
A

Reconstructing Graphs from Neighborhood Data

Dóra Erdős, Boston University
Rainer Gemulla, Max Planck Institut für Informatik
Evimaria Terzi, Boston University

Consider a social network and suppose that we are only given the number of common friends between each
pair of users. Can we reconstruct the underlying network? Similarly, consider a set of documents and the
words that appear in them. If we only know the number of common words for every pair of documents, as
well as the number of common documents for every pair of words, can we infer which words appear in which
documents? In this paper, we develop a general methodology for answering questions like the ones above.

We formalize these questions in what we call the RECONSTRUCT problem: Given information about the
common neighbors of nodes in a network, our goal is to reconstruct the hidden binary matrix that indicates
the presence or absence of relationships between individual nodes. In fact, we propose two different variants
of this problem: one where the number of connections of every node (i.e., the degree of every node) is known
and a second one where it is unknown. We call these variants the degree-aware and the degree-oblivious
versions of the RECONSTRUCT problem respectively.

Our algorithms for both variants exploit the properties of the singular value decomposition of the
hidden binary matrix. More specifically, we show that using the available neighborhood information, we
can reconstruct the hidden matrix by finding the components of its singular value decomposition and then
combining them appropriately. Our extensive experimental study suggests that our methods are able to
reconstruct binary matrices of different characteristics with up to 100% accuracy.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining

General Terms: Algorithms, Theory, Experimentation

Additional Key Words and Phrases: Bi-partite graph reconstruction, adjacency matrix, singular value de-
composition

1. INTRODUCTION
The neighbors that are common between a pair of nodes of an undirected graph carry
valuable information about the graph structure. For example, in the context of movie
recommendations, we may say that two users are similar if they have watched the
same or a largely overlapping set of movies. Likewise, two movies are similar if they
have been watched by the same set of users. Such neighborhood information has been
exploited successfully in collaborative-filtering algorithms [Baeza-Yates and Ribeiro-
Neto 2011; Das et al. 2007; Koren 2010], which recommend movies to users based

A shorter version of this article has appeared in the proceedings of the IEEE International Conference on
Data Mining (ICDM) 2012 [Erdös et al. 2012].
This research was supported in part by NSF grants CNS-1017529 and IIS-1218437 as well as gifts from
Microsoft, Google and Yahoo!.
Author’s addresses: D. Erdős, Computer Science Department, Boston University, Boston, MA, USA; R.
Gemulla, Max Planck Institut für Informatik, Saarbrücken, Germany; E. Terzi, Computer Science Depart-
ment, Boston University, Boston, MA, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

on the number (and ratings) of movies these users have in common with other users.
As another example, the set of words that are shared between two documents is an
indicator of the documents’ topical similarity and is exploited by document clustering
techniques [Baeza-Yates and Ribeiro-Neto 2011]. Finally, the set of the common friends
or common interests between social-network users carries valuable information about
the strength and quality of their friendship [Goyal et al. 2010; Lattanzi and Sivakumar
2009; Zheleva et al. 2009].

Generally, the set of features (e.g., movies, groups, friends, or words) that are shared
by two entities (e.g., users or documents) reveals valuable information for data-mining
algorithms. Traditionally, this information is extracted directly from the available
data, which explicitly states which features are associated with every entity (e.g.,
movies watched by users, words appearing in documents, friends or interests of a user).

In some cases, however, the original data contains sensitive private information that
the dataset owner may not want to share. For example, Netflix may not want to share
which customer watched which movie. Similarly, Facebook may be unwilling to share
the friendship graph or the affiliation graph (i.e., the graph that contains informa-
tion about the membership of users to groups). In such cases, the data owner can
decide to reveal some aggregate form of the original data. Such aggregate should pre-
serve enough valuable information for researchers and practitioners to test their data-
mining methods, while at the same time should hide the characteristics of individual
entities.

In this paper, we focus on a particular type of such aggregate information, which we
call neighborhood information. The neighborhood information of a dataset reveals only
the number of features shared by every pair of entities (and vice verse), but does not
contain information about which features are shared. Given such neighborhood infor-
mation, we try to answer the following question: “To what extent does the revelation
of neighborhood information prevent an adversary from reconstructing the original
dataset?” For example, in the domain of social networks, the question is whether or
not we can identify the membership of users to groups, given that we know only the
number of common groups between every pair of users and the number of common
users for every pair of groups.

We formalize this problem as a bipartite-graph reconstruction problem, which we re-
fer to as RECONSTRUCT. Intuitively, RECONSTRUCT assumes a hidden binary dataset
that associates entities to features. This dataset can be represented as a bipartite
graph, in which an edge between an entity p and a feature q indicates that q is ob-
served in p. The input to the problem is encoded in the following neighborhood infor-
mation: for every pair of entities p and p′, we are given the number L(p, p′) of features
shared by the two entities. Similarly, for every pair of features q and q′, we are given
the number R(q, q′) of entities associated with both features. Given L and R, our goal
is to reconstruct the hidden bipartite graph.

Here, we study two variants of RECONSTRUCT: the degree-aware (which we denote
by RA) and the degree-oblivious (which we denote by RO) problems. In the first variant,
we assume that the degree (i.e., the number of neighbors) of every node is given as
part of the input. In the second variant, we assume that we only know the number of
neighbors every node shares with every other node besides itself. That is, the degree of
the nodes is unknown.

Apart from the new problem definitions, our main contribution lies in the design of
heuristics that can effectively reconstruct the hidden dataset both in the RA and the
RO variants. The key observation that our algorithms exploit is that we can use the
neighborhood information to (approximately) reconstruct parts of the singular value
decomposition of the biadjacency matrix of the hidden bipartite graph. We investigate
the utility of our methods on a variety of datasets from different application domains.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

We found that in most cases, the reconstruction error is low; in some cases, our algo-
rithms are able to exactly reconstruct the hidden bipartite graph.
Roadmap: The rest of the paper is organized as follows: We formally define the RE-
CONSTRUCT problem and its two variants in Section 2. Our algorithms for the RA prob-
lem are presented in Section 4, while the algorithms for the RO problems are presented
in Section 5. The results of our experimental study are presented in Section 6 and in
Section 7 we give an in-depth discussion of the related work. Finally, we conclude the
paper in Section 8.

2. PROBLEM DEFINITION
The RECONSTRUCT problem can be expressed both in terms of bipartite graphs as well
as binary matrices. Throughout our discussion, we will use both representations inter-
changeably. We assume that there exists a hidden bipartite graph G = (P,Q,E), where
P and Q constitute the sets of nodes in the left and the right partition, respectively.
Set n = |P | and m = |Q|. The edge set E ⊆ P × Q connects nodes from P with nodes
in Q. Every bipartite graph can be represented by its biadjacency matrix M. The biad-
jacency matrix is a binary n ×m matrix with M(p, q) = 1 if and only if (p, q) ∈ E. For
every node p from P (or Q), denote by N(p) the set of neighbors of p in G.

In this paper, we assume that G – and consequently M – is hidden. Our goal is
to construct M from aggregate information. As discussed previously, we focus on the
case where the aggregate information consists of the number of common neighbors
between all pairs of nodes. Formally, we assume that for each pair (p, p′) ∈ P × P , we
are given L(p, p′) = |N(p) ∩N(p′)|. Similarly, for each pair (q, q′) ∈ Q×Q, we are given
R(q, q′) = |N(q) ∩N(q′)|. We call L and R the neighborhood matrices of G.

Observe that the main diagonal of the neighborhood matrices contain the degree of
each node. One may consider that revealing the degree of every node may reveal too
much information about the node. For this reason, we consider two types of neigh-
borhood matrices: (a) the degree-aware and (b) the degree-oblivious. The first ones are
neighborhood matrices in which the main diagonal is known, while the latter are ma-
trices in which the main diagonal is unknown.

Given L and R, our goal is to find a binary matrix M̂ that is as close to M as possible.
Ideally, we aim to minimize the square of the Frobenius norm F (M̂,M) = ‖M̂−M‖2F ,
where

‖X‖2F =
n∑

i=1

m∑
j=1

X(i, j)2.

However, this objective F (M̂,M) cannot be computed since M is unknown (we are
given only L and R). We therefore quantify the quality of M̂ with respect to L and R.
In more detail, our goal is to minimize the sum of

FL(M̂) = ‖L̂− L‖2F
and

FR(M̂) = ‖R̂−R‖2F ,
where R̂ and L̂ denote the neighborhood information induced by M̂.

