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Abstract

Network-analysis literature is rich in node-centrality mea-

sures that quantify the centrality of a node as a function

of the (shortest) paths of the network that go through it.

Existing work focuses on defining instances of such mea-

sures and designing algorithms for the specific combinato-

rial problems that arise for each instance. In this work, we

propose a unifying definition of centrality that subsumes all

path-counting based centrality definitions: e.g., stress, be-

tweenness or paths centrality. We also define a generic algo-

rithm for computing this generalized centrality measure for

every node and every group of nodes in the network. Next,

we define two optimization problems: k-Group Central-

ity Maximization and k-Edge Centrality Boosting.

In the former, the task is to identify the subset of k nodes

that have the largest group centrality. In the latter, the goal

is to identify up to k edges to add to the network so that

the centrality of a node is maximized. We show that both of

these problems can be solved efficiently for arbitrary central-

ity definitions using our general framework. In a thorough

experimental evaluation we show the practical utility of our

framework and the efficacy of our algorithms.

1 Introduction

The notion of centrality of the nodes in a network
has been key in analyzing different types of network
data; e.g., online social and media networks, Internet,
communication networks, transportation networks and
many more. For example, the centrality of a node in a
social network often correlates with the influence of the
node on the network. Similarly, high-centrality nodes
in the Internet and other communication networks are
nodes that impact/shape most of the observed traffic,
while in transportation networks they correspond to
hubs.

Measures for quantifying the centrality of a node in
a network date back to the 1950s, when Shimbel [19]
proposed that the centrality of a node should be the
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total number of shortest paths that go through it. Ever
since, researchers have proposed different measures of
centrality, as well as algorithms for computing them [1,
2, 4, 10, 11]. The common characteristic of these
measures is that they quantify a node’s centrality by
computing the number (or the fraction) of (shortest)
paths that go through that node. For example, in a
network where packets propagate through nodes, a node
with high centrality is one that “sees” (and potentially
controls) most of the traffic.

In many applications, the centrality of a single node
is not as important as the centrality of a group of
nodes. For example, in a network of lobbyists, one
might want to measure the combined centrality of a
particular group of lobbyists. For such applications, the
notion of centrality needs to be generalized to measure
the centrality of groups rather than single nodes. The
technical difficulty [3, 4] of such generalization comes
from the fact that the centrality of a group is not simply
the sum of the centralities of its members; two nodes
that lie on the same set of shortest paths have the same
centrality as the centrality of a group consisting of one
of these nodes.

In many applications, it is importantly to discover a
central set of nodes. For example, consider an Internet
service provider that wants to identify a set of nodes
for effective placement of traffic-monitoring devices. Or
alternatively, consider advertisement campaign design-
ers that want to identify the set of nodes in a traffic
network for putting gigantic advertisement boards so
that they influence large proportion of the drivers. In
such cases, the goal is not to measure the centrality of
a group of nodes, but rather to identify the group with
the highest centrality. We call this high-level problem
the k-Group Centrality Maximization (k-GCM)
problem. Of course, different definitions of centrality
lead to different instantiations of the k-GCM problem.

Finally, consider real-life applications where entities
have a special interest in the increase (or decrease) in
the centrality of a network node. For example, consider
a network of airports that connect different cities. In
this case, a city’s council, having as a goal to increase
the centrality of the local airport might lobby towards
more airline companies directing flights to and from the
city’s airport. In this case, the question is which edges



need to be added in a graph so that the centrality of
a particular node increases as much as possible. We
call this problem the k-Edge Centrality Boosting
(k-ECB) problem.1 This problem is an instance of
centrality-management problems, where the goal is to
alter the centrality of a group of nodes by making
local structural changes in the input graph. Again,
different definitions of centrality give rise to different
instantiations of the k-ECB problem.

Our first main contribution is that we provide a
generalized framework for computing the centrality of a
single node in a given network. That is, we show that
existing centrality definitions are specializations of the
following definition of centrality: “the centrality of a
node is the number of special paths that go through it”.
Different definitions of special paths lead to different
notions of node centrality. This observation allows us to
design a generic algorithm for computing the centrality
of a node under this general definition of centrality.
This generic algorithm can then be instantiated trivially
to account for the peculiarities of different notions and
measures of centrality.

Our second main contribution is that we use the
above framework to solve any instantiation of the k-
Group Centrality Maximization problem. Al-
though variants of this problem have been defined in the
past [6, 9], we are the first to solve it for arbitrary cen-
trality measures and provide efficient, constant-factor
approximation algorithm for the problem.

Finally, we show that using our framework, one can
formalize a new class of problems that we call centrality-
management problems. We define and solve one such
problem, namely the k-Edge Centrality Boosting
problem. We instantiate the problem using different
notions of centrality and we show that our framework
can be again utilized to solve all these problems. To the
best of our knowledge we are the first to introduce and
solve this problem for network centrality.

Paper Outline: The rest of the paper is organized as
follows: in Section 2 we present an extensive discussion
of the related work. In Sections 3 and 4 we present the
different notions of centrality and algorithms for com-
puting them. In Section 5 we define and solve the k-
Group Centrality Maximization problem and in
Section 6 we define and solve the k-Edge Centrality
Boosting problem. In Section 7, we present a thor-
ough experimental evaluation of our framework and we
conclude the paper in Section 8.

1While our approach for managing centrality allows for addi-
tion as well as removal of edges, and allows for maximizing as well

as minimizing centrality, in this paper we restrict our attention
to the addition of edges for the purpose of maximizing centrality.

2 Related Work

Ever since Shimbel [19] quantified the “importance” of a
node in a network by defining stress centrality as the to-
tal number of shortest paths passing through that node,
several measures of centrality of nodes have been intro-
duced. For example, Anthonisse [1] and Freeman [10] in-
troduced the notion of betweenness centrality to be the
fraction of shortest paths passing through nodes. More
recently, Goh et al. [11] introduced load centrality in or-
der to to compute the load on a node in packet-switched
networks. Other notions of centrality include current-
flow centrality [5, 16] and bridging centrality [12, 17].
Borgatti [2] and Brandes [4] provide some excellent sur-
veys on existing node-centrality measures. Our work
does not aim towards proposing yet-another measure of
node centrality. Rather, we focus on providing a gen-
eral algorithmic framework that allows us to compute
many of the existing centrality measures using slight
modifications of a generic (template) algorithm. At the
same time, we are interested in applying this frame-
work in solving optimization problems, e.g., k-Group
Centrality Maximization and k-Edge Central-
ity Boosting, rather than simply computing the cen-
trality for every node.

The algorithmic challenge of efficiently computing
the centrality of an arbitrary node has been considered
by Brandes [3, 4], who proposed an algorithm (and slight
modifications thereof) to compute different variants of
betweenness and stress centrality. The algorithms in
Brandes’ work are instances of our general algorithm to
compute betweenness and stress centrality. The novelty
of our work is that it provides a general algorithm
to compute centrality that can be applied to several
different types of centrality.

