
Reconstructing Graphs from Neighborhood Data

Dóra Erdös

Boston University
Boston, MA, USA

edori@cs.bu.edu

Rainer Gemulla

Max Planck Institut für Informatik
Saarbrücken, Germany

rgemulla@mpi-inf.mpg.de

Evimaria Terzi

Boston University
Boston, MA, USA

evimaria@cs.bu.edu

Abstract—Consider a social network and suppose that we
are given the number of common friends between each pair of
users. Can we reconstruct the underlying network? Similarly,
consider a set of documents and the words that appear in
them. If we know the number of common words for every pair
of documents, as well as the number of common documents
for every pair of words, can we infer which words appear
in which documents? In this paper, we develop a general
methodology for answering questions like the ones above. We
formalize these questions in what we call the RECONSTRUCT
problem: Given information about the common neighbors of
nodes in a network, our goal is to reconstruct the hidden binary
matrix that indicates the presence or absence of relationships
between individual nodes. We propose an effective and practical
heuristic, which exploits properties of the singular value
decomposition of the hidden binary matrix. More specifically,
we show that using the available neighborhood information, we
can reconstruct the hidden matrix by finding the components
of its singular value decomposition and then combining them
appropriately. Our extensive experimental study suggests that
our methods are able to reconstruct binary matrices of different
characteristics with up to 100% accuracy.

I. INTRODUCTION

The neighbors that are common between a pair of nodes
of an undirected graphs carry valuable information about the
graph structure. In the context of movie recommendation,
for example, we may say that two users are similar if
they have watched the same or a largely overlapping set
of movies. Likewise, two movies are similar if they have
been watched by the same set of users. Such neighborhood
information has been exploited successfully in collaborative-
filtering algorithms [1], [5], [12], which recommend movies
to users based on the number (and ratings) of movies they
have in common with other users. As another example,
the set of words that are shared between two documents
is an indicator of the documents’ topical similarity and is
exploited by document clustering techniques [1]. Finally,
the set of the common friends or common interests between
social-network users carry valuable information about the
strength and quality of their friendship [9], [13], [21].

Generally, the set of features (e.g., movies, groups,
friends, or words) that are shared by two entities (e.g.,
users or documents) reveal valuable information for data-
mining algorithms. Traditionally, this information is ex-

tracted directly from the available data, which explicitly
states which features are associated with every entity (e.g.,
movies watched by users, words appearing in a document,
friends or interests of a user).

In some cases, however, the original data contains sensi-
tive private information that the dataset owner may not want
to share. For example, Netflix may not want to share which
customer watched which movie. Similarly Facebook may
be unwilling to share the friendship graph or the affiliation
graph (i.e., the graph that contains information about the
membership of users to groups). In such cases, the data
owner can decide to reveal some aggregate form of the
original data, that preserves enough valuable information
for researchers and practitioners to test their data-mining
methods, while at the same time hides the characteristics of
individual entities.

In this paper, we focus on a particular type of such aggre-
gate information, which we call neighborhood information.
The neighborhood information of a dataset reveals only the
number of features shared by every pair of entities (and vice
verse), but does not contain information about which features
are shared. Given such neighborhood information, we try
to answer the following question: “To what extent does the
revelation of neighborhood information prevent an adversary
from reconstructing the original dataset?” For example, in
the domain of social networks, the question asks whether
or not we can identify the membership of users to groups,
given that we we know only the number of common groups
between every pair of users and the number of common
users for every pair of groups.

We formalize this problem as a bipartite-graph reconstruc-
tion problem, which refer to as RECONSTRUCT. Intuitively,
RECONSTRUCT assumes a hidden binary dataset that asso-
ciates entities to features. This dataset can be represented
as a bipartite graph, in which an edge between an entity p
and a feature q indicates that q is observed in p. The input
to the problem is encoded in the following neighborhood
information: for every pair of entities p and p′, we are
given the number L(e1, e2) of features shared by the two
entities. Similarly, for every pair of features q and q′, we
are given the number R(q, q′) of entities associated with
both features. Given L and R, our goal is to reconstruct the

hidden bipartite graph.
In this paper, we study different variants of the above RE-

CONSTRUCT problem. Solving the RECONSTRUCT problem
is computationally challenging: Our main contribution lies
in the design of heuristics that can effectively reconstruct
the hidden dataset. The key observation exploited by our
heuristics is that we can use the neighborhood information
to (approximately) reconstruct parts of the singular value
decomposition of the biadjacency matrix of the hidden
bipartite graph. We investigate the utility of our methods on
a variety of datasets from different application domains. We
found that in most cases, the reconstruction error is low; in
some cases, our algorithms are able to exactly reconstruct
the hidden bipartite graph. We also explore the limits of
our approach by hiding some of the entries in matrices L
and R and provide appropriately modified heuristics that
accommodate for such variants. Our experiments indicate
that our heuristics can handle missing information to some
extent; clearly the reconstruction error increases with the
amount of missing neighborhood information.

Roadmap: The rest of the paper is organized as follows:
We formally define the RECONSTRUCT problem in Sec. II
and give algorithms for solving it in Sec. III. The results of
our experimental study are presented in Sec. IV. We discuss
related work inand. V and conclude the paper in Sec. VI.