PROBLEM 1 (RECONSTRUCT). Given neighborhood matrices L and R, find a bi-
nary matrix M̂ that minimizes the sum FL(M̂) + FR(M̂).

While our true objective is to find a binary matrix M̂ that minimizes F (M̂,M), this
is impossible to find as M is not known. However, since L̂ and R̂ are both related to M̂

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

(see Observation 1 in Section 4 for the exact relationship) we believe that the optimal
solution to problem 1 hints a good M̂ as well. Specifically, it is easy to see that for any
M̂ where F (M̂,M) is minimal, FL(M̂) + FR(M̂) is also minimized with the L̂ and R̂
derived from M̂. In Section 6 we show experimentally, that in case FL(M̂) + FR(M̂) is
low, then F (M̂,M) is too.

In case matrices L and R are degree-oblivious, we modify the above definitions such
that the main diagonals are not taken into account. Since the type of the neighborhood
matrices will always be clear from the context, we abuse notation and write FL(M̂)
and FR(M̂) for both degree-aware and degree-oblivious matrices. In what follows, we
use RA (resp. RO) to refer to the the variant of the RECONSTRUCT problem where the
input neighborhood matrices are degree-aware (resp. degree-oblivious).

Discussion: The above problem definitions as well as the algorithms presented in the
next section also apply to general (non-bipartite) graphs: We simply use the graph’s ad-
jacency matrix instead of its biadjacency matrix (and redefine L and R appropriately).
In fact, our algorithms are oblivious to the fact that the hidden matrix constitutes a
biadjacency matrix of some graph, i.e., they apply to any binary matrix. If M is sym-
metric, thus L = R, then M can be though of as the adjacency matrix of a general
undirected graph. In case M is squared (thus of size n × n) but asymmetric, then it
can represent a general directed graph. Here L and R correspond to the neighborhood
information of the outgoing (respectively incoming) links. In what follows, we focus on
bipartite graphs for clarity of exposition.

3. BACKGROUND
Before describing our algorithms in detail, we provide some background on the eigen-
decomposition and the singular value decomposition. See [Golub and Loan 1996] for
an in-depth treatment of these decompositions.

The eigendecomposition of an arbitrary symmetric matrix X is a decomposition X =
UΛUT , where U is a unitary matrix having as columns the normalized eigenvectors
of X, and Λ is a diagonal matrix containing the corresponding eigenvalues of X.

The singular value decomposition (SVD) of an arbitrary matrix X is a decomposition
X = UΣVT , where U (resp. V) is an orthonormal matrix with the left (resp. right)
singular vectors of X as its columns, and Σ is a diagonal matrix that contains the
singular values of X in its main diagonal.

When matrix X is symmetric and positive semi-definite, then the left and the right
singular vectors are equal. In this case, the eigendecomposition and the SVD decompo-
sition coincide. The following fact is known about the SVD decompositions of a matrix
X as well as matrices XXT and XT X.

PROPOSITION 3.1. If matrix X is an n×m matrix and its SVD is X = UΣVT , then
the SVD decomposition of XXT is

XXT = UΣ2UT (1)

and the SVD decomposition of XT X is

XT X = VΣ2VT . (2)

To see this, substitute X with UΣVT in the left-hand-side of Eq. (1) to obtain

XXT = UΣVT
(
UΣVT

)T
= UΣVT VΣUT = UΣ2UT .

The proof of Eq. (2) is similar and omitted.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Moreover, it is known that a truncated SVD can give the best low-rank approxima-
tion of X.

PROPOSITION 3.2 (ECKART AND YOUNG [ECKHART AND YOUNG 1936]). If Uk

(resp. Vk) represents the left (resp. right) singular vectors that correspond to the k sin-
gular values Σk of the largest magnitude, then matrix Xk = UkΣkVT

k is the best rank-k
approximation of X in terms of the Frobenius norm. That is, Xk minimizes

‖X−Xk‖2F =
n∑

i=1

m∑
j=1

(X(i, j)−Xk(i, j))2 .

Observe, that we can write Xk as the sum of k rank-1 matrices:

Xk =
k∑

i=1

U(:, i)Σ(i, i)V(:, i)T . (3)

Here X(:, i) denotes the i-th column of X. The decomposition of Xk into a sum of rank-
1 matrices turns out to be useful for our estimation algorithms since it allow us to
determine the elements of the singular value decomposition one component at a time.

4. SOLVING THE RA PROBLEM
The high-level idea of our algorithms is to compute M̂ by reconstructing the compo-
nents of the singular value decomposition (SVD) of M.

Recall that in the RA problem, we assume that the diagonal elements of the neigh-
borhood matrices are equal to the degree of the nodes in the hidden bipartite graph.
We refer to such neighborhood matrices by Ld and Rd. The key to our approach for RA
is the following observation.

OBSERVATION 1. The matrices Ld and Rd are given by Ld = MMT and Rd =
MT M.

This observation connects the hidden data matrix with the observed neighborhood
matrices and it allows us to use the singular value decomposition to devise an efficient
heuristic algorithm.

Denote by M = UΣVT the SVD of the unknown matrix M. Combining Observa-
tion 1 with Proposition 3.1, we obtain Ld = UΛUT and Rd = VΛVT . This means that
the eigendecompositions of Ld and Rd provide the left and the right singular vectors
of M. Additionally, we obtain Σ =

√
Λ, where the square root is taken element-wise.

Intuitively, our goal is to exploit this knowledge to reconstruct the unknown matrix
M. However,from here it is not immediately clear how to proceed, since we know the
columns (eigenvectors) in U and V only up to sign. That is, while instead of the eigen-
vector u = U(:, i) the vector −u could be used equivalently in the eigendecomposition
of L, this is not the case in the SVD of M. Only one of the vectors u and −u yields the
true SVD decomposition of M, but we do not know which one. (The same can be said
for the columns of V.) To proceed, we make use of the observation that for a given
eigenvector u = U(:, i) we obtain the same product UΣVT if we use −u or negate the
corresponding singular value σi = Σ(i, i). (Again, the same holds for columns in V.)
For this reason, and for the rest of this paper, we fix the the columns of U and V to
be whatever is output by the eigendecomposition algorithm applied to L and R. Our
task now is to assign positive or negative signs to the singular values in Σ to obtain a
suitable decomposition of M. In this paper we are going to refer to this as finding the
sign of a singular value.

More formally, set σi = Σ(i, i) and λi = Λ(i, i). We assume without loss of generality
that the singular values are reported in decreasing order of magnitude, i.e., |σ1| ≥

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

|σ2| ≥ . . . ≥ |σn|. By Proposition 3.1, we know that λi = σ2
i and thus

√
λi = |σi|. This

means that σi can take two possible values: −
√
λi and

√
λi. Let Σ̂ be a diagonal matrix

with values σ̂1, . . . , σ̂n in its main diagonal, such that |σ̂i| = |σi|. Here each σ̂i is signed,
that is, it is either positive or negative. We refer to Σ̂ as a sign assignment of Σ. Given
a sign assignment Σ̂, matrix M = UΣ̂VT constitutes an estimate of M. Note that M
may not be a binary matrix; we return to this issue below. Throughout the paper we
use calligraphic capital letters to denote real-valued matrices related to M and thus
avoid confusion between these matrices and the appropriate binary estimates M̂.

Our algorithms aim to find the “best” sign assignment, i.e., the one that produces the
best estimate of M. In order to do this, we need to address the following two questions:
(a) How do we evaluate a given sign assignment and (b) how can we find good sign
assignments?

Evaluating sign assignments. Given U and V together with a sign assignment Σ̂,
we want to decide how well we can reconstruct M. Ideally, we would like to evaluate
Σ̂ by computing F (M,M). Unfortunately, this approach is infeasible because M is
unknown.

Alternatively, we could try to set M = UΣ̂VT and compute FL(M) +FR(M). How-
ever, this approach is also not helpful for two reasons. The first reason is that the quan-
tities FL(M) and FR(M) do not depend on the sign assignment. To see this, observe
that the elements of Σ get squared when we compute L = MMT and R = MT M.
Secondly, the matrix M = UΣ̂VT is not binary and our goal is to actually find a binary
matrix.