The notion of group centrality, i.e., the centrality
of a group of nodes, has been also proposed by Ev-
erett et al. [8]. In their work, they provide a descrip-
tion of group-centrality measures that extend previous
node centrality measures for groups. Brandes [4] gives
an algorithm for computing group betweenness central-
ity, while Puzis [18] defines the optimization problem
for identifying the group of nodes with the largest be-
tweenness centrality. Puzis’ algorithm is a branch-and-
bound approach that searches the space of all possible
groups. Dolev et al. [6] suggest a greedy heuristic to find
a group with maximum betweenness centrality and show
its approximation ratio, while Fink et al. [9] generalizes
this to the probabilistic version of the problem, which
maximizes expected group centralities. Although very
related, all the above papers focus on a particular group-
centrality measure, namely betweenness centrality. In a
way, our work is a generalization the existing literature
since we provide an umbrella framework that allows us



to define and compute different group-centrality mea-
sures for different groups. At the same time, we can
utilize this framework to also solve the k-Group Cen-
trality Maximization optimization problem for dif-
ferent centrality measures. Even further, our generic
algorithm for solving k-Group Centrality Maxi-
mization provides a constant-factor approximation al-
gorithm for all centrality measures we consider.

Finally, the question of modifying the centrality of
a node or a group of nodes, by changing the structure
of the underlying graph has been posed by Everett et
al. [7]. However, in their work, they only allude to
this question without actually formalizing or solving
it. To the best of our knowledge, we are the first
to investigate the k-Edge Centrality Boosting
problem and provide algorithms for solving it.

3 Node Centrality

In this paper, we examine the notion of centrality in
directed, acyclic graphs (DAGs). Let G(V,E) be such a
graph. We assume that some nodes in V have special
roles assigned; i.e., some of the nodes are sources or
destinations. Throughout the paper we denote the set
of sources by S ⊆ V and the set of destinations by
T ⊆ V .

Since our graph is acyclic, there is a topological
order of the nodes. For a node v, we define the ancestors
(resp. descendants) of v to be the nodes that are before
(resp. after) v in the topological order and there is a
path from them to v.

Given a graph, and sets S and T , it is often required
to find a set of “central” nodes that are along paths that
connect the nodes in S to the nodes in T . Such central
nodes may be the nodes that are in many (shortest)
paths between sources and destinations. There has been
a lot of work on defining measures of a node’s centrality.
The common trait in these definitions is, that they all
focus on counting the number (or the fraction) of a
set of “important” paths that go through this node.
The higher this number the higher the centrality of the
node. In the literature, centrality of a node v is often
computed as the number of (shortest) paths between all
node pairs in the graph, that v is on. Our definition is
a generalization of that, since we have no restriction on
S and T . Both sets could contain the whole of V .

For completeness, we summarize some of these
definitions below.
#SP centrality: For a node v, the #SP centrality of
v, denoted by Csp(v), is the number of shortest paths
between node pairs (s, t) ∈ S × T that contain v.
Such a centrality measure is particularly important in
communication networks where shortest-path routing
is used for the transmission of information. In such

networks, disabling nodes with high Csp(v) value causes
the largest harm in the network. Similar to the above is
the notion of betweenness centrality. The betweenness
centrality of node v is the fraction of shortest paths from
S to T that contain v.
#P centrality: For a node v, the #P centrality of v,
denoted by Cp(v) is the number of paths between nodes
in S and T that contain v. This measure is also known
as stress centrality.

Both the above definitions of centrality count the
number of (shortest) paths between sources and desti-
nations that a node is on. In addition to the above,
there are also measures of centrality that have more of
a set-cover flavor. In these measures, the centrality of a
node v is determined by whether or not v is in at least
one (shortest) path from nodes in S to nodes in T . We
summarize these centrality definitions below.
SP centrality: For a node v, the SP centrality of
v, denoted by C1sp(v), is the number of node pairs
(s, t) ∈ S × T for which v is on at least one shortest
paths between s and t. The notion of SP centrality has
applications in transportation; people prefer to travel
on the shortest route to their destination. Thus, for
transportation companies it makes sense to establish
major hubs in cities that lie on at least one shortest
route for many destinations.
P centrality: For a node v, the P centrality of v,
denoted by C1p(v), is the number of node pairs (s, t) ∈
S×T for which v is on at least one paths between s and t.
Typically, broadcast messages travel through all paths
in a network. For purposes of collecting information
about the general state of the network (for example
learning about congestion or inactive links), it is enough
to receive at least one of these broadcast messages.

Recall, that our focus in this paper is on directed
and acyclic graphs. This choice is informed both by
motivating applications and the notions of centrality
themselves. Specifically, #P and P centrality cannot be
defined on graphs, that contain cycles. In case there was
a cycle in the graph, a path could contain the edges of
the cycle arbitrary many times. It would not be clear,
what the centrality of a node in the cycle would be.
The two measures #SP, SP, and betweenness centrality
do not suffer from this problem, since shortest paths
cannot contain any cycles. For this reason, without loss
of generality we can assume the acyclicity of the graph.

3.1 General framework for centrality. While the
above centrality measures are all slightly different and
have different uses, they have many common properties.
In this section we highlight these common traits and
show how these characteristics allow these measures to
fit in a common framework.



As before, let G(V,E) be a directed, acyclic graph
with source and destination sets of nodes S and T
respectively. The common characteristic in the above
centrality measures is that each corresponds to the
number of special-type of paths between S and T that
a node v is on. Let prop be a property, that a
directed path may have (e.g. it is a shortest path, or
it is a simple directed path, etc.). prop depends on
the specific centrality measure. Let P be a subset of
directed paths in G that connect nodes in S to nodes in
T and which have property prop. We refer to the paths
in P as special paths. Observe that for the measures
#SP, betweenness and SP centrality P contains the set
of shortest paths between S and T . In the case of #P
and P centrality, P consists of all directed paths from S
to T .

We denote by P(s, t) the set of special paths, that
have nodes s ∈ S and t ∈ T as their endpoints. We say
that v covers a path p in P(s, t), if v is a node on p. The
set Pv(s, t) denotes the special paths in P(s, t) that are
covered by v. We define the centrality C(v) of a node v
as a function F of P.

(3.1) C(v) =
∑

(s,t)∈S×T

F(Pv(s, t)).

For the first type of centrality measures, i.e., #SP
and #P, the function F is simply the number of special
paths v covers. That is,

C(v) =
∑

(s,t)∈S×t

|Pv(s, t)|.

In the case of SP and P centrality, F is an indicator
function that takes value 1 for a source-destination pair
s, t |Pv(s, t)| > 0. That is,

C(v) =
∑

(s,t)∈S×t

δ(|Pv(s, t)| > 0).

4 Computing Node Centrality

In this section we describe how to compute the central-
ity of a node v with respect to the general definition
of C(v). At the end of the section, we show how this
computation can be used to compute specific centrality
measures.