II. PROBLEM DEFINITION

The RECONSTRUCT problem can be expressed both
in terms of bipartite graphs as well as binary matrices.
Throughout our discussion, we will use both representations
interchangeably. We assume that there exists a hidden bipar-
tite graph G = (P,Q,E), where P and Q constitute the sets
of nodes in the left and the right partition, respectively. Set
n = |P | and m = |Q. The edge set E ⊆ P × Q connects
nodes from P with nodes in Q. Every bipartite graph can be
represented by its biadjacency matrix M. The biadjacency
matrix is a binary n ×m matrix with M(p, q) = 1 if and
only if (p, q) ∈ E. For every node p from P (similarly Q),
denote by N(p) the set of neighbors of p in G.

In this paper, we assume that G (and consequently M)
is hidden. Our goal is to construct M from aggregate
information. As discussed previously, we focus on the case
where the aggregate information consists of the number of
common neighbors between all pairs of nodes. Formally,
we assume that for each pair (p, p′) ∈ P × P , we are
given L(p, p′) = |N(p) ∩N(p′)|. Similarly, for each pair
(q, q′) ∈ Q × Q, we are given R(q, q′) = |N(q) ∩N(q′)|.
We call L and R the neighborhood matrices of G.

Observe that the main diagonal of the neighborhood
matrices contains the degrees of each node. We consider
degree-aware neighborhood matrices, in which the main
diagonals is known, and degree-oblivious matrices in which
the main diagonal is unknown. We also consider neighbor-
hood matrices in which only parts of the main diagonal are

revealed, i.e., only some of the degrees are known. In the
course of this paper, we extensively explore the effect of
knowledge of node degrees on our estimation problem.

Given L and R, our goal is to find a binary matrix M̂ that
is as close to M as possible. Ideally, we aim to minimize
the Frobenius norm F (M̂,M) = ‖M̂−M‖F , where

‖X‖F =
n∑

i=1

m∑
j=1

X(i, j)2.

However, this objective F (M̂,M) cannot be computed since
M is unknown (we are given only L and R). We therefore
quantify the quality of M̂ with respect to L and R. In more
detail, our goal is to minimize the sum of

FL(M̂) = ‖L̂− L‖F

and
FR(M̂) = ‖R̂−R‖F ,

where R̂ and L̂ denote the neighborhood information in-
duced by M̂ (see Sec. III for details).

Problem 1 (RECONSTRUCT): Given neighborhood matri-
ces L and R, find a binary matrix M̂ that minimizes the sum
FL(M̂) + FR(M̂).

In case matrices L and R are degree-oblivious, we modify
the above definitions such that the main diagonals are not
taken into account. Since the type of the neighborhood
matrices will always be clear from the context, we abuse
notation and write FL(M̂) and FR(M̂) for both degree-
aware and degree-oblivious matrices. In what follows, we
write RECONSTRUCT-DA to refer to the degree-aware case,
and RECONSTRUCT-DO to refer to the degree-oblivious
variant.

Discussion: The above problem definitions as well as the
algorithms presented in the next section also apply to general
(non-bipartite) graphs: We simply use the graph’s adjacency
matrix instead of its biadjacency matrix (and redefine L and
R appropriately). In fact, our algorithms are oblivious to the
fact that the hidden matrix constitutes a biadjacency matrix
of some graph, i.e., they apply to any binary matrix. In
what follows, we focus on bipartite graphs for clarity of
exposition.

III. ALGORITHMS

In this section, we present algorithms for solving the
RECONSTRUCT problem. The high-level idea of our algo-
rithms is to compute M̂ by reconstructing the components
of the singular value decomposition (SVD) of M. Before
describing our algorithms in detail, we provide some back-
ground on the eigendecomposition and the singular value
decomposition. See [8] for an in-depth treatment of these
decompositions.

A. Matrix Decompositions

The eigendecomposition of an arbitrary symmetric matrix
X is a decomposition X = UΛUT , where U is a unitary
matrix having as columns the normalized eigenvectors of
X, and Λ is a diagonal matrix containing the corresponding
eigenvalues of X.

The singular value decomposition (SVD) of an arbitrary
matrix X is a decomposition X = UΣVT , where U (resp.
V) is an orthonormal matrix with the left (resp. right)
singular vectors of X as its columns, and Σ is a diagonal
matrix that contains the singular values of X in its main
diagonal.

When matrix X is symmetric and positive semi-definite,
then the left and the right singular vectors are equal. In this
case, the eigendecomposition and the SVD decomposition
coincide. The following fact is known about the SVD
decompositions of a matrix X as well as matrices XXT

and XT X.
Proposition 1: If matrix X is an n × m matrix and its

SVD is X = UΣVT , then the SVD decomposition of XXT

is
XXT = UΣ2UT (1)

and the SVD decomposition of XT X is

XT X = VΣ2VT . (2)

To see this, substitute X with UΣVT in the left-hand-side
of Eq. (1) to obtain

XXT = UΣVT
(
UΣVT

)T
= UΣVT VΣUT = UΣ2UT .

The proof of Eq. (2) is similar and omitted.
Moreover, it is known that a truncated SVD can give the

best low-rank approximation of X.
Proposition 2 (Eckart and Young [7]): If Uk (resp. Vk)

represents the left (resp. right) singular vectors that corre-
spond to the k singular values Σk of the largest magnitude,
then matrix Xk = UkΣkVT

k is the best rank-k approxi-
mation of X in terms of the Frobenius norm. That is, Xk

minimizes

‖X−Xk‖F =
n∑

i=1

m∑
j=1

(X(i, j)−Xk(i, j))2 .

