for A is
equal to 1, i.e., CR(A) = 1.

4. SOLVING THE RACP PROBLEM
In this section, we give a greedy algorithm for solving

the RACP problem. We also identify the connection of our
problem to random walks with absorbing states and demon-
strate how this connection is exploited within the implemen-
tation of our algorithm.

4.1 The Greedy algorithm
Our greedy algorithm, which we call Greedy, forms solu-

tion A iteratively; at each iteration it adds the node that
causes (locally) the most increase in the objective function.

More specifically, Greedy starts from an empty set A = ∅.
At iteration i, a new state s is added to A, such that CR(A∪
{s}) is maximized. The algorithm terminates when either
the budget B of states for content placement is exceeded, or
there is no state that increases the expected conversion rate.
In many applications, not all states are available for content
placement. For this reason, we keep a set of candidate states
S ⊆ S and only consider states in S to add to A. The
pseudocode of the Greedy algorithm is given in Algorithm 1.

Algorithm 1 The Greedy alorithm for the RACP problem.

Input: Markov chain M〈S,P〉, budget B, candidate list
S and conversion rates C(`, s) for every ` ∈ {0, . . . ,K}
and every s ∈ S.
Output: set of states A and CR(A).
A← 0
CR(A)← 0
for i = 1 . . . B do

s = argmaxs′∈SCR(A ∪ {s′})
A = A ∪ {s}
S = S \ {s}

In terms of running time, the most computationally ex-
pensive step of Greedy is the computations done inside the
for loop, i.e., computing CR(A∪{s′}) (line 4 of Algorithm 1).
If the time required for computing function CR() is T , then
the running time of Greedy is O(B|S|T), which in the worst
case (i.e., when S = S) is O(BnT).

Note that at each iteration of the for loop in line 4 all
candidates need to be evaluated in order to choose the one
with the largest marginal benefit. Although this can be
time consuming, we observe that the evaluation of each can-
didate can be done independently of the rest. Therefore, we
have implemented a parallel version of Greedy, which we call
Par-Greedy, and which evaluates each candidate separately.
Thus Par-Greedy is O(n/q) times faster than the serial ver-
sion of Greedy shown in Algorithm 1, where q depends on
the number of cores of the underlying hardware.

The details of how we evaluate CR(A) for any A ⊆ S are
given in the next paragraph.

4.2 Computing the expected conversion rate
The computation of CR(A) for any A requires the eval-

uation of Equation (1). Since C(`, s) for any level ` and
any state s is provided as part of the input (i.e., the conver-
sion model), the main challenge in the evaluation of Equa-
tion (1) stems from computing the values of R(`, s) for ev-
ery ` ∈ {0, . . . ,K} and every s ∈ S. Next, we show how
these computations can be done using the notion of absorb-
ing Markov chains [10, 15].

Absorbing Markov chains: Given an underlying graph
H = (X, Q), consisting of nodes X and edges Q, an absorb-
ing Markov chain C = 〈X,Q〉 defines an absorbing random
walk on H. The statespace of this walk is X (i.e., the nodes
of H) and there are two types of states in X: absorbing and
transient. A state x ∈ X is absorbing if the random walk
transitions into this node, but not out of it (and thus, the
random walk is absorved in state x). Let B ⊆ X denote the
set of absorbing states. The remaining states U = X \ B
define the set of non-absorbing or transient states.

Given this partition of the states, the transition matrix of
this random walk can be written as follows:

Q =

„
QUB QUU

I 0

«
. (2)

If |X| = N , then in the above equation, I is an (N − |U|)×
(N −|U|) identity matrix and 0 a matrix with all its entries
equal to 0; QUU is the |U| × |U| sub-matrix of Q with the
transition probabilities between transient states; and QUB

is the |U| × |B| sub-matrix of Q with the transition proba-
bilities from transient to absorbing states.

