Measuring distance/similarity of data objects
Multiple data types

- Records of users
- Graphs
- Images
- Videos
- Text (webpages, books)
- Strings (DNA sequences)
- Timeseries

How do we compare them?
Feature space representation

• Usually data objects consist of a set of attributes (also known as dimensions)

• J. Smith, 20, 200K

• If all d dimensions are real-valued then we can visualize each data point as points in a d-dimensional space

• If all d dimensions are binary then we can think of each data point as a binary vector
Distance functions

- The distance $d(x, y)$ between two objects x and y is a metric if
 - $d(i, j) \geq 0$ (non-negativity)
 - $d(i, i) = 0$ (isolation)
 - $d(i, j) = d(j, i)$ (symmetry)
 - $d(i, j) \leq d(i, h) + d(h, j)$ (triangular inequality) [Why do we need it?]

- The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.

- Weights may be associated with different variables based on applications and data semantics.
Data Structures

• **data matrix**

\[
\begin{bmatrix}
 x_{11} & \ldots & x_{1l} & \ldots & x_{1d} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{i1} & \ldots & x_{il} & \ldots & x_{id} \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 x_{n1} & \ldots & x_{nl} & \ldots & x_{nd}
\end{bmatrix}
\]

• **Distance matrix**

\[
\begin{bmatrix}
 0 & d(2,1) & 0 \\
 d(2,1) & 0 & d(3,2) \\
 \vdots & \vdots & \vdots \\
 d(n,1) & d(n,2) & \ldots & \ldots & 0
\end{bmatrix}
\]
Distance functions for real-valued vectors

- \(L_p \) norms or Minkowski distance:

\[
L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}
\]

- \(p = 1, L_1 \), Manhattan (or city block) or Hamming distance:

\[
L_1(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i| \right)
\]
Distance functions for real-valued vectors

- L_p norms or Minkowski distance:

$$L_p(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i|^p \right)^{\frac{1}{p}}$$

- $p = 2$, L_2, Euclidean distance:

$$L_2(x, y) = \left(\sum_{i=1}^{d} (x_i - y_i)^2 \right)^{1/2}$$
Distance functions for real-valued vectors

- Dot product or cosine similarity

\[
\cos(x, y) = \frac{x \cdot y}{||x|| ||y||}
\]

- Can we construct a distance function out of this?
- When use the one and when the other?
Hamming distance for 0–1 vectors

$$L_1(x, y) = \left(\sum_{i=1}^{d} |x_i - y_i| \right)$$
How good is Hamming distance for 0–1 vectors?

• Drawback

• Documents represented as sets (of words)
• Two cases
 – Two very large documents -- almost identical -- but for 5 terms
 – Two very small documents, with 5 terms each, disjoint
Distance functions for binary vectors or sets

- **Jaccard** similarity between binary vectors x and y (Range?)

 $$ \text{JSim}(x, y) = \frac{|x \cap y|}{|x \cup y|} $$

- **Jaccard** distance (Range?):

 $$ \text{JDist}(x, y) = 1 - \frac{|x \cap y|}{|x \cup y|} $$
The previous example

• Case 1 (very large almost identical documents)
 \[J(x, y) \approx 1 \]

• Case 2 (small disjoint documents)
 \[J(x, y) = 0 \]
Jaccard similarity/distance

• Example:
 • JSim = 1/6
 • Jdist = 5/6

<table>
<thead>
<tr>
<th></th>
<th>Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>Q5</th>
<th>Q6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Distance functions for strings

- **Edit distance** between two strings x and y is the \min number of operations required to transform one string to another.

- Operations: replace, delete, insert, transpose etc.
Distance functions between strings

• Strings x and y have equal length
• Modification of Hamming distance
• Add 1 for all positions that are different

$\begin{align*}
\text{x} & : c\ g\ t\ a\ a\ c\ g \\
\text{y} & : g\ a\ t\ t\ t\ a\ c\ a
\end{align*}$

• Hamming distance $= 4$
• Drawbacks?
Hamming distance between strings -- drawbacks

• Strings should have equal length

• What about

\[
\begin{array}{cccccccc}
 x & a & g & a & t & t & a & c \\
 y & g & a & t & t & a & c & a \\
\end{array}
\]

• String Hamming distance = 6
Edit Distance

- **Edit distance** between two strings x and y of length n and m resp. is the *minimum* number of single-character edits (insertion, deletion, substitution) required to change one word to the other.
Example

• INTENTION
• EXECUTION

• INTENTION
• EXECUTION

• d s s i s
Computing the edit distance

• Dynamic programming
• Form nxm distance matrix D (x of length n, y of length m)

D y

x

• $D(i,j)$ is the optimal distance between strings $x[1..i]$ and $y[1..j]$
Computing the edit distance

• How to compute $D(i,j)$?

• Either
 – match the last two characters (substitution)
 – match by deleting the last char in one string
 – match by deleting the last character in the other string
Computing edit distance

\[D(i, j) = \min \{ D(i - 1, j) + \text{del}(X[i]), \]
\[D(i, j - 1) + \text{ins}(Y[j]), \]
\[D(i - 1, j - 1) + \text{sub}(X[i], Y[j]) \} \]

- Running time? Metric?
Distance function between time series

• time series can be seen as vectors
• apply existing distance metrics
• L–norms

• what can go wrong?
Distance functions between time series

- Euclidean distance between time series

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

- Alleviate the problems with Euclidean distance

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

- Quite useful in practice

Sign language

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

- how to compute it?
- Dynamic programming

figures from Eamonn Keogh www.cs.ucr.edu/~eamonn/DTW_myths.ppt
Dynamic time warping

• constraints for more efficient computation

figures from Eamonn Keogh [www.cs.ucr.edu/~eamonn/DTW_myths.ppt]