Observe, that we can write Xk as the sum of k rank-1
matrices:

Xk =
k∑

i=1

U(:, i)Σ(i, i)V(:, i)T . (3)

Here X(:, i) denotes the i-th column of X. The decompo-
sition of Xk into a sum of rank-1 matrices turns out to
be useful for our estimation algorithms since it allow us to
determine the elements of the singular value decomposition
one component at a time.

B. Solving the RECONSTRUCT-DA Problem

Recall that in the RECONSTRUCT-DA problem, we as-
sume that the diagonal elements of the neighborhood ma-
trices are equal to the degree of the nodes in the hidden
bipartite graph. We refer to such neighborhood matrices by
Ld and Rd. The key to our approach for RECONSTRUCT-
DA is the following observation.

Observation 1: The matrices Ld and Rd are given by
Ld = MMT and Rd = MT M.
This observation connects the hidden data matrix with the
observed neighborhood matrices. It allows us to use the
singular value decomposition to devise an efficient heuristic
algorithm.

Denote by M = UΣVT the the SVD of the unknown
matrix M. Combining Observation 1 with Proposition 1,
we obtain Ld = UΛUT and Rd = VΛVT . This means
that the eigendecompositions of Ld and Rd provide the left
and the right singular vectors of M. Additionally, we obtain
|Σ| =

√
Λ, where both the absolute value and square root

is taken element-wise. Intuitively, our goal is to exploit this
knowledge to reconstruct the unknown matrix M. However,
it is not immediately clear how to proceed since we know
only the absolute value but not the sign of the diagonal
elements in Σ.

More formally, set σi = Σ(i, i) and λi = Λ(i, i). We
assume without loss of generality that the singular values
are reported in decreasing order of magnitude, i.e., |σ1| ≥
|σ2| ≥ . . . ≥ |σn|. By Proposition 1, we know that λi =
σ2

i and thus
√
λi = |σi|. This means that σi can take two

possible values: −
√
λi and

√
λi. Let Σ̂ be a diagonal matrix

with values σ̂1, . . . , σ̂n in its main diagonal, such that |σ̂i| =
|σi|. Here each σ̂i is signed, that is, it is either positive or
negative. We refer to Σ̂ as a sign assignment of Σ. Given
a sign assignment Σ̂, matrix M̂ = UΣ̂VT constitutes an
estimate of M. Note that M̂ may not be a binary matrix;
we return to this issue below.

Our algorithms aim to find the “best” sign assignment,
i.e., the one that produces the best estimate of M. In order
to do this, we need to address the following two questions:
(a) How do we evaluate a given sign assignment and (b)
how can we find good sign assignments?

Evaluating a sign assignment. Given U and V together
with a sign assignment Σ̂, we want to decide how well
we can reconstruct M. Ideally, we would like to evaluate
Σ̂ by computing F (M̂,M). Unfortunately, this approach is
infeasible because M is unknown. Alternatively, we could
try to set M̂ = UΣ̂VT and compute FL + FR. However,
this approach is also not helpful because the quantities FL

and FR do not depend on the sign assignment. To see
this, observe that the elements of Σ get squared when we
compute L̂ = M̂M̂T and R̂ = M̂T M̂. We propose a way
to evaluate the sign assignment Σ̂, which utilizes the fact
that M is a binary matrix: If M̂ is a good estimate of M,

then it is close to M and—as a result—close to a binary
matrix. Let X be an arbitrary matrix and define its binary
counterpart BX to be the binary matrix closest to X in
terms of the Frobenius norm:

BX(i, j) =

{
1 if X(i, j) > 0.5
0 else

Clearly good estimates of M̂ must be close to their binary
counterparts. The opposite may or may not hold, i.e., an
estimate M̂ that is close to its binary counterpart may or
may not be close to M. Nevertheless, our experiments give
strong evidence that minimizing F (X̂,BX̂) leads to a low
reconstruction error. Although we do not make any formal
claims, our hope is that there are few (or ideally just one)
sign assignments that produce a binary matrix M̂.

The Greedy sign assignment algorithm. The Greedy
algorithm takes as input matrices U, Σ and V and outputs
an estimate M̂. The algorithm constructs M̂ in k iterations,
where k is a parameter that influences accuracy. In iteration
i, Greedy determines the sign of σi. In more detail,
we compute matrices M+

i and M−
i by considering the

positive and negative sign for σi, respectively. The signs
of of σ1, . . . , σi−1 are taken from previous iterations, and
σi+1, . . . , σn are taken to be zero. We then set the sign of
the i-th singular value based on whether M+

i or M−
i is

closer to its binary counterpart. The intuition behind this
approach is that large singular values, which are processed
first, have significant impact on the estimate M̂ so that
we expect Greedy to make correct decisions. After k
iterations have been completed, our algorithm produces a
sign assignment Σ̂k for the k singular values of the largest
magnitude. Algorithm 1 gives pseudo code for Greedy.
Here we compute M+

i and M−
i from M+

i−1 and M−
i−1,

respectively, for improved efficiency.

Algorithm 1 Greedy algorithm to compute an optimal
sign assignment Σ̂ and construct M̂.