An important quantity of an absorbing random walk is
the expected number of visits to a transient state y when
starting from a transient state x, before being absorbed.
The probability of transitioning from x to y in exactly `
steps is the (x, y) entry of the matrix Q`

UU. Finally, the
matrix

QUB = Q`
UUQUB (3)

is an |U|×|B| matrix, with QUB(x, y) being the probability
that a random walk which starts at a transient state x ends
up being absorbed at state y ∈ B.

Absorbing Markov chains and the RACP problem:
In order to illustrate how absorbing random walks can be
leveraged by our problem, let us consider the navigational
graph G = (S, E) and the corresponding navigational model
M = 〈S,P〉 and conversion model C(`, s) for ` ∈ {0, . . . ,K}
and s ∈ S. Further assume that a subset of states A ⊆ S
have been selected for placing content c.

Given the above we will define the extended navigational

graph bG = (bS, bE) as follows: for every node s ∈ S \A there

exist a node s′ ∈ bS, and for every node s ∈ A we create two

copies of it in bS – one denoted by st and the other denoted
by sb. We call st the transient copy of s and sb the absorbing
copy of s. For the rest of the discussion, we will use At and
Ab to denote the set of all transient copies and the set of

all absorbing copies appearing in bS due to states s ∈ A.

Clearly, |At| = |Ab| and |bS| = |S| + |A|. The edges among

the nodes in S \A are the same both in G and bG. Finally,
the transient copy st of s ∈ A maintains all the outgoing

edges of node s, while the absorbing copy sb of s maintains
all the incoming edges of s.

Given bG, we also define the absorbing Markov chain cM =

〈bS, bP〉. In this Markov chain, the nodes Ab are absorb-

ing and all other nodes in bS are transient. The transition

matrix bP of such an absorbing random walk is defined as
follows: the transition probability from a transient state s

to an arbitrary state s′ ∈ bS is identical to that in M, thusbP(s, s′) = P(s, s′). For absorbing state s ∈ Ab the proba-

bility of transitioning to any other state s′ ∈ bS is zero and

thus, bP(s, s′) = 0. To make bP a proper transition matrix

(i.e., ensure that all its rows sum up to 1) we set bP(s, s) = 1

for all absorbing states s ∈ Ab. Note that matrix bP has the
same structure as matrix Q described in Equation (2).

A transformation from the original Markov chain M to

the absorbing Markov chain cM is shown in Figures 1 and 2.
The former figure shows the original Markov chain which
corresponds to the navigational graph G = (S, E). The
highlighted nodes in the figure correspond to the set A on
which content c is placed. The highlighted graph of Figure 2

shows the absorbing Markov chain cM = 〈bS, bP〉, which cor-

responds to graph bG = (bS, bE). The highlighted nodes here
are the absorbing states of the chain.

Note that the extended graph bG and the corresponding

absorbing Markov chain cM capture the navigational journey
of a user at a single level, e.g., level `. At this level, the user
navigates according to her navigational model and once it
encounters content c placed in one of the level’s absorbing
nodes, the random walk of the user gets absorbed.

In order to capture the journey of the user across levels

holistically, we need to create one copy of cM at every level

` = {0, . . . ,K}; we denote such copies by cM`. Now, when
the user gets absorbed at sb at level ` (i.e., while she was at

random walk cM`), she directly enters random walk cM(`+1);
the starting point of this random walk is node st. We call
this set of connected absorbing Markov chains a sequence of
absorbing Markov chains. The transition of the user fromcM` to cM(`+1) is shown in Figure 2 and is captured by the
dotted arrows that connect nodes from different levels.

In practice, we never actually construct this sequence of
absorbing Markov chains, neither do we need to do any com-
putation on the sequence itself. However, the above descrip-
tion provides a nice intuition and a conceptual understand-
ing of the computations that follow.

states where content is placed

s′

s

Figure 1: Markov chain M = 〈S,P〉, with A = {s, s′}
picked as states on which content c is placed.

