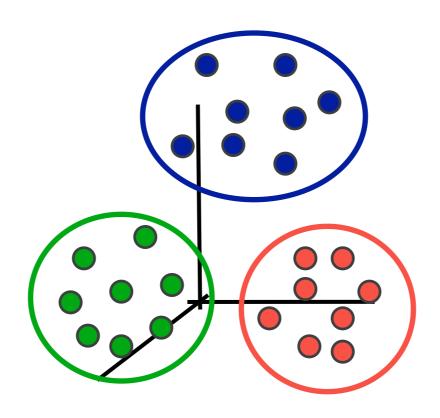
Partitional Clustering

- Clustering: David Arthur, Sergei Vassilvitskii. *k-means* ++: *The Advantages of Careful Seeding*. In SODA 2007
- Thanks A. Gionis and S. Vassilvitskii for the slides

What is clustering?

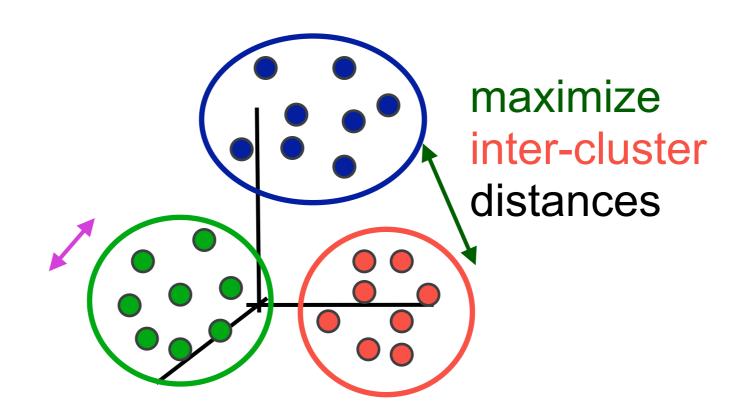
 a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups



How to capture this objective?

a grouping of data objects such that the objects within a group are similar (or near) to one another and dissimilar (or far) from the objects in other groups

minimize intra-cluster distances



The clustering problem

- Given a collection of data objects
- Find a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters

- Why we care ?
- stand-alone tool to gain insight into the data
 - visualization
- preprocessing step for other algorithms
 - indexing or compression often relies on clustering

Applications of clustering

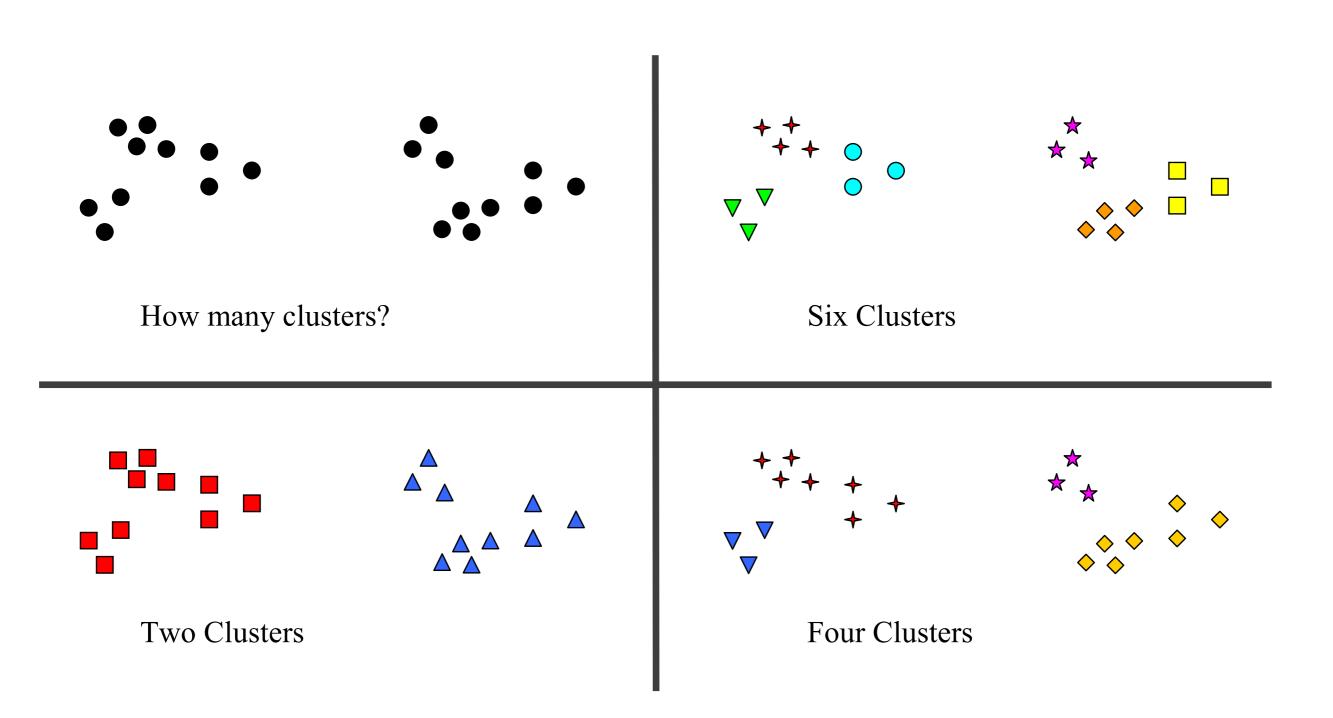
- image processing
 - cluster images based on their visual content
- web mining
 - cluster groups of users based on their access patterns on webpages
 - cluster webpages based on their content
- bioinformatics
 - cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)
- many more...

The clustering problem

- Given a collection of data objects
- Find a grouping so that
 - similar objects are in the same cluster
 - dissimilar objects are in different clusters

- Basic questions:
 - * what does similar mean?
 - what is a good partition of the objects?
 i.e., how is the quality of a solution measured?
 - + how to find a good partition?