4.1 A generic computation of the impact of a
node. We denote the number of distinct directed paths
from any node x to y by #paths(x, y). For a setX ⊆ V ,
let #paths(X, y) =

∑
x∈X #paths(x, y) denote the

number of paths starting in X. Then #paths(S, v)
denotes the number of distinct paths that lead from
any source to v. We call this the Prefix of v, and by

definition Prefix(v) =
∑
s∈S #paths(s, v). We denote

by Suffix(v) the total number of distinct directed
paths, that start in v and end in T : Suffix(v) =∑
t∈T #paths(v, t). Observe, that the total number of

source-destination paths that v covers is equal to the
product of the two values:

I(v) = Prefix(v)× Suffix(v).

We call I(v) the impact of v. We will use the same
terminology later: the impact of v is the number of
special paths that v covers.

In order to compute the impact, we need to compute
the Prefix and Suffix of every node. For computing
the Prefix we rely on the observation that any path
from a source s to a node v has go through one of
v’s parents (s may be one of the parents of v). This
implies, that #paths(s, v) is equal to the total number
of distinct paths leading to the parents of v.

Let Πv denote the set of parents of v. Then
Prefix(v) can be computed with equation (4.2).

(4.2) Prefix(v) =
∑
x∈Πv

Prefix(x).

We need to evaluate (4.2) sequentially, by first com-
puting the Prefix of v’s ancestors. To do this, we fix
a topological order σ of the nodes. (A topological or-
der of nodes is an order in which every edge is directed
from a smaller to a larger ranked node in the ordering.)
This order naturally implies that the parents of a node
precede it in the ordering. Formula (4.2) can now be
evaluated, while traversing the nodes of G in the order
of σ.

Recall that the Prefix of a node can also be ex-
pressed as #paths(S, v), thus formula (4.2) is equiva-
lent to

Prefix(v) = #paths(S, v)(4.3)

=
∑
x∈Πv

#paths(S, x).

As we established before, Suffix(v) is equivalent to the
total number of directed paths starting from v. This
can be computed efficiently by doing some bookkeeping
during the sequential computation of (4.2): For every
node v, we maintain a list, plistv, that contains for
every ancestor y of v the number of paths that go from
y to v. Thus, plistv[y] = #paths(y, v). Observe now,
that for an ancestor y of v, plistv[y] can be computed as
the sum of the plist of the parents (see Formula (4.4)).

(4.4) ∀y ∈ V : plistv[y] =
∑
x∈Πv

plistx[y].



Observe, that for every node, plistv can be com-
puted during the same recursion as (4.2).

To compute the Suffix of a node v, we need to sum
the number of paths that start in v and end in T . This
is simply the sum of the plistt entries, that correspond
to v for every t ∈ T (see Formula (4.5)).

(4.5) Suffix(v) = #paths(v, T ) =
∑
t∈T

plistt[v].

As a technical detail, in order to use this recursive
formula, every node’s plist contains itself with value
one: plistv[v] = 1. As a special case, a sources list
would contain only the entry corresponding to itself.

The topological order σ of the nodes can be
computed in linear time. Formulas (4.2) and (4.4) are
updated along every edge of the graph. Formula (4.2)
can be updated in constant time along an edge, while
formula (4.4) requires O(∆) lookups and additions.
(Where ∆ corresponds to the maximal degree int he
graph.) Suffix(v) can be computed by doing |T |
lookups in the plist’s of T and using formula (4.5).
This yields a total running time of O(|E|·∆) to compute
the impact of every node. This can be O(n3) in worst
case, but in practice, for most graphs |E| < O(n · logn),
which results in a O(n · logn) running time.

4.2 Computing centrality. In this section, we show
how the notion of impact can be tailored to the dif-
ferent centrality measures, to compute the centrality
of a node efficiently. In general, the centrality of ev-
ery node v ∈ V will be equal to the impact of v,
where the impact is computed by the formula I(v) =
Prefix(v)×Suffix(v). The difference between the dif-
ferent centralities shows only in the way formulas (4.2),
(4.4) and (4.5) are computed.
#SP centrality: Recall that Csp(v) denotes the num-
ber of shortest paths between pairs (s, t) ∈ S × T .
To compute this we only have to add a simple crite-
rion when computing Prefix(v) in formula (4.2) and
Suffix(v) in formulas (4.4) and (4.5): observe that a
path (s, x1, x2, . . . xr, v) from source s to node v can only
be a shortest path if (s, x1, x2, . . . xi) is also a shortest
path for every intermediate node xi. Thus, when we
compute the sums in these formulas, we only add the
values for the subset Π′v ⊆ Πv of parents, that are on a
shortest paths. Thus, formula (4.2) becomes

Prefix(v) =
∑
x′∈Π′

v

Prefix(x′).

Similarly, formula (4.4) is replaced by

∀y ∈ V : plistv[y] =
∑
x′∈Π′

v

plistx′ [y].

Observe, that using the plist values corresponding to
the number of shortest paths is sufficient to compute
the Suffix for shortest paths in formula (4.5). The set
Π′v can be found by comparing the distance d(s, v) of v
from s and d(s, x) for every candidate parent x ∈ Πv.
Node x lies along a shortest path to v if and only if
d(s, v) − d(s, x) = 1. The distances d(s, v) only need
to be computed once. Observe that the shortest paths
from different source nodes to a node v are different (and
may have different length). For this reason we have to
compute the impact of a node v for every source si ∈ S
separately and then aggregate those. Thus, if we denote
the Prefix and Suffix corresponding to source si with
a subscript i (thus Prefixi(v) and Suffixi(v)), then

(4.6) I(v) =
∑
si∈S

Prefixi(v)× Suffixi(v).

The betweenness CB(v) of a node with regard to a
pair (s, t) can be computed by dividing CSP (v) by the
total number of shortest paths.
#P centrality: Recall that Cp(v) corresponds to the
number of distinct paths from S to T that v covers.
Observe that this is the same notion as the impact of v,
thus Cp(v) = I(v).
SP centrality: For evaluating C1sp(v), when comput-
ing (4.2) and (4.4) we only add values for parents, that
are on a shortest paths from s to v, and we use boolean
addition, when doing so.
P centrality: Recall that the value of C1p(v) is the
number of pairs (s, t) ∈ S × T , which v covers. For
a given source node s we are only interested if node
v is along at least one paths starting in s. Thus, when
computing formulas (4.2) and (4.4) we only do a boolean
addition. This way when we compute Suffix(v) in
formula (4.5) (we emphasize, that here we use the
conventional integer addition) we get the exact number
of destinations for which v covers at least one paths
between s and the destination. Similar to the shortest
paths, we need to do this computation separately for
every source node and then aggregate the results as in
formula (4.6).

5 Group Centrality

Many applications make use of the combined centrality
of a set of nodes. For this, we generalize the central-
ity measures to measure the centrality of a group of
nodes, rather than individual nodes. We call these gen-
eralized versions of centrality measures group-centrality
measures.