In order to overcome these problems, we propose a way to evaluate the sign assign-
ment Σ̂, which utilizes the fact that M is a binary matrix: If M is a good estimate of
M, then it is close to M and — as a result — close to a binary matrix. For this, we de-
fine the binary counterpart bin(M) of (any) matrix M to be the binary matrix closest
to M in terms of the Frobenius norm. We denote the output of the bin() function by
bin(M) = M̂. Then the values of M̂ can be computed as

M̂(i, j) =
{

1 if M(i, j) > 0.5
0 else

In our case, we assume that matrix M = UΣ̂VT is a good estimate of M if it is
close to its binary counterparts. Although this assumption is based on mere intuition,
our experiments give strong evidence that the M̂ minimizing F (M, M̂) leads to a low
reconstruction error. While choosing 0.5 as a rounding threshold results in the binary
M̂ that is also the closest to M, in our experiments (Sec. 6.3.2) we also show some
results when different thresholds are used.

Observe, that the binary matrix M̂ output by the bin() function is unique. Based
on this observation and although we do not make any formal claims, our hope is that
there are few (or ideally just one) sign assignments that produce a binary matrix M̂
that minimizes FL(M̂) + FR(M̂) .

4.1. The RecSVD algorithm
Using the intuitions we have developed in the above paragraph, we describe here our
algorithm for solving the RA problem. At a high level, our algorithm finds the best
binary estimate of M by choosing the signs of the singular values greedily and then
use this sign assignment in order to estimate the final estimate M̂. We discuss these
two steps below.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

Algorithm 1 Greedy algorithm to compute an optimal sign assignment Σ̂ and con-
struct M a non-binary estimate of M.

Input: Uk, |Σk|, Vk and integer k
Output: M̂k

1: M0 ← 0n×m

2: for i = 1 . . . k do
3: M+

i = Mi−1 + Uk(:, i)σiVk(:, i)T

4: M−
i = Mi−1 −Uk(:, i)σiVk(:, i)T

5: if F (M+
i ,bin(M+

i)) < F (M−
i ,bin(M−

i)) then
6: Mi = M+

i
7: else
8: Mi = M−

i
9: end if

10: end for
11: return Mk

A Greedy sign-assignment algorithm. Using matrices U, |Σ| and V as inputs the
greedy sign-assignment routine outputs a non-binary matrix M. The routine works
iteratively. That is, it constructs M in k iterations, where k is a parameter that influ-
ences accuracy. In iteration i, the sign of σi is determined. In more detail, it computes
matrices M+

i and M−
i by considering the positive and negative sign for σi, respec-

tively. The signs of σ1, . . . , σi−1 are taken from previous iterations, and σi+1, . . . , σn are
taken to be zero. Then the sign of the i-th singular value is selected based on whether
M+

i or M−
i is closer to its binary counterpart. The intuition behind this approach is

that large singular values, which are processed first, have significant impact on the
estimate M̂ so that we expect such greedy choices to lead to correct decisions. After
k iterations have been completed, our algorithm produces a sign assignment Σ̂k for
the k singular values of the largest magnitude. Algorithm 1 gives pseudo code for this
Greedy sign-selection process. In the pseudocode we demonstrate how M+

i and M−
i

can be computed using Mi−1, i.e., there is no need for these matrices to be recomputed
from scratch in every iteration. This observation leads to significant running-time im-
provements in practice.

The RecSVD algorithm. Here, we demonstrate how the Greedy routine we described
above can be used to solve the RA problem. First, we compute the eigenvectors U and
V as well as the eigenvalues Λ of both L and R. Note that Λ is the same in both
eigendecompositions. We then input matrices U,

√
Λ, and V to the Greedy algorithm

to construct M, which is subsequently rounded to a binary matrix M̂. We refer to this
complete algorithm as RecSVD. Given a value of k, RecSVD proceeds as follows:

— Compute the truncated SVD of Ld and Rd

1: Ld ≈ UkΛkUT
k

2: Rd ≈ VkΛkVT
k

— Run Greedy(Uk,
√

Λk,Vk, k) to obtain Mk

— Output M̂k = bin(Mk)

Observe that RecSVD does not use all of the left and right singular vectors obtained
by the eigendecompositions of Ld and Rd but only the ones with the k eigenvalues
of largest magnitude. For this reason, we compute only the truncated SVD – the k

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

largest singular values and the corresponding singular vectors – of Ld and Rd (see also
Proposition 3.2), which significantly reduces computational costs.
Discussion. The impact of the number k of singular values used in the RECONSTRUCT

problem is explored extensively in the experimental section (Sec. 6). In general, we
expect the algorithms to work well, when the truncated rank-k SVD of M is a very
close approximation of the original matrix M. Clearly, if M is rank-k, then taking the
singular values and singular vectors in our algorithm results in an M̂ that is very
close to M. In practice, M is not low rank, but usually has small effective rank. That is,
there is usually a small number of singular values that which much higher magnitude
as the rest. An example of such a matrix is a noisy block-diagonal matrix. We show
some experimental results on such matrices in Section 6.2.
Running time of RecSVD. Assume w.l.o.g. that n ≥ m. Since we only compute the k
largest-magnitude eigenvalues (and their corresponding eigenvectors) of Ld and Rd,
the running time of the eigendecomposition is O(n2k). The running time of the Greedy
routine is O(n2k) as well so that the total time complexity of RecSVD is O(n2k).
Speeding up RecSVD. Since eigendecompositions are useful for many problems, there
exists a vast majority of work devoted to speed up these computations (see, for ex-
ample, the sampling-based approach in [Drineas et al. 2006]). Such methods can be
utilized—whenever needed—to speed up the first step of the RecSVD algorithm.

In what follows, we describe a technique to speed up the second step of RecSVD, i.e.,
the Greedy algorithm given in Algorithm 1. Observe that the computations done in
lines 3, 4, and 5 of Algorithm 1 require O(n2k) time. We can speed up this computation
significantly by sampling the rows of Uk and Vk. If we use a sample of c rows for some
constant c, the running time is reduced to O(c2k). In order to choose the rows that
affect the entries of the output matrix M the most, we sample row r with probability
proportional to

∑k
i=1 |Uk(r, i) ·Vk(r, i)|.

5. SOLVING THE RO PROBLEM
In this section, we turn our attention to the RO problem. Recall that in this problem,
our goal is to estimate M from degree-oblivious matrices L and R. In this case, the
degrees of nodes in P and Q are unknown, i.e, the main diagonal elements of L and R
are all zero.

The high level idea for the solution of RO is to first reconstruct the main diagonals
of L and R, compute the corresponding singular value decomposition during the pro-
cedure and then apply the Greedy heuristic to obtain the sign-assignment. We present
three algorithms; the first algorithm Iterative is efficient in reconstructing the main
diagonals in case the nodes corresponding to the hidden M are such, that they either
have no neighbor in common or share most of their neighbors. The second, LS can
reconstruct the diagonals if L and R are both low-rank. Finally, a hybrid approach,
Hybrid combines the benefits of both algorithms. In our experiments, we show that
while Iterative and LS are efficient for certain types of underlying data, they can per-
form quite bad on others. On the other hand, the performance of Hybrid is almost iden-
tical to that of the performance of RecSVD on the RA problem on most of our datasets.

5.1. The Iterative algorithm
First, we introduce a solution to the RO problem that is an iterative version of RecSVD.
We call this new modified algorithm Iterative. Iterative starts with some initializa-
tion of the diagonal matrices D̂P and D̂Q corresponding to the estimated node degrees
in P and Q, respectively – for example DP and DQ could be initialized to zero. In ev-
ery iteration, we run RecSVD using input matrices L̂d = L + D̂P and R̂d = R + D̂Q.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Afterwards, we revise the node degrees by performing an educated guess of new val-
ues for D̂P and D̂Q. These new values are computed using the output binary matrix
M̂ of RecSVD. That is, first we compute the updated versions of L̂d = (M̂)(M̂)T and
R̂d = (M̂)T (M̂). Then new estimates of D̂P and D̂Q are obtained by the diagonal en-
tries of L̂d and R̂d, respectively.

Observe that in Iterative, we use only the main diagonals of L̂d and R̂d in order
to update D̂P and D̂Q. Hence, we can speed up computation by computing only the
diagonals of L̂d and R̂d.