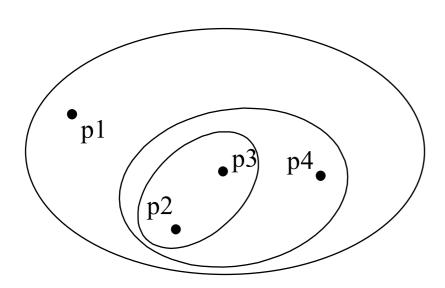
Notion of a cluster can be ambiguous



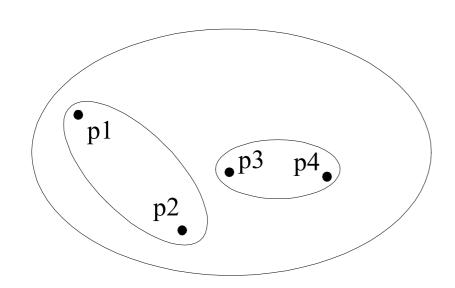
Types of clusterings

- Partitional
 - each object belongs in exactly one cluster
- Hierarchical
 - a set of nested clusters organized in a tree

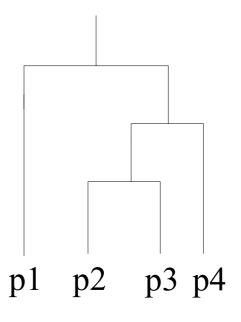
Hierarchical clustering



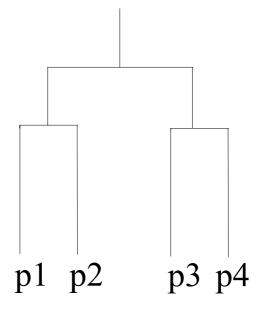
Hierarchical Clustering



Hierarchical Clustering

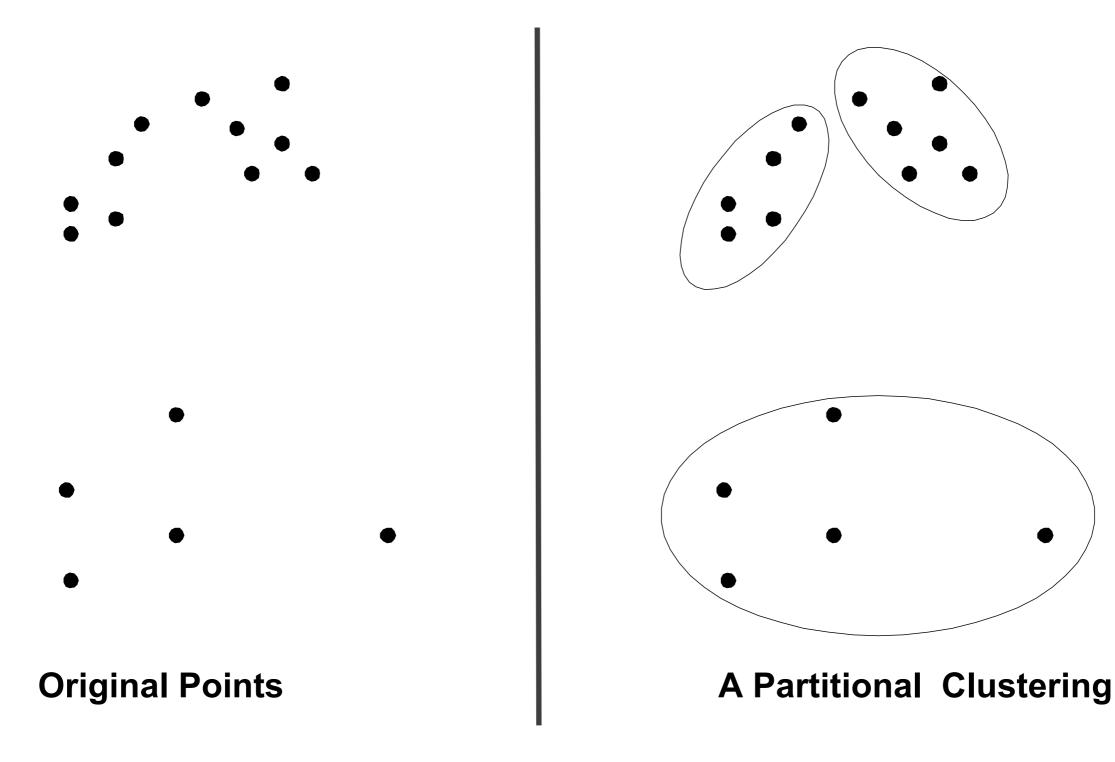


Dendrogram



Dendrogram

Partitional clustering



Partitional algorithms

- partition the n objects into k clusters
 - each object belongs to exactly one cluster
 - the number of clusters k is given in advance

The k-means problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers or means)
 so that the cost

$$\sum_{i=1}^{n} \min_{j} \left\{ L_2^2(x_i, c_j) \right\} = \sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2$$

is minimized

The k-means problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers or means)
 - and partition X into {X₁,...,X_k} by assigning each point x_i in X to its nearest cluster center,
 - so that the cost

$$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2^2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2^2$$

is minimized

The k-means problem

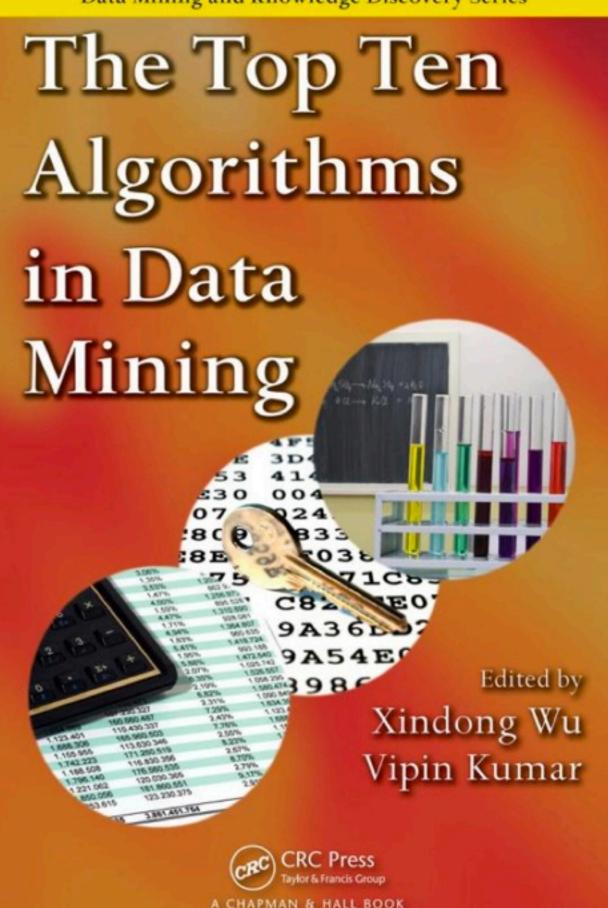
- k=1 and k=n are easy special cases (why?)
- an NP-hard problem if the dimension of the data is at least 2 (d≥2)
 - for d≥2, finding the optimal solution in polynomial time is infeasible
- for d=1 the problem is solvable in polynomial time
- in practice, a simple iterative algorithm works quite well

The k-means algorithm

- voted among the top-10 algorithms in data mining
- one way of solving the kmeans problem