Input: Uk, Σk, Vk and integer k
Output: M̂k

1: M̂0 ← 0n×m

2: for i = 1 . . . k do
3: M+

i = M̂i−1 + Uk(:, i)σiVk(:, i)T

4: M−
i = M̂i−1 −Uk(:, i)σiVk(:, i)T

5: if F (M+
i ,BM+

i) < F (M−
i ,BM−

i) then
6: M̂i = M+

i

7: else
8: M̂i = M−

i

9: end if
10: end for
11: return M̂k

The RecSVD algorithm. We can use the Greedy algorithm
to solve the RECONSTRUCT-DA problem as follows: We
first compute the eigenvectors U and V as well as the
eigenvalues Λ of both L and R. Note that Λ is the same in
both eigendecompositions. We then input matrices U,

√
Λ,

and V to the Greedy algorithm to construct M̂, which
is subsequently rounded to a binary matrix. We refer to
this complete algorithm as RecSVD. Given a value of k,
RecSVD proceeds as follows:
• Compute the truncated SVD of Ld and Rd

1: Ld ≈ UkΛkUT
k

2: Rd ≈ VkΛkVT
k

• Run Greedy(Uk,
√

Λk,Vk, k) to obtain M̂k

• Output BM̂k

Observe that RecSVD does not use all the of left and the
right singular vectors obtained by the eigendecompositions
of Ld and Rd but only the ones with the k eigenvalues
of largest magnitude. For this reason, we compute only the
truncated SVD of Ld and Rd (see also Proposition 2), which
significantly reduces computational costs.

Discussion. The impact of the number k of singular values
on the reconstruction problem is explored extensively in the
experimental section of this paper. To give a preview, we
found that RecSVD performs extremely well in practice: It
can reconstruct binary matrices with thousands of rows and
columns almost perfectly with as few as 300 singular values.
To provide some insight into the performance of RecSVD,
consider the case in which the hidden data matrix M is
block-diagonal with at most k blocks, and that each block
consists of only 1s. Then the rows and columns of M can
be grouped into linearly independent groups, each described
by one pair of singular vectors and a singular value. In such
matrices, the RecSVD algorithm will optimally reconstruct
M. In general, we expect the estimate M̂ produced by
RecSVD to be closer or further away from the true matrix
M depending on how “clear” the block structure in M is
(after appropriate permutation of rows and columns).

Running time of RecSVD. Assume w.l.o.g. that n ≥ m.
Since we we only compute the k largest-magnitude eigen-
values (and their corresponding eigenvectors) of Ld and Rd,
the running time of the eigendecomposition is O(n2k). The
running time of the Greedy routine is O(n2k) as well so
that the total time complexity of RecSVD is O(n2k).

Speeding up RecSVD. Since eigendecompositions are use-
ful for many problems, there exists a vast majority of work
devoted to speed up these computations (see, for example,
the sampling-based approach in [6]). Such methods can be
utilized—whenever needed—to speed up the first step of the
RecSVD algorithm.

In what follows, we describe a technique to speed up the
second step of RecSVD, i.e., the Greedy algorithm given in

Algorithm 1. Observe that the computations done in lines 3,
4, and 5 of Algorithm 1 require O(n2k) time. We can speed
up this computation significantly by sampling the rows of
Uk and Vk. If we use a sample of c rows for some constant
c, the running time is reduced to O(c2k). In order to choose
the rows that affect the entries in M̂ the most, we sample row
r with probability proportional to

∑k
i=1 |Uk(r, i) ·Vk(r, i)|.

We refer to this sampling algorithm as Greedy_S. In our
experiments, we found that samples of size as small as c =
300 provide almost identical results to Greedy. Note that
we use sampling in Greedy_S only to determine the sign
assignment Σ̂k. Once Σ̂k is determined, we compute M̂k

using the entire matrices Uk and Vk.

C. Solving the RECONSTRUCT-DO Problem
In this section, we turn our attention to the

RECONSTRUCT-DO problem. Recall that in the
RECONSTRUCT-DO problem, we want to estimate M̂
from degree-oblivious matrices L and R. In this case, the
degrees of nodes in P and Q are unknown, i.e, the main
diagonal elements of L and R are all zero.

We solve the RECONSTRUCT-DO problem with an it-
erative version of RecSVD. We call this new routine
RecSVD-iter. The RecSVD-iter algorithm starts with
some initialization of the diagonal matrices D̂P and D̂Q

corresponding to the estimated node degrees in P and Q,
respectively; we discuss various choices of initial values
below. In every iteration, we run RecSVD using input
matrices L̂d = L + D̂P and R̂d = R + D̂Q. Afterwards,
we revise the node degrees by performing an educated guess
of new values for D̂P and D̂Q. The new values are based
on the output matrix BM̂ of RecSVD. In more detail, we
first compute the updated versions of L̂d = (BM̂)(BM̂)T

and R̂d = (BM̂)T (BM̂). Then new estimates of D̂P and
D̂Q are obtained by the diagonal entries of L̂d and R̂d,
respectively.

Observe that in RecSVD-iter, we use only the main
diagonals of L̂d and R̂d in order to update D̂P and D̂Q.
Hence we can speed up computation by computing only the
diagonals of L̂d and R̂d.

