| ecture outline

 Decision-tree classification

Decision Trees

* Decision tree
— A flow-chart-like tree structure
— Internal node denotes a test on an attribute
— Branch represents an outcome of the test
— Leaf nodes represent class labels or class distribution
« Decision tree generation consists of two phases
— Tree construction
« At start, all the training examples are at the root
» Partition examples recursively based on selected attributes
— Tree pruning
 Identify and remove branches that reflect noise or outliers
« Use of decision tree: Classifying an unknown sample
— Test the attribute values of the sample against the decision tree

Training

income [student| credit ratin

Output: A Decision Tree for

age?
</‘30/ 30..40 >40
student? yes cre} rating?
/
no \\;ES excéﬂ;nt \Eﬂr

no yes no yes

Constructing decision trees

* Exponentially many decision trees can be
constructed from a given set of attributes

* Finding the most accurate tree is NP-hard

* In practice: greedy algorithms

« Grow a decision tree by making a series of locally
optimum decisions on which attributes to use for
partitioning the data

Constructing decision trees:
the Hunt’s algorithm

X,: the set of training records for node t
y={yy...,Y }: class labels

Step 1:If all records in X, belong to the same class
Y., then tis a leaf node labeled as vy,

Step 2: If X, contains records that belong to more
than one class,

— select attribute test condition to partition the
records into smaller subsets

— Create a child node for each outcome of test
condition

— Apply algorithm recursively for each child

Decision-tree construction
(Example)

i\‘?\ o°\§’

& & \ &

o & & ®

Tid Home Marital Annual Defaulted

Owner Status Income Borrower
1 |Yes Single | 125K |No
2 |No Married | 100K |No
3 |No Single | 70K No
4 |Yes Married | 120K | No
5 |No Divorced | 95K Yes
6 |No Married |60K No
7 |Yes Divorced | 220K | No
8 |No Single | 85K Yes
9 [No Married | 75K No
10 | No Single | 90K Yes

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

7" Home ™
\Owner ,

Defauited = No b "

R J Detaulted = No Defauled = No

(a) (b)
Fome ey
Yes .~ N\ _No Sngle, 7\ Maried
Detaulted = No “Maital ™ ”Annual™\ Defaulted = No
Status lrccme
Single, "\ Married <BOK.~ _>= 8K
Divorced ~ N

Defaulted = Yes Dedaulted = No Defauted = No | | Defaulied = Yes

(c) (d)

Figure 4.7, Hunt's algorithm for inducing decision trees,

Design issues

* How should the training records be
split?

* How should the splitting procedure
stop?

Splitting methods

* Binary attributes

/7~ Body "\
".\T.e mpe ratur?/,,."

/\,

Warm- Cold-
blooded blooded

Figure 4.8. Test condition for binary attributes.

Splitting methods

* Nominal attributes |

/" Marital)
. |
\ Status /
N
Single Divorced Married

(a) Multiway split

” ”
’

/" Marital /" Marital (" Marital "\
‘--__“AStatus‘,/ / \\AStatus;—_’ / '-\\.Statui_/,f'
/\ OR \ OR /\
{Married} {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

(b) Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.

Splitting methods

 Ordinal attributes

/" shirt "\ /" shit) /" shit
\ Size) _ Size) \ Size)
{Small, {Large, {Small} {Medium, Large, {Small, {(Medium,
Medium} Extra Large} Extra Large)} Large) Extra Large}
(a) (b) (c)

Figure 4.10. Different ways of grouping ordinal attribute values.

Splitting methods

 Continuous attributes

/~ Annual ™\

' Income | / Annual
_>80K / % Jeotms) J

Yﬂo W

(10K, 25K} {25K, 50K} (50K, 80K]
(a) (b)

Figure 4.11. Test condition for continuous attributes.

Selecting the best split

p(i|t): fraction of records belonging to class i

Best split is selected based on the degree of
impurity of the child nodes

— Class distribution (0,1) has high purity

— Class distribution (0.5,0.5) has the
smallest purity (highest impurity)

Intuition: high purity > small value of
impurity measures - better split

Selecting the best split

(Gender)
jmenenn)

Male/\:emale

C0:6|(|C0: 4
C1:4|(C1:6

Selecting the best split:
Impurity measures

* p(ilt): fraction of records associated
with node t belonging to class i

Entropy(t) = —) _p(ilt) log p(i[t)
1=1

Gini(t) = 1Y [p(i|t)]?