Copyrighted Numberal

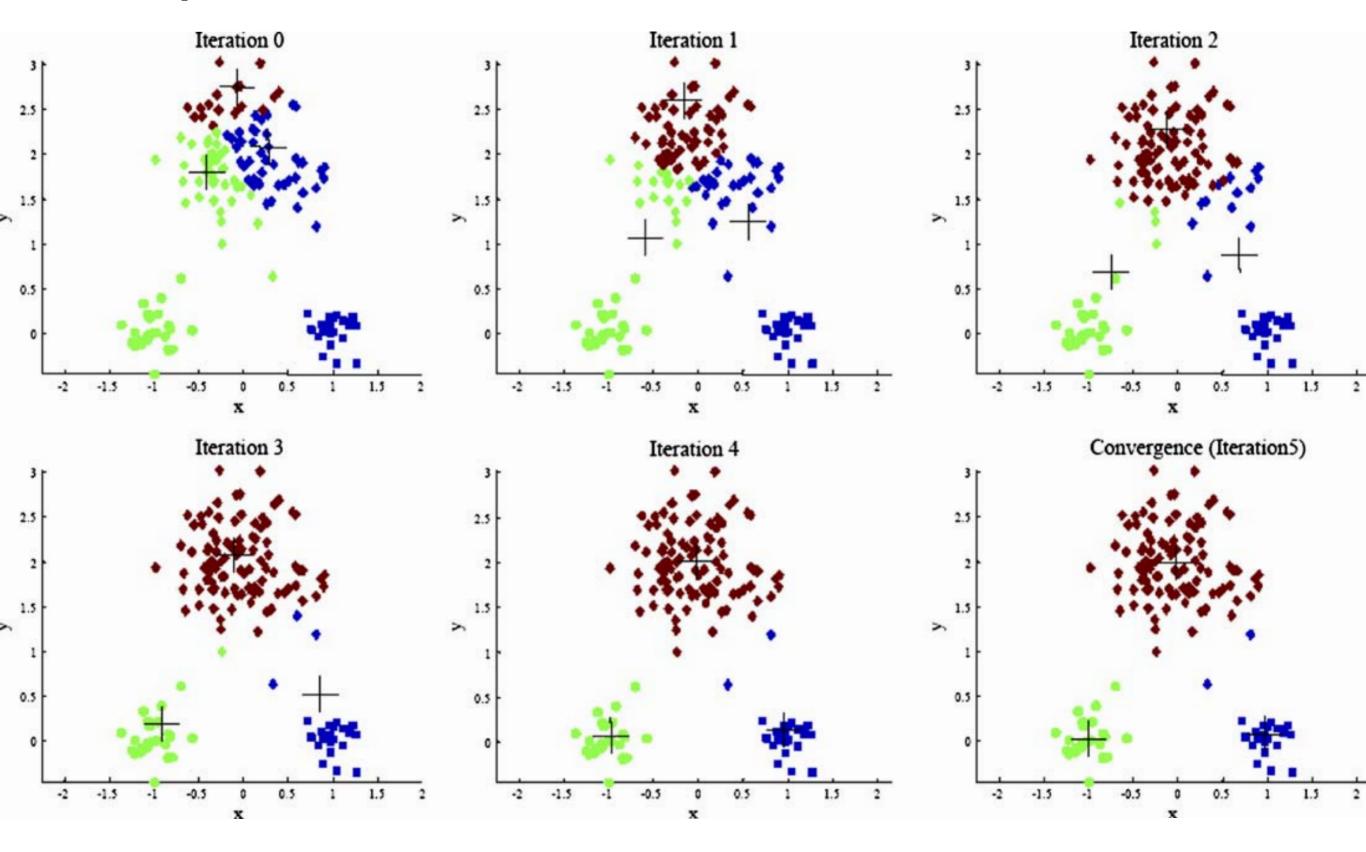
Chapman & Hall/CRC
Data Mining and Knowledge Discovery Series



The k-means algorithm

- 1.randomly (or with another method) pick k cluster centers {c₁,...,c_k}
- 2.for each j, set the cluster X_j to be the set of points in X_j that are the closest to center c_j
- 3.for each j let c_j be the center of cluster X_j (mean of the vectors in X_j)
- 4.repeat (go to step 2) until convergence

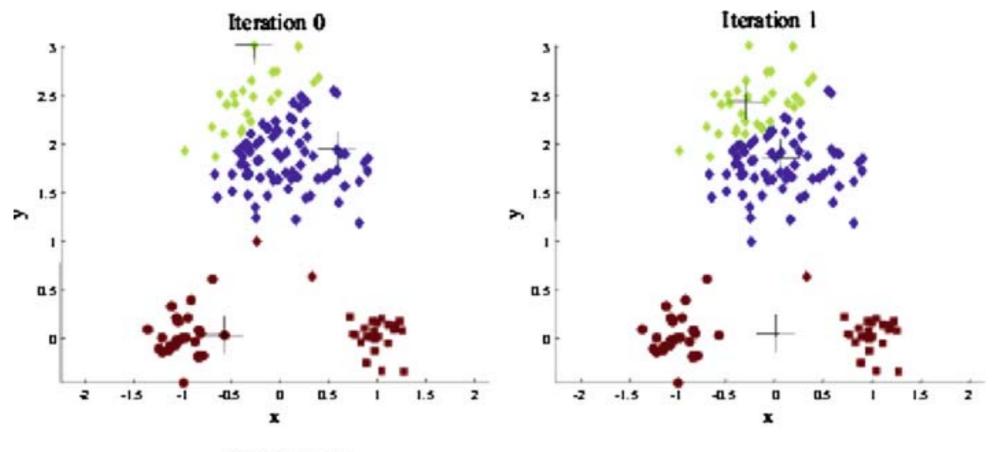
Sample execution

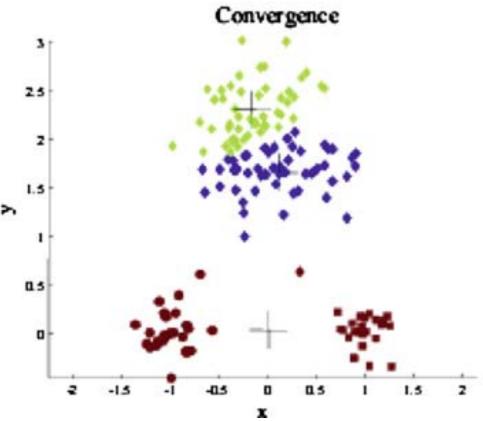


Properties of the k-means algorithm

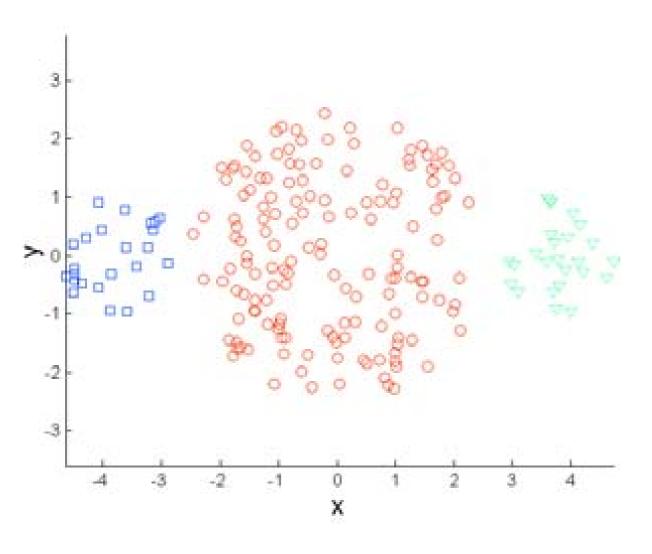
- finds a local optimum
- often converges quickly but not always
- the choice of initial points can have large influence in the result