Scheinerman and Tucker [18] use a similar iterative
approach to compute the eigenvalue decomposition of sym-
metric matrices with missing entries. They also show that
convergence of the diagonals D̂P and D̂Q is not guaranteed.
In practice, however, convergence is fast in most cases. In
our experience, we found that 100 iterations sufficed to
achieve convergence on all our datasets.

Running time of RecSVD-iter. Every iteration of
RecSVD-iter performs a call to RecSVD. Under the as-
sumption that n > m, we obtain O(n2k) time per iteration.
Using the optimization mentioned above, the computation
of D̂P and D̂Q takes at most O(n2) time. When we run
RecSVD-iter for t iterations, we obtain a total time
complexity of O(n2kt).

Partial knowledge of the degrees. The RecSVD-iter
algorithm is an iterative algorithm that tries to guess the
degrees of the nodes in P and Q before reconstructing the
unknown bipartite graph. One of the main characteristics of
RecSVD-iter is that it can also work when only some
of the entries of the degrees of the nodes in P or Q are
known. In these cases, the algorithm will simply iterate in
order to obtain estimates of the unknown degrees only. The
ability of the algorithm to accept some of these entries as
input and to guess the rest allows us to explore the extent to
which knowledge of the nodes’ degrees improves our ability
to reconstruct the hidden matrix. Our experimental results
demonstrate that knowledge of even a small fraction of the
high degree nodes can considerably affect reconstruction
quality.

Initializing D̂P and D̂Q. The perhaps simplest way to
initialize D̂P and D̂Q is to set the main diagonal to zero; we
refer to this strategy as zero. We can, however, start with a
better initial guess: Observe that a lower bound of the values
in the main diagonal is given by the maximum values of
every row of L and R. An upper bound is obtained similarly.
We refer to the heuristics that use the lower and upper
bounds as initial guesses as lower and upper respectively.

IV. EXPERIMENTS

In this section, we describe the results of an extensive
experimental study on both synthetic and real-world datasets.

A. Experimental Setup

We used a 12-core machine with Intel X5650 2.67GHz
CPUs and 2GB of memory per core. All algorithms were
implemented in Matlab.

Evaluation metrics. We report results with regard to two
different error metrics. The first metric one is the relative
Frobenius error (RFE) given by

RFE =
FL(BM̂) + FR(BM̂)
‖Ld‖F + ‖Rd‖F

.

Observe that FL(BM̂) +FR(BM̂) = 1 when M̂ has all its
entries equal to zero. Thus RFE expresses the improvement
over the all-zero solution to RECONSTRUCT with regard to
the neighborhood information. Note that the sign assignment
Σ̂ does affect the RFE since we use the binary counterpart
BM̂ instead of using the real matrix M̂ (cf. Sec. III).

The second metric is the relative absolute error (RAE)
measured with respect to the ground truth M. It is given by

RAE =
‖BM̂−M‖1
‖M‖1

,

where ||X||1 =
∑

ij |X(i, j)|. The RAE measures the
number of incorrect entries in estimate BM̂ relative to
the number of non-zeros in M. Thus the all-zero solution
obtains an RAE of 1.

Synthetic datasets. As mentioned in Section III-B, our
algorithms explore the underlying block-structure in the data
matrix, if existent. For this reason, we experimented with
synthetic block-diagonal binary matrices. We first created
a set of rectangular blocks of all 1s with sizes chosen
uniformly and at random in between 1 and 100. The blocks
are then arranged to form a block-diagonal matrix. This
process generates a 0/1 matrix with only 1s appearing in
each block. In order to evaluate the ability of our algorithm
to handle noise, we also randomly flip 10% of the zeros
to ones, and 10% of the ones to zeros. We refer to the
resulting datasets as BLOCK; the particular instance used in
our experiments contains 45 blocks and has size 2400×1000.

Real-life datasets. We perform experiments on two real-life
datasets, which are examples of the applications mentioned
in Section I. Even though these datasets do not have a dis-
tinct block-diagonal structure, we found that our algorithms
produce low-error reconstructions.

The FLICKR dataset contains information from the photo
sharing site www.flickr.com; it was provided by Zhel-
eva et al. [20]. Users of Flickr can form groups based on
common interests. A user u is connected by an edge to
group g if u is a member in g. We randomly sampled 2000
users and 1989 groups from the original data. The resulting
bipartite graph contains about 2× 106 edges.

The CORA dataset consists of 2708 scientific publications
and a dictionary of 1433 unique words. The dataset contains
occurrences of words in the documents: We set M(d,w) =
1 in the biadjacency matrix if document d contains word
w. The dataset only contains words which have document
frequency at least 10. The resulting bipartite graph contains
about 50K edges.1

Methodology. For all of our datasets, we use the re-
spective biadjacency matrices to extract the neighborhood
matrices Ld and Rd (resp. L and R). The matrices are
used as input to our algorithms for RECONSTRUCT-DA
(resp. RECONSTRUCT-DO).

B. Results for RECONSTRUCT-DA
In Figure 1, we report the performance of RecSVD on the

BLOCK dataset. Figure 1(a) shows the RFE and Figure 1(b)
the RAE as a function of the number k of singular values.
The curves for t = 0.5, t = 0.1 and t = 0.9 correspond
to different decision thresholds applied when computing the
binary counterpart of M̂. Given a decision threshold t, we
define the binary counterpart BtX as

BtX(i, j) =

{
1 if X(i, j) > t

0 else

In contrast, method #edges does not use a prespecified
threshold but rather sets to 1 the top-e entries of M̂, where

1The CORA dataset is available at: http://www.cs.umd.edu/∼sen/lbc-proj/
LBC.html.