Scheinerman and Tucker [Scheinerman and Tucker 2010] use a similar iterative ap-
proach to compute the eigenvalue decomposition of symmetric matrices with missing
entries. They also show that convergence of the diagonals D̂P and D̂Q is not guar-
anteed. In practice, however, convergence is fast in most cases. In our experience, we
found that 100 iterations sufficed to achieve convergence on all our datasets.

Running time of Iterative. Every iteration of Iterative performs a call to RecSVD.
Under the assumption that n > m, we obtain O(n2k) time per iteration. Using the
optimization mentioned above, the computation of D̂P and D̂Q takes at most O(n2)
time. If Iterative is run for t iterations, then the total running time is O(n2kt).

Discussion. Our experimental investigation reveals that the reconstructive power of
Iterative is dependent on the underlying dataset. The success of this algorithm (com-
pared to RecSVD) depends mostly on how well it is able to reconstruct the main diago-
nals of L and R. We find that Iterative performs best if nodes either have completely
disjoint neighborhoods, or share most of their neighbors. On the other hand, partially
overlapping neighborhoods result in severe under- or overestimation of the diagonals.
We believe, that this is due to the fact that the SVD decomposition of a matrix is a
best rank-approximation; every singular value – singular vectors pair is contributing
to the reconstruction of a squared area of the input matrix. Hence, it will optimize to
approximate the majority of fields, and as a result, the estimate for a diagonal element
will be proportional to the off-diagonal elements in its corresponding row and column
rather than the true degree of that node.

5.2. The LS algorithm
In our second algorithm we use least-squares approximation to infer the missing main
diagonal entries of the square matrices L and R. We describe our algorithm LS for a
general square rank-r matrix A. Then in our experiments we apply this algorithm to
both L and R. An approach similar to this is used for example to infer missing values
in traffic matrices by Bharti et al. [Bharti et al. 2010].

Let A be a square matrix, with unknown main diagonal elements. Assume
rank(A) = r. We estimate the elements of the main diagonal one by one. To com-
pute a missing diagonal entry A(i, i) we apply the following heuristic. We first choose
r independent rows, denoted by rows and r independent columns, denoted cols. These
sets define the submatrix Z = A(rows, cols). We choose rows and cols to contain dif-
ferent indices, so that none of the missing diagonal elements are in Z. We define the
column vector y as y = A(rows, i) and row vector w as w = A(i, cols). We then use
least-squares approximation to learn the scaling factors β that satisfies Zβ = y. Given
β we finally compute A(i, i) by Equation (4)

A(i, i) = wβ. (4)

A pictorial illustration of this is shown in Figure 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

In practice, if we apply this heuristic to L and R we are faced with the problem of
not knowing the rank r of the neighborhood matrices. However, we can make use of
the fact that all missing values are located in the main diagonal; we can choose rows
and cols to contain up to n

2 − 1 elements each, without containing any elements from
the main diagonal. Though there is no theoretical guarantee, from our experiments we
find that if the rank r of the matrix is less than n

2 , then Z is very likely to have rank-r.

Fig. 1: The mechanics of the LS algorithm for reconstructing the main diagonal ele-
ments of L and R.

Running time of LS. For a given submatrix Z the least-square computation of β re-
quires O(n2) time. Since there is a submatrix Z corresponding to every diagonal el-
ement A(i, i), the total running time is O(n3) assuming w.l.o.g. that the size of A is
n× n.

5.3. The Hybrid algorithm
While both Iterative and LS algorithms are only efficient in underlying data with a
certain structure, their combination, leads to an algorithm that is consistently superior
to both of them. We call this combination algorithm Hybrid. The key observation that
led us to the design of Hybrid is the observation that the number of rows and columns
in the bi-adjacency matrices M are not balanced. That is, if M is of size n × m, then
often either n� m or m� n.

For the rest of the discussion (and without loss of generality) assume that n � m.
Since L and R have the same rank, and this rank cannot be more than m, this means
that L is a low-rank matrix. Given these, the Hybrid algorithm operates in two phases.
In the first phase we apply LS to L to reconstruct its main diagonal. Then, we use
Iterative on R. However, remember that in the latter algorithm an SVD decomposi-
tion is computed in every iteration of the algorithm. Since we already reconstructed
the full matrix L we can achieve higher accuracy by fixing Σ to be the square root of
the eigenvalue matrix Λ of L and only update V in every iteration of the algorithm.
Hence, the final algorithm Hybrid is the following

— Compute Ld using LS
— Compute Ld = UΛUT , Σ =

√
Λ

— Apply Iterative on R, but fix Σ
— Run Greedy(Uk,

√
Λk,Vk, k) to obtain Mk

— Output M̂k = bin(Mk)

Running time of Hybrid. As the algorithm takes Iterative and LS as its subroutines,
its running time depends on them. Hence Hybrid takes O(n2kt + nr3log r) time to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

construct L and R. Then the second part of the algorithm has the same running time
as Greedy that is O(n2k).

5.4. Comparison of Iterative, LS and Hybrid
As the performance of the three algorithms introduced in this section depend strongly
on the input data, we give a short analysis of our expectations and a preview of the
experimental findings from the next Section 6 here.

As we mention in Section 5.1 Iterative is effective on input data where the nodes
have a certain neighborhood structure. In our experiments we show that the perfor-
mance of Iterative varies on the real-life datasets with various different neighborhood
structures.
LS (Section 5.2) works if both neighborhood matrices L and R are low rank. Further-

more, if this is not the case, then the algorithm will assign completely non-sense values
to the main diagonals, only dependent on the particular implementation of the least-
squares method but unrelated to the true hidden node degrees. As none of our real-life
datasets are low rank in both L and R we decided not to show the experimental results
separately for LS, since they would be similar to random guesses of M̂.

Finally, we show the performance of Hybrid. Since most of our datasets have a bi-
adjacency matrix M that is asymmetric in size (thus either n > m or n < m), the
LS algorithm applied to the neighborhood matrix that is low rank provides very good
results. In case the appropriate neighborhood matrix is truly low rank (thus the differ-
ence between n and m is large), then LS gives a perfect estimate of Σ, improving also
the performance of Iterative in reconstructing the second neighborhood matrix. If
|n −m| > min(n,m)

2 , then LS will provide correct estimates for some degrees and wrong
estimates for others, depending on the random choice of Z. In that case the whole
Hybrid algorithm, that takes LS as a subroutine will suffer a bit in the performance. In
this case we will see that, depending on |n−m|, the performance of Iterative by itself
or Hybrid is closer or farther away from each other.

6. EXPERIMENTS
In this section, we describe the results of an extensive experimental study; we evaluate
our algorithms both with traditional measures – precision, recall and the F-measure
– as well as some measures that we introduce that are specific to the RECONSTRUCT
problem. We conduct our experiments on both synthetic and real-world datasets, using
a variety of data that represent the different structured data that may come up in real-
life scenarios.

6.1. Experimental Setup
We conducted all experiments on a machine with Intel X5650 2.67GHz CPU and 12GB
of memory. All algorithms were implemented in Matlab and the code is available at:
http://cs-people.bu.edu/edori/code.html.

Methodology. For all our experiments the input to our algorithms are the neighbor-
hood matrices that we compute as Ld = M·MT (resp. Rd = MT ·M) for the RA problem.
For RO, we set the main diagonal in Ld (Rd) to zero to obtain L (R resp.). Although in
all cases the underlying biadjacency matrix M is known, after generating the correct
input, M is only used to evaluate the performance of our algorithms.

Evaluation metrics. To see how capable our algorithms are in reconstructing M we
use traditional information retrieval statistics. That is, let M̂ be the binary matrix that
is output by one of our algorithms. Then we compare the zero and one entries in M̂ and
the original biadjacency matrix M to compute the precision, recall and the F-measure

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

assuming we use M̂ to predict M. We use the standard formulas

precision =
TP

TP + FP

recall =
TP

TP + FN

F-measure = 2 · precision · recall
precision + recall

.

With the notation TP, FP and FN for true-positive, false-positive and false-negative
respectively.

We also report our results with regard to two further error metrics that show how
well our algorithms are able to solve the RECONSTRUCT problem. The first metric is
the relative Frobenius error (RFE) that incorporates the objective function of RECON-
STRUCT and is given by

RFE =
FL(M̂) + FR(M̂)
‖Ld‖F + ‖Rd‖F

.