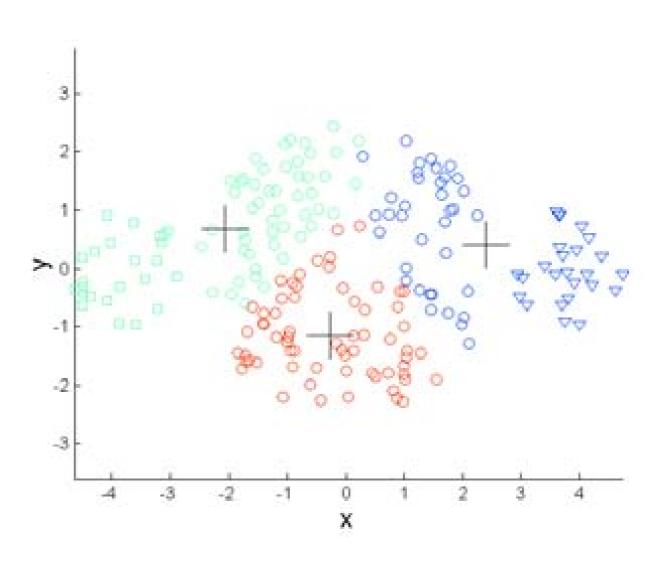
Effects of bad initialization





Limitations of k-means: different sizes

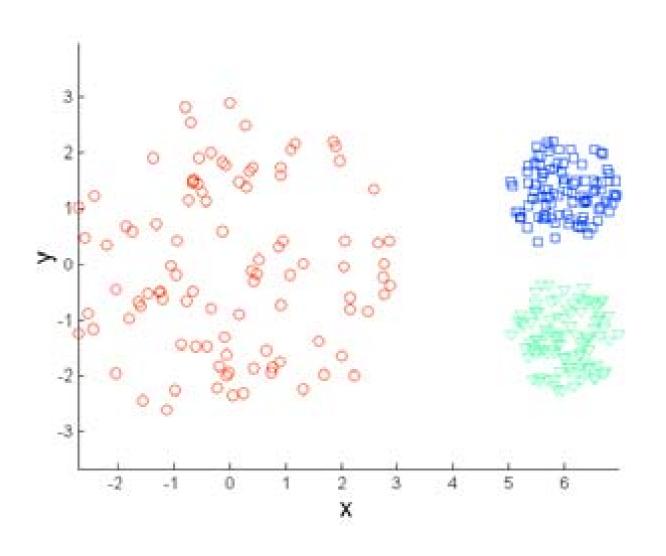


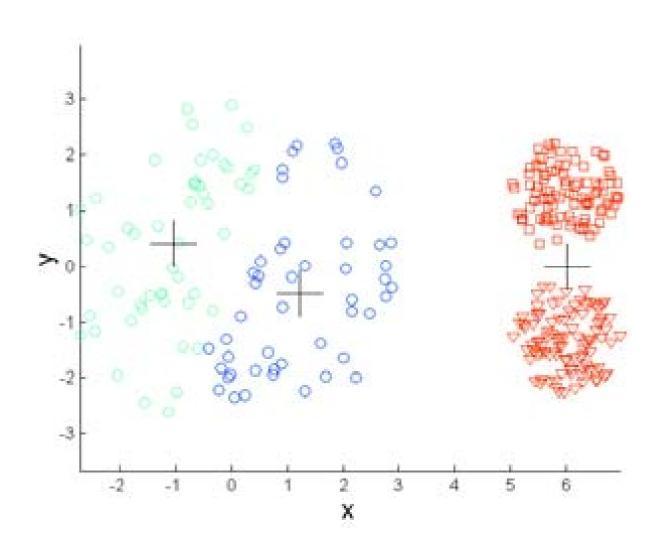


Original Points

K-means (3 Clusters)

Limitations of k-means: different density

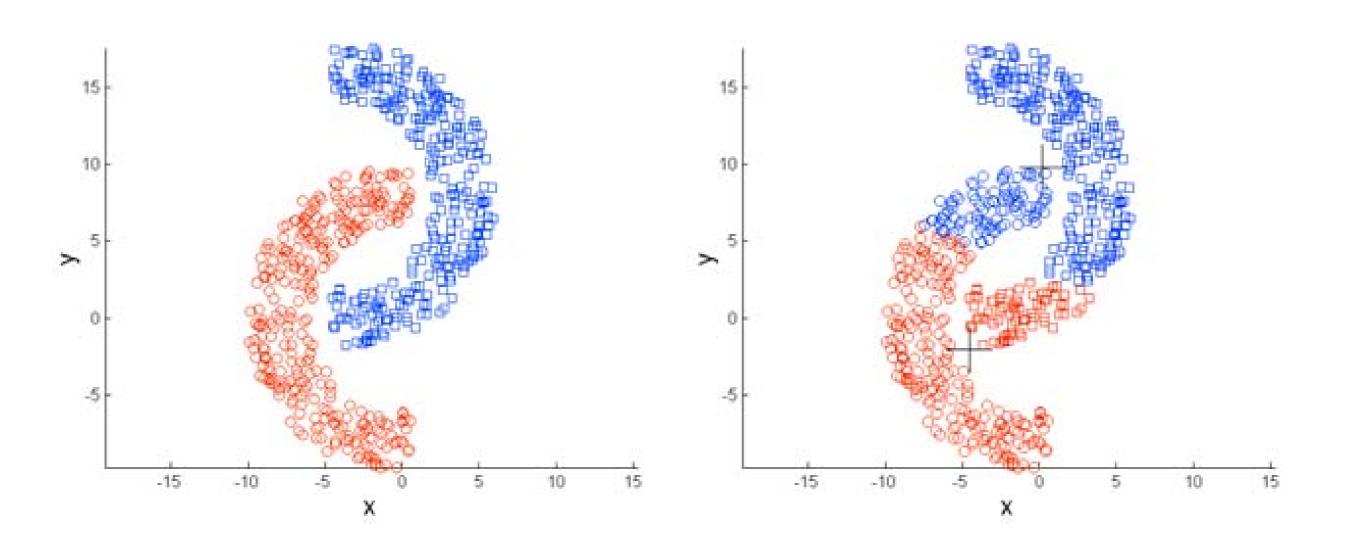




Original Points

K-means (3 Clusters)

Limitations of k-means: non-spherical shapes



Original Points

K-means (2 Clusters)