Computing CR: In this paragraph we compute CR(A) as
given in Equation (1). Observe, that as C(`, s) is part of the

absorbing state

transient state

Level `− 1

st

sbs′
t

s′
b

Level `

Level ` + 1

Figure 2: A sequence of absorbing Markov chains cM` =

〈bS, bP〉. For each state s ∈ A of Markov chain M shown
in Figure 1 two states are created: sb (absorbing) and st

(transient). The transient and the absorbing copies of the
same state are drawn as superstates.

input, we only need to compute R(`, s) where s is one of the
states in A.

Given the above discussion though, R(`, s) is identical to
the probability of the user being absorbed in the absorbing

copy of s, i.e., node sb, in cM`. Since the user only enters cM`

from transient states t ∈ At then R(`, s) can be computed
as the sum over all states in t ∈ At of probabilistic paths of
length at most Mmax ending in sb and starting at all possible
entry points t ∈ At.

The probability of a path of length of exactly i between
any two states s1 and s2 can be computed as the appropriate
cell in the i-th power of the transition matrix as Pri(s1, s2) =bPi(s1, s2). Hence, the probability of a path of length at most
Mmax from any state t ∈ At to state sb is

Pr(t, sb) =

MmaxX
i=0

bPi(t, sb). (4)

Speedup: The computation of Equation (4) can be compu-
tationally demanding. After all, it requires evaluating the

Mmax-th power of the matrix bP. However, since we only
need to know the absorption probabilities of the states in

Ab ⊆ bS, we can obtain a significant speedup as follows:

first we define an auxiliary matrix F of size |bS| × |Ab|. The
columns of this matrix correspond to the absorbing states

Ab of chain cM while the rows of the matrix correspond to all

states bS ofM. Each column of F has one non-zero element:
for sb ∈ At we set F (st, sb) = 1. That is, there is an 1 in a
cell of F if the row and the column of the cell correspond to
the transient and the absorbing copies of the same state.

Observe now that bP · F is of the same size as F , and
contains at cell (s′, sb) the probability that a random walk
starting in state s′ will be absorbed in one step in state sb.
Moreover, if we set F0 = F and apply the recursion

Fi = PA · Fi−1 (5)

we get that Fi(s
′, sb) is the same as Pi

A(s, a); i.e., stores
the probability that a random walk that starts at s′ gets ab-
sorb at sb. From the theory of random walks with absorbing
states, we can observe that matrix F and Recursion (5) al-
lows us to compute the analogue of matrix QUB (described

in Equation (3)) for the absorbing Markov chain cM.
Despite the fact that Equation (5) still involves a matrix

multiplication, it is much more efficient to compute in prac-
tice, when compared to Equation (4). This is not only be-

cause F is of much smaller size than bP, but also because the

sparsity of bP is maintained and thus the running time of the
computation only depends on the number of non-zero entries

of bP (i.e., the number of edges |E| of the input navigational
graph). Thus, for an absorbing state sb and transient state
t we can compute the probability of a user being absorbed
in that state after at most Mmax steps by

Pr(t, sb) =

MmaxX
i=0

Fi(t, sb). (6)

Using the above machinery, we can to compute the proba-
bilities R(`, s). Observe that R(`, s) depends on two things:
the probability that the user will end up at level `, and the
probability that the user will be absorbed in the absorbing
copy of s, i.e., sb, at level `. Thus R(`, s) for every level
` = 1 . . .K can be computed by the recursion:

R(`, s) =
X

s′∈A

R(`− 1, s′)(1− C(`− 1, s′))Pr(s′t, sb) (7)

Level 0 is slightly different since at this level the user can
start his random walk in the Markov chain in any state.
Assuming that the probability of starting at any state is
proportional to the state’s stationary probability we have
that

R(0, s) =
X
s′∈S

π(s′)Pr(s′, s). (8)

Since C(`, s) is a-priori given as an input, we can now com-
pute CR(A) using its definition given in Equation (1).

4.3 Running times
Running time of computing CR(A): Regardless of the
maximum number of levels, we only need to compute the
absorption probabilities in Equation (6) once, since they are
identical in every level. Evaluating this takes as much time

as multiplying bP with F , Mmax times. Since |A| ≤ B and K
and B are constants, then the total running-time for com-

puting CR(A) only depends on the non-zero entries of bP and
is thus O(|E|); in practice |E| � n2 and thus, the time
required for this computation is sub-quadratic.

