Lecture outline

• Introduction to classification
• Evaluating classifiers
• k-NN

Some of the material presented here is from the supplementary material of the book: Introduction to Data Mining by Tan, Steinbach and Kumar
What is classification?

<table>
<thead>
<tr>
<th>Tid</th>
<th>Home Owner</th>
<th>Marital Status</th>
<th>Annual Income</th>
<th>Defaulted Borrower</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 4.6. Training set for predicting borrowers who will default on loan payments.

Figure from Introduction to Data Mining (Tan, Steinbach and Kumar)
What is classification?

- **Classification** is the task of **learning a target function** f that maps attribute set x to one of the predefined class labels y.
What is classification?

Figure 4.2. Classification as the task of mapping an input attribute set \(x \) into its class label \(y \).
Why classification?

• The target function \(f \) is known as a classification model

• **Descriptive modeling:** Explanatory tool to distinguish between objects of different classes (e.g., description of who can pay back his loan)

• **Predictive modeling:** Predict a class of a previously unseen record
Typical applications

- credit approval
- target marketing
- medical diagnosis
- treatment effectiveness analysis
General approach to classification

- **Training set** consists of records with known class labels

- Training set is used to **build a classification model**

- The classification model is applied to the **test set** that consists of records with **unknown labels**
General approach to classification

Figure 4.3. General approach for building a classification model.

Figure from Introduction to Data Mining (Tan, Steinbach and Kumar)
Evaluating your classifier

• Metrics for Performance Evaluation
 – How to evaluate the performance of a classifier?

• Methods for Performance Evaluation
 – How to obtain reliable estimates?

• Methods for Classifier Comparison
 – How to compare the relative performance of different classifiers?
Evaluation of classification models

- Counts of test records that are correctly (or incorrectly) predicted by the classification model
- Confusion matrix

<table>
<thead>
<tr>
<th>Actual Class</th>
<th>Predicted Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class = 1</td>
<td>f_{11}</td>
</tr>
<tr>
<td>Class = 0</td>
<td>f_{01}</td>
</tr>
</tbody>
</table>

Accuracy = \(\frac{\text{# correct predictions}}{\text{total # of predictions}} = \frac{f_{11} + f_{00}}{f_{11} + f_{10} + f_{01} + f_{00}} \)

Error rate = \(\frac{\text{# wrong predictions}}{\text{total # of predictions}} = \frac{f_{10} + f_{01}}{f_{11} + f_{10} + f_{01} + f_{00}} \)
Supervised vs. Unsupervised Learning

• **Supervised learning (classification)**
 – Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 – New data is classified based on the training set

• **Unsupervised learning (clustering)**
 – The class labels of training data is unknown
 – Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data
Metrics for Performance Evaluation

• Focus on the predictive capability of a model
 – Rather than how fast it takes to classify or build models, scalability, etc.

• Confusion Matrix:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class=Yes</td>
<td>Class=No</td>
<td></td>
</tr>
<tr>
<td>Class=Yes</td>
<td>a: TP</td>
<td>b: FN</td>
<td></td>
</tr>
<tr>
<td>Class=No</td>
<td>c: FP</td>
<td>d: TN</td>
<td></td>
</tr>
</tbody>
</table>

a: TP (true positive)
b: FN (false negative)
c: FP (false positive)
d: TN (true negative)
Metrics for Performance Evaluation

- Most widely-used metric:

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class=Yes</td>
<td>Class=No</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>a (TP)</td>
<td>b (FN)</td>
</tr>
<tr>
<td>Class=No</td>
<td>c (FP)</td>
<td>d (TN)</td>
</tr>
</tbody>
</table>

\[
\text{Accuracy} = \frac{a + d}{a + b + c + d} = \frac{TP + TN}{TP + TN + FP + FN}
\]
Limitation of Accuracy

• Consider a 2-class problem
 – Number of Class 0 examples = 9990
 – Number of Class 1 examples = 10

• If model predicts everything to be class 0, accuracy is $9990/10000 = 99.9\%$
 – Accuracy is misleading because model does not detect any class 1 example
Cost Matrix