Discussion on the k-means algorithm

- finds a local optimum
- often converges quickly but not always
- the choice of initial points can have large influence in the result
- tends to find spherical clusters
- outliers can cause a problem
- different densities may cause a problem

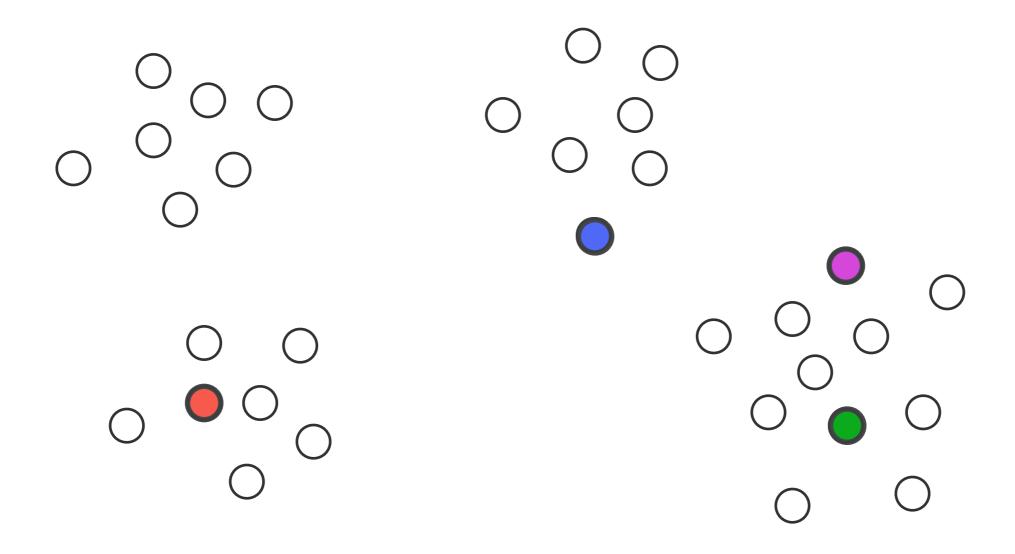
Initialization

- random initialization
- random, but repeat many times and take the best solution
 - helps, but solution can still be bad
- pick points that are distant to each other
 - k-means++
 - provable guarantees

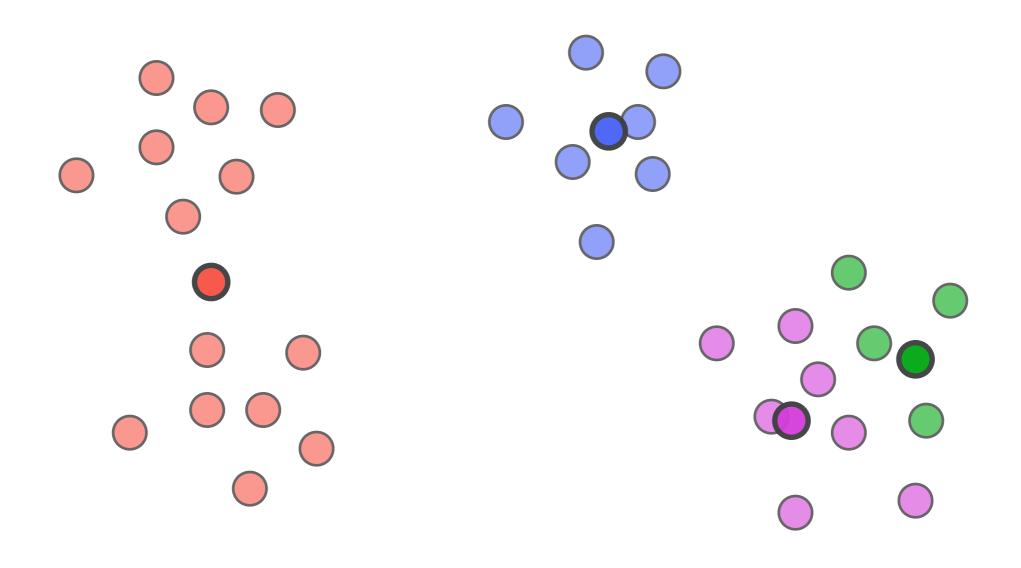
k-means++

David Arthur and Sergei Vassilvitskii k-means++: The advantages of careful seeding SODA 2007

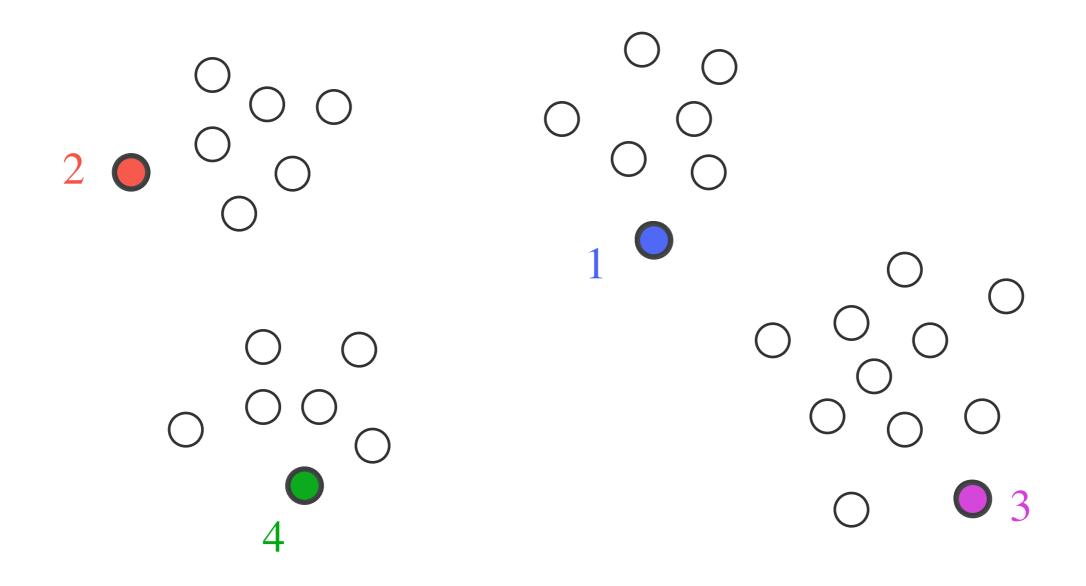
k-means algorithm: random initialization