Observe that RFE = 1 when M̂ = 0 and RFE = 0 when M̂ = M. Thus RFE ex-
presses the improvement over the all-zero solution to RECONSTRUCT with regard to
the neighborhood information. Note that the sign assignment Σ̂ does affect the RFE
since we use the binary counterpart M̂ instead of using the real matrix M (cf. Sec. 4).

The second metric is the relative absolute error (RAE) measured with respect to the
ground truth M. It is given by

RAE =
‖M̂−M‖1
‖M‖1

,

where ||X||1 =
∑

ij |X(i, j)|. The RAE measures the number of incorrect entries in
estimate M̂ relative to the number of non-zeros in M. Thus the all-zero solution obtains
an RAE of 1.

6.2. Experiments with synthetic data
The first part of our experimental results is obtained through experiments on
synthetically-generated data. These experiments aim to illustrate the relationship be-
tween the performance of our methods and the structural characteristics of the under-
lying binary matrix M.

6.2.1. Synthetic dataset. As mentioned in Section 4, our algorithms explore the under-
lying low-rank data structure in the data matrix if existent. This is indicated by a low
effective rank. For this reason, we conduct a set of experiments with a synthetic block-
diagonal binary matrix. We first generate a set of rectangular blocks of all 1s with
sizes chosen uniformly at random in between 1 and 100. The blocks are then arranged
to form a block-diagonal matrix. This process generates a 0/1 matrix with only 1s ap-
pearing in each block. In order to obtsain a full-rank matrix M, we add some noise by
randomly flipping 10% of the zeros to ones, and 10% of the ones to zeros. We refer to the
resulting dataset as BLOCK; the particular instance used in our experiments contains
45 blocks and has size 2400× 1000.

6.2.2. Comparison of the RecSVD, Iterative and Hybrid algorithms on synthetic data. First, it
is worthwile to look at the magnitude of the singular values of the input data (Fig-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

ure 2(a)). As we mentioned in Section 4, the RecSVD algorithm can compute the mag-
nitude of the singular values exactly since it is given by the neighborhood matrices Ld

and Rd. While M is full rank – it has 285 non-zero singular values – we can see from
the solid line corresponding to RecSVD that the first 45 singular values are significantly
larger than the others. This is not surprising as M consists of exactly 45 dense blocks
of ones. The matrix is still full rank because of the 10% noise in the data, however,
the corresponding singular values are insignificant. The line corresponding to Hybrid
coinsides with RecSVD, implying that we were able to perfectly estimate the dominant
singular values of M. On the other hand, while Iterative is perfect in reconstructing
the first 35 singular values, then it fails to do so.

Keeping in mind that the effective rank of M is only 45 we can now direct our at-
tention towards Figures 2(c) and 2(b) that contain the RFE and RAE achieved by the
RecSVD, Iterative and Hybrid algorithms. As we have established that only the first
45 singular values have any significance, for this dataset we show a zoomed in version
of these results, focusing on the first 45 values. As we can see, here both RecSVD and
Hybrid algorithms show a steady decrease. One very obvious thing in this Figure is
that the dotted line corresponding to RecSVD in the RA problem coincides with Hybrid
and hence is invisible. Thus on this dataset the Hybrid algorithm can reconstruct the
original data matrix in the RO case as well as if the degrees of nodes were known. We
can see that the performance of Iterative is better (decreasing) with regard to the
RFE measure as RAE.

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

Number of singular values

S
in

gu
la

r
va

lu
es

recSVD
recSVD−hybrid
recSVD−iter

(a) Singular values

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

F
ro

be
ni

us
 e

rr
or

recSVD
recSVD−hybrid
recSVD−iter

(b) RFE

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

ab
so

lu
te

 e
rr

or

recSVD
recSVD−hybrid
recSVD−iter

(c) RAE

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of singular values

P
re

ci
si

on

recSVD
recSVD−hybrid
recSVD−iter

(d) Precision

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of singular values

R
ec

al
l

recSVD
recSVD−hybrid
recSVD−iter

(e) Recall

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

Number of singular values

F
−

M
ea

su
re

recSVD
recSVD−hybrid
recSVD−iter

(f) F-measure

Fig. 2: Performance of the RecSVD, Iterative and Hybrid algorithms on the BLOCK
dataset; x-axis: number of singular values; y-axis: singular values (2(a)), RFE (2(b)),
RAE (2(c)), Precision (2(d)), Recall (2(e)), F-measure (2(f)).

6.3. Experiments with real data
6.3.1. The real datasets. We perform experiments on several real-life datasets, which

are examples of the applications mentioned in Section 1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

The MP3 dataset contains reviews for different models of mp3 players and was col-
lected by Lappas et al. [Lappas et al. 2012]. The rows of the biadjacency matrix cor-
respond to different models of mp3 players while the right class corresponds to the
features of mp3 players that are commented upon in reviews. Cell (i, j) of this matrix
is equal to 1 (resp. 0) if a the i-th review comments (resp. does not comment) on feature
j of the mp3 player. The MP3 dataset consists of 711 reviews and 224 features and thus
the corresponding biadjacency matrix is 711× 224.

The CORA dataset consists of 2708 scientific publications and a dictionary of 1433
unique words. The dataset contains occurrences of words in the documents: We set
M(d,w) = 1 in the biadjacency matrix if document d contains word w. The dataset only
contains words which have document frequency at least 10. The resulting bipartite
graph contains about 50K edges.1

The FLICKR dataset contains information from the photo sharing site
www.flickr.com; it was provided by Zheleva et al. [Zheleva and Getoor 2009].
Users of Flickr can form groups based on common interests. A user u is connected
by an edge to group g if u is a member in g. We sample 2000 users and 1989 groups
uniformly and at random from the original data. The resulting binary matrix that
represents these associations contains about 2× 106 entries with value equal to 1.

The YAHOO dataset encodes the membership of Yahoo! users into Yahoo! groups.
The dataset is available to us through the Yahoo! Webscope project 2. The rows of the
binary matrix correspond to users and columns correspond to groups. Entry (i, j) in
this matrix is equal to 1 (resp. 0) if user i participates (resp. does not participate) in
the j-th group. From the original Yahoo Groups dataset, we select only a subset that
consists of 15874 users and 2954 groups. That is, the size of the hidden biadjacency
matrix has size 15874× 2954 with 18K non-zero entries.

6.3.2. Effects of the threshold in the binary rounding. Before we delve into the analysis of
our algorithm we conduct a set of initial experiments to see what effect the thresh-
old t used to compute the binary counterpart of matrices has on our algorithm. As a
reminder, the binary counterpart bin(M) of a real matrix M is

M̂(i, j) =
{

1 if (i, j) > t

0 else

The binary counterpart plays an important role in the Greedy part of all our algorithm;
we make greedy decisions to assign positive or negative signs to the singular values in
the SVD decomposition based on the distance of a matrix and its binary counterpart.

As we have explained in Section 4 the threshold t = 0.5 results in binary counterpart
matrices that are closest to their real counterparts. As we show in Figure 3 this choice
will also result in the best performance of our algorithms. In Figure 3(a), we can see the
RFE results of the RecSVD algorithm applied to the RA problem on the CORA dataset.
The figure shows the RFE results (y-axis) corresponding to running RecSVD with dif-
ferent thresholds t for computing the binary counterpart as a function of the number
of singular values used in the SVD decomposition (x-axis). As we can see values t < 0.5
perform significantly worse than values t > 0.5. This is not surprising as the CORA
dataset consists of a very sparse graph. A threshold that is smaller than 0.5 results in
more ones in the binary matrix M̂ which in turn accounts for more false positive fields
in the matrix. Similar trends can be observed for the MP3 data (Figure 3(b)), which is
also a sparse dataset.

1The CORA dataset is available at: http://www.cs.umd.edu/∼sen/lbc-proj/LBC.html.
2available at: http://webscope.sandbox.yahoo.com

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

If we compare Figure 3(a) with Figure 3(b), we can see that the larger thresholds in
case of the MP3 data perform very similar to t = 0.5 while there is a more pronounced
difference for the same thresholds in case of CORA. One explanation for this may be
that the adjacency matrix of the MP3 dataset is much more structured; because the
matrix is very asymmetrical in size but less noisy as the CORA data there is a bet-
ter one-to-one correspondence between non-zero values in M and the non-zero values
generated by the singular vectors corresponding to a given singular value.

