
Lecture outline
• Decision-tree classification

Decision Trees
• Decision tree

– A flow-chart-like tree structure
– Internal node denotes a test on an attribute
– Branch represents an outcome of the test
– Leaf nodes represent class labels or class distribution

• Decision tree generation consists of two phases
– Tree construction

• At start, all the training examples are at the root
• Partition examples recursively based on selected attributes

– Tree pruning
• Identify and remove branches that reflect noise or outliers

• Use of decision tree: Classifying an unknown sample
– Test the attribute values of the sample against the decision tree

Training

Output: A Decision Tree for

age?

overcast

student? credit rating?

no yes fairexcellent

<=30 >40

no noyes yes

yes

30..40

Constructing decision trees
• Exponentially many decision trees can be

constructed from a given set of attributes

• Finding the most accurate tree is NP-hard

• In practice: greedy algorithms
• Grow a decision tree by making a series of locally

optimum decisions on which attributes to use for
partitioning the data

Constructing decision trees:
the Hunt’s algorithm

• Xt: the set of training records for node t
• y={y1,…,yc}: class labels
• Step 1: If all records in Xt belong to the same class

yt, then t is a leaf node labeled as yt

• Step 2: If Xt contains records that belong to more
than one class,
– select attribute test condition to partition the

records into smaller subsets
– Create a child node for each outcome of test

condition
– Apply algorithm recursively for each child

Decision-tree construction
(Example)

Design issues
• How should the training records be

split?

• How should the splitting procedure
stop?

Splitting methods
• Binary attributes

Splitting methods
• Nominal attributes

Splitting methods
• Ordinal attributes

Splitting methods
• Continuous attributes

Selecting the best split
• p(i|t): fraction of records belonging to class i
• Best split is selected based on the degree of

impurity of the child nodes
– Class distribution (0,1) has high purity
– Class distribution (0.5,0.5) has the

smallest purity (highest impurity)

• Intuition: high purity  small value of
impurity measures  better split

Selecting the best split

Selecting the best split:
Impurity measures

• p(i|t): fraction of records associated
with node t belonging to class i

Entropy(t) = �
cX

i=1

p(i|t) log p(i|t)

Gini(t) = 1�
cX

i=1

[p(i|t)]2

Classification-Error(t) = 1�max

i
[p(i|t)]

Range of impurity measures

Impurity measures
• In general the different impurity measures are

consistent
• Gain of a test condition: compare the impurity

of the parent node with the impurity of the child
nodes

• Maximizing the gain == minimizing the
weighted average impurity measure of children
nodes

• If I() = Entropy(), then Δinfo is called
information gain

� = I(parent)�
kX

j=1

N(vj)

N
I(vj)

Computing gain: example

Is minimizing impurity/
maximizing Δ enough?

Is minimizing impurity/
maximizing Δ enough?

• Impurity measures favor attributes with
large number of values

• A test condition with large number of
outcomes may not be desirable
– # of records in each partition is too small

to make predictions

Gain ratio
• Gain ratio = Δinfo/Splitinfo

• SplitInfo = -Σi=1…kp(vi)log(p(vi))
• k: total number of splits
• If each attribute has the same number

of records, SplitInfo = logk
• Large number of splits  large

SplitInfo  small gain ratio

Constructing decision-trees
(pseudocode)

GenDecTree(Sample S, Features F)
1. If stopping_condition(S,F) = true then

a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value vєV:

a. Sv: = {s | root.test_condition(s) = v and s є S};
b. child = TreeGrowth(Sv ,F) ;
c. Add child as a descent of root and label the edge (rootchild)

as v

Stopping criteria for tree
induction

• Stop expanding a node when all the
records belong to the same class

• Stop expanding a node when all the
records have similar attribute values

• Early termination

Advantages of decision trees
• Inexpensive to construct
• Extremely fast at classifying unknown

records
• Easy to interpret for small-sized trees
• Accuracy is comparable to other

classification techniques for many
simple data sets

Example: C4.5 algorithm
• Simple depth-first construction.
• Uses Information Gain
• Sorts Continuous Attributes at each

node.
• Needs entire data to fit in memory.
• Unsuitable for Large Datasets.

• You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical problems with
classification

• Underfitting and overfitting
• Missing values
• Cost of classification

Overfitting and underfitting

Underfitting: when model is too simple, both training and test
errors are large

Overfitting due to noise

Decision boundary is distorted by
noise point

Underfitting due to insufficient
samples

Lack of data points in the lower half of the diagram makes it
difficult to predict correctly the class labels of that region
- Insufficient number of training records in the region
causes the decision tree to predict the test examples using
other training records that are irrelevant to the classification
task

Overfitting: course of action
• Overfitting results lead to decision

trees that are more complex than
necessary

• Training error no longer provides a
good estimate of how well the tree will
perform on previously unseen records

• Need new ways for estimating errors

Methods for estimating the
error

• Re-substitution errors: error on training (Σ e(t))
• Generalization errors: error on testing (Σ e’(t))
• Methods for estimating generalization errors:
– Optimistic approach: e’(t) = e(t)
– Pessimistic approach:

• For each leaf node: e’(t) = (e(t)+0.5)
• Total errors: e’(T) = e(T) + N × 0.5 (N: number of leaf

nodes)
• For a tree with 30 leaf nodes and 10 errors on training

 (out of 1000 instances):
 Training error = 10/1000 = 1%

 Generalization error = (10 + 30×0.5)/1000 = 2.5%
– Reduced error pruning (REP):

• uses validation data set to estimate generalization
 error

Addressing overfitting:
Occam’s razor

• Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

• For complex models, there is a greater
chance that it was fitted accidentally by
errors in data

• Therefore, one should include model
complexity when evaluating a model

Addressing overfitting:
postprunning

– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a

bottom-up fashion
– If generalization error improves after

trimming, replace sub-tree by a leaf node.
– Class label of leaf node is determined

from majority class of instances in the
sub-tree

– Can use MDL for post-pruning

Addressing overfitting:
preprunning

• Stop the algorithm before it becomes a
fully-grown tree

• Typical stopping conditions for a node:
• Stop if all instances belong to the same class
• Stop if all the attribute values are the same

• More restrictive conditions:
• Stop if number of instances is less than some user-

specified threshold
• Stop if expanding the current node does not improve

impurity
 measures (e.g., Gini or information gain).

Decision boundary for decision
trees

• Border line between two neighboring regions of different classes is
known as decision boundary
• Decision boundary in decision trees is parallel to axes because test
condition involves a single attribute at-a-time

Oblique Decision Trees

x + y < 1

Class = + Class =

• Test condition may involve multiple attributes
• More expressive representation
• Finding optimal test condition is computationally expensiveNot all datasets can be partitioned optimally

using test conditions involving single attributes!

Oblique Decision Trees

Circular points:
0.5 ≤ sqrt(x1

2+x2
2) ≤ 1

Triangular points:
sqrt(x1

2+x2
2) >1 or

sqrt(x1
2+x2

2) < 0.5