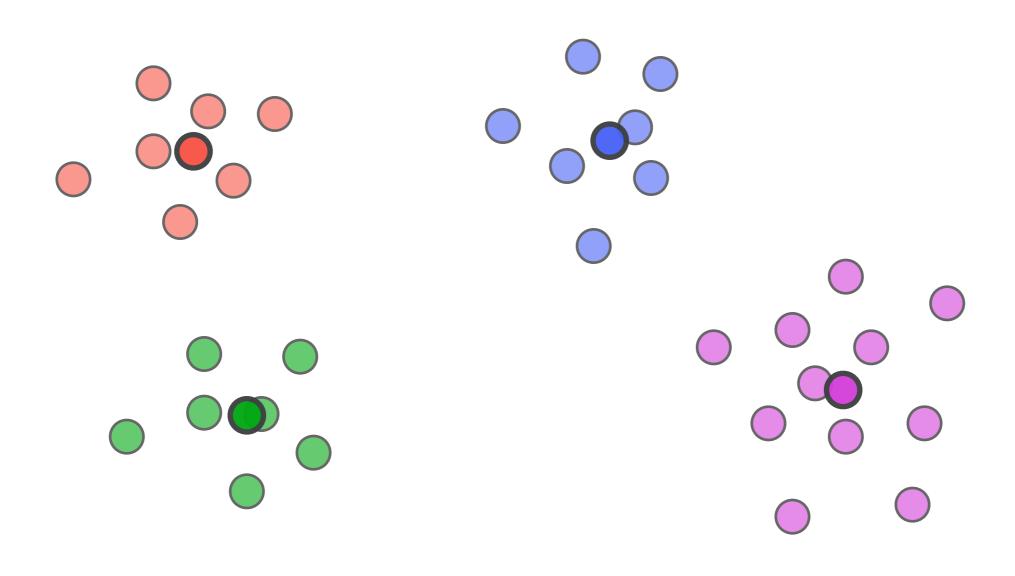
k-means algorithm: random initialization



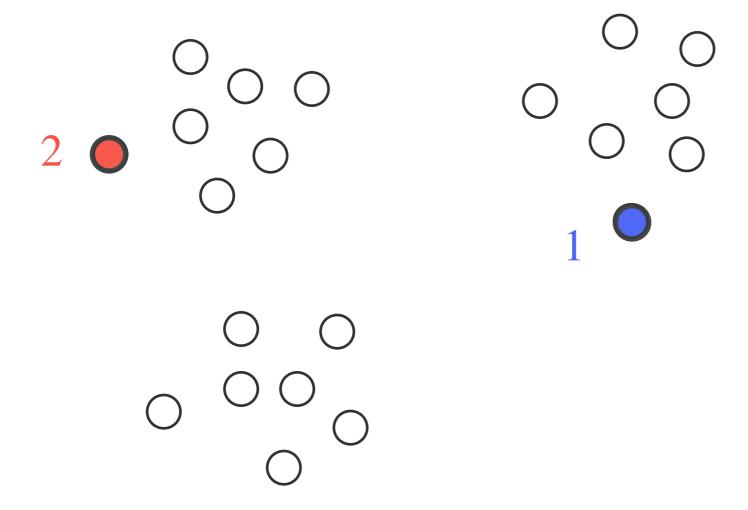
k-means algorithm: initialization with further-first traversal



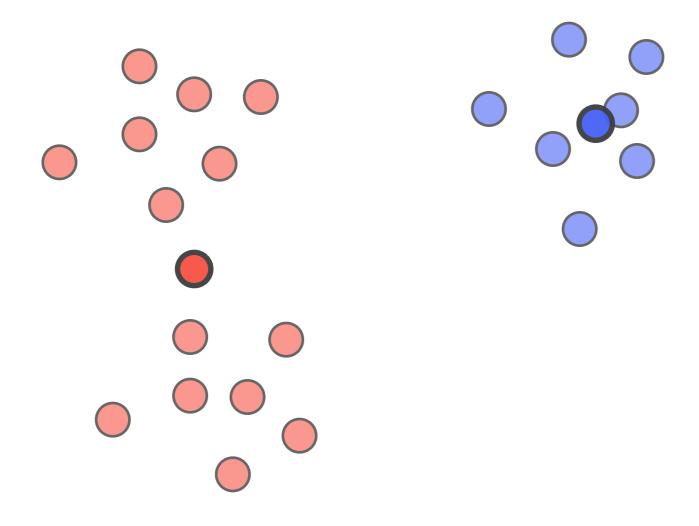
k-means algorithm: initialization with further-first traversal



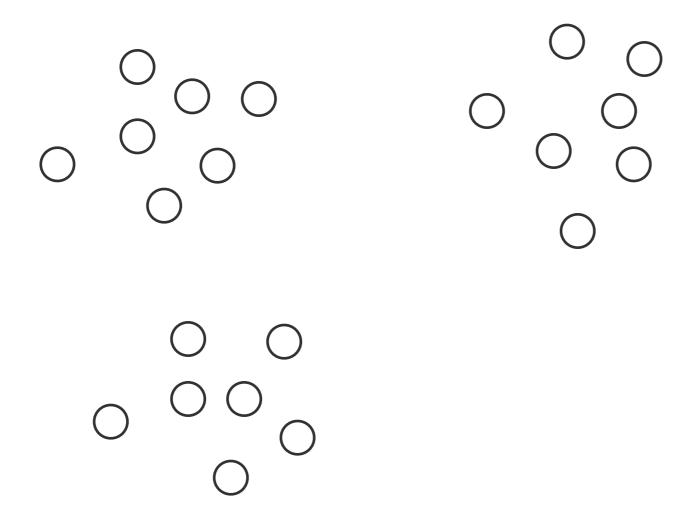
but... sensitive to outliers



but... sensitive to outliers



Here random may work well



k-means++ algorithm

- interpolate between the two methods
- let D(x) be the distance between x and the nearest center selected so far
- choose next center with probability proportional to

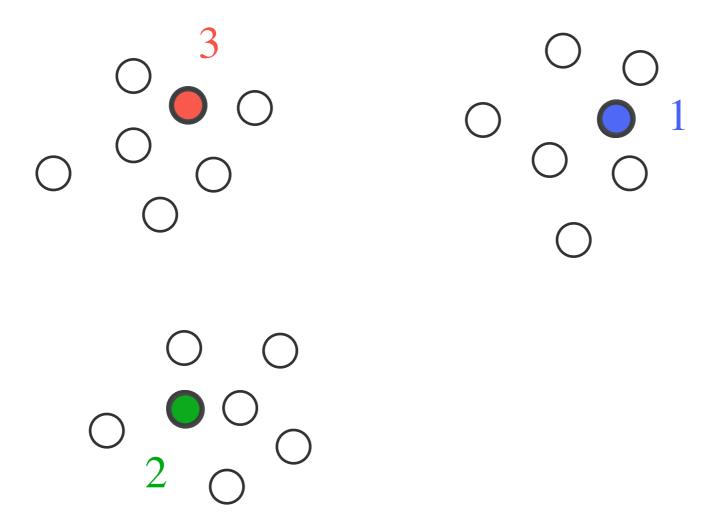
$$(D(x))^a = D^a(x)$$

- + a = 0 random initialization
- + a = ∞ furthest-first traversal
- + a = 2 k-means++

