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ABSTRACT
Open Information Extraction (Open IE) has gained increas-
ing research interest in recent years. The first step in Open
IE is to extract raw subject–predicate–object triples from
the data. These raw triples are rarely usable per se, and need
additional post-processing. To that end, we proposed the use
of Boolean Tucker tensor decomposition to simultaneously
find the entity and relation synonyms and the facts connect-
ing them from the raw triples. Our method represents the
synonym sets and facts using (sparse) binary matrices and
tensor that can be efficiently stored and manipulated.

We consider the presentation of the problem as a Boolean
tensor decomposition as one of this paper’s main contri-
butions. To study the validity of this approach, we use a
recent algorithm for scalable Boolean Tucker decomposition.
We validate the results with empirical evaluation on a new
semi-synthetic data set, generated to faithfully reproduce
real-world data features, as well as with real-world data
from existing Open IE extractor. We show that our method
obtains high precision while the low recall can easily be
remedied by considering the original data together with the
decomposition.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval; I.2.6 [Artificial Intelligence]: Learn-
ing—knowledge acquisition

1. INTRODUCTION
A typical first task in Open Information Extraction (Open

IE) is to extract surface triples of form noun phrase–verbal
phrase–noun phrase (e.g. using TextRunner [1]). The next
step, then, is to resolve the synonyms and find the facts
present in the data. In this paper, we propose the use
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Elizabeth Windsor ruler of England
Elizabeth is queen United Kingdom
Elizabeth II is queen England
Beckham was born in United Kingdom
David B. plays for LA Galaxy
D. Beckham plays soc-

cer for
England

Elizabeth Windsor birth England

Elizabeth (queen) isRulerOf United Kingdom
Beckham (soccer player) isBornIn United Kingdom
Beckham (soccer player) playsFor LA Galaxy
Beckham (soccer player) playsFor United Kingdom
Elizabeth (queen) isBornIn United Kingdom

Table 1: Top: Surface term triples. Bottom: Facts.

of Boolean Tucker tensor decomposition for this task. We
should emphasize already that in this short paper we do not
consider the semantics of the words: we do not try to map
the entities into known entities, nor do we try to fit them
into ontologies, for example. Rather, we are only interested
on the combinatorial structure of the data, and what can
be inferred from it; using the knowledge about the surface
terms is left for future work.

To explain what is Boolean Tucker tensor decomposition,
and how it can handle the task of finding the facts, let us start
with an example data in Table 1. The top part of it shows
seven surface triples that can be expressed using a 6-by-6-by-3
binary tensor (3-way array) where (i, j, k) element is 1 if,
for example, i corresponds to Elizabeth, j corresponds to
is queen, and k corresponds to England. Call this data
tensor X . Our aim is to find which of the surface terms are
likely to refer to the same entity or relation, and what are
the underlying facts (entity–relation–entity triples). For this
paper, an entity is just a set of surface terms referring to
it, as is a relation—we do not aim at finding the semantic
meaning. We also allow the surface terms to belong to many
entities, naturally handling the polysemous surface terms
without having to store each instance of each term separately
(see [10]). The entities, relations, and facts of our example
data are shown in the bottom half of Table 1.

As we expressed our original data using a binary tensor,
we can also express the facts of the data using a smaller
(2-by-3-by-2 in the example) binary tensor, call it G. The
entities and relations can be expressed using binary matrices,
one for subject entities, one for relations, and one for object
entities, called A, B, and C, respectively. Matrix A, for
example, has as many rows as our original data has surface
forms for subject entities (6 in our example), and as many
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Figure 1: Tucker tensor decomposition.

columns as we have subject entities (the dimensionality of
the core tensor in the first mode; 2 in our example). A
column of A defines the set of surface terms associated
with this entity by setting the corresponding rows to 1. In
our example, the column of A corresponding to Elizabeth

(queen) would have 1 in rows corresponding to Elizabeth

Windsor, Elizabeth, and Elizabeth II.
Our goal is to find these three matrices and the smaller

tensor. But not just any three matrices and a tensor: we
want them to agree with the knowledge we have in the surface
triples. To this end, we need to explain how we represent the
original data using the three matrices and the small tensor.
We will call the matrices A, B, and C factor matrices, the
tensor G core tensor, and the factor matrices and the core
tensor together are the decomposition. So, assume we are
given the decomposition corresponding to the bottom half
of Table 1, and we want to know if Elizabeth II is ruler

of United Kingdom is true. We can do this easily: from
matrix A we know that Elizabeth II appears in column
p (corresponding to the entity Elizabeth (queen)), and
similarly, ruler of appears in column q of B, and United

Kingdom in column r of C. Further, in the core G, we have
gpqr = 1, meaning that this fact is true. If some surface form
appears in many columns of a factor matrix, we consider
the fact to be true if any of its meanings yields a true fact.
Hence, in order to compute if a surface triple corresponds to
a fact, we find the index triple (i, j, k) corresponding to the
surface terms, and compute