Let A ⊆ V be a subset of nodes. Let P be the set
of special path with property prop. We say that the
group centrality C(A) of set A is the number of special



paths that nodes in A participate in.

C(A) =
∑

(s,t)∈S×T

F(PA(s, t)).

5.1 Finding the most-central group of nodes.
In many applications the goal is to find a set of nodes
that are the most central amongst other groups with
the same cardinality. This leads to a straightforward
definition of the optimization problem.

Problem 5.1. (k-Group Centrality Maximization
(k-GCM)). Let G(V,E) be a directed graph with sources
S ⊆ V and destinations T ⊆ V and P the set of special
paths in G. For integer k, find a set A ⊆ V of size
|A| ≤ k, such that C(A) is maximized.

Different centrality measures lead to different ver-
sions of the k-GCM problem. We denote these by k-
GCM(#SP), k-GCM(#P), k-GCM(SP), k-GCM(P) for
#SP, #P, SP and P centralities respectively, We have the
following result for the complexity of these instantia-
tions.

Theorem 5.1. The k-GCM(#SP), k-GCM(#P) and
k-GCM(SP) problems are NPcomplete.

The NPcompleteness proofs for all these problems
are provided in the Appendix (Section 8) of this paper.

5.2 Approximating the k-GCM problem. In this
section, we present a generic algorithm for approxi-
mating the k-GCM problem. This algorithm can be
instantiated appropriately to solve k-GCM(#SP), k-
GCM(#P) and k-GCM(SP) problems; all with the same
approximation factor.

Our algorithm is a greedy heuristic, which expands
the current set A ⊆ V in every iteration with a
node v, that results in the highest increase IA(v) =
C(A ∪ {v}) − C(A) of group centrality. We define
the conditional impact IA(v) of node v with regard
to group A as the increase in coverage by adding
v to the group. We will see that I∅(v) = I(v),
the impact we defined in Section 4.1. Moreover, the
computation of IA(v) requires the use of Formulas (4.2),
(4.4) and (4.5) in the same way as in Section 4.1, with
only slight modifications. The Greedy algorithm we
propose (Algorithm 5.1) iterates the recalculation of the
impact IA() and the choice of the (currently) highest
impact node k times.

Algorithm 5.1.
Input: G(V,E) and integer k.
Output: set of nodes A ⊆ V , where |A| ≤ k.
A = ∅

for i = 0 . . . k − 1 do
for j = 1 . . . n do

compute IAi(vj)
Ai+1 = Ai ∪ {argmaxv∈V IAi

(v)}

Approximation. The objective function C(A) in
the optimization Problem 5.1 is positive, monotone
increasing, and submodular. Thus, by a theorem of
Nemhauser et al. [15] our Greedy algorithm yields an
(1− 1

e )-approximation for the optimal solution.

Updating the impact efficiently. Let us assume
that at the start of iteration i the Greedy algorithm
has already chosen nodeset Ai ⊆ V . In this iteration we
need to pick a node v that covers the largest possible
number of special paths, that were not covered by Ai.
This is the value IAi

(v) that we mentioned above. Let
PAi
⊆ P be the set of special paths that are covered by

Ai. Observe, that if a path p ∈ PAi , then it is already
covered, thus it is not counted in the conditional impact
of the nodes. Let us assume that node a ∈ Ai lies on p
(other nodes in Ai might also cover it). Since none of the
special paths is counted in the conditional impact, that
are covered by node a, we would get the same value for
the conditional impact, if we removed a from the graph.
We introduce the notion of conditional PrefixAi(v)
and SuffixAi

(v), that are computed with this idea of
node removing in mind. The algorithm proposed in
Section 4.1 is used to compute the conditional impact
in the following way. When PrefixAi(v) is computed
by Formula (4.2), the Prefix values for nodes in Ai
are replaced by 0. Thus, PrefixAi

(a) = 0 for a ∈ Ai,
and this 0 value is used for the Prefix computation
of a’s children. Similarly, when computing plistiv, all
entries in plistiv(a) are set to 0 and this zero value
is used, when evaluating Formula (4.4). Using these
conditional plist values in Formula (4.5) result in the
conditional SuffixAi

(v), where paths going through Ai
are not counted towards the Suffix. Observe that,
IAi

(v) = PrefixAi
(v)×SuffixAi

(v) counts exactly the
number of paths covered by v and NOT covered by any
node in Ai. The computation of the conditional impact
takes the same time as in the case of the unconditional.
Thus, the running time for one iteration of the Greedy
algorithm is O(|E| ·∆). Observe also that adding a new
node v to the set Ai changes the conditional Suffix of
all nodes before v and the Prefix of all nodes after v
in the topological order. Thus, the conditional impact
needs to be recomputed in every iteration. This results
in a total running time of O(k · |E| ·∆) for k iterations.

Observe that once the Greedy algorithm needs to
compute the impact of nodes at different iterations.
Depending on the particular centrality measure we



adopt, the Greedy algorithm will use the appropriate
impact computation for this measure, as described in
Section 4.2. In that respect, Greedy is a generic
algorithm for the k-GCM problem.

5.3 Computational speedups. In this section, we
outline some of the techniques for reducing the compu-
tational aspects of our approach. All these heuristics
are inspired by the Greedy algorithm, but approximate
some of its steps and have significantly smaller running
times. We describe these algorithms below.
The G max algorithm: This heuristic is a simplified
version of Greedy where we do not take into account
the interdependency of the centralities of nodes. We
compute the impact of every node once and then choose
the k nodes with highest centrality. The running time
is the time it takes to compute the impact of every node
once, which is O(|E| ·∆)
The G 1 algorithm: In this heuristic the k nodes
with the highest product of Cd(v) = din(v) × dout(v)
are picked. This is our fastest heuristic and can be
computed in O(|E|) time. Cd(v) is the number of paths
of length two that go through v. In the literature
Cd(v) is sometimes referred to as degree centrality.
In our experiments we show that degree centrality,
despite its name, is different in nature from other
centrality measures, and in fact not a good indicator
of “centrality”.
The G Sampled algorithm: In this heuristic we create
a sample of the original input graph and then run the
Greedy algorithm on the smaller sampled graph. The
sampling is based on random walks started simultane-
ously from both source and destination nodes. We stop
the sampling once a subgraph is traversed, where 15%
of the original {s, t} source and destination pairs are
connected by a path.

6 Managing Centrality

In this section, we consider the problem of increasing the
centrality of one particual node u∗ ∈ V by adding edges
in G. More specifically, we consider the optimization
version where the problem is to identify the subset of
edges to be added to G so that C(u∗) is increased the
most. Since edge additions change graph G, we will
enhance the notation of centrality to take the underlying
graph as an argument. That is for node v and graph G
we use C(v,G) to denote the centrality of node v in
graph G.

Formally, we define the problem as follows:

Problem 6.1. (k-Edge Centrality Boosting
(k-ECB)). Given DAG G(V,E), node u∗ ∈ V and
integer k, find k edges Ek to form G′ = (V,E ∪ Ek),

such that C(u∗, G′) is maximized.