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

singular values

re
la

ti
v
e

 F
ro

b
e

n
iu

s
 e

rr
o
r

t=0.5

t=0.1

t=0.9

edges

(a) Relative Frobenius error

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

10
1

10
2

singular values

re
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o

r

t=0.5

t=0.1

t=0.9

edges

(b) Relative absolute error

Figure 1: Performance of the RecSVD algorithm on the
BLOCK dataset.

e is the number of edges in the hidden binary matrix. Note
that e is available for RECONSTRUCT-DA: Its value can be
computed by the trace of either Ld or Rd. We modify the
RecSVD algorithm such that it uses the binary counterparts
as defined above.

From Figures 1(a) and 1(b), we can see that 600 singular
values are sufficient to perfectly reconstruct the BLOCK
dataset with t = 0.5. This shows that the binary rounding
heuristic applied in RecSVD can reconstruct a full-rank
matrix from a truncated SVD decomposition. This result is
possible because the effective rank of BLOCK is low (about
45). Note that the performance of our algorithms degrades
if we use decision thresholds different from t = 0.5 or the
#edges heuristic. Thus our choice BM̂ given in Sec. III
appears to work best in practice.

Figure 2 shows our results for the FLICKR and CORA
datasets using RecSVD. Figures 2(a) and (c) report the RFE
of the reconstruction, whereas Figures 2(b) and (d) report
the corresponding RAE. As before, the RecSVD algorithm
with threshold t = 0.5 performs the best across the board,
achieving close to zero error in terms of both RFE and
RAE. We want to draw attention to the RAE results on

100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

singular values

re
la

ti
v
e

 F
ro

b
e

n
iu

s
 e

rr
o
r

t=0.5

t=0.1

t=0.9

edges

(a) FLICKR (RFE)

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

10
1

singular values

re
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o

r

t=0.5

t=0.1

t=0.9

edges

(b) FLICKR (RAE)

100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

2.5

singular values

re
la

ti
v
e
 F

ro
b
e
n
iu

s
 e

rr
o
r

t=0.5

t=0.1

t=0.9

edges

(c) CORA (RFE)

0 200 400 600 800 1000
10

−3

10
−2

10
−1

10
0

10
1

singular values

re
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o

r

t=0.5

t=0.1

t=0.9

edges

(d) CORA (RAE)

Figure 2: Performance of the RecSVD algorithm for RECONSTRUCT-DA on the FLICKR and CORA datasets.

the FLICKR data in Figure 2(b). The results exhibit a very
clean separation between the performance of RecSVD for
t = 0.5, #edges, and RecSVD for t = 0.1 and t = 0.9.
This is natural in the sense that t = 0.1 and 0.9 provide an
estimate matrix of (almost) all 1s (for t = 0.1) or all 0s (for
t = 0.9). The reason that this difference is so pronounced
on the FLICKR dataset is due to the fact that the degree
distribution of the nodes in this graph fit very well to a power
law distribution. Thus, predicting all zeros or all ones are
not good guesses for the underlying hidden matrix.

In Figure 3, we report the performance of RecSVD
on the CORA dataset, where we used the sampling-based
greedy approach Greedy_S. In the figure, we give the RFE
achieved by Greedy_S as a function of the number of
singular values. The different curves in the figure correspond
to the different sample sizes. We observe that even a sample
of c = 100 rows of U and V gave reasonable results.
When we used a sample size of c = 300, we obtained
identical results to RecSVD run without sampling. To put
this into perspective, recall that the size of the CORA dataset
is 2708×1433. The RecSVD algorithm with the Greedy_S
heuristic performed similarly well on the other two datasets

(not shown here). Besides the good performance with respect
to RFE, the sampling approach achieves a more than 15-
times speedup per iteration w.r.t. the Greedy algorithm for
c = 300 samples.

C. Results for RECONSTRUCT-DO

We proceed to report our results for RECONSTRUCT-DO.
In all experiments with the #edges heuristic, we provided
the number e of edges as additional input.

Although RecSVD is very effective on all our
datasets for RECONSTRUCT-DA, the performance of the
RecSVD-iter for RECONSTRUCT-DO problem is less so.
Figure 4 shows the performance of RecSVD-iter with
respect to RAE on the BLOCK dataset. The RAE achieved on
the RECONSTRUCT-DO problem for 900 singular values is
given by ≈ 0.11, which is reasonably low. A deeper analysis
of this result showed that the error is roughly equally
distributed in terms of misclassified 0s and 1s: 132112 out of
the 2033248 ones in the dataset are missed, whereas 97284
zero entries are incorrectly predicted as 1s. This is in contrast
to the RECONSTRUCT-DA results of Figure 1(b), where we
achieved an RAE of 0. This difference demonstrates that the

100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

singular values

re
la

ti
v
e

 F
ro

b
e

n
iu

s
 e

rr
o
r

t=0.5

c=100

c=200

c=300

Figure 3: Relative Frobenius error of the RecSVD algo-
rithm with the Greedy_S sampling heuristic on the CORA
dataset. The curves for c=300 and t=0.5 coincide.