Running the Greedy algorithm: Having described the
underpinnings of the computation of CR(A), we can now

describe the details of the Greedy algorithm, shown in Al-
gorithm 1. The algorithm starts from an empty set A and,
given constant integer budget B, it runs for B iterations.
At every iteration, a new element is added to A such that
CR(A∪{s}) is maximized. This maximization step is achieved
by computing CR(A ∪ {s}) for every candidate state s and
choosing the one which gives the highest CR. If all nodes in
S are considered as candidates for content placement, then
CR is computed nB times in Greedy. Plugging in the run-
ning time of computing CR, this yields a total running time of
O(n|E|). Again, the parallel version of the Greedy algorithm
can attain lower running times. The degree of speedup de-
pends on the degree of parallelism allowed by the hardware.

5. EXPERIMENTAL EVALUATION
In this section, we give an experimental evaluation of the

Greedy algorithm on real datasets. All our implementations
are in Matlab and we conducted our experiments using a 12
CPU cores (Intel Xeon E5-2680 processors, operating at 2.7
GHz) machine with 256GB of 1333 MHz DDR3 RAM.

5.1 Experimental Setup
Datasets: In our experiments, we use real-world datasets.
For our experiments with real navigational graphs, we pick
graphs that come from domains where the RACP problem
is applicable. Further, the choice of datasets is such that
they help us demonstrate the scalability of our algorithms.
We describe the characteristics of the datasets we use below.

The Road dataset: This is the road network of the state
of Minnesota3 The links in the network are undirected and
correspond to roads in Minnesota, while nodes correspond
to road intersections. The dataset contains 2642 nodes, and
6600 edges. Since this network depicts actual roads it is
not only very sparse but the node degree distribution is also
quite homogeneous, with degrees ranging from 1 to 10, but
most degrees being at most 5. Content placement in this
setting can correspond to placing billboards along the roads.

The Web dataset: This dataset contains the hyperlink
structure of the stanford.edu domain in 20014. Nodes of
the graph correspond to web pages and the directed edges
correspond to hyperlinks between them. The graph con-
tains 10K nodes and 36K edges. The degree distribution
of the graph is power-law with degrees ranging from 1 to
500. Placing content in nodes can correspond for example
to advertising educational content, link to online tutoring
resources as well as online advertising.

The Science dataset: The Science dataset5 contains of
the citation network of articles that appeared in the domain
of high-energy physics. The nodes in the network correspond
to papers and the edges correspond to one paper citing the
other. The purpose of this dataset is to depict the learning
process of a person, who wants to obtain knowledge in high-
energy physics. The person might read a paper and then
based on the reference list of this paper choose his next
read. Since this process does not necessary imply reading the
papers in chronological order, we make edges bidirectional
and from the resulting graph we pick the largest connected

3www.cise.ufl.edu/research/sparse/matrices/Gleich/
minnesota.html
4www.cise.ufl.edu/research/sparse/matrices/Gleich/
wb-cs-stanford.html
5snap.stanford.edu/data/cit-HepTh.html

component. The end result of this preprocessing is a graph
with 27K nodes and 704K edges.

The navigational models: Our navigational models are
defined by the graph datasets described above. More specif-
ically, using these graphs we define the navigational model
for each dataset to be the corresponding PageRank Markov
chain on the graph defined by the dataset. In these Markov
chains, the user that is at node x chooses with probabil-
ity α one of the outgoing links of x uniformly at random;
with probability (1 − α) the user jumps to a random node
of the input graph. Note that our framework works for any
Markov chain defined on the input navigational graphs, as
long as the chain is ergodic. Our choice of the PageRank
Markov chain [4] guarantees the ergodicity of our naviga-
tional models, even when the input graph is disconnected.
For all our experiments we use α = 0.8.