As before, the k-ECB problem can be instanti-
ated to k-ECB(#SP), k-ECB(#P), k-ECB(SP) and k-
ECB(P) problems when the centrality of a node is mea-
sured using the #SP, #P, SP and P respectively. We re-
iterate that the k-ECB problem is a special case of the
general problem of maximizing (or even minimizing) a
node’s centrality by addition or deletion of edges. We
also note that maximization (resp. minimization) of the
#P centrality of a node can be only achieved by edge
additions (resp. deletions).

We again propose a generic algorithm for solving the
k-ECB problem. We call this greedy-heurstic algorithm
Greedy Add. The Greedy Add algorithm adds the edge
(u → v) that maximizes the centrality of u∗. Thus
(u → v) = argmax{C(u∗, G ∪ (u → v))}. Repeating
this k times results in our Greedy Add algorithm 6.1.

Algorithm 6.1. Greedy Add algorithm for edge addi-
tion

Input: G(V,E) and node u∗ ∈ V .
Output: edges E′ = (u1, v1) ∪ (u2, v2) ∪ . . . (uk, vk).
E′ = ∅
for i=1. . . k do

G′ = G(V,E ∪ E′)
(ui, vi) = argmax{C(u∗, G′ ∪ (u→ v))}
E′ ← (ui, vi)

Instead of selecting among all possible edges to
add, the Greedy Add algorithm can be restricted to
choose amongst candidate edges that have one of their
endpoints in u∗. We refer to this variant of the
Greedy Add algorithm as the G Add 1. Since G Add 1
has fewer choices to consider in every iteration, it is
naturally a more efficient algorithm than Greedy Add.
We discuss the running time of G Add 1 towards the end
of this section.
Properties of Greedy Add. Although Greedy Add
performs very well in practice, we show here some
theoretical evidence why it is not a constant-factor
approximation algorithm for the different variants of the
k-ECB problems.
#SP: Here we show that the #SP centrality a node u∗,
Csp(u∗), is not monotonically increasing with respect to
edge additions. Consider the example in Figure 1: Let
u∗ be the node, whose centrality we wish to increase.
In the solid-edge graph, there are two shortest paths
from s to t. Node u∗ covers both, hence Csp(u∗, G) = 2.
However, by adding the dotted edge, the length of the
shortest paths has decreased to 4, and the number of
shortest paths to 1. Now u∗ is covering only this shortest
path, and thus Csp(u∗, G ∪ (v → w)) = 1.
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Figure 1: Adding edge (v → w) decreases the #SP
centrality of node u∗.

#P: Here we show that eventhough the #P centrality
of u∗, Cp(u∗), is monotonically increasing with respect
to edge additions, it is not submodular. Consider
the solid-edge graph in Figure 2. The increase in
centrality Cp(u∗, G ∪ (u → v)) − Cp(u∗, G) caused by
adding edge (u → v) in G is smaller, than the increase
Cp(u∗, G′ ∪ (u→ v))−Cp(u∗, G′) caused by adding the
same edge (u→ v) in G′ = G ∪ (v → w), in contrast to
the definition of submodularity.

S

u

v

w

u*

Figure 2: Adding edges (v, w) and (u → v) show, that
Cp(u∗, G) does not maintain submodularity during edge
addition.

SP: The SP centrality of u∗, C1sp(u∗), is also not
monotonic neither is it submodular with respect to edge
additions. However, if we restrict edge additions to
contain u∗ as one of their endpoints, then SP is both
monotonically increasing and submodular. To see this,
let us assume that we add edge (u∗ → v) to G and
obtain G′. For every pair s, t, that the length d(s, t|G′)
of shortest path between s and t is shorter than in G,
it is true that u∗ covers this shorter path. Thus the set
of pairs for which u∗ covers a shortest path in G′ is a
super set of those in G. This implies that the G Add 1
algorithm is a constant-factor approximation algorithm
for the k-ECB(SP) problem; the constant factor is as
before (1− 1/e).

P: The P centrality of node u∗, C1p(u∗), is monotonically
increasing with edge additions. This is because adding
an edge only adds new paths to the set of special paths.
However, the same function is not submodular (even
when edges are restricted to have u∗ as one of their
endpoints). The example in Figure 2 can be again used
to illustrate this.

6.1 Implementation details of Greedy Add. Ac-
cording to the definition, C(u∗, G) is a function of the
number of special paths, that are covered by u∗. Let
us assume, that an edge (u → v) is added to G, re-
sulting in graph G′ = G ∪ (u → v). Observe that G′

contains all paths from S to T that are in G, and it
may contain some additional paths. However, all ad-
ditional paths will contain (u → v) as an edge. Thus,
the centrality C(u∗, G′) of u∗ in graph G′ increases by
the number of special paths, that are covered by u∗ and
contain edge (u → v). Since this increase in central-
ity is due to the addition of edge (u → v), we will call
this value the relative impact of (u → v). Expressed
with a formula, the relative impact of edge (u → v) is
I((u→ v) |u∗) = C(u∗, G ∪ (u→ v))− C(u∗, G).

The Greedy Add algorithm for edge addition (Algo-
rithm 6.1) can be reformulated, with help of the relative
impact of node pairs. The edge (u→ v) that maximizes
argmax{C(u∗, G∪ (u→ v))} can be found, by comput-
ing the relative impact of every node pair u, v and then
choosing the largest. Once (u → v) is added to G, the
centrality C(u∗, G) and the relative impacts of potential
edges need to be recomputed, before chosing the next
edge to add. These steps can be repeated k times in
order to add k edges.

Computing the relative impact. Here, we show how
the relative impact of node pairs can be computed in a
graph G. We describe the algorithm for the general
centrality definition. This general algorithm can easily
be adjusted to the specific centrality measures.

In order to compute the relative impact
I((u→ v) |u∗) we need to compute the number of
paths that go through (u → v) and u∗. This suf-
fices, because all special paths that are covered by
u∗ in G′ but not in G are paths that contain edge
(u→ v) and node u∗. Let the notation #paths(x, y, z)
denote the number of paths between x and z con-
taining y. We define the relative Prefix of a node
u as Prefix∗u(u) = #paths(S, u∗, u). Observe,
that Prefix∗u(u) = Prefix(u∗) × #paths(u∗, u),
since it denotes the number of paths from S to u
going through u∗. The relative Suffix is defined
similarly, Suffix∗u(v) =

∑
x∈V #paths(v, u∗, x).

A similar observation can be made, Suffix∗u(v) =
#paths(v, u∗)× Suffix(u∗).