0 200 400 600 800 1000
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

singular values

re
la

ti
e

 a
b

s
o

lu
te

 e
rr

o
r

t=0.5

t=0.1

t=0.9

edges

Figure 4: Relative absolute error of RecSVD-iter on
BLOCK data (zero initialization).

node degrees carry valuable information; a complete lack of
this knowledge considerably degrades reconstruction quality.

We also experimented with the lower and upper
heuristics for initializing the degrees. Additionally, we tried
the following two initializations:
top: In this heuristic we run RecSVD-iter using as
input the degrees of the highest 0%, 25%, 50% , 75% or
100% degree nodes (all other degrees are initialized to 0).
During the iterative step of the RecSVD-iter algorithm,
we fix these values and only update the remaining part of
the diagonals.
rand: We also evaluated the performance of
RecSVD-iter when the degrees of arbitrary nodes
are known (as opposed to the highest-degree ones). We
fixed a randomly-chosen set of 0%, 25%, 50% , 75%,
or 100% of the degrees in the main diagonal (again, the
remaining degrees are initialized to 0).

The performance of these initialization methods for the

CORA and the FLICKR datasets is shown in Figures 5(a)
and 5(b) respectively. Here we focus on the RAE only, set
t = 0.5 and used k = 900 singular values. In each plot, the
x-axis corresponds to the percentage of the known degrees
in the main diagonals.

First, note that lower and upper do not depend on
any known values in the main diagonal, thus the results are
the same for all percentages; we only report them to make
visual comparison easier. Second, note that 0% corresponds
to the completely hidden diagonal while 100% implies that
the diagonal is fully known so that results are identical to the
performance of RecSVD on RECONSTRUCT-DA. Moreover,
top and rand perform identically for 0% and for 100%
since either no or all nodes are selected.

As we can see, neither rand, nor lower, nor upper
perform well: their RAE is consistently above 0.5 and
in some cases even worse the baseline of the all-zero
solution. Note that zero initialization performed similarly:
We achieved an RAE of around 0.6 and 0.9 for the FLICKR
and the CORA datasets, respectively. In contrast, top works
much better. Interestingly, knowing the highest 25% of
degrees performs as well as knowing the highest 75%. This
is due to the fact that larger degree nodes imply a denser row
in the underlying M, which in turn corresponds to the largest
singular values of M. The smaller degrees only affect the
smaller magnitude singular values in the SVD so that the
error introduced by not knowing them is absorbed by the
binary rounding in the Greedy algorithm.

D. Computational Cost

Recall that we need to (1) compute the truncated singu-
lar value decomposition of M̂ and (2) compute the sign
assignment Σ̂. The cost of computing the truncated SVD
depends on the size of the dataset. It took 0.056 secs per
singular value for CORA and 0.092 secs per singular value
for FLICKR. Running Greedy in the RecSVD algorithm
took 0.18 secs per singular value for CORA and 0.21 secs for
FLICKR. The Greedy_S algorithm in the speedup version
of our algorithm achieved a 15-fold speedup over Greedy
for CORA with a sample of size c = 300.

V. RELATED WORK

To the best of our knowledge, the problem of recon-
structing binary matrices from neighborhood information has
not been addressed before. However, our work is related to
previous work on the analysis of real and binary matrices,
as summarized below.

Matrix reconstruction. Existing work on matrix reconstruc-
tion focuses on the reconstruction of real-valued matrices
from a few or noisy entries [3], [10]. Such reconstruction
problems, also known as matrix-completion problems, have
received a lot of attention over the last years and existing
studies have led to interesting algorithmic results. Although
the goal of these methods are similar in spirit to our work

0% 25% 50% 75% 100%
0

0.5

1

1.5

2

2.5

3
re

la
ti
v
e
 a

b
s
o
lu

te
 e

rr
o

r

percent known in diagonal

top

rand

lower

upper

(a) CORA

0% 25% 50% 75% 100%
0

0.2

0.4

0.6

0.8

1

1.2

1.4

re
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o

r

percent known in diagonal

top

rand

lower

upper

(b) FLICKR

Figure 5: Performance of RecSVD-iter combined with
rand, top, lower and upper and a varying faction of
revealed entries on the main diagonal.

in that they aim to reconstruct a hidden data matrix, they
are tailored to real-valued matrices. In contrast, our work
focuses on the reconstruction of binary matrices. More im-
portantly, matrix-completion methods use information about
the values of a subset of the hidden matrix in order to recon-
struct it. Such information is not available in our problem,
in which only the per-node neighborhood information but
no information about individual elements is provided.

Binary reconstruction. The problem of reconstructing bi-
nary matrices also arises in computer vision, for example.
Here the goal is to reconstruct a noise-free image from a
noisy version of a black and white image. Existing methods
for these problems either use combinatorial [11] or statistical
inference techniques [2]. These methods rely on the fact
that a noisy version of the hidden matrix is known; the
goal is to remove the noise from the observed pixels. Thus
these denoising techniques cannot be used to solve the
RECONSTRUCT problem.