∨
p,q,r gpqraipbjqckr. Conversely,

we can define a good decomposition to be such that it agrees
(approximately) with the given data. This leads us to the
definition of Boolean Tucker decomposition [4]:

Definition 1.1 (Boolean Tucker decomposition).
Given an I-by-J-by-K binary tensor X = (xijk) and three in-
tegers P , Q, and R, the (P,Q,R) Boolean Tucker decomposi-
tion of X is a tuple (G,A,B,C), where G is a P -by-Q-by-R
binary core tensor and A (I-by-P ), B (J-by-Q), and C
(K-by-R) are binary factor matrices such that they minimize

∑
ijk

∣∣∣∣∣xijk −
P∨

p=1

Q∨
q=1

R∨
r=1

gpqr aipbjqckr

∣∣∣∣∣ . (1)

For a schematic view of Tucker decomposition, see Figure 1.
The Boolean Tucker decomposition is like the normal Tucker
decomposition [3], except that all tensors and matrices are
expected to be binary and the addition is replaced with the
logical or (1 + 1 = 1).

2. THE ALGORITHM
Most existing algorithms for tensor Tucker decomposition

(or Tucker3 decomposition, to be precise) work with real-

valued data and typically require the factor matrices to be
column orthogonal [3], yielding dense core tensor. Therefore,
they are not suitable for our application (and typically can-
not scale for big core tensors). Recently, [6, 7] proposed an
algorithm called Rescal for Tucker2 decomposition of data
similar to ours. The difference between Tucker3 and Tucker2
is the latter does not reduce dimensionality in one of the
modes; in case of Rescal, that mode is the relations mode
(meaning that Rescal will not do relation disambiguation).
In addition, Rescal requires the two factor matrices cor-
responding to entities to be the same, which is something
we do not do in this work. Finally, Rescal will return real-
valued factor matrix and core tensor, requiring further work
to identify synonyms and their relations.

Boolean Tucker decompositions are studied much less. The
only algorithm we are aware of, from [4], does not scale to
the data sizes we need to handle. Therefore, in order to
compute the Boolean Tucker decomposition, we will use a
scalable algorithm we developed.1 As the development of
that algorithm is not the purpose of this paper, here we will
only give a short overview how the algorithm works (see the
technical report in footnote 1 for more information).

Our algorithm works in three parts. The first part tries to
identify dense sub-tensors (called blocks) using random walk:
we consider every subject–relation–object triple a node in the
graph, and add an edge between two nodes if they differ in
at most one location. The random walk part makes multiple
sets of short walks in this graph, counting the frequency of
visits in each node. Each walk within one set of walks starts
from nodes already visited during previous walks in that set
(except the first walk, which starts from a random node).
After each set of random walks, the algorithm identifies the
most frequently visited nodes, and considers the smallest sub-
tensor that contains all frequent nodes as a potential block.
This sub-tensor might also contain zeros, and therefore the
algorithm checks if the density of the block is high enough
before accepting it. All nodes visited by the set of random
walks are removed from the graph, and the random walk
phase ends when the graph becomes empty.

After the random walk phase, the block merging phase
starts to go over the found blocks. As the random walks
are short, they cannot find big blocks by themselves, instead
returning multiple overlapping blocks. The task of this phase
is to merge two partially overlapping blocks if the resulting
block’s density is still high enough. This block merging phase
ends when no more merges can be done.

After the block merging phase, we have a special case of a
decomposition, known as (Boolean) CP decomposition [3]:
here, the core tensor is hyper-diagonal (it has 1s where all
three dimensions are the same, and 0s elsewhere), and each
factor matrix has the same number of columns (the columns
of the factor matrices define the blocks). But this means
that the factor matrices can have multiple (almost) identical
columns: if, for example, a set of synonyms corresponding
to a subject has multiple relations to multiple objects, the
subject’s synonym factor will be repeated for each of them.
Therefore, the task of the last part is to identify these re-
peated instances and merge them. This task is made harder
by the fact that factors corresponding to the same entity or
relation are rarely exactly the same. Therefore, for this last
part, we employ the Minimum Description Length (MDL)

1 A paper explaining this algorithm in detail can be found
at http://www.mpi-inf.mpg.de/~pmiettin/btf/



principle [8]: we merge two factors and the corresponding 1s
in the core tensor (representing the facts) if doing so reduces
the description length of our data. Hence, the MDL principle
is also used to decide the final dimensions of the core tensor,
P , Q, and R.