Let us fix an arbitrary topological order σ of the
nodes in V . Since G′ is a DAG, it is impossible for
a path to contain both edge (u → v) and u∗ in G′,
if σ(u) < σ(u∗) < σ(v). Thus, either both u and
v have to be before or after u∗ in the order of σ.
Let K(u → v|u∗) = Prefix(u) × Suffix∗u(v) and let
L(u→ v|u∗) = Prefix∗u(u)× Suffix(v). Observe that
K(u → v|u∗) is the relative impact of edge (u → v), if



both u and v are before u∗ in σ. Similarly L(u→ v|u∗)
denotes the relative impact of edge (u → v) if they are
both after u∗. Now the relative impact can be computed
as follows:

I((u→ v) |u∗) = min{K(u→ v|u∗) + L(u→ v|u∗),
K(u→ v|u∗)× L(u→ v|u∗)}.

Observe, that this formula takes care of the
case when σ(u) < σ(u∗) < σ(v), since then
I((u→ v) |u∗) = 0.

The computation of the relative impact of node
pairs consists of three phases. Since the formula for
evaluating I((u→ v) |u∗) contains the general Prefix
and Suffix of nodes, we need to compute that in the
first phase, as described in Section 4.1. Second, we
focus on computing Prefix∗u and Suffix∗u. For this we
need to compute #paths(u, u∗) and #paths(u∗, v) for
every node u, v ∈ V . Observe that #paths(u, u∗) can
be determined by a simple lookup in plist∗u; namely
#paths(u, u∗) = plist∗u[u]. We assume that if u
is not in the list, then plist∗u[u] = 0. The plist
can also be used to compute #paths(u∗, v); namely
#paths(u∗, v) = plistv[u∗]. Now we know all terms
needed to compute K(u → v|u∗) and L(u → v|u∗)
and ultimately I((u→ v) |u∗) in the third phase. This
process is described in Algorithm 6.2.

Algorithm 6.2. Algorithm for computing the relative
impact

Input: G(V,E) and node u∗ ∈ V .
Output: values I((u→ v) |u∗) for every u, v ∈ V
Compute Prefix(u) and Suffix(v)
Compute #paths(u, u∗) and #paths(u∗, v)
Compute K(u→ v|u∗) and L(u→ v|u∗)
Compute I((u→ v) |u∗)

Running time of Greedy Add: This algorithm in-
volves the computation of the Prefix and suffix of ev-
ery node. As we have established in Section 4.1, this
computation takes O(∆ · |E|) time. The computation
of #paths(u, u∗) and #paths(u∗, v) can be done along
with the computation of Prefix and Suffix, and thus
it does not increase the running time. At last we have to
compute K(u→ v|u∗), L(u→ v|u∗) and I((u→ v) |u∗)
for every edge, which takes at most O(n2) steps. We
repeat the algorithm k times, which results in a total
running time of O(k ·∆ · n2).

Computational speedups: Since the running time of
Greedy Add has the same magnitude as that of Greedy
we present here some computational speedup techniques
that we apply in our experiments.

Sampling: We use the same sampling techniques to
sample graphs as described in Section 5.3.

The G Add max algorithm: Similar to the G max
algorithm, this heuristic computes the relative impact
of (u → v) edges once, and takes the k highest impact
edges.

The G Add 1 algorithm: This algorithm is a simplified
version of Greedy Add, which can be computed signif-
icantly faster, and depending on the graph, can per-
form quite well compared to Greedy Add (see Figure 4
in Section 7 for comparative experiments). The G Add 1
algorithm adds the edge adjacent to u∗ with the largest
relative impact. For this we need to compute Prefix(v)
for every node v preceding u∗ in the topological order,
and compute Suffix(w) for every node w, succeeding
u* in the topological order. Computing the Prefix and
Suffix of the nodes takes O(∆·n) time. Since the edges
adjacent to u∗ are independent, we only need to com-
pute these values once. Thus a set of k edges can be
added in O(∆ · n) time.

6.1.1 Increasing group centrality. Instead of fo-
cusing on one node, an interesting generalization would
be to study the effect of edge addition to group cen-
trality. We believe that a greedy approach similar to
Greedy Add could be used to solve the problem of max-
imizing the centrality of a group A ⊆ V . Working out
the details of this greedy algorithm and other heuris-
tics are interesting problems that we are pursuing as
follow-up work.

7 Experimental Evaluation

In this section, we demonstrate the utility of our frame-
work by presenting a thorough experimental evaluation
of the performance of the different alogrithms we pro-
pose.

Quote dataset: The Quote dataset [14] is a network
of online media sites (e.g., news sites, blogs etc.). The
links in the network are directed and they correspond
to hyperlinks between the corresponding sites. Every
hyperlink u → v is labeled with a quote, i.e., the piece
of news that caused node u to connect to v. For the
experiments we report here we select a particular quote:
“lipstick on a pig” and pick the subgraph of the input
graph that is defined by the edges that are labeled with
this quote. Since sites may freely link to each other,
the formed graph might contain cycles. We convert
this graph into an acyclic graph as follows: From every
node u we find a maximal acyclic subgraph using a DFS
traversal, having u as its initiator. Then, we use the
largest resulting DAG to work with. The DAG we end
up with contains 21472 nodes and 81427 edges. We pick



the set S to be the immediate neighbors of the initiator
of the selected DAG; in this way we ended up with 36
source nodes. We formed the set of destinations T by
picking 100 random nodes from the graph.

The maximum centrality group of nodes corre-
sponds to media sites that are traversed by users the
most in relationship to a specific phrase or idiom, and
thus may be the best for placement of advertisement
related to that idiom (e.g., by a political party).

Twitter dataset: The Twitter dataset [13] contains
user ids and links between users, directed from the user
to his/her followers. The complete dataset contains
over 41 million user profiles. We again selected a
subgraph by first running a breadth-first search up until
six levels, starting from the user “sigcomm09”. Our
goal was to find a subnetwork of users related to the
computer science community. For this, we created a list
of keywords related to computer science, technology and
academia and filtered the user profiles of the followers
according to that. The resulting network is an acyclic
graph with a single root “sigcomm09’. The graph
contains about 90K nodes and 120K edges. The number
of out-going edges from the different levels of the graph
show an exponential growth: 2, 16, 194, 43993 and
80639 for levels 1,2,. . . , 5. We had to remove a small
number of edges, in order to maintain an acyclic graph.
Similar to the Quote dataset source selection, we drop
the intial node corresponding to “sigcomm09” from the
graph, which was connected to 2 nodes, and select 100
random destinations from the graph.

Similarly to the Quote dataset, central nodes in
the twitter dataset corresponds to users that are on
many information-propagation paths. In this dataset,
nodes might want to increase their centrality by follow-
ing other central nodes.

7.1 Evaluating algorithms for the k-GCM prob-
lem. In this section we compare the performance of
Greedy G max and G 1 algorithms by comparing the
centrality of the groups of nodes they produce as solu-
tions to the k-GCM problem. We also use the following
algorithms as baseline:

In our random baseline algorithms, groups of size
k in expectation are chosen according to the following
heuristics:
(Rand K): chooses k nodes from V uniformly at random.
(Rand I): Every node is chosen with probability k

n .
(Rand W): Every node v is chosen with probability
w(v) × k

n . The weight w(v) is equal to weight w(v) =∑
u∈Cv

1
din(u) , where Cv = {u ∈ V |(v → u) ∈ E} is

the set of children of v. The intuition behind this is,
that the influence of node v on its child u, is inversely
proportional to the in-degree of u.

