| ecture outline

 Decision-tree classibpcation

Decision Trees

* Decision tree
— A RBow-chart-like tree structure
— Internal node denotes a test on an attribute
— Branch represents an outcome of the test
— Leaf nodes represent class labels or class distribution
* Decision tree generation consists of two phases
— Tree construction
* At start, all the training examples are at the root
» Partition examples recursively based on selected attributes
— Tree pruning
* ldentify and remove branches that ref3ect noise or outliers
* Use of decision tree: Classifying an unknown sample
— Test the attribute values of the sample against the decision tree

Training

income [student| credit ratin

Output: A Decision Tree for

age?
</= 30/ 30..40 >40
student? yes crehating?
/
no \yes exce{ent >air

no YES no YES

Constructing decision trees

* Exponentially many decision trees can be
constructed from a given set of attributes

* Finding the most accurate tree is NP-hard

* In practice: greedy algorithms

« Grow a decision tree by making a series of locally
optimum decisions on which attributes to use for
partitioning the data

Constructing decision trees:
the HuntOs algorithm

X,: the set of training records for node t
y={yy...,Y}: class labels

Step 1:If all records in X, belong to the same class
Y., then tis a leaf node labeled as vy,

Step 2: If X, contains records that belong to more
than one class,

— select attribute test condition to partition the
records into smaller subsets

— Create a child node for each outcome of test
condition

— Apply algorithm recursively for each child

Decision-tree construction
(Example)

\Omner /
r 2 Yes .~ No
i\°°\ ooe, Defaulted = No
9‘* ego (\i‘o\) & . iDetauhed:Na ‘ Defauled = No
o & o® - I J
(a) (b
Tig Home Martal Annual Defaulted 2 |
Owner Status Income Borrower / Fome™
1 |Yes |Single |125K |No \ Owner /
2 |No |Marmied | 100K |No Yes .~ No
3 |No Single |70K |No p oy P — = Ma ~
- home glaulted = N /- Maria
4 |Yes |Marmied | 120K |No Owe, Doted=e | ute
5 |No |Divorced |95K |Yes ™ Sgh, 7 Marid
6 |No Married | 60K No D-f‘??ﬁ-;j_'_;
7 |Yes |Divorced 220K |No Dchulod =No | (‘18! (Aunualy | Defauted = No
: Status / \Uncome,/ | .
el el Singe, "\ Maried <BOK N o= BK
9 |No Married | 75K No Divorced
10 |No Single [90K |Yes Defaulled =Yes | | Defaulled=No | | Defauted=No || Defaulied = Yes
(c) (d)

Figure 4.6. Training set for predicting borrowers who will default on loan payments.
Figure 4.7. Hunf's algorithen for inducing decision trees,

Design Issues

* How should the training records be
split?

* How should the splitting procedure
stop?

Splitting methods

* Binary attributes

/7~ Body "\
".\T.e mpe ratur?/,,."

/\,

Warm- Cold-
blooded blooded

Figure 4.8. Test condition for binary attributes.

Splitting methods

* Nominal attributes

/" Marital)
. a
\ Status /
\\\) -”_‘___/
Single Divorced Married

(a) Multiway split

P

7 Marital /" Marital " Marital \\-x
_ Status / _ Status /" _ Status /
OR OR N
{Married} {Single, {Single} {Married, {Single, {Divorced}
Divorced} Divorced} Married}

(b) Binary split {by grouping attribute values}

Figure 4.9. Test conditions for nominal attributes.

Splitting methods

* Ordinal attributes

/" shit /" shit /" shit O\

\ Size) _ Size) \ Size)
{Small, {Large, {Small} {Medium, Large, {Small, {(Medium,
Medium} Extra Large} Extra Large)} Large) Extra Large}

(a) (b) (c)

Figure 4.10. Different ways of grouping ordinal attribute values.

Splitting methods

 Continuous attributes

Income | [Annual

_ > 80K Income

Yﬂo W

(10K, 25K} {25K, 50K} (50K, 80K]
(a) (b)

Figure 4.11. Test condition for continuous attributes.

Selecting the best split

p(i|t): fraction of records belonging to class i

Best split is selected based on the degree of
Impurity of the child nodes

— Class distribution (0,1) has high purity

— Class distribution (0.5,0.5) has the
smallest purity (highest impurity)

Intuition: high purity -> small value of
Impurity measures -> better split

Selecting the best split

C0:6|(|C0: 4
C1:4|(C1:6

Selecting the best split:
Impurity measures

* p(i|t): fraction of records associated
with node t belonging to class |

Entropy(t) = —) _p(ilt) log p(ilt)
1=1

Gini(t) = 1Y [p(i|t)]?