1 180 359 538 717 896 1075 1254 1433
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of singular values

R
el

at
iv

e
F

ro
be

ni
us

 e
rr

or

thres = 0.2
thres = 0.4
thres = 0.5
thres = 0.7
thres = 0.9

(a) RFE; CORA

1 45 89 133 177 221
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of singular values
R

el
at

iv
e

ab
so

lu
te

 e
rr

or

thres = 0.2
thres = 0.4
thres = 0.5
thres = 0.7
thres = 0.9

(b) RFE; MP3

Fig. 3: Relative Frobenius error for the RecSVD algorithm on the CORA (3(a)) and MP3
(3(b)) datasets. The different lines correspond to the different decision thresholds used
when computing the binary counterpart of matrices in the Greedy part of RecSVD.; x-
axis: number of singular values; y-axis: Relative Frobenius Error (RFE).

Here we only show the effect of the different threshold values t on the RecSVD algo-
rithm for the RA problem with regard to RFE. However we observed similar trends,
namely that t = 0.5 performs best and thresholds larger than t = 0.5 perform better
than the smaller ones on sparse data, for all of our algorithms and evaluation mea-
sures across the datasets.

For the rest of the experiments, we use threshold t = 0.5.

6.3.3. Results on the MP3 dataset. The first real-life dataset that we describe is the MP3
data. The size of the hidden biadjacency matrix is 711 × 224. Let us first look at the
magnitude of the singular values of the adjacency matrix M predicted by our algo-
rithms (Figure 4(a)). As we mentioned in Section 4, the RecSVD algorithm can compute
the magnitude of the singular values exactly. Thus the question Figure 4(a) addresses
is how well Iterative and Hybrid approximate the singular values reported by RecSVD.
Using the RecSVD as a baseline (solid line) we can infer that while M is full rank (thus
rank(M) = 224) the first 70 singular values are much more significant. We can also see
that both Iterative and Hybrid – which solve the RO problem – are quite accurate in
estimating the singular values. In fact, both these algorithms algorithms estimate the
first 50 singular values perfectly. After this point, Iterative provides a slight overes-
timate while Hybrid an underestimate.

Figures 4(b) and 4(c) show the performance of our algorithms for both the RA and RO
problems. Recall that for both measures value 0 corresponds to the perfect reconstruc-
tion and value of 1 is reported if M̂ is estimated to be the 0 matrix. Also recall that both

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

measures can take values significantly larger than 1 – meaning that they can lead to
significantly worse reconstructions. Taking this into consideration we can observe that
all our algorithms lead to good reconstructions. More specifically, RecSVD achieves val-
ues of almost 0 for both RFE and RAE using as few as 70 singular values. This shows
the power of the binary rounding heuristic that we apply; we can use a low-rank ap-
proximation (the truncated SVD of M corresponding to the first 70 singular values) to
actually get the full-rank matrix M̂ that in this case is a perfect reconstruction of M.
In case of the Hybrid algorithm we can see that it performs almost identical to RecSVD.
For the first 70 singular values RFE and RAE are in fact the same, after that Hybrid
is very close to zero but never actually reaches that.

The MP3 dataset is interesting to our research especially, since it has the exact prop-
erties where Hybrid performs optimal; the left neighborhood matrix L is low-rank, and
hence the first part of the Hybrid approach is capable to reconstruct its main diagonal
quite well. To show some specifics, the maximum degree in Ld is 60 and the average
degree is 19.6. The average error that Hybrid achieves in reconstructing the degrees
is 4.8 and the highest error is 15. Compared to Hybrid, the Iterative algorithm’s per-
formance is quite poor. However, we can see that for the first 20 singular values it
performs identical to the other two algorithms.

Finally, a joint observation of Figures 4(a), 4(b) and 4(c) demonstrates the following:
whenever the estimates of the singular values were identical to the true values, the
reconstruction potential of any of the two algorithms for RO is as strong as RecSVD for
RA.

Some further intuition can be obtained by looking at the Precision (4(d)), Recall
(4(e)) and F-measure (4(f)) achieved by the different algorithms. First, we can see
that the Precision and Recall achieved by RecSVD becomes one quite soon, this overlaps
with the 0 values in RFE and RAE. If we focus now on Iterative and Hybrid it is first
of all surprising to see that Iterative has the exact same Precision as RecSVD, while
Hybrid has a Precision of around 0.7. If we look now at the Recall we can see a change
in their relative performances. While Hybrid has a Recall of about 0.98, the Recall for
Iterative is closer to 0.6. This explains the results we have seen for RFE and RAE for
Iterative; Iterative predicts significantly more zeros in M̂, than Hybrid. Since the
one-valued entries predicted by Iterative are the subset of ones predicted by Hybrid it
naturally is capable of achieving better Precision. However, we can see from the Recall
that as a result it misses a lot of the true ones in the original data M. If we look at
the F-measure (Figure 4(f)) we can see that Hybrid performs overall much better than
Iterative and almost identical to RecSVD.

6.3.4. Results on the CORA dataset. While the CORA dataset is still assymetrical with
respect to its number of rows and columns (2708 vs. 1433), it is not really true that the
left neighborhood matrix Ld is truly low rank, as its rank is more than half its size.
Further, if we look at the singular values of M (Figure 5(a)) we see that the decrease
of the magnitude of singular values is gradual, we cannot say that the effective rank
of the matrix is much lower than its true rank. We can also see that in the RO problem
the singular values are underesimated in case of both algorithms.

If we look at the RFE results (Figure 5(b)) we see that RecSVD achieves 0 RFE after
1000 singular values. Hybrid still performs better than Iterative. We can see that
both these algorithms show decreasing RFE at first but then become constant. This
can be attributed to the underestimated singular values; at some point the values in
the estimated (real) matrix are only changing very little with the number of singular
values taken into consideration, hence the rounding process will assign the same zero
or one value to every cell. We can see that the Hybrid performs closer to RecSVD with
regard to RAE (Figure 5(c)). Precision (5(d)), recall (5(e)) and the F-measure (5(f))

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

Number of singular values

S
in

gu
la

r
va

lu
es

recSVD
recSVD−hybrid
recSVD−iter

(a) Singular values

0 50 100 150 200 250
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

F
ro

be
ni

us
 e

rr
or

recSVD
recSVD−hybrid
recSVD−iter

(b) RFE

0 50 100 150 200 250
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

ab
so

lu
te

 e
rr

or

recSVD
recSVD−hybrid
recSVD−iter

(c) RAE

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of singular values

P
re

ci
si

on

recSVD
recSVD−hybrid
recSVD−iter

(d) Precision

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of singular values

R
ec

al
l

recSVD
recSVD−hybrid
recSVD−iter

(e) Recall

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

Number of singular values

F
−

M
ea

su
re

recSVD
recSVD−hybrid
recSVD−iter

(f) F-measure

Fig. 4: MP3 dataset. Performance of the RecSVD, Iterative and Hybrid algorithms as
a function of the number of singular values; x-axis: number of singular values; y-axis:
magnitude of the singular values (4(a)), RFE (4(b)), RAE (4(c)), Precision (4(d)), Recall
(4(e)), F-measure (4(f)).

tell us the same trends as in case of the MP3 dataset, only the difference of the relative
performance of the algorithms to each other is more pronounced.

6.3.5. Results on the FLICKR dataset. The FLICKR dataset is different from the ones we
considered in the previous paragraphs since the size of its left L and right R matrices
are the same. Hence both of them are full-rank. As a result, the first part of the Hybrid
algorithm – no matter whether it is applied to which side L or R – will make almost
random guesses about the main diagonal of the neighborhood matrix. As a result, we
can see that the relative performance of Iterative and Hybrid changes when compared
to the previous datasets. Overall, the experiments reported in Figure 6 demonstrate
that across the various measures Iterative is better. If we look at the precision (Fig-
ure 6(d)) we can observe that in this particular case the precision of RecSVD is below the
other two. This is because both algorithms Iterative and Hybrid predict many zeros
and hence achieve high precision. On the other hand RecSVD signifcantly outperforms
the other two on recall (Figure 6(e)).