To measure the performance, we define the cover-
age ratio (CR) as the fraction C(Aother)

C(AGreedy)
– The closer

this value is to 1, the better the performance of the al-
gorithm. AGreedy is the group of size k chosen by the
Greedy algorithm, and Aother corresponds to the group
of (expected) size k chosen by the heuristic against
which we compare Greedy. For the deterministic al-
gorithms we simply report the achieved CR, while for
random heuristics we report an average over ten runs.

The results from our comparative evaluation are
shown in Figure 3, in which the X axis corresponds
to the group size and the Y axis corresponds to CR.
We report results on both the Quote and Twitter
datasets. For the former, we report experiments on all
four types of centrality we describe in this paper. Due to
the technique that the Twitter dataset was generated
with, almost all paths in that graph are also shortest
paths. For this reason we only report results for #P and
P centrality on the Twitter data. Plots for #SP and
SP look quite similar.

The results show that G max and G Sampled algo-
rithms’ performance is comparable to Greedy with a
CR of at least 70%. Also G Sampled performs better
than G max . The performance of the random algo-
rithms strongly depend on the type of centrality and
the dataset, but it is always decisively lower, than the
performance of all other algorithms.

As another observation, we note that G 1 performs
well on finding groups with high #P and P centralities.
However, the same algorithm performs poorly in iden-
tifying groups with high #SP and SP centralities. This
shows that the in- and out-degree of a node are not good
indicators of the number of special paths this node par-
ticipates in.

7.2 Evaluating the utility of group centrality.
In this set of experiment we aim to show that the
centrality of a group is different from the sum of
centralities of individual nodes.

For that, we use the Quote dataset and the #SP
and SP centralities. We first use the Greedy algorithm
to solve the k-GCM problem for the two centrality
measures and for k = 1, 2, . . . 10. For every value of k
we compute the group centrality achieved by the group
AGreedy reported by Greedy. Then we traverse a list
of the nodes - sorted by decreasing individual node
centrality - and stop the traversal at position d. This
position corresponds to the number of nodes required
to cover at least as many special paths as the solution
of Greedy. The group of traversed nodes is referred to
as Atop. We report the values of d against k in Table 1.

The results in Table 1 show that for relatively small
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Figure 3: Group centrality in the k-GCM problem. X axis corresponds to the size k of the group. Y axis reports
the coverage ratio

sizes of k, d is three times larger than k for comparable
group centrality. In case of #P and P centrality we
observed even more significant difference. A set of
d = 30 nodes were needed to match the group centrality
of the top 2 nodes chosen by the Greedy algorithm. For
lack of space, we do not include the corresponding table.

Table 1: Size d of Atop compared to size k of AGreedy for
#SP and SP centralities.

k d (#SP) d (SP)

1 1 1
2 5 2
3 7 4
4 8 11
5 9 13
6 23 13
7 24 18
8 28 28
9 30 30
10 31 33

7.3 Evaluating the algorithms for k-ECB prob-
lem. In this set of experiments, we chose a node u∗ ∈ V
at random and applied the different heuristics for the
k-ECB problem to increase its centrality. We ran the
experiments choosing u∗ to have low-, medium- or high-

initial centrality. For lack of space we only report the
results for #P centrality on the Quote dataset.

We compare Greedy Add, G Add max and G Add 1
algorithms with the following baselines:
(Rand K): chooses k nodepairs to add (u → v) edges
uniformely at random.
(Rand I): Every edge (u→ v) is chosen with probability
k

(n
2)

.

(Rand W): An edge is created between a node v1

which is chosen with probability w(v1) × k
n , and a

node v2 chosen with probability w(v2) × k
n such that

σ(v1) < σ(v2). The weight of w(v1) is =
∑
u∈Cv

1
din(u) ,

where Cv = {u ∈ V |(v → u) ∈ E} is the set of children
of v1.

We define the percentage of increase (CI) of the
centrality of u∗ as C(u∗, G ∪ A)/C(u∗, G). Where A is
the set of edges selected by the algorithms to add to G.
In Figure 4 we report the number k of edges added in
the x-axis against the CI in the y-axis.

As expected, the baseline algorithms perform
poorly in comparison with Greedy Add and other heuris-
tics. Results on the sampled graph was also poor in
comparison and thus are not reported. Greedy Add
achieves the best performance increasing the centrality
of nodes by more than 200 times (on a log scale) for low
and medium centrality nodes. In addition, we observe



 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30

%
 C

I (
lo

g 
S

ca
le

)

# of Edges

G_Add_Max
G_Add_1
Rand_W

Rand_I
Rand_K
G_Add

(a) low Cp(u∗, G)

 0

 50

 100

 150

 200

 0  5  10  15  20  25  30

%
 C

I (
lo

g 
S

ca
le

)

# of Edges

G_Add_Max
G_Add_1
Rand_W

Rand_I
Rand_K
G_Add

(b) medium Cp(u∗, G)

 0

 5

 10

 15

 20

 25

 30

 0  5  10  15  20  25  30

%
 C

I (
lo

g 
S

ca
le

)

# of Edges

G_Add_Max
G_Add_1
Rand_W

Rand_I
Rand_K
G_Add

(c) high Cp(u∗, G)

Figure 4: CI in the k-ECB problem on the Quote dataset, with regard to #P centrality. x-axis corresponds to
the number of new edges k, y-axis reports the logarithm of the CI.

that nodes with lower centrality achieve the most bene-
fit from increasing their centrality as opposed to nodes
with already high centrality.

8 Conclusions

In this paper, we proposed a unifying definition of cen-
trality of nodes. We showed that this definition sub-
sumes most of the existing notions of centrality, and
also allows us to define a generic algorithm for comput-
ing nodes’ centrality in directed acyclic graphs. Then
we defined the k-Group Centrality Maximization
and the k-Edge Centrality Boosting problems and
showed how our general framework can be used to solve
them for any centrality measure. Our experimental
results illustrate the usefulness of our framework, but
also the efficiency and the efficacy of our algorithms
for solving the k-Group Centrality Maximization
and the k-Edge Centrality Boosting problems. In
the future we plan to explore other types of centrality-
management problems. For example, one problem we
plan to consider is how to balance the centralities of the
nodes within a group, by causing minimal changes to
the structure of the input graph.
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Theorem .1. The SP problem is NPcomplete.

