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 Decision-tree classibpcation



Decision Trees

* Decision tree
— A RBow-chart-like tree structure
— Internal node denotes a test on an attribute
— Branch represents an outcome of the test
— Leaf nodes represent class labels or class distribution
* Decision tree generation consists of two phases
— Tree construction
* At start, all the training examples are at the root
» Partition examples recursively based on selected attributes
— Tree pruning
* ldentify and remove branches that ref3ect noise or outliers
* Use of decision tree: Classifying an unknown sample
— Test the attribute values of the sample against the decision tree
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Constructing decision trees

* Exponentially many decision trees can be
constructed from a given set of attributes

* Finding the most accurate tree is NP-hard

* In practice: greedy algorithms

« Grow a decision tree by making a series of locally
optimum decisions on which attributes to use for
partitioning the data



Constructing decision trees:
the HuntOs algorithm

X,: the set of training records for node t
y={yy...,Y}: class labels

Step 1:If all records in X, belong to the same class
Y., then tis a leaf node labeled as vy,

Step 2: If X, contains records that belong to more
than one class,

— select attribute test condition to partition the
records into smaller subsets

— Create a child node for each outcome of test
condition

— Apply algorithm recursively for each child



Decision-tree construction
(Example)
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Figure 4.6. Training set for predicting borrowers who will default on loan payments.
Figure 4.7. Hunf's algorithen for inducing decision trees,




Design Issues

* How should the training records be
split?

* How should the splitting procedure
stop?



Splitting methods

* Binary attributes
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Figure 4.8. Test condition for binary attributes.



Splitting methods

* Nominal attributes

/" Marital )
. a
\ Status /
\\\ ) -”_‘___/
Single Divorced Married

(a) Multiway split

P

7 Marital /" Marital " Marital \\-x
\_ Status / \_ Status /" \_ Status /
OR OR N
{Married} {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

(b) Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.



Splitting methods

* Ordinal attributes
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Figure 4.10. Different ways of grouping ordinal attribute values.



Splitting methods

 Continuous attributes
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Figure 4.11. Test condition for continuous attributes.



Selecting the best split

p(i|t): fraction of records belonging to class i

Best split is selected based on the degree of
Impurity of the child nodes

— Class distribution  (0,1) has high purity

— Class distribution  (0.5,0.5) has the
smallest purity (highest impurity)

Intuition: high purity -> small value of
Impurity measures -> better split



Selecting the best split
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Selecting the best split:
Impurity measures

* p(i|t): fraction of records associated
with node t belonging to class |

Entropy(t) = — ) _p(ilt) log p(ilt)
1=1

Gini(t) = 1Y [p(i|t)]?

1=1

Classification-Error(t) = 1 — max|p(2|t)]



Range of impurity measures
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Figure 4.13. Comparison among the impurity measures for binary classification problems.



Impurity measures

In general the dilerent impurity measures are
consistent

Gain of a test condition: compare the impurity
of the parent node with the impurity of the child

nodes k
N (v;)
J
A = I(parent) — Z N I(v;)
7=1

Maximizing the gain == minimizing the
weighted average impurity measure of children
nodes

If I() = Entropy(), then A
information gain

info 1S called



Computing gain: example
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Figure 4.14. Splitting binary attributes.



IS minimizing impurity/
maximizing A enough?
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Figure 4.12. Multiway versus binary splits.



IS minimizing impurity/
maximizing A enough?

* Impurity measures favor attributes with
large number of values

* A test condition with large number of
outcomes may not be desirable

— # of records in each partition is too small
to make predictions



Galin ratio

Gain ratio = /Splitinfo

mfo

Splitinfo = -2._, . p(vi)log(p(v,))
k: total number of splits

If each attribute has the same number
of records, Splitinfo = logk

Large number of splits - large
Splitinfo = small gain ratio



Constructing decision-trees
(pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping _condition(S,F) =true then
a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value veV:
a. S, = {s | root.test_condition(s) = vand s € S};
b. child = TreeGrowth(S, ,F);

c. Add child as a descent of root and label the edge (root->child)
as v



Stopping criteria for tree
Induction

* Stop expanding a node when all the
records belong to the same class

* Stop expanding a node when all the
records have similar attribute values

* Early termination



Advantages of decision trees

* Inexpensive to construct

* Extremely fast at classifying unknown
records

* Easy to interpret for small-sized trees

* Accuracy Is comparable to other
classibcation techniques for many
simple data sets



Example: C4.5 algorithm

Simple depth-Prst construction.
Uses Information Gain

Sorts Continuous Attributes at each
node.

Needs entire data to bt in memory.
Unsuitable for Large Datasets.

You can download the software from:


http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical problems with
classibcation

* Underbtting and overptting
* Missing values
* Cost of classibcation



Overbtting and underbptting
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20 Test set 7
15+ -
10 F s i
5 L 1 L 1 1
0 50 100 150 200 250 200

Number of nodes

Underfitting: when model is too simple, both training and test
errors are large



Overbptting due to noise
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Underptting due to Iinsu'cient
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Lack of data points in the lower half of the diagram makes it
di"cult to predict correctly the class labels of that region

- Insu"cient number of training records in the region

causes the decision tree to predict the test examples using
other training records that are irrelevant to the classibcation
task



Overbtting: course of action

* Overbtting results lead to decision
trees that are more complex than
necessary

* Training error no longer provides a
good estimate of how well the tree will
perform on previously unseen records

* Need new ways for estimating errors



Methods for estimating the
error

e Re-substitution errors:  error on training (= e(t) )
« Generalization errors: error on testing (= e’(t))

* Methods for estimating generalization errors:
— Optimistic approach: e’(t) = e(t)
— Pessimistic approach:

* For each leaf node: e’(t) = (e(t)+0.5)

« Total errors: €’(T) = e(T) + N x 0.5 (N: number of leaf
nodes)

* For atree with 30 leaf nodes and 10 errors on training
(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30 x0.5)/1000 = 2.5%

— Reduced error pruning (REP):

« uses validation data set to estimate generalization
error



Addressing overptting:
OccamOs razor

* Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

* For complex models, there Is a greater
chance that it was btted accidentally by
errors in data

 Therefore, one should include model
complexity when evaluating a model



Addressing overptting:
postprunning

— Grow decision tree to its entirety

— Trim the nodes of the decision tree Iin a
bottom-up fashion

— If generalization error improves after
trimming, replace sub-tree by a leaf node.

— Class label of leaf node 1s determined
from majority class of instances in the
sub-tree

— Can use MDL for post-pruning



Addressing overptting:
preprunning

* Stop the algorithm before it becomes a
fully-grown tree

* Typical stopping conditions for a node:

« Stop if all instances belong to the same class
« Stop if all the attribute values are the same

 More restrictive conditions:

« Stop if number of instances is less than some user-
specibed threshold

« Stop if expanding the current node does not improve
impurity
measures (e.g., Gini or information gain).




Decision boundary for decision
trees

¥ Border line between two neighboring regions of dilerent classes is
known as decision boundary

¥ Decision boundary in decision trees is parallel to axes because test
condition involves a single attribute at-a-time
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Oblique Decision Trees

Not all datasets can be partitioned optimally
using test conditions involving single attributes!
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e Decision Trees

Circular points:

0.5 = sqrt(x;2+x,2) <1

Triangular points:
sqrt(x;%2+x,2) >1 or

sqrt(x,;2+x,%) < 0.5



