
Measuring distance/
similarity of data objects



Multiple data types
• Records of users
• Graphs
• Images
• Videos
• Text (webpages, books)
• Strings (DNA sequences)
• Timeseries
• How do we compare them?



Feature space representation
• Usually data objects consist of a set of 

attributes (also known as dimensions)

• J. Smith, 20, 200K

• If all d dimensions are real-valued then we 
can visualize each data point as points in a 
d-dimensional space

• If all d dimensions are binary then we can 
think of each data point as a binary vector  



Distance functions
• The distance d(x, y) between two objects xand y is a 

metric if

– d(i, j)≥0 (non-negativity)
– d(i, i)=0 (isolation)
– d(i, j)= d(j, i) (symmetry)
– d(i, j) ≤ d(i, h)+d(h, j) (triangular inequality) [Why do we 

need it?]

• The definitions of distance functions are usually 
different for real, boolean, categorical, and ordinal 
variables.

• Weights may be associated with different variables 
based on applications and data semantics.



Data Structures
• data matrix

• Distance matrix
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Distance functions for real-valued 
vectors

• Lp norms or Minkowski distance:

• p = 1, L1, Manhattan (or city block) or Hamming 
distance:

Lp(x, y) =

 
dX

i=1

|xi � yi|p
! 1

p

L1(x, y) =

 
dX

i=1

|xi � yi|
!



Distance functions for real-valued 
vectors

• Lp norms or Minkowski distance:

• p = 2, L2, Euclidean  distance:

Lp(x, y) =

 
dX

i=1

|xi � yi|p
! 1

p

L2(x, y) =

 
dX

i=1

(xi � yi)
2
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Distance functions for real-valued 
vectors

• Dot product or cosine similarity

• Can we construct a distance function out of this?

• When use the one and when the other?

cos(x, y) =

x · y
||x||||y||



Hamming distance for 0-1 vectors

x 0 1 0 0 1 0 0 1 0

y 1 0 0 0 0 1 0 1 1

L1(x, y) =

 
dX

i=1

|xi � yi|
!



How good is Hamming distance for 
0-1 vectors?

• Drawback

• Documents represented as sets (of words)
• Two cases

– Two very large documents -- almost identical -- 
but for 5 terms

– Two very small documents, with 5 terms each, 
disjoint 
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Distance functions for binary 
vectors or sets

• Jaccard similarity between binary vectors x and y 
(Range?)

• Jaccard distance (Range?):

JSim(x, y) =
|x \ y|
|x [ y|

JDist(x, y) = 1� |x \ y|
|x [ y|

x

y



The previous example
• Case 1 (very large almost identical documents)

• Case 2 (small disjoint documents)
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Jaccard similarity/distance
Q1 Q2 Q3 Q4 Q5 Q6

X 1 0 0 1 1 1
Y 0 1 1 0 1 0

• Example:
• JSim = 1/6
• Jdist =  5/6



Distance functions for strings
• Edit distance between two strings x 

and y is the min number of operations 
required to transform one string to 
another

• Operations: replace, delete, insert, 
transpose etc.



Distance functions between strings

• Strings x and y have equal length
• Modification of Hamming distance
• Add 1 for all positions that are different

• Hamming distance = 4
• Drawbacks?
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x c g t a a c g
y g a t t a c a



Hamming distance between strings 
-- drawbacks

• Strings should have equal length

• What about

• String Hamming distance = 6

x a g a t t a c
y g a t t a c a



Edit Distance

• Edit distance between two strings x and 
y of length n and m resp. is the minimum 
number of single-character edits 
(insertion, deletion, substitution) required 
to change one word to the other



Example
• I N T E N T I O N
• E X E C U T I O N

• I N T E * N T I O N
• * E X E C U T I O N
• d s s    i  s



Computing the edit distance
• Dynamic programming
• Form nxm distance matrix D (x of length n, y of length m)

• D(i,j) is the optimal distance between strings x[1..i] 
and y[1..j]
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Computing the edit distance

• How to compute D(i,j)?
• Either
–match the last two characters 

(substitution)
–match by deleting the last char in one 

string
–match by deleting the last character in the 

other string
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Computing edit distance

D(i, j) = min{D(i� 1, j) + del(X[i]),

D(i, j � 1) + ins(Y [j]),

D(i� 1, j � 1) + sub(X[i], Y [j])}

• Running time? Metric?



Distance function between time 
series

• time series can be seen as vectors
• apply existing distance metrics
• L-norms

• what can go wrong?
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Distance functions between 
time series

• Euclidean distance between time series
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Dynamic time warping

• Alleviate the problems with Euclidean 
distance
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Dynamic time warping

• Quite useful in 
practice
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Dynamic time warping
• how to compute it?     
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Dynamic time warping
• constraints for more efficient computation
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