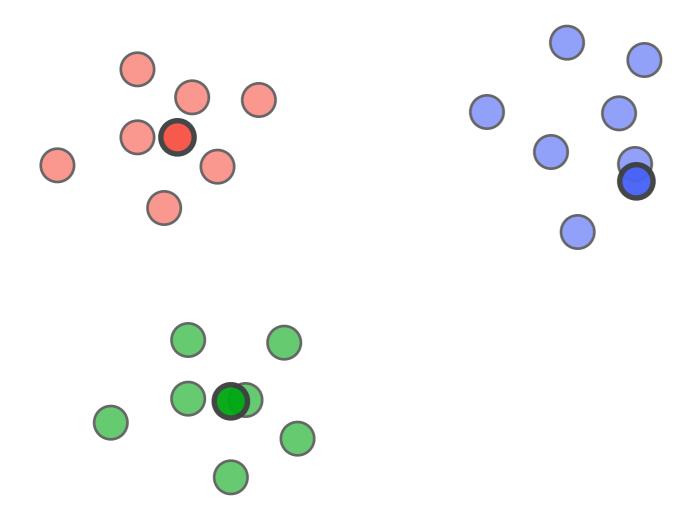
k-means++ algorithm

- initialization phase:
 - choose the first center uniformly at random
 - choose next center with probability proportional to D²(x)
- iteration phase:
 - iterate as in the k-means algorithm until convergence

k-means++ initialization



k-means++ result



k-means++ provable guarantee

Theorem:

k-means++ is O(logk) approximate in expectation

k-means++ provable guarantee

- approximation guarantee comes just from the first iteration (initialization)
- subsequent iterations can only improve cost

k-means++ analysis

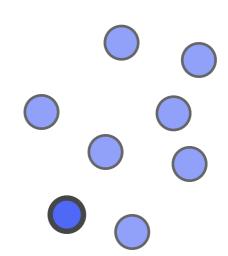
- consider optimal clustering C*
- assume that k-means++ selects a center from a new optimal cluster
- then
 - k-means++ is 8-approximate in expectation
- intuition: if no points from a cluster are picked, then it probably does not contribute much to the overall error
- an inductive proof shows that the algorithm is O(logk) approximate

k-means++ proof : first cluster

- fix an optimal clustering C*
- first center is selected uniformly at random
- bound the total error of the points in the optimal cluster of the first center

k-means++ proof : first cluster

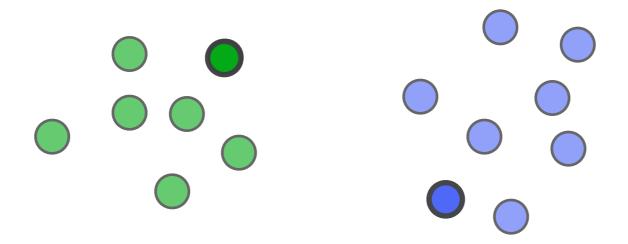
- let A be the first cluster
- each point a₀ ∈ A is equally likely to be selected as center



expected error:

$$E[\phi(A)] = \sum_{a_0 \in A} \frac{1}{|A|} \sum_{a \in A} ||a - a_0||^2$$
$$= 2 \sum_{a \in A} ||a - \bar{A}||^2 = 2\phi^*(A)$$

k-means++ proof : other clusters



- suppose next center is selected from a new cluster in the optimal clustering C*
- bound the total error of that cluster

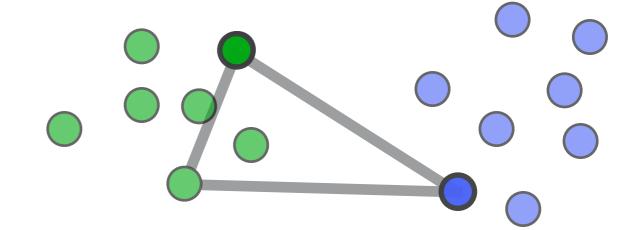
k-means++ proof : other clusters

let B be the second cluster and b₀ the center selected

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), ||b - b_0||^2\}$$

triangle inequality:

$$D(b_0) \le D(b) + ||b - b_0||$$



$$D^{2}(b_{0}) \leq 2D^{2}(b) + 2||b - b_{0}||^{2}$$

k-means++ proof : other clusters

$$D^{2}(b_{0}) \leq 2D^{2}(b) + 2||b - b_{0}||^{2}$$

average over all points b in B

$$D^{2}(b_{0}) \leq \frac{2}{|B|} \sum_{b \in B} D^{2}(b) + \frac{2}{|B|} \sum_{b \in B} ||b - b_{0}||^{2}$$

recall

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \sum_{b \in B} \min\{D(b), ||b - b_0||^2\}$$

$$\leq 4 \sum_{b \in B} \frac{1}{|B|} \sum_{b_0 \in B} ||b - b_0||^2 = 4 \sum_{b \in B} 2||b - \bar{B}||^2 = 8\phi^*(B)$$

k-means++ analysis

- if that k-means++ selects a center from a new optimal cluster
- then
 - k-means++ is 8-approximate in expectation
- an inductive proof shows that the algorithm is O(logk) approximate

Lesson learned

no reason to use k-means and not k-means++

- k-means++ :
 - easy to implement
 - provable guarantee
 - works well in practice

The k-median problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named medians)
 - and partition X into $\{X_1,...,X_k\}$ by assigning each point x_i in X to its nearest cluster median,
 - so that the cost

$$\sum_{i=1}^{n} \min_{j} ||x_i - c_j||_2 = \sum_{j=1}^{k} \sum_{x \in X_j} ||x - c_j||_2$$

is minimized

the k-medoids algorithm

or PAM (partitioning around medoids)

- 1.randomly (or with another method) choose k medoids {c₁,...,c_k} from the original dataset X
- 2.assign the remaining n-k points in X to their closest medoid c_i
- 3.for each cluster, replace each medoid by a point in the cluster that improves the cost
- 4.repeat (go to step 2) until convergence

Discussion on the k-medoids algorithm

- very similar to the k-means algorithm
- same advantages and disadvantages
- how about efficiency?