The conversion model: For all of our datasets we use a
conversion model generated along the same principles. We
first assign the initial CR values C(0, s) to states in level 0.
We obtain the CR rates C(`, s) on subsequent levels with help
of a function f(`) based on formula (9)

C(`, s) = f(`)C(0, s). (9)

The initial assignment of C(0, s) to states is done by as-
signing to every state s value C(0, s) chosen randomly among
the following 10 candidate values:{0.2, 0.1, 0.07, 0.04, 0.03,
0.027, 0.018, 0.017, 0.015, 0.010}. Note that these values
are exponentially decreasing and capture our intuition that
there will be small number of states with high probability
of affecting the conversion of the users. Experiments with
different conversion values showed quite similar results; due
to lack of space we do not report them.

For our experiments, we pick five different functions f .
The types of functions depict our intuition of different pos-
sible user behaviors; one is linear increasing with `, another
is exponentially decreasing, and the last three are first in-
creasing and then decreasing with different rates (linear, ex-
ponential, or a combination of the two). Every state s is
assigned one of the above functions, which is then used for
computing C(`, s) for that state.

5.1.1 Baseline algorithms

Baseline algorithms: In order to better judge and un-
derstand the performance of our Greedy and Par-Greedy

algorithms, we compare them with the following baselines.
Stationary: Given the navigational modelM and budget

B on how many states content can be place, the Stationary

algorithm picks the B states with highest stationary distri-
bution (highest PageRank).
Rank: The Rank algorithm is an extension of Stationary.

That is, it first finds the stationary probability distribution
π(s) (i.e., the PageRank score) for every state s. Then, it
computes the rank of each state s as rank(s) = π(s)×C(0, s).
Given budget B the Rank algorithm picks the B nodes with
the highest rank(s) score.
Degree: For budget B, the Degree algorithm picks the B

highest indegree states.
Basic: For budget B, we rank states s ∈ S in decreasing

order of C(`, 0), i.e., the probability of a user being converted
at every state at level 0. Then, the Basic algorithm reports
the top-B states from this order.

Note that comparison with Rand (i.e., the algorithm that

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 50 100 150 200

C
R

Budget (B)

Greedy
Rank

Degree
Stationary

Basic

(a) Road network

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 50 100 150 200

C
R

Budget (B)

Greedy
Rank

Degree
Stationary

Basic

(b) Web network

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 50 100 150 200

C
R

Budget (B)

Greedy
Rank

Stationary
Degree

Basic

(c) Science network

Figure 3: Real networks; x-axis: number of nodes where content is placed; y-axis: the expected CR.

selects random B nodes) is omitted since its performance is
many orders of magnitude worse than any other algorithms.

5.2 Experimental results
In this section, we report the experimental results on the

three real datasets we described above. Our results demon-
strate the superior quality of the solutions obtained by Greedy

(and Par-Greedy) and the scalability of our algorithms rea-
sonably large datasets.

Qualitative evaluation: For the qualitative evaluation of
our framework we run the Greedy algorithm as well as all
the baseline algorithms (i.e., Rank, Stationary, Degree and
Basic) for all our datasets and report the expected conver-
sion rate of the solutions they obtained as a function of the
budget B = {1, . . . , 200}.

Results for the Road and Web datasets: The results ob-
tained for the Road and the Web graph are shown in Fig-
ures 3(a) and 3(b). For both datasets we observe that Greedy
gives clearly the best results when compared to all other
baseline algorithms. Also in both datasets the ranking of the
rest of the heuristics is consistent: Basic and Rank are the
second best, with Stationary and Degree to follow with so-
lution with much lower expected conversion rates. The fact
that Rank gives better results than Stationary is expected
since the former takes both the stationary distribution and
the conversion probability of each node into account when
forming its solutions, while the latter only looks at the sta-
tionary probability. Moreover, the relatively poor perfor-
mance of Degree is also expected since the degree of the
nodes is not necessarily correlated neither with its conver-
sion probability nor its stationary distribution. Finally, the
fact that Basic and Rank have almost identical performance
is due to the fact that the C(`, s) values are much larger (in
scale) than the stationary probability values and, therefore,
the choices of the two algorithms are very similar.

