
Lecture outline
• Decision-tree classification



Decision Trees
• Decision tree 

– A flow-chart-like tree structure
– Internal node denotes a test on an attribute
– Branch represents an outcome of the test
– Leaf nodes represent class labels or class distribution

• Decision tree generation consists of two phases
– Tree construction

• At start, all the training examples are at the root
• Partition examples recursively based on selected attributes

– Tree pruning
• Identify and remove branches that reflect noise or outliers

• Use of decision tree: Classifying an unknown sample
– Test the attribute values of the sample against the decision tree



Training 
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Constructing decision trees
• Exponentially many decision trees can be 

constructed from a given set of attributes

• Finding the most accurate tree is NP-hard

• In practice: greedy algorithms
• Grow a decision tree by making a series of locally 

optimum decisions on which attributes to use for 
partitioning the data



Constructing decision trees: 
the Hunt’s algorithm

• Xt: the set of training records for node t
• y={y1,…,yc}: class labels
• Step 1: If all records in Xt belong to the same class 

yt, then t is a leaf node labeled as yt

• Step 2: If Xt contains records that belong to more 
than one class, 
– select attribute test condition to partition the 

records into smaller subsets
– Create a child node for each outcome of test 

condition
– Apply algorithm recursively for each child



Decision-tree construction 
(Example)



Design issues
• How should the training records be 

split?

• How should the splitting procedure 
stop?



Splitting methods
• Binary attributes



Splitting methods
• Nominal attributes



Splitting methods
• Ordinal attributes



Splitting methods
• Continuous attributes



Selecting the best split
• p(i|t): fraction of records belonging to class i
• Best split is selected based on the degree of 

impurity of the child nodes
– Class distribution (0,1) has high purity
– Class distribution (0.5,0.5) has the 

smallest purity (highest impurity)

• Intuition: high purity  small value of 
impurity measures  better split



Selecting the best split



Selecting the best split: 
Impurity measures

• p(i|t): fraction of records associated 
with node t belonging to class i

Entropy(t) = �
cX

i=1

p(i|t) log p(i|t)

Gini(t) = 1�
cX

i=1

[p(i|t)]2

Classification-Error(t) = 1�max

i
[p(i|t)]



Range of impurity measures



Impurity measures
• In general the different impurity measures are 

consistent
• Gain of a test condition: compare the impurity 

of the parent node with the impurity of the child 
nodes 

• Maximizing the gain == minimizing the 
weighted average impurity measure of children 
nodes

• If I() = Entropy(), then Δinfo is called 
information gain

� = I(parent)�
kX

j=1

N(vj)

N
I(vj)



Computing gain: example



Is minimizing impurity/ 
maximizing Δ enough?



Is minimizing impurity/ 
maximizing Δ enough?

• Impurity measures favor attributes with 
large number of values

• A test condition with large number of 
outcomes may not be desirable
– # of records in each partition is too small 

to make predictions



Gain ratio
• Gain ratio = Δinfo/Splitinfo

• SplitInfo = -Σi=1…kp(vi)log(p(vi))
• k: total number of splits
• If each attribute has the same number 

of records, SplitInfo = logk 
• Large number of splits  large 

SplitInfo  small gain ratio



Constructing decision-trees 
(pseudocode)

GenDecTree(Sample S, Features F)
1. If stopping_condition(S,F) = true then

a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf   

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value vєV:

a. Sv: = {s | root.test_condition(s) = v and s є S};
b. child = TreeGrowth(Sv ,F) ;
c. Add child as a descent of root and label the edge (rootchild) 

as v 



Stopping criteria for tree 
induction

• Stop expanding a node when all the 
records belong to the same class

• Stop expanding a node when all the 
records have similar attribute values

• Early termination



Advantages of decision trees
• Inexpensive to construct
• Extremely fast at classifying unknown 

records
• Easy to interpret for small-sized trees
• Accuracy is comparable to other 

classification techniques for many 
simple data sets



Example: C4.5 algorithm
• Simple depth-first construction.
• Uses Information Gain
• Sorts Continuous Attributes at each 

node.
• Needs entire data to fit in memory.
• Unsuitable for Large Datasets.

• You can download the software from:
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz


Practical problems with 
classification

• Underfitting and overfitting
• Missing values
• Cost of classification



Overfitting and underfitting

Underfitting: when model is too simple, both training and test 
errors are large 



Overfitting due to noise

Decision boundary is distorted by 
noise point



Underfitting due to insufficient 
samples

Lack of data points in the lower half of the diagram makes it 
difficult to predict correctly the class labels of that region 
- Insufficient number of training records in the region 
causes the decision tree to predict the test examples using 
other training records that are irrelevant to the classification 
task



Overfitting: course of action
• Overfitting results lead to decision 

trees that are more complex than 
necessary

• Training error no longer provides a 
good estimate of how well the tree will 
perform on previously unseen records

• Need new ways for estimating errors



Methods for estimating the 
error

• Re-substitution errors: error on training (Σ e(t) )
• Generalization errors: error on testing (Σ e’(t))
• Methods for estimating generalization errors:
– Optimistic approach:  e’(t) = e(t)
– Pessimistic approach: 

•   For each leaf node: e’(t) = (e(t)+0.5) 
•   Total errors: e’(T) = e(T) + N × 0.5 (N: number of leaf 

nodes)
•   For a tree with 30 leaf nodes and 10 errors on training 

    (out of 1000 instances):
          Training error = 10/1000 = 1%

          Generalization error = (10 + 30×0.5)/1000 = 2.5%
– Reduced error pruning (REP):

•  uses validation data set to estimate generalization
    error



Addressing overfitting: 
Occam’s razor

• Given two models of similar generalization 
errors,  one should prefer the simpler model 
over the more complex model

•  For complex models, there is a greater 
chance that it was fitted accidentally by 
errors in data

•  Therefore, one should include model 
complexity when evaluating a model



Addressing overfitting: 
postprunning

– Grow decision tree to its entirety
– Trim the nodes of the decision tree in a 

bottom-up fashion
– If generalization error improves after 

trimming, replace sub-tree by a leaf node.
– Class label of leaf node is determined 

from majority class of instances in the 
sub-tree

– Can use MDL for post-pruning



Addressing overfitting: 
preprunning

• Stop the algorithm before it becomes a 
fully-grown tree

• Typical stopping conditions for a node:
•  Stop if all instances belong to the same class
•  Stop if all the attribute values are the same

• More restrictive conditions:
•  Stop if number of instances is less than some user-

specified threshold
• Stop if expanding the current node does not improve 

impurity
    measures (e.g., Gini or information gain).



Decision boundary for decision 
trees

• Border line between two neighboring regions of different classes is 
known as decision boundary
• Decision boundary in decision trees is parallel to axes because test 
condition involves a single attribute at-a-time



Oblique Decision Trees

x + y < 1

Class = + Class =     

• Test condition may involve multiple attributes
• More expressive representation
• Finding optimal test condition is computationally expensiveNot all datasets can be partitioned optimally 

using test conditions involving single attributes!



Oblique Decision Trees

Circular points:
0.5 ≤ sqrt(x1

2+x2
2) ≤ 1

Triangular points:
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