6.3.6. Results on the YAHOO dataset. Finally we show results on the YAHOO dataset.
This data can be best compared to the results on the MP3 dataset, as both biadja-
cency matrices M are asymetrical in size. However, in contrary to the MP3 dataset,
the effective rank of the YAHOO data is equal to its rank. Hence, our low-rank recon-
struction algorithms will perform less strong as on the former dataset. The results on
the YAHOO data are shown in Figure 7. Let us compare the results to those in Figure 4
corresponding to the MP3 data; first of all both Iterative and Hybrid algorithms are
able to reconstruct the larger singular values but later both algorithms underestimate
those (Figure 7(a)). It is important to note, that in case of YAHOO the magnitude of the
singular values is gradually decreasing, there is no effective rank that is much smaller

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

0 500 1000 1500
0

10

20

30

40

50

60

Number of singular values

S
in

gu
la

r
va

lu
es

recSVD
recSVD−hybrid
recSVD−iter

(a) Singular values

0 500 1000 1500
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

F
ro

be
ni

us
 e

rr
or

recSVD
recSVD−hybrid
recSVD−iter

(b) RFE

0 500 1000 1500
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

ab
so

lu
te

 e
rr

or

recSVD
recSVD−hybrid
recSVD−iter

(c) RAE

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of singular values

P
re

ci
si

on

recSVD
recSVD−hybrid
recSVD−iter

(d) Precision

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of singular values

R
ec

al
l

recSVD
recSVD−hybrid
recSVD−iter

(e) Recall

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of singular values

F
−

M
ea

su
re

recSVD
recSVD−hybrid
recSVD−iter

(f) F-measure

Fig. 5: CORA dataset. Performance of the RecSVD, Iterative and Hybrid algorithms as
a function of the number of singular values; x-axis: number of singular values; y-axis:
magnitude of the singular values (5(a)), RFE (5(b)), RAE (5(c)), Precision (5(d)), Recall
(5(e)), F-measure (5(f)).

than the true rank of M. When looking at the performance results (Figures 7(b) – 7(f))
we can see that the order of the algorithms is RecSVD being the best, Hybrid showing
medium performance and Iterative being the weakest. One exception is the precision
(Figure 7(d)) where Iterative is the best. This is again because Iterative predicts the
most zeros among all algorithms, and hence is capable of achieving very good results
on the small number of ones in M̂. Overall we can see that while the relative perfor-
mance of the algorithms compared to each other is similar in case of the YAHOO data
as the MP3, the relative difference between the algorithms is more pronounced. Fur-
ther, we can see that overall all of the algorithms achieve somewhat worse results than
on the MP3 data. We believe that this happens because the data is much more noisy
in case of the YAHOO data. The difference between the two sizes of M, n = 15.8K and
m = 3K is large, hence there is much more variety in the possible group memberships
of YAHOO users, than there was variety in the content of reviews in the MP3 data.

7. RELATED WORK
This work is an extended version of our previous work on the same topic [Erdös et al.
2012]. In this journal version, we have a more extensive discussion of both the RA
and the RO problems. In addition to that, we propose two new algorithms for the RO
problem, which clearly outperform the heuristics we had proposed in the conference
version of the paper. Finally, in addition to using more social-network datasets than
those we used in the original conference version, we also use datasets from different
application domains (e.g., online product reviews).

To the best of our knowledge, the problem of reconstructing binary matrices from
neighborhood information has — except for [Erdös et al. 2012] — not been addressed

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

150

200

250

Number of singular values

S
in

gu
la

r
va

lu
es

recSVD
recSVD−hybrid
recSVD−iter

(a) Singular values

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

F
ro

be
ni

us
 e

rr
or

recSVD
recSVD−hybrid
recSVD−iter

(b) RFE

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

ab
so

lu
te

 e
rr

or

recSVD
recSVD−hybrid
recSVD−iter

(c) RAE

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of singular values

P
re

ci
si

on

recSVD
recSVD−hybrid
recSVD−iter

(d) Precision

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of singular values

R
ec

al
l

recSVD
recSVD−hybrid
recSVD−iter

(e) Recall

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

Number of singular values

F
−

M
ea

su
re

recSVD
recSVD−hybrid
recSVD−iter

(f) F-measure

Fig. 6: FLICKR dataset. Performance of the RecSVD, Iterative and Hybrid algorithms
as a function of the number of singular values; x-axis: number of singular values; y-
axis: magnitude of the singular values (2(a)), RFE (2(b)), RAE (2(c)), Precision (2(d)),
Recall (2(e)), F-measure (2(f)).

before. However, our work is related to previous work on the analysis of real and binary
matrices, as summarized below.
Matrix reconstruction. Existing work on matrix reconstruction focuses on the recon-
struction of real-valued matrices from a few or noisy entries [Candès and Recht 2009;
Keshavan et al. 2010]. Such reconstruction problems, also known as matrix-completion
problems, have received a lot of attention over the last years and existing studies have
led to interesting algorithmic results. Although the goal of these methods are similar
in spirit to our work in that they aim to reconstruct a hidden data matrix, they are
tailored to real-valued matrices. In contrast, our work focuses on the reconstruction of
binary matrices. More importantly, matrix-completion methods use information about
the values of a subset of the hidden matrix in order to reconstruct it. Such information
is not available in our problem, in which only the per-node neighborhood information
but no information about individual elements is provided.

Binary reconstruction. The problem of reconstructing binary matrices also arises
in computer vision, for example. Here the goal is to reconstruct a noise-free image
from a noisy version of a black and white image. Existing methods for these problems
either use combinatorial [Kolmogorov and Zabih 2004] or statistical inference tech-
niques [Boykov et al.]. These methods rely on the fact that a noisy version of the
hidden matrix is known; the goal is to remove the noise from the observed pixels. Thus
these denoising techniques cannot be used to solve the RECONSTRUCT problem.

The problem of reconstructing 0/1 matrices has also been studied recently in data
mining. For example, Vuokko and Terzi [Vuokko and Terzi 2010] considered the prob-
lem where a randomized version of the data is revealed and the goal is to reconstruct
the original data as accurately as possible. External knowledge about the relationships

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

Number of singular values

S
in

gu
la

r
va

lu
es

recSVD
recSVD−hybrid
recSVD−iter

(a) Singular values

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

F
ro

be
ni

us
 e

rr
or

recSVD
recSVD−hybrid
recSVD−iter

(b) RFE

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

Number of singular values

re
la

tiv
e

ab
so

lu
te

 e
rr

or

recSVD
recSVD−hybrid
recSVD−iter

(c) RAE

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Number of singular values

P
re

ci
si

on

recSVD
recSVD−hybrid
recSVD−iter

(d) Precision

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Number of singular values

R
ec

al
l

recSVD
recSVD−hybrid
recSVD−iter

(e) Recall

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

Number of singular values

F
−

M
ea

su
re

recSVD
recSVD−hybrid
recSVD−iter

(f) F-measure

Fig. 7: YAHOO dataset. Performance of the RecSVD, Iterative and Hybrid algorithms
as a function of the number of singular values; x-axis: number of singular values; y-
axis: magnitude of the singular values (2(a)), RFE (2(b)), RAE (2(c)), Precision (2(d)),
Recall (2(e)), F-measure (2(f)).

between the rows and the columns of the noisy observed matrix is also considered by
the reconstruction algorithm. The method they proposed strongly relies on the fact
that the observed matrix is a noisy version of the original one and that the amount of
noise is known. Again, neighborhood information in the form considered in our work
cannot be incorporated into the framework proposed in [Vuokko and Terzi 2010].

Matrix decomposition. The analysis of binary data using matrix decompositions has
been extensively studied [Miettinen ; 2010; Miettinen and Vreeken 2011]. Although
these methods do focus on 0/1 matrices, their goal is to find a low-rank representation
of a known input matrix. In some sense, we try to achieve the opposite: We want to
extract a hidden 0/1 matrix using some knowledge of its low-rank decompositions, as
encoded in the neighborhood data.

Database security. Database privacy questions—in particular the possibility to re-
construct data from seemingly secure, anonymized information—have already been
considered in the 70ss [Chin 1978]. The question is here what information can be in-
ferred about the data, if answers to a small set of statistical questions are known. More
recent work by Mielikäinen [Mielikäinen 2004] is concerned with the inverse frequent
itemset problem, which aims to infer the contents of a transaction database given an
anonymized version of that database and true frequent itemset data.