The k-center problem

- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers)
 - and partition X into {X₁,...,X_k} by assigning each point x_i in X to its nearest cluster center,
 - so that the cost

is minimized
$$\max_{i=1}^n \min_{j=1}^k ||x_i - c_j||_2$$

Properties of the k-center problem

- NP-hard for dimension d≥2
- for d=1 the problem is solvable in polynomial time (how?)
- a simple combinatorial algorithm works well

The k-center problem

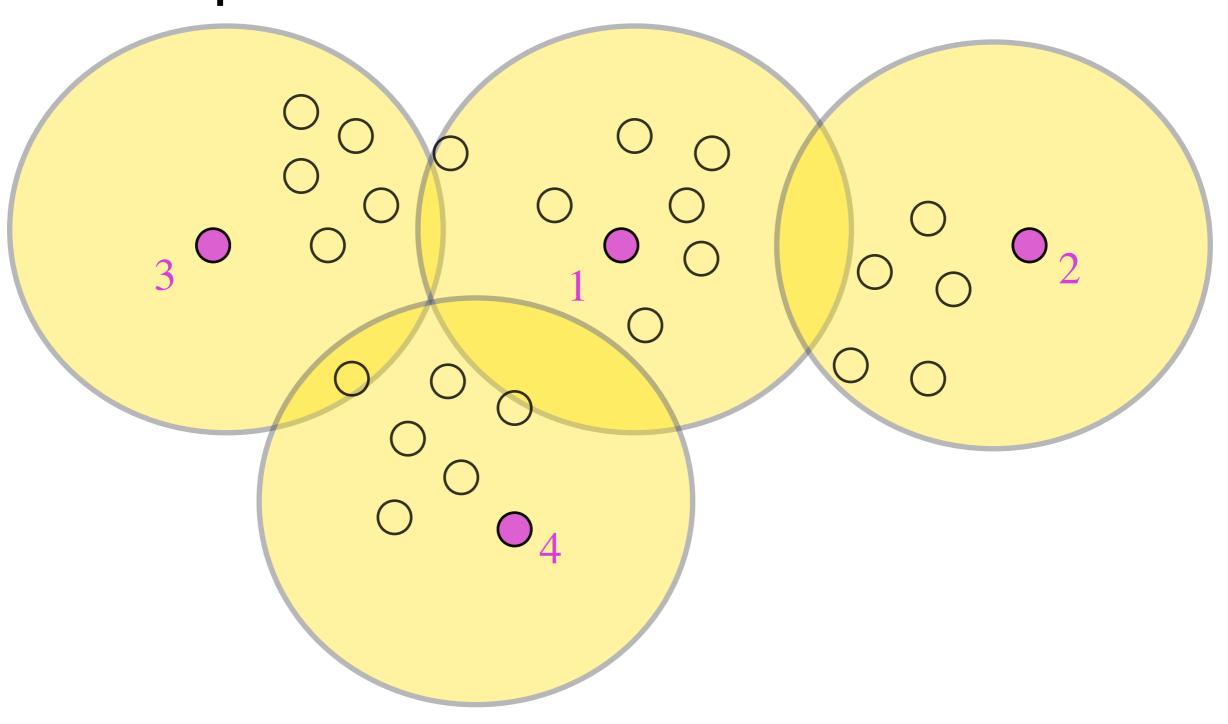
- consider set $X=\{x_1,...,x_n\}$ of n points in \mathbb{R}^d
- assume that the number k is given
- problem:
 - find k points c₁,...,c_k (named centers)
 - and partition X into {X₁,...,X_k} by assigning each point x_i in X to its nearest cluster center,
 - so that the cost

is minimized
$$\max_{i=1}^n \min_{j=1}^k ||x_i - c_j||_2$$

Furthest-first traversal algorithm

- pick any data point and label it 1
- for i=2,...,k
 - find the unlabeled point that is furthest from {1,2,...,i-1}
 - // use $d(x,S) = \min_{y \in S} d(x,y)$
 - label that point i
- assign the remaining unlabeled data points to the closest labeled data point

Furthest-first traversal algorithm: example



Furthest-first traversal algorithm

furthest-first traversal algorithm gives a factor 2 approximation

Furthest-first traversal algorithm

- pick any data point and label it 1
- for i=2,...,k
 - find the unlabeled point that is furthest from {1,2,...,i-1}
 - // use $d(x,S) = \min_{y \in S} d(x,y)$
 - label that point i
 - $p(i) = \operatorname{argmin}_{j < i} d(i,j)$
 - $R_i = d(i,p(i))$
- assign the remaining unlabeled data points to the closest labeled data point

Analysis

• Claim 1: $R_1 \ge R_2 \ge ... \ge R_k$

• proof:

```
 \begin{split} \bullet \ R_j &= d(j,p(j)) \\ &= d(j,\{1,2,...,j-1\}) \\ &\leq d(j,\{1,2,...,i-1\}) \ // \ j > i \\ &\leq d(i,\{1,2,...,i-1\}) = R_i \end{split}
```

Analysis

- Claim 2:
 - let C be the clustering produced by the FFT algorithm
 - let R(C) be the cost of that clustering
 - then $R(C) = R_{k+1}$
- proof:
 - for any i>k we have :

$$d(i,\{1,2,...,k\}) \le d(k+1,\{1,2,...,k\}) = R_{k+1}$$

Analysis

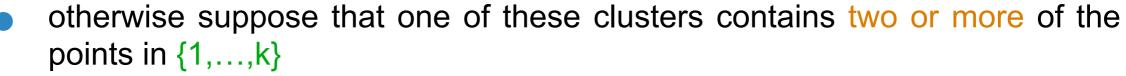
Theorem

- let C be the clustering produced by the FFT algorithm
- let C* be the optimal clustering
- then $R(C) \leq 2R(C^*)$

• proof:

- let C*₁,..., C*_k be the clusters of the optimal k-clustering
- if these clusters contain points {1,...,k} then

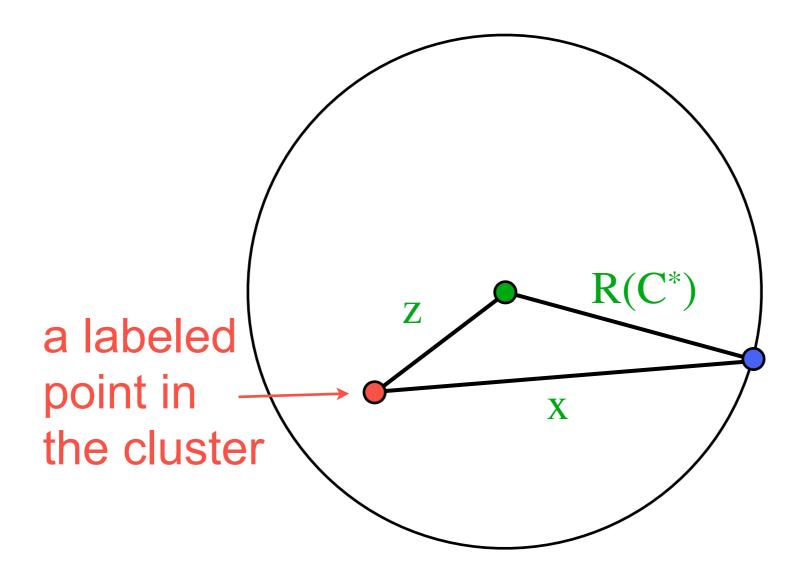
$$R(C) \leq 2R(C^*)$$



- these points are at distance at least R_k from each other
- this (optimal) cluster must have radius

$$\frac{1}{2} R_k \ge \frac{1}{2} R_{k+1} = \frac{1}{2} R(C)$$

$R(C) \le 2R(C^*)$



 $R(C) \le x \le z + R(C^*) \le 2R(C^*)$