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C(i</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>Class=Yes</td>
</tr>
<tr>
<td></td>
<td>C(Yes</td>
</tr>
<tr>
<td>Class=No</td>
<td>Class=No</td>
</tr>
<tr>
<td></td>
<td>C(Yes</td>
</tr>
</tbody>
</table>

C(i|j): Cost of misclassifying class \(j \) example as class \(i \)
Computing Cost of Classification

<table>
<thead>
<tr>
<th>Cost Matrix</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>C(i</td>
</tr>
<tr>
<td>+</td>
<td>-1</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model M₁</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>150</td>
</tr>
<tr>
<td>-</td>
<td>60</td>
</tr>
</tbody>
</table>

Accuracy = 80%
Cost = 3910

<table>
<thead>
<tr>
<th>Model M₂</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>250</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
</tr>
</tbody>
</table>

Accuracy = 90%
Cost = 4255
Cost vs Accuracy

<table>
<thead>
<tr>
<th>Count</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class=Yes</td>
</tr>
<tr>
<td>ACTUAL CLASS</td>
<td></td>
</tr>
<tr>
<td>Class=Yes</td>
<td>a</td>
</tr>
<tr>
<td>Class=No</td>
<td>c</td>
</tr>
</tbody>
</table>

\[N = a + b + c + d \]

Accuracy = \(\frac{a + d}{N} \)

Cost = \(p \ (a + d) + q \ (b + c) \)

\[= p \ (a + d) + q \ (N - a - d) \]

\[= q \ N - (q - p)(a + d) \]

\[= N \ [q - (q-p) \times \text{Accuracy}] \]

Accuracy is proportional to cost if

1. \(C(Yes|No)=C(No|Yes) = q \)
2. \(C(Yes|Yes)=C(No|No) = p \)
Cost–Sensitive Measures

Precision (p) = \frac{a}{a + c} = \frac{TP}{TP + FP}

Recall (r) = \frac{a}{a + b} = \frac{TP}{TP + FN}

F - measure (F) = \frac{2rp}{r + p} = \frac{2a}{2a + b + c} = \frac{2TP}{2TP + FP + FN}

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F–measure is biased towards all except C(No|No)

Weighted Accuracy = \frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}
Model Evaluation

• Metrics for Performance Evaluation
 – How to evaluate the performance of a model?

• Methods for Performance Evaluation
 – How to obtain reliable estimates?

• Methods for Model Comparison
 – How to compare the relative performance of different models?
Methods for Performance Evaluation

• How to obtain a reliable estimate of performance?

• Performance of a model may depend on other factors besides the learning algorithm:
 – Class distribution
 – Cost of misclassification
 – Size of training and test sets
Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve

Effect of small sample size:
- Bias in the estimate
- Variance of estimate
Methods of Estimation

- **Holdout**
 - Reserve $2/3$ for training and $1/3$ for testing

- **Random subsampling**
 - Repeated holdout

- **Cross validation**
 - Partition data into k disjoint subsets
 - k-fold: train on $k-1$ partitions, test on the remaining one
 - **Leave-one-out**: $k=n$

- **Bootstrap**
 - Sampling with replacement
Definition

• Given: a set X of n points in \mathbb{R}^d
• Nearest neighbor: for any query point $q \in \mathbb{R}^d$ return the point $x \in X$ minimizing $D(x,q)$

• **Intuition:** Find the point in X that is the closest to q
Motivation

• **Learning:** Nearest neighbor rule
• **Databases:** Retrieval
• **Data mining:** Clustering
• Donald Knuth in vol. 3 of *The Art of Computer Programming* called it the post-office problem, referring to the application of assigning a resident to the nearest-post office
Nearest-neighbor rule
MNIST dataset “2”
Methods for computing NN

• **Linear scan**: $O(nd)$ time

• This is pretty much all what is known for exact algorithms with theoretical guarantees

• In practice:
 – **kd-trees** work “well” in “low-medium” dimensions