1=1

Classification-Error(t) = 1 — max|p(2|t)]

Range of impurity measures

0.9+ -
Entropy

2 ,’——_;."-‘~‘\
Gini_-- S N
- . ~ ~
/.’ ‘N SO -
. ~ ~
/', '~ SN
P ~. S
~ ~ -1
® ~
e \.\ N
-~~~ Misclassification error S\ i
“ N
N, \\
~, \
~, \ n
SSERN
\I
0E L 1 1 1 L 1 1 .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

Figure 4.13. Comparison among the impurity measures for binary classification problems.

Impurity measures

In general the dilerent impurity measures are
consistent

Gain of a test condition: compare the impurity
of the parent node with the impurity of the child

nodes k
N (v;)
J
A = I(parent) — Z N I(v;)
7=1

Maximizing the gain == minimizing the
weighted average impurity measure of children
nodes

If I() = Entropy(), then A
information gain

info 1S called

Computing gain: example

Parent
CcO 6
C1 6
Gini = 0.500
A N\ e N\

A (B :
"/ N
Yes No Yes No
Node N1 Node N2 Node N1 Node N2

N1 | N2 N1 || N2
Co| 4 2 co| 1 5
Ci| 3 3 Ci| 4 2
Gini = 0.486 Gini = 0.375

Figure 4.14. Splitting binary attributes.

IS minimizing impurity/
maximizing A enough?

/ ‘\, / --C—ar‘_ /Custome\
N e/ \.b_“

C0:6/|CO0: 4
Ci1:4||C1:6

(@)

Figure 4.12. Multiway versus binary splits.

IS minimizing impurity/
maximizing A enough?

* Impurity measures favor attributes with
large number of values

* A test condition with large number of
outcomes may not be desirable

— # of records in each partition is too small
to make predictions

Galin ratio

Gain ratio = /Splitinfo

mfo

Splitinfo = -2._, . p(vi)log(p(v,))
k: total number of splits

If each attribute has the same number
of records, Splitinfo = logk

Large number of splits - large
Splitinfo = small gain ratio

Constructing decision-trees
(pseudocode)

GenDecTree(Sample S, Features F)

1. If stopping _condition(S,F) =true then
a. leaf = createNode()
b. leaf.label= Classify(S)
c. return leaf

2. root = createNode()
3. root.test_condition = findBestSplit(S,F)
4. V = {v| v a possible outcome of root.test_condition}
5. for each value veV:
a. S, = {s | root.test_condition(s) = vand s € S};
b. child = TreeGrowth(S, ,F);

c. Add child as a descent of root and label the edge (root->child)
as v

Stopping criteria for tree
Induction

* Stop expanding a node when all the
records belong to the same class

* Stop expanding a node when all the
records have similar attribute values

* Early termination

Advantages of decision trees

* Inexpensive to construct

* Extremely fast at classifying unknown
records

* Easy to interpret for small-sized trees

* Accuracy Is comparable to other
classibcation techniques for many
simple data sets

Example: C4.5 algorithm

Simple depth-Prst construction.
Uses Information Gain

Sorts Continuous Attributes at each
node.

Needs entire data to bt in memory.
Unsuitable for Large Datasets.

You can download the software from:

http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz
http://www.cse.unsw.edu.au/~quinlan/c4.5r8.tar.gz

Practical problems with
classibcation

* Underbtting and overptting
* Missing values
* Cost of classibcation

Overbtting and underbptting

Training set
20 Test set 7
15+ -
10 F s i
5 L 1 L 1 1
0 50 100 150 200 250 200

Number of nodes

Underfitting: when model is too simple, both training and test
errors are large

Overbptting due to noise

4
35F
3t

25} @ L

N
T

Noise point
15F ¢

05} ® "

Decision boundary is distorted by
noise noint

Underptting due to Iinsu'cient

4 ‘ -
35+ X -

3r X
25 0o & X

°f Misclassified
15} O<— points

1- . O/ \ X 4
05} o O

| Q

0 05 1 15 2 25 3 35 4

Lack of data points in the lower half of the diagram makes it
di"cult to predict correctly the class labels of that region

- Insu"cient number of training records in the region

causes the decision tree to predict the test examples using
other training records that are irrelevant to the classibcation
task

Overbtting: course of action

* Overbtting results lead to decision
trees that are more complex than
necessary

* Training error no longer provides a
good estimate of how well the tree will
perform on previously unseen records

* Need new ways for estimating errors

Methods for estimating the
error

e Re-substitution errors: error on training (= e(t))
« Generalization errors: error on testing (= e’(t))

* Methods for estimating generalization errors:
— Optimistic approach: e’(t) = e(t)
— Pessimistic approach:

* For each leaf node: e’(t) = (e(t)+0.5)