Although the general trends observed in both the Road
and the Web datasets are similar, one can also observe some
high-level differences. More specifically, for the Road net-
work (Figure 3(a)) the expected conversion rate of the so-
lutions obtained by Greedy increases almost linearly with
the size of the solution B. On the other hand, for the Web
dataset (Figure 3(b)) the increase appears to be steeper, i.e.,
the Greedy solutions appear to benefit tremendously by the
addition of new nodes in the solution. We conjecture that
this effect is a result of the “diversity” of the nodes in the
Web graph. That is, in the Road network there are no
“special” nodes – after all nodes simply correspond to road
intersections with an (average) degree equal to four. On the

other hand, the nodes of the Web dataset have larger di-
versity and the in-degrees of the nodes are distributed in a
power-law fashion.

Results for the Science dataset: We also evaluate the per-
formance of our methodology on even larger networks, we
have experimented with Science dataset, which is an order
of magnitude (in terms of the number of edges) larger than
the other two. For this experiment, we have restricted our
set of candidate nodes to a set of approximately 500 nodes
sampled from the set of nodes in the graph with probabil-
ity proportional to their in-degree. The expected conversion
rate achieved by the solutions of the different algorithms are
shown in Figure 3(c). For this experiment, we use the par-
allel implementation of Greedy, which we call Par-Greedy.

Although the superiority of our method is clear in this
dataset as well, the relative performance of the other heuris-
tics is different in Science; to see this compare the ranking
of the baseline algorithms as indicated by the results in Fig-
ure 3(c) with the ranking obtained by the results for the
Road and Web datasets – shown in Figures 3(a) and 3(b).
We can observe that for Science the performance of De-

gree is clearly the second best, giving solutions between
than Rank and Stationary. Clearly part of this change is
due to the fact that we are only considering a subset of
the nodes as candidates for content placement. More over,
this subset is selected in such a way that is biased towards
nodes with high in-degree. As a result, among those can-
didates there are not so many nodes with high stationary
probability and high conversion probability and, as a result,
neither the Rank nor the Stationary algorithms perform as
well as Degree. In fact, when we ran the experiment using
all nodes as candidates, we would have obtained the same
relative ranking for all baselines.

It is important to observe that in Figure 3(c) the expected
conversion rate of the solutions obtained by our algorithm
increases steeply as a function of the size of the solution.
This steep increase resembles the results we obtained for
the Web dataset – shown in Figure 3(b). The explanation
we had in that case, applies here as well: the nodes in the
science graph (as well as the candidate nodes) have diverse
degrees following a power-law like distribution.

Running times: In order to give an idea of the actual com-
putational time required to run our experiments, we report
here the running time required for executing one step of the
Greedy algorithm, i.e., the execution of the for loop shown
in line 3 of Algorithm 1.

Table 1 shows the running times of this execution both for
the Greedy and Par-Greedy algorithms. Recall that Par-

Greedy executes the searching over the candidates in a par-
allel fashion. All the experiments were conducted using the
configuration we described in the beginning of this section.

The results demonstrate that the parallel version of our
algorithm offers an order-of-magnitude speedup to its cor-
responding serial implementation. Even further, the evalu-
ation of our candidate set for the Science network was im-
possible to execute in the serial implementation of Greedy,
but it was done in less than an hour using Par-Greedy.

Table 1: Running time of Greedy and Par-Greedy for the
selection of the first node of their solution.

Dataset Greedy Par-Greedy

Road 131 secs 16 secs
Web 7920 secs (2.2 hours) 670 secs

Science n/a 2884 secs

6. CONCLUSIONS
In this paper, we introduced the RACP problem in nav-

igational graphs, we studied its complexity and designed
practical algorithms for solving it. The distinguishing fea-
ture of our work when compared to other existing work in in-
formation, transportation and navigational networks is that
we consider memory-full user navigation, where the proba-
bility of a user adopting a content depends on the number
of times she has seen the same content in the past.