Proof. We proceed by reducing the NP-complete Set-
Cover problem to SP. An instance of SetCover con-



sists of a universe U = {u1, u2, · · · , um} and a set
S = {S1, S2, · · ·Sn}, where ∀i, Si ⊆ U is a subset of U
and k is an integer. The goal is to find a subset S′ ⊆ S
such that |S′| ≤ k and {uj ∈ U : uj ∈ ∪Si∈S′Si}. De-
fine an instance of SP by constructing a directed graph
G′ = (V ′, E′) as follows. Designate the nodes ui ∈ U
as nodes ui ∈ V ′ and the sets Si ∈ S as nodes si ∈ V ′.
Thus, V ′ = {ui}∪{si}. Let E′ consists of a set of edges
e defined as follows. Create a directed edge between
each node nj ∈ V and an si ∈ V iff nj ∈ Si. Further-
more, create a additional directed edge from si ∈ V to
each node nj ∈ V iff nj ∈ Si. Observe that a directed
shortest path between a node to itself, i.e a node pair
(nj ,nj) is of length two and will necessarily pass through
the node si.

Let us assume that A′ is a solution of size k to the
SP problem. We will show that S′ ⊆ S is a solution
for SetCover problem. Observe that A′ will cover at
least one shortest path between a node pair (nj ,nj) thus
conclude that an S′ corresponding to the nodes of A′ is a
solution to the SetCover problem. Removing a node
from A′ will result that there will be no shotest path
coverage for at least one node pair (nj ,nj), which in turn
will result in an incomplete solution to the SetCover
problem. Since the decision problem of the SetCover
is NP-Complete, this reduction shows that SP is also
NP-Complete.

Theorem .2. The #SP problem is NPcomplete.

Proof. We proceed by reducing the NP-complete Ver-
texCover problem to #SP. We say that for an undi-
rected graph G(V,E), a set A ⊆ V is a vertex cover of
G, if every edge in E is incident to at least one node in
A. For an instance of the VertexCover problem, let
G(V,E) be an undirected graph and k an integer. The
decision version of the problem asks for a set A ⊆ V of
size k that is a VertexCover.

Define the directed graph G′(V ′, E′) of the corre-
sponding #SP problem as follows. Let V ′ = V ∪ {si, di}
contain the nodes in G, and additional source si and
destination di nodes where i = 1..|E|. Let E′ contain
all edges in E. In addition to that, add an edge from
a source si to a node v such that v is one of the node
incident to edge ei. Also add an edge from the other
node incident to edge ei to di. Observe that a shortest
path between node pairs (si,di) i = 1..|E| will traverse
the edge ei and would be of length at least three. The
total number of Nodes and edges in G′ is n + 2E and
3E respectively.

Let us assume that A′ is a solution of size k to the
#SP problem. We will show that A ⊆ V is a solution
for VertexCover problem. A′ will cover all shortest
paths between pairs (si,di). But covering a shortest

path between (si,di) would necessarily imply covering
one of the nodes incident to edge ei. Since the decision
problem of the VertexCover is NP-Complete, this
reduction shows that #SP is also NP-Complete.

Theorem .3. The #P problem is NP-complete.

Proof. We reduce the NP-complete VertexCover
problem to the #P problem on DAGs. We say that for
an undirected graph G(V,E), a set A ⊆ V is a vertex
cover of G, if every edge in E is incident to at least
one node in A. For an instance of the VertexCover
problem, let G(V,E) be an undirected graph and k an
integer. The decision version of the problem asks for a
set A ⊆ V of size k that is a vertex cover.

Define the DAG G′(V ′, E′) of the corresponding
#P problem as follows. Let V ′ = V ∪ {s, t} contain
the nodes in G, an additional source node s and an
additional sink t. Let E′ contain all edges in E. In
addition to that, add an edge from the source to every
node, and from every node to the sink. Fix an arbitrary
order σ of the nodes in V ′, such that s is the first and
t is the last in this ordering. Then direct every edge
(u → v) ∈ E′ from u to v if σ(u) < σ(v), otherwise
from v to u. This will naturally result in a DAG. Let m
be an arbitrary integer such that m > Ω(|V ′|5). We
will replace every directed edge in E′ (including the
edges incident to s and t) with the following multiplier
tool (Figure 5). For every edge (u → v) we add m
new nodes: w1, w2, . . . , wm, and 2m new directed edges:
(u,wi) and (wi, v). Observe, that by this exchange, the
size of the graph only changes by a polynomial factor
of the original size. Let PV ′ be the total number of
directed paths in V ′. The instance of #P consists of the
graph G′(V ′, E′) and of the pair (s, t). Which means
,the objective of #P is to cover a maximal number of
paths from s to t. Now we proof that there exists a
vertex cover A of size at most k for this instance of the
VertexCover problem if and only if there exists an
#P A′ of size k where U(A′) (the number of uncovered
paths) is U(A′) = PV ′ − F (A′) < Ω(m3). Thus, the
number of uncovered paths is at most of order O(m2).
In addition we claim that A′ ⊆ V and thus A = A′ is
the desired solution for the VertexCover.

Let A′ ⊆ V ′ be a solution of size k for the #P
problem. First we show, that if k ≤ n, then A′ ⊆ V . Let
us assume that node w has indegree 1, and his parent is
v. Observe now, that every path that goes through w is
also covered by v, moreover v might have other children
besides w. Hence at least as many paths are covered if
v ∈ A′, then if w ∈ A′. For this reason we can assume
that a node with indegree 1 is only in A′ if all other
nodes with larger indegree are already in the set. Since
all new nodes wi have indegree 1, this implies A′ ⊆ V .
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Figure 5: “Multiplier edge” construction for G′. When
x items leave u, x ·m items arrive at v.
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Figure 6: Isolated subgraph Guv = {v, v, s, t} of G′.

Now we show that A′ = A is a vertex cover. We
show that (1.) if for every edge at least one of its
ends is incident to A, then U(A) = O(m2), and (2.)
if there is an edge (u → v) ∈ E′, such that u, v /∈ A,
then U(A) = Ω(m3). For this, let us consider the
subgraph Guv depicted in Figure 6, corresponding
to the nodes u, v ∈ V and the adjacent edges. σi
depicts the number of incoming uncovered paths on
that edge. Let Σu = σu1 + σu2 + . . . + σuu + m and
Σv = σv1 + σv2 + . . . + σv

v + m be the total number
of incoming uncovered paths through u and v. Let
us assume that every edge (u′, v′) ∈ E different from
(u → v) is incident to A. For the edge (u → v) ∈ E
we have to check four cases (in order to compute U(A)
we have to consider, how many uncovered paths go to
node t, through all the nodes in V ):

case u, v ∈ A: U(A) = 0 ∗ Σu + 0 ∗ Σv + O(nm) =
O(nm) << Ω(m3)
case u ∈ A, v /∈ A: U(A) = 0 ∗Σu +m ∗Σv +O(nm) =
O(m+m2) = O(m2) < Ω(m3)
case u /∈ A, v ∈ A: U(A) = m ∗Σu + 0 ∗Σv +O(nm) =
O(m2 +m) = O(m2) < Ω(m3)
case u, v /∈ A: U(A) = m∗Σu+m∗Σu ∗Σv+O(nm) =
O(m2 +m3 +m) = O(m3)

The above cases show our claim, that A is a vertex
cover if and only if U(A) < Ω(m3).