« Total errors: €’(T) = e(T) + N x 0.5 (N: number of leaf
nodes)

* For atree with 30 leaf nodes and 10 errors on training
(out of 1000 instances):
Training error = 10/1000 = 1%

Generalization error = (10 + 30 x0.5)/1000 = 2.5%

— Reduced error pruning (REP):

« uses validation data set to estimate generalization
error

Addressing overptting:
OccamOs razor

* Given two models of similar generalization
errors, one should prefer the simpler model
over the more complex model

* For complex models, there Is a greater
chance that it was btted accidentally by
errors in data

 Therefore, one should include model
complexity when evaluating a model

Addressing overptting:
postprunning

— Grow decision tree to its entirety

— Trim the nodes of the decision tree Iin a
bottom-up fashion

— If generalization error improves after
trimming, replace sub-tree by a leaf node.

— Class label of leaf node 1s determined
from majority class of instances in the
sub-tree

— Can use MDL for post-pruning

Addressing overptting:
preprunning

* Stop the algorithm before it becomes a
fully-grown tree

* Typical stopping conditions for a node:

« Stop if all instances belong to the same class
« Stop if all the attribute values are the same

 More restrictive conditions:

« Stop if number of instances is less than some user-
specibed threshold

« Stop if expanding the current node does not improve
impurity
measures (e.g., Gini or information gain).

Decision boundary for decision
trees

¥ Border line between two neighboring regions of dilerent classes is
known as decision boundary

¥ Decision boundary in decision trees is parallel to axes because test
condition involves a single attribute at-a-time

P o" o % 0 T T il i
e e e e
09 3 °°..J s PR " o® %2, °83-
1+ i e o o 2
Bl 4 -
-¥-+f¢+ = “.. * .. L]‘
L *"H.-*.*' + + > e L PN
osf | 4 N e e g
S s * T B . - P 3
05 T4 + + WS T N .
+ + + 4 A\ < ®
Db adl® ® AL n s & ..
P +.7% ' oY e e
T 4 + H s % I
03F + e g } i 0‘. .
3 Tap N THY e R
0.2 + o : *%s
s - T el .00-
[¥ *+ ; = & + \@
-+ -+ ns 4
0.1 4 $+ #++ by :it rf + +1*, TP &
U -H:tEn"' + 4 - 1+ 1 1 ++: I
0 0.1 02 03 04 05 06 07 0g 09 1

Oblique Decision Trees

Not all datasets can be partitioned optimally
using test conditions involving single attributes!

Obliqu

1 v . g
¥ W o v % v
v v v % ™ - e v %
‘é v v vy S S MR o Y9y YV won WOV
o'’ v v o ¥V o * o w
087 did st ' - L Vo
Ve v v '. ol e ® ® . ™ o % ‘
| P ¥ i . s ¥ 4 0 ® o 0 v v
v . 0..Q ° = - o .e o
v . b e ° ® 9
06”‘79"" s ®e = ¥ 2.8 ...' i R o el
. . v
i L3
Ry § LR owy" R
ke ® e P v c* . -~ * - o‘o. -
04F » 8 N ® b2 v v F e . o .
N4 a . N wv v vvov Yo .. G- S -
r ol 8 ey Y P Wy W
1 . g v ¥ 0W e,
02k o.o o W o 2 4 - Wy YUY g 8 .“- .
P .o’.. ® vv . :’v o v o ‘;7"% v g . . Ly
ess o '0..0 v v A TeovVe g v v YV v N gl
L .
ok ek :v?vgv o« E’vv & S vv ., y
r L vv vv vv v
. v .
e, . gow ‘;'v vgvv .Y FWe »v¥ = ”
3 . e’ e - V o v vV Vo © - e .
-02;, .‘. ° . °. vﬁv& v v v & e %, o o -
s » e ° '0 . vy v¥ 3 V'v %d’o. g
v s ® cer ¥ r P vvY wg 2 » . v
e ® o v T . . v
04F oo "0 ot WTy T TGl o P AT
LS . ¥ v§ v:;v . ™ ® o & o v
¢ o ¥ S ° . -
vvvv' b ot Te ..o: ."...' : va
_06§' 2 ® .., % U & .0: e o . ® . ¥ v
L
- . . . L3
v X g o P A E ...s. vo"’ oV
v v
08ET" #ix T Mawut P kT8 LWy Tley RF N
vV o : L < gv% g
v & - . . ee © vwv = v -~
T e % e g S ”: i4 ‘?v .
-1 v v o 1 v g ee e | Y oo LYW - =
-1 -05 0 05 1

e Decision Trees

Circular points:

0.5 = sqrt(x;2+x,2) <1

Triangular points:
sqrt(x;%2+x,2) >1 or

sqrt(x,;2+x,%) < 0.5