Let us briefly give some intuition behind using the MDL
principle here (full details are found on the aforementioned
technical report). We use the two-part MDL, where the
description length of the data L(D) is computed as L(D) =
L(M) + L(D | M), where M is our model of the data and
L(D | M) is the description length of the data given the
model. Our model is the Boolean Tucker decomposition of
the data, while the second part involves an error tensor ; a
binary tensor of same size as the data that contains 1 when
the decomposition disagrees with the data. When we merge
two factors in some of the factor matrices, L(M) is reduced
as the factor matrix and the core are made smaller. On the
other hand, the error part L(D | M) is usually increased.
Our aim, then, is to find merges that reduce L(M) more
than they increase L(D | M).

3. EXPERIMENTAL EVALUATION
To test the applicability of Boolean Tucker decomposition

for the task of fact finding we test our algorithm on both
real-world and semi-synthetic data.

The semi-synthetic dataset.
In order to get a quantitative evaluation of our algorithm

we generate a dataset that on one hand models the statistical
properties of real word textual data. On the other hand, the
correct decomposition of the data tensor is also known and
can be used as ground truth in our evaluations. We call this
data YPSS and is publicly available from our website2.

Data source. The YPSS dataset is generated from a com-
bination of data obtained from the Yago3 [9] and Patty4 [5]
ontologies. Yago is a semantic knowledge base and Patty is a
collection of semantically-typed relational patterns.

Data generation. The data generation process goes over
the facts (entity–relation–entity triples) in the Patty data.
For each fact, Patty also reports the frequency of the fact.
For each fact, we generate as many surface triples as is
the frequency of the fact. To generate the surface forms,
we replace the entities and the relation in the fact with
randomly selected surface form. This surface form is selected
with respect to probability Pr(s | c), where s is the surface
form and c is the clean entity or relation in the fact.

For relations, the probabilities Pr(s | c) can be obtained
directly from Patty by using the (normalized) support co-
occurrence. For entities, Yago unfortunately does not have
this information. What Yago has, however, is (an approxi-
mation of) Pr(c | s). In addition, we can obtain Pr(c) for
entities c by computing their relative frequency (with multi-
plicity) in the Patty data, and Pr(s) for surface terms s by
Pr(s) =

∑
c Pr(s | c). With these, from Bayes’ theorem we

get Pr(s | c) = Pr(c | s) Pr(c)/Pr(s).
Because we generate multiple synonym triplets for every

fact in Patty, it may happen that identical surface triplets are
generated along the way. Since this phenomenon of multiple

2http://www.mpi-inf.mpg.de/~pmiettin/btf/
3http://www.mpi-inf.mpg.de/yago-naga/yago/
4http://www.mpi-inf.mpg.de/yago-naga/patty/

appearance is also natural in real data, we report for every
surface term triplet its multiplicity.

The final YPSS surface tensor (not counting multiplicities)
is of size 222k-by-23.6k-by-225k and contains 63 million
surface term triplets.

Ground truth dataset. In the data generation process
described above we replace every clean term in the factual
data with a number of synonyms of that word. We keep
track of the set of synonyms generated for each term and
call it the ground truth factor of that clean term. At the end
of our generation process we obtain 112k, 25 and 73k ground
truth factors corresponding to subject entities, relations, and
object entities, respectively.

ReVerb dataset.
Besides the YPSS data, we use a second, real-life dataset,

in our experiments. This dataset, ReVerb, is the result of a
binary assertion extraction of the form (arg1, rel, arg2)

from the Web, provided as part of the Open Information
Extraction project [2]5. The size of the surface data tensor
is 1.4M-by-665k-by-1.6M and it has 14.7 million ones.

3.1 Results
Quantitative results. To assess the quality of the Boolean

Tucker decomposition we first report some results on the
YPSS dataset. The results we report here are on a sample of
the YPSS dataset of size 39.5k-by-8k-by-21k containing 804k
surface term triplets.

The tensor that is defined by the Tucker decomposition
obtained by our algorithm is sparser tha the original; it
only has 266k ones. The YPSS data is generated so that we
model missing entries – the term triplets are generated at
random and only very few of the possible triplets are in the
final dataset. We aim to run our algorithm so that we also
finde these “missing” values, hence we force our algorithm to
accept every factor that covers as few as 10% of ones in the
tensor. The result is 247k false positive hits, thus cells that
are predicted one by our algorithm, but the corresponding
triplets are not present in our data. We also achieve 20k true
positives, which is consistent with our allowed error rate.