1=1

Classification-Error(t) = 1 — max|p(2|t)]

Range of impurity measures

0.9 A
Entropy

G'nl /” ” \'\ ‘\\\
- '~ S
-~ N \\ -1
> '~ ~
-~ ‘N ~
” .\ \\
’ ‘ N 4
® N
e \.\ N
-~~~ Misclassification error S\ i
N, .
N~ \
~, \
~, \
~, \
SN
0E: 1 L 1 1 1 L 1 1 >
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

Figure 4.13. Comparison among the impurity measures for binary classification problems.

Impurity measures

In general the different impurity measures are
consistent

Gain of a test condition: compare the impurity
of the parent node with the impurity of the child

nodes k N(v)
A = I(parent) — Zl NJ I(v;)
]:
Maximizing the gain == minimizing the

weighted average impurity measure of children
nodes

If I() = Entropy(), then A, . is called
information gain

Computing gain: example

Parent
CcO 6
C1 6
Gini = 0.500
/f--‘\. e N\
A B)
Yes No Yes No
Node N1 Node N2 Node N1 Node N2
N1 | N2 N1 | N2
Co| 4 2 co| 1 5
Ci| 3 3 Ci| 4 2
Gini = 0.486 Gini = 0.375

Figure 4.14. Splitting binary attributes.

Is minimizing impurity/
maximizing A enough?

/. Gen der\‘: {/ Car ™\ :/ 6ustomér\:
___ \Jype_/ N %
Male/\Female Family

C0:6/||CO0: 4 CO0:1

C1:4|(C1:6 C1:3

Figure 4.12. Multiway versus binary splits.

Is minimizing impurity/
maximizing A enough?

* Impurity measures favor attributes with
large number of values

* A test condition with large number of
outcomes may not be desirable

— # of records in each partition is too small
to make predictions

Gain ratio

Gain ratio = A, (. /Splitinfo

Splitinfo = -2._, . p(vi)log(p(v,))
k: total number of splits

If each attribute has the same number
of records, Splitinfo = logk

Large number of splits > large
Splitinfo = small gain ratio

Constructing decision-trees
(pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping _condition(S,F) = true then
a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4, V = {v| v a possible outcome of root.test_condition}
5. for each value veV:
a. S, = {s | root.test_condition(s) = v and s € S};
b. child = TreeGrowth(S, ,F) ;

c. Add child as a descent of root and label the edge (root—>child)
as v

Stopping criteria for tree
induction

» Stop expanding a node when all the
records belong to the same class

» Stop expanding a node when all the
records have similar attribute values

» Early termination

Advantages of decision trees

* Inexpensive to construct

« Extremely fast at classifying unknown
records

» Easy to interpret for small-sized trees

» Accuracy is comparable to other
classification techniques for many
simple data sets

Example: C4.5 algorithm

Simple depth-first construction.
Uses Information Gain

Sorts Continuous Attributes at each
node.

Needs entire data to fit in memory.
Unsuitable for Large Datasets.

You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical problems with
classification

* Underfitting and overfitting
* Missing values
* Cost of classification

Overfitting and underfitting

Training set
20 Test set 7
15+ B
10 F s i
5 1 1 A 1 1
0 50 100 150 200 250 200

Number of nodes

Underfitting: when model is too simple, both training and test
errors are large

Overfitting due to noise

4
35F
3}

25} @ L

N
T

Noise point

05} i / ®

Decision boundary is distorted by
noise noint

Underfitting due to insufficient

samples
4 ' '
35+ = ’
3t X
2.5 O @ =
2t Misclassified |
15k O<— points
Al & (3‘,~"’##, \ X -
05} o @
| o

0 05 1 15 2 25 3 35 4

Lack of data points in the lower half of the diagram makes it
difficult to predict correctly the class labels of that region

— Insufficient number of training records in the region
causes the decision tree to predict the test examples using
other training records that are irrelevant to the classification
task

Overfitting: course of action

» Overfitting results lead to decision

trees that are more complex than
necessary

* Training error no longer provides a
good estimate of how well the tree will

perform on previously unseen records

* Need new ways for estimating errors

Methods for estimating the
error

« Re-substitution errors: error on training (= e(t))
« Generalization errors: error on testing (Z e’(t))

« Methods for estimating generalization errors:
— Optimistic approach: €’(t) = e(t)
— Pessimistic approach:

 For each leaf node: e’(t) = (e(t)+0.5)

« Total errors: €’(T) = e(T) + N x 0.5 (N: number of leaf
nodes)

* For a tree with 30 leaf nodes and 10 errors on training

(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30x0.5)/1000 = 2.5%

— Reduced error pruning (REP):

« uses validation data set to estimate generalization
error

Addressing overfitting:
Occam’s razor

* Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

* For complex models, there is a greater
chance that it was fitted accidentally by
errors in data

 Therefore, one should include model
complexity when evaluating a model

Addressing overfitting:
postprunning

— Grow decision tree to its entirety

—Trim the nodes of the decision tree in a
bottom-up fashion

— If generalization error improves after
trimming, replace sub-tree by a leaf node.