The main technical contribution of the paper is the de-
velopment of a framework for solving the RACP problem,
while taking into account both the users’ navigational and
conversion models. The first model describes how the users
navigate in the graph, while the other models the impact
that repetition has on their inclination to adopt content
placed on the graph nodes. The algorithmic framework we
introduced here is flexible and can work for any navigational
model that is described by a Markov chain and any conver-
sion model that models the probability of a user adopting
a content as a function of the state of the user and the
number of her encounters with the content. Our algorithms
exploit a connection between our model and random walks
with absorbing states and provide a practical solution to
the RACP problem. Our experimental evaluation on real
datasets demonstrated the efficacy of these algorithms in
multiple settings.

Acknowledgments: This research was supported in part
by NSF grants CNS-1017529, IIS-1218437, CAREER-1253393,
CISE/CNS-1239021, CISE/CNS-1012798 and ENG/EFRI-
0735974 as well as gifts from Microsoft and Google.

7. REFERENCES
[1] D. Agarwal, B.-C. Chen, and P. Elango.

Spatio-temporal models for estimating click-through
rate. In WWW, pages 21–30, 2009.

[2] O. Berman, D. Krass, and C. Wei Xu. Generalized
flow-interception facility location models with
probabilistic customer flows. Communications in
Statistics. Stochastic Models, 13(1):1–25, 1997.

[3] O. Berman, D. Krass, and W. Xu. Locating
discretionary service facilities based on probabilistic
customer flows. Transportation Science, 29, 1995.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In WWW, pages
107–117, 1998.

[5] R. F. Bruner. Repetition is the first principle of all
learning. Social Science Research Network, 2001.

[6] M. Charikar, R. Kumar, P. Raghavan, S. Rajagopalan,
and A. Tomkins. On targeting markov segments. In
STOC, pages 99–108, 1999.

[7] N. Chen. On the approximability of influence in social
networks. In SODA, pages 1029–1037, 2008.

[8] F. Chierichetti, R. Kumar, and P. Raghavan. Markov
layout. In FOCS, pages 492–501, 2011.

[9] P. Domingos and M. Richardson. Mining the network
value of customers. In ACM SIGKDD, pages 57–66,
2001.

[10] P. Doyle and J. Snell. Random walks and electric
networks. Mathematical Association of America, 1984.

[11] E. Even-Dar and A. Shapira. A note on maximizing
the spread of influence in social networks. In WINE,
pages 281–286, 2007.

[12] M. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

[13] M. J. Hodgson. A flow-capturing location-allocation
model. Geographical Analysis, pages 270–290, 1990.

[14] M. J. Hodgson, K. Rosing, A. Leontien, and
G. Storrier. Applying the flow-capturing
location-allocation model to an authentic network:
Edmonton, canada. European Journal of Operational
Research, pages 427–443, 1996.

[15] J. Kemeny and J. Snell. Finite Markov chains.
VanNostrand, New York, 1969.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence throw a social network. In
ACM SIGKDD, pages 137–146, 2003.

[17] P. Kotler and G. Armstrong. Principles of Marketing.
Pearson Education, Prentice Hall, 2005.

[18] J. Leskovec, A. Krause, C.Guestrin, C.Faloutsos,
J.VanBriesen, and N.Glance. Cost-effective outbreak
detection in networks. In ACM SIGKDD, pages
420–429, 2007.

[19] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. In ACM
SIGKDD, pages 61–70, 2002.

[20] K. Tanaka and T. Furuta. Locating flow capturing
facilities on a railway network with two levels of
coverage. In The Ninth International Symposium on
Operations Research and Its Applications, 2010.

[21] J. S. Trent, R. V. Friedenberg, and R. E. J. Denton.
Political Campaign Communication: Principles and
Practices (Communication, Media, and Politics). 2011.

[22] C. J. Weibell. Principles of learning: A conceptual
framework for domain-specific theories of learning.
PhD thesis, Brigham Young University. Department of
Instructional Psychology and Technology, 2011.