Prediction of drug-protein interaction. A problem, which at a high level resembles
the RECONSTRUCT problem appears also in bioinformatics, where the goal is to predict
drug-protein interactions. In that problem the input consists of a set of drugsD, a set of
protein targets P , a protein similarity matrix SP , a drug similarity matrix SD, as well
as the interaction graph M(D,P) which is a bipartite graph representing the known
molecular interactions between the proteins and the drugs. Given these, the goal is to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

predict an updated version of M, called M∗, given that a new drug is added to P or a
new target is added to D.

One can view the drug - protein interaction graph M(D,P) as the hidden bipartite
graph of the RECONSTRUCT problem. Also, the similarity matrices SD and SP can be
mapped to the neighborhood matrices Ld and Rd. Despite these high-level mappings,
there are key differences. For example, matrices SD and SP take real values, while
Ld and Rd are by definition restricted to be integers – since they represent the size of
overlapping neighborhoods between two nodes.

Additionally, the drug-protein prediction problem has a different objective from the
RECONSTRUCT problem. While in RECONSTRUCT M is completely unknown, here
most part of M is known and the goal is only to predict the additional rows and
columns. Current approaches to solve the drug - protein interaction prediction problem
use methods from bipartite graph learning [Bleakley and Yamanishi 2009; Raymond
and Kashima 2010; Bleakley et al. 2007] or semi-supervised learning [Xia et al. 2010;
Yamanishi et al. 2008; ?]. However, these methods are not applicable to the RECON-
STRUCT problem.

8. CONCLUSIONS AND DISCUSSION
There are countless types of real life data that can be described in terms of a bipartite
graph. In many cases, the original data is sensitive and cannot be made public. Thus
data owners may consider to publish aggregate information instead. In this paper, we
assume that the data owner reveals a particular type of aggregate information, i.e.,
neighborhood information. The neighborhood information consists of the number of
common neighbors between every pair of nodes. Given such information, we asked the
following simple question: Can we reconstruct the underlying graph using only this
neighborhood information?

In this paper, we formalized this question by introducing the RECONSTRUCT prob-
lem. The goal of this problem is to reconstruct the bi-adjacency matrix of a bipartite
graph, given as input neighborhood information. Depending on whether the neigh-
borhood information contains the number of common neighbors between all pairs of
nodes, including the degree of the node itself, or not, we also defined two variants of
the RECONSTRUCT problem, namely the RAand theRO problems respectively.

For those problems, we developed algorithms for reconstructing the hidden adja-
cency matrix. Intuitively, our methods reconstruct the components of the matrix’ sin-
gular value decomposition from the neighborhood information. These components are
subsequently used to obtain a (binary) estimate of the hidden matrix.

We study two versions of the problem; in the RA problem, the degrees of the nodes
are known, while in the RO case the degrees are hidden. Our experiments suggest
that in case of RA the underlying matrix can be reconstructed with low error for all
datasets. For RO we develop three algorithms that — along with reconstructing the
underlying matrix — aim at reconstructing the degrees of the nodes as well. We find
that while the efficiency of our algorithms depend on the underlying hidden data, our
Hybrid algorithm reconstructs the matrix with quite high accuracy for various dataset.

We believe that our work is an instance of a more general problem, in which aggre-
gate characteristics of a dataset are revealed and the question is whether one can infer
individual data points. Computational tools that address such types of questions can
prove valuable to data owners, who can use them to quantify how much information is
leaked by the revealed aggregates.

REFERENCES
Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 2011. Modern Information Retrieval. ACM Press / Addison

Wesley.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

Vineet Bharti, Pankaj Kankar, Lokesh Setia, Gonca Gürsun, Anukool Lakhina, and Mark Crovella. 2010.
Inferring invisible traffic (CoNEXT). ACM, 22.

Kevin Bleakley, Grard Biau, and Jean-Philippe Vert. 2007. Supervised reconstruction of biological networks
with local models. (2007), 57–65.

Kevin Bleakley and Yoshihiro Yamanishi. 2009. Supervised prediction of drug-target interactions using
bipartite local models. Bioinformatics 25, 18 (2009), 2397–2403.

Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov Random Fields with Efficient Approximations. In
CVPR IEEE Conference on Computer Vision and Pattern Recognition.

Emmanuel J. Candès and Benjamin Recht. 2009. Exact Matrix Completion via Convex Optimization. Foun-
dations of Computational Mathematics 9, 6 (2009), 717–772.

Francis Y. Chin. 1978. Security in statistical databases for queries with small counts. ACM Trans. Database
Syst. 3 (1978), 92–104. Issue 1.

Abhinandan Das, Mayur Datar, Ashutosh Garg, and ShyamSundar Rajaram. 2007. Google news personal-
ization: scalable online collaborative filtering. In WWW International Conference on World Wide Web.
ACM, 271–280.

Petros Drineas, Ravi Kannan, and Michael W. Mahoney. 2006. Fast Monte Carlo Algorithms for Matrices II:
Computing a Low-Rank Approximation to a Matrix. SIAM J. Comput. 36, 1 (2006), 158–183.

C. Eckhart and G. Young. 1936. The approximation of one matrix by another of lower rank. Psychometrika
1, 3 (1936), 211–218. DOI:http://dx.doi.org/10.1007/BF02288367

Dóra Erdös, Rainer Gemulla, and Evimaria Terzi. 2012. Reconstructing Graphs from Neighborhood Data.
In ICDM IEEE International Conference on Data Mining. IEEE Computer Society, 231–240.

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations. The John Hopkins University Press.
Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. 2010. Learning influence probabilities in social

networks. In WSDM International Conference on Web Search and Web Data Mining. ACM, 241–250.
Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. 2010. Matrix completion from a few en-

tries. IEEE Transactions on Information Theory 56, 6 (2010), 2980–2998.
Vladimir Kolmogorov and Ramin Zabih. 2004. What Energy Functions Can Be Minimized via Graph Cuts?

IEEE Trans. Pattern Anal. Mach. Intell. 26, 2 (2004), 147–159.
Yehuda Koren. 2010. Factor in the neighbors: Scalable and accurate collaborative filtering. TKDD trans. on

Knowledge Discovery from Data 4, 1 (2010).
Theodoros Lappas, Mark Crovella, and Evimaria Terzi. 2012. Selecting a characteristic set of reviews. In

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 832–840.
Silvio Lattanzi and D. Sivakumar. 2009. Affiliation networks. In STOC ACM Symposium on Theory of Com-

puting. ACM, 427–434.
Taneli Mielikäinen. 2004. Privacy Problems with Anonymized Transaction Databases. In Discovery Science.

Springer, 219–229.
Pauli Miettinen. The Boolean Column and Column-Row Matrix Decompositions. (????).
Pauli Miettinen. 2010. Sparse Boolean Matrix Factorizations. In ICDM IEEE International Conference on

Data Mining. IEEE Computer Society, 935–940.
Pauli Miettinen and Jilles Vreeken. 2011. Model order selection for boolean matrix factorization. In ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 51–59.
Rudy Raymond and Hisashi Kashima. 2010. Fast and Scalable Algorithms for Semi-supervised Link Predic-

tion on Static and Dynamic Graphs. In ECML/PKDD. 131–147.
Edward Scheinerman and Kimberly Tucker. 2010. Modeling graphs using dot product representations. Com-

putational Statistics 25 (2010), 1–16. Issue 1.
Niko Vuokko and Evimaria Terzi. 2010. Reconstructing Randomized Social Networks. In SDM SIAM Inter-

national Conference on Data Mining. SIAM, 49–59.
Zheng Xia, Ling-Yun Wu, Xiaobo Zhou, and Stephen TC Wong. 2010. Semi-supervised drug-protein interac-

tion prediction from heterogeneous biological spaces. BMC Systems Biology (2010).
Yoshihiro Yamanishi, Michihiro Araki, Alex Gutteridge, Wataru Honda, and Minoru Kanehisa. 2008. Predic-

tion of drugtarget interaction networks from the integration of chemical and genomic spaces. In ISMB
(Supplement of Bioinformatics). 232–240.

Elena Zheleva and Lise Getoor. 2009. To Join or not to Join: The Illusion of Privacy in Social Networks with
Mixed Public and Private User Profiles. In WWW International Conference on World Wide Web. ACM,
531–540.

Elena Zheleva, Hossam Sharara, and Lise Getoor. 2009. Co-evolution of social and affiliation networks. In
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 1007–1016.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