— Class label of leaf node is determined
from majority class of instances in the
sub-tree

— Can use MDL for post-pruning

Addressing overfitting:
preprunning

» Stop the algorithm before it becomes a
fully-grown tree

» Typical stopping conditions for a node:

« Stop if all instances belong to the same class
« Stop if all the attribute values are the same

* More restrictive conditions:

« Stop if number of instances is less than some user-
specified threshold

 Stop if expanding the current node does not improve
iImpurity
measures (e.g., Gini or information gain).

Decision boundary for decision
trees

e Border line between two neighboring regions of different classes is
known as decision boundary

e Decision boundary in decision trees is parallel to axes because test
condition involves a single attribute at-a-time

e e 0" E T o e el hliad
e ee e
09 3 .°..J.. $: s ® ” e ® 0.:..3-
| ™ o o = :’
08} 44+ A e - . g s I
+ 4y - -
07F + — + * ~. g .
" "‘H.-*-*' + + - < ® o :
o } ' BN L e e ¥ e ; ._
' i+ +H * e %
R ¢+ $ g -
05 e + + ¥ L 0’. . o -
+ + 4 ® @ e
04k + +F t ¢ - & °
¥ +.73 " N e K *s
03f + ° VoA 0 SR NG, 4
++ %TSn ey T #4 B €e
+ + ¥ RS A + 4 e ®q
0'2-++ + - T el e
. ¥ * i = b &
01F + + X He w4 T4 ‘f - o5 -
. _#++ N P o PN e
0 -LL‘!E + f' 4 - 1+ 1 1 ++: 1
0 01 02 03 04 05 06 07 08 09 1

Oblique Decision Trees

Not all datasets can be partitioned optimally
using test conditions involving single attributes!

Obl;

v ¥ v w v l?“
w? vvvvg % - o"o v % v ¥ g
vv e &N T e "o VoW PV
S oo
v v v vgvvv e a & e o 7 w
v e
08"vv T v '. ol e ® ® o. .o vv % ‘
| o % . *® . e? ¥ 4 @ ° o e v v
v‘ & v o o° s ° .e v“
067, ; R o W SR :
- vvv . . ‘ L - °* ° . .'. o. -~ 'Vv
v . e v
?v K - o o'qg.. ." { ® o g
ke ® e P v c* . -~ * - o‘o. -
04F » 8 N ® b2 v v o a® @ . o .
™ 4 a . N wv e ¥ vOw %v & G- * 3
v
' hU y " yw g A vv'?‘%vt?v s i el %
L3 L3
e® R e v g v ¥ u .o " o
02?00 L i o, v : i oW oV . el "
. °. - - v - v % % w - o
ess o '0..0 vV e o TeovVe g v v YV v N gl
- N :"?v%"w vg? vv "" - vvv . o.
0". e - £ L v vv, S I
y . Vo, w¥_ w7 Be & 39
e, o FgRaw ¥ 7 SR ¥ Ty X w» -
) .' ee’ e Wiy vVg Vo © . e .
-02:,. Wy o N v v ¥ A G TN - .« * . . e
e . .'.' oy v¥W A)\ St o e "ee
v s B eee " e ¥ v wH W 2 . v
v . . v
DAl e R . o ¥ i VeI s L S
v . ."-v.$' il w?v o o* -
-
- v @ ° v'§7 v A @ .. .0 .v o
v - 9 et *e ... e L v
w v s 9 BTt Wy d
,06? = ® .., T Y ® 2 . e o = S v
- .
v I s TSI E > ¥ oV
v X g o a® s . . .~o v v
P W W . - g v
-08Fv Ve ¥ e Can ® ee o o & 3%3
e 7" Y : o e S + 4%
. * -
® e ¥e ¥ : v 5" 3 - Gt e X ¥ ¥y y
1 v @ vV o 1 o g ee e | Y = 1'7;;:9 - 2 =

qu

e Decision Trees

Circular points:

0.5 = sqrt(x;2+x,2) <1

Triangular points:
sqrt(x,;%+x,%2) >1 or

sqrt(x,;2+x,%) < 0.5