But to properly assess our method, we need to study how
well the factor matrices correspond to the ground truth, that
is, how well we reconstruct the latent structure. Using the
ground truth of the YPSS data we can compute the precision
and recall of the factor matrices (i.e. synonym sets). Let fmdl
be a factor obtained after the mdl phase of or algorithm.
Then in our evaluation we first find the ground truth factor
which has the highest overlap with fmdl, let this be ftruth.
The number of true positive terms in fmdl is computed as
|fmdl ∩ ftruth| while the number of false positive terms is
|fmdl \ ftruth|. We obtain an average precision over all found
factors of 0.456 for the subject entities, 0.900 for the object
entities, and 0.800 for relations. The recall is 0.922, 0.475,
and 0.01 for subjects, objects, and relations, respectively.
The purity (homogeneity) is 0.46 for subject entities, 0.93 for
object entities, and 0.98 for relations while the inverse purity
(specificity) is 0.79, 0.55, and 0.03 again for subjects, objects,
and relations, respectively. The extremely low recall and
inverse purity for relations is due to most surface relations
appearing only very few times making them “noise” in the
MDL sense. We discuss more on this long-tail behaviour

5http://reverb.cs.washington.edu/



below. Why the precision is high but recall low for object
entities, but vice versa for subject entities, we do not know.

Qualitative results. We performed a qualitative analysis
of our results by examining the factor matrices and core
tensor. We also examined the quality of the decomposition
based on its capability on answering simple SPARQL queries.

Considering the ReVerb data, many factors are intuitive col-
lections of synonyms, for example, {entrepreneur, vendor

programmer, industry analyst} as objects or {usually
end with, be usually precede by, usually terminate in,
usually culminate in} as relations. Also {poor judgment,
leadership and vision, true leadership} as subjects form
a reasonable set, even if the terms are not synonyms in a
strict sense.

On examining our results on YPSS and ReVerb data sets,
we found that many surface terms do not belong to any
entity or relation. This is to be expected: most surface terms
appear only very few times in the data, and this “long tail”
is easier to explain as single elements than using factors. In
other words, the MDL-optimal decomposition will put these
rare surface terms into the error tensors instead of covering
them. We do not consider this a problem of our method per
se, as we can always keep the error tensor available and use
it to get information about the long tail.

While the decomposition did not contain all surface terms,
for those that it contained, we did find nice sets of synonyms.
Using these synonyms, we can correctly answer questions
even when the answer is not in the original data. Consider,
for example, the simple SPARQL ASK query clean water,
be essential to, health. It would return false in the
original data, as we do not have that triple in our raw data.
Yet, doing the same query in the decomposition (following
the procedure explained in Section 1) would return true, as
our core tensor does have a fact relating the entities and
relation to which these surface terms are associated.

The decomposition can also be used on answering SELECT
queries by (implicitly) considering the tensor that would
result should the core and factor matrices be multiplied
together. A query with one free variable results in a (row,
column, or tube) fiber in this tensor, and the 1s in this fiber
correspond to the surface terms in the answer set. If the
query has two free variables, the result is a matrix (slice of
the tensor), again with locations of 1s explaining defining
the answer pairs.

Examining the results for the SELECT queries shows them
to behave similarly to the ASK queries: The long tail is not
covered by the decomposition, but the decomposition was
able to return results that as themselves were not in the data
(though their synonyms were). Again, for optimal results,
we can always combine the results from the data with the
results from the decomposition for increased recall. And as
shown above, the precision will still stay high.

4. DISCUSSION
In this paper we show how to model the fact discovery in

open information extraction as a Boolean tensor decomposi-
tion problem and give an overview of an algorithm to find
this decomposition. We believe that this formulation will
prove useful for other researchers wanting to get a new angle
to the problem.

There are many interesting future research directions we
have not studied in this work. One of them is to use the
textual similarity of surface terms. A simple idea here could

be to use the textual similarity as a some sort of a regressor,
benefiting the factors that contain similar surface terms.
Similarly, we could have other type of auxiliary information
about the surface triples, and it would be helpful if we could
incorporate that information into our method.

Another simple idea would be to restrict the entity factor
matrices to be equivalent. Currently, we distinguish between
subject and object entities, and when we decide, say, that
two surface subjects are synonyms, we do not distribute
that information over to the object entities. Allowing this
information flow could potentially speed up the algorithm
considerably, and it should alleviate the extreme sparsity of
the data.

That extreme sparsity of the data is a clear problem for
our approach. We can control the minimum density of the
blocks we find, but very sparse blocks are better represented,
from MDL’s point of view, by their elements, and thus the
MDL phase tends to reduce the sparsest blocks even when a
human would judge them perfectly satisfiable. The underly-
ing problem is that most 0s in our data do not mean that
the corresponding triple does not exist; they mean that the
extractor did not see that triple (this problem, of course, is
not specific to our algorithm). The methods we mentioned
above could help with this problem. Another approach could
be to have different types of 0s: 0s that are simply unknown,
and 0s that correspond to triples that do not exist.

In this paper we have considered the Boolean tensor de-
compositions. We believe that our reasons for this restriction
are valid, especially what comes to the core tensor. But it
could be argued that the factor matrices do not need to be
binary; they could rather be non-negative, containing some
kind of ranking information about how well the surface term
fits into the entity or relation in question.
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