The problem of reconstructing 0/1 matrices has also been
studied recently in data mining. The problem setting consid-

ered by Vuokko and Terzi [19] is that a randomized version
of the data is revealed and the goal is to reconstruct the
original data as accurately as possible. External knowledge
about the relationships between the rows and the columns
of the noisy observed matrix is also considered by the
reconstruction algorithm. The method strongly relies on the
fact that the observed matrix is a noisy version of the
original one; in fact, in this case even the amount of noise
is assumed known. Again, neighborhood information in the
form considered in our work cannot be incorporated into the
framework proposed in [19].

Matrix decomposition. The analysis of binary data using
matrix decompositions has been extensively studied [15],
[16], [17]. Although these methods do focus on 0/1 ma-
trices, their goal is to find a low-rank representation of a
known input matrix. In some sense, we try to achieve the
opposite: We want to extract a hidden 0/1 matrix using some
knowledge of its low-rank decompositions, as encoded in the
neighborhood data.

Database security. Database privacy questions—in particu-
lar the possibility to reconstruct data from seemingly secure,
anonymized information—have already been considered in
the 70ss [4]. The question is here what information can be
inferred about the data, if answers to a small set of statistical
questions are known. More recent work by Mielikäinen [14]
is concerned with the inverse frequent itemset problem,
which aims to infer the contents of a transaction database
given an anonymized version of that database and true
frequent itemset data.

VI. CONCLUSIONS AND DISCUSSION

There are countless types of real life data that can be
described in terms of a bipartite graph. In many cases, the
original data is sensitive and cannot not be made public.
Thus data owners may consider to publish aggregate in-
formation instead. In this paper, we assume that the data
owner reveals a particular type of aggregate information, i.e.,
neighborhood information. The neighborhood information
consists of the number of common neighbors between every
pair of nodes. Given such information, we asked the fol-
lowing simple question: Can we reconstruct the underlying
graph using only this neighborhood information?

We answered this question in an affirmative way by
developing a method that reconstructs the biadjacency matrix
of the underlying graph. Intuitively, our method reconstructs
the components of the matrix’ singular value decomposition
from the neighborhood information. These components are
subsequently used to obtain a (binary) estimate of the hidden
matrix. Our experiments suggest that the underlying matrix
can be reconstructed with low error or, in some cases,
without any error. If, however, the data owner publishes only
partial neighborhood information, i.e., hides the degrees of
all of the nodes, reconstruction is significantly less effective.

We believe that our work is an instance of a more general
problem, in which aggregate characteristics of a dataset are
revealed and the question is whether one can infer individual
data points. Computational tools that address such types of
questions can prove valuable to data owners, who can use
them to quantify how much information is leaked by the
revealed aggregates.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS-
1017529 and IIS-1218437 as well as gifts from Microsoft,
Google and Yahoo!. The authors also wish to thank Mark
Crovella for valuable discussions during the process.

REFERENCES

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, 2011.

[2] Y. Boykov, O. Veksler, and R. Zabih. Markov random fields
with efficient approximations. In CVPR, pages 648–655,
1998.

[3] E. J. Candès and B. Recht. Exact matrix completion via
convex optimization. Foundations of Computational Mathe-
matics, 9(6):717–772, 2009.

[4] F. Y. Chin. Security in statistical databases for queries with
small counts. ACM Trans. Database Syst., 3:92–104, 1978.

[5] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In
WWW, pages 271–280, 2007.

[6] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo
algorithms for matrices ii: Computing a low-rank approxima-
tion to a matrix. SIAM J. Comput., 36(1):158–183, 2006.

[7] C. Eckhart and G. Young. The approximation of one matrix
by another of lower rank. Psychometrika, pages 211–218,
1936.

[8] G. H. Golub and C. F. V. Loan. Matrix Computations. The
John Hopkins University Press, 1996.

[9] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning
influence probabilities in social networks. In WSDM, pages
241–250, 2010.

[10] R. H. Keshavan, A. Montanari, and S. Oh. Matrix completion
from a few entries. IEEE Transactions on Information Theory,
56(6):2980–2998, 2010.

[11] V. Kolmogorov and R. Zabih. What energy functions can be
minimized via graph cuts? IEEE Trans. Pattern Anal. Mach.
Intell., 26(2):147–159, 2004.

[12] Y. Koren. Factor in the neighbors: Scalable and accurate
collaborative filtering. TKDD, 4(1), 2010.

[13] S. Lattanzi and D. Sivakumar. Affiliation networks. In STOC,
pages 427–434, 2009.

[14] T. Mielikäinen. Privacy problems with anonymized transac-
tion databases. In Discovery Science, pages 219–229, 2004.

[15] P. Miettinen. The boolean column and column-row matrix
decompositions. In ECML/PKDD, page 17, 2008.

[16] P. Miettinen. Sparse boolean matrix factorizations. In ICDM,
pages 935–940, 2010.

[17] P. Miettinen and J. Vreeken. Model order selection for
boolean matrix factorization. In KDD, pages 51–59, 2011.

[18] E. Scheinerman and K. Tucker. Modeling graphs using dot
product representations. Computational Statistics, 25:1–16,
2010.

[19] N. Vuokko and E. Terzi. Reconstructing randomized social
networks. In SDM, pages 49–59, 2010.

[20] E. Zheleva and L. Getoor. To join or not to join: The illusion
of privacy in social networks with mixed public and private
user profiles. In WWW, 2009.

[21] E. Zheleva, H. Sharara, and L. Getoor. Co-evolution of social
and affiliation networks. In KDD, pages 1007–1016, 2009.

