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Partitional Clustering

• Clustering: David Arthur, Sergei Vassilvitskii. k-means
++: The Advantages of Careful Seeding. In SODA 2007

• Thanks A. Gionis and S. Vassilvitskii for the slides

http://www.siam.org/meetings/da07/
http://www.siam.org/meetings/da07/
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a group are similar (or near) to one another and 
dissimilar (or far) from the objects in other groups

What is clustering?
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minimize 
intra-cluster 
distances

maximize
inter-cluster 
distances

a grouping of data objects such that the objects within 
a group are similar (or near) to one another and 
dissimilar (or far) from the objects in other groups

How to capture this objective?
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The clustering problem

•Given a collection of data objects 
• Find a grouping so that
• similar objects are in the same cluster
• dissimilar objects are in different clusters

✦ Why we care ?

✦ stand-alone tool to gain insight into the data
✦ visualization

✦ preprocessing step for other algorithms
✦ indexing or compression often relies on clustering



Boston University Slideshow Title Goes Here

Applications of clustering

• image processing
• cluster images based on their visual content

• web mining
• cluster groups of users based on their access patterns on webpages
• cluster webpages based on their content

• bioinformatics
• cluster similar proteins together (similarity wrt chemical structure and/or 

functionality etc)

•many more...
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The clustering problem

•Given a collection of data objects 
• Find a grouping so that
• similar objects are in the same cluster
• dissimilar objects are in different clusters

✦ Basic questions: 
✦ what does similar mean? 
✦ what is a good partition of the objects? 

i.e., how is the quality of a solution measured? 
✦ how to find a good partition?
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Notion of a cluster can be ambiguous

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               5

Notion of a Cluster can be Ambiguous

How many clusters?

Four ClustersTwo Clusters

Six Clusters

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               6

Types of Clusterings

O A clustering is a set of clusters

O Important distinction between hierarchical and 

partitional sets of clusters 

O Partitional Clustering

– A division data objects into non-overlapping subsets (clusters) 

such that each data object is in exactly one subset

O Hierarchical clustering

– A set of nested clusters organized as a hierarchical tree 
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Types of clusterings

• Partitional
• each object belongs in exactly one cluster

• Hierarchical
• a set of nested clusters organized in a tree



Boston University Slideshow Title Goes Here

Hierarchical clustering
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Partitional Clustering

Original Points A Partitional  Clustering

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               8

Hierarchical Clustering
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Partitional clustering
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Partitional Clustering

Original Points A Partitional  Clustering
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Hierarchical Clustering
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Partitional algorithms

• partition the n objects into k clusters

• each object belongs to exactly one cluster

• the number of clusters k is given in advance
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The k-means problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given
• problem:

• find k points c1,...,ck (named centers or means)
so that the cost

is minimized

nX

i=1

min
j

�
L

2
2(xi, cj)

 
=

nX

i=1

min
j

||xi � cj ||22
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The k-means problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given
• problem:

• find k points c1,...,ck (named centers or means)
• and partition X into {X1,...,Xk} by assigning each point xi in X to its nearest 

cluster center, 
• so that the cost

is minimized

nX

i=1

min
j

||x
i

� c

j

||22 =
kX

j=1

X

x2Xj

||x� c

j

||22
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The k-means problem

• k=1 and k=n are easy special cases (why?)

• an NP-hard problem if the dimension of the data is at 
least 2 (d≥2)

• for d≥2, finding the optimal solution in polynomial time is infeasible

• for d=1 the problem is solvable in polynomial time

• in practice, a simple iterative algorithm works quite well



Boston University Slideshow Title Goes Here

The k-means 
algorithm

• voted among the top-10 
algorithms in data mining 

• one way of solving the k-
means problem
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The k-means algorithm

1.randomly (or with another method) pick k cluster 
centers {c1,...,ck}

2.for each j, set the cluster Xj to be the set of points in X 
that are the closest to center cj

3.for each j let cj be the center of cluster Xj 
(mean of the vectors in Xj)

4.repeat (go to step 2) until convergence
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Properties of the k-means algorithm

• finds a local optimum 

• often converges quickly 
but not always

• the choice of initial points can have large influence in 
the result 
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Effects of bad initialization8 X. Wu et al.

Fig. 2 Effect of an inferior initialization on the k-means results

extent by running the algorithm multiple times with different initial centroids, or by doing
limited local search about the converged solution.

2.2 Limitations

In addition to being sensitive to initialization, the k-means algorithm suffers from several
other problems. First, observe that k-means is a limiting case of fitting data by a mixture of
k Gaussians with identical, isotropic covariance matrices (! = σ 2I), when the soft assign-
ments of data points to mixture components are hardened to allocate each data point solely
to the most likely component. So, it will falter whenever the data is not well described by
reasonably separated spherical balls, for example, if there are non-covex shaped clusters in
the data. This problem may be alleviated by rescaling the data to “whiten” it before clustering,
or by using a different distance measure that is more appropriate for the dataset. For example,
information-theoretic clustering uses the KL-divergence to measure the distance between two
data points representing two discrete probability distributions. It has been recently shown that
if one measures distance by selecting any member of a very large class of divergences called
Bregman divergences during the assignment step and makes no other changes, the essential
properties ofk-means, including guaranteed convergence, linear separation boundaries and
scalability, are retained [3]. This result makes k-means effective for a much larger class of
datasets so long as an appropriate divergence is used.

123
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Limitations of k-means: different sizes

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               39

Limitations of K-means

O K-means has problems when clusters are of 
differing 
– Sizes
– Densities
– Non-globular shapes

O K-means has problems when the data contains 
outliers.

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               40

Limitations of K-means: Differing Sizes

Original Points K-means (3 Clusters)
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Limitations of k-means: different density

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Limitations of k-means: non-spherical 
shapes

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               41

Limitations of K-means: Differing Density

Original Points K-means (3 Clusters)

© Tan,Steinbach, Kumar Introduction to Data Mining        4/18/2004               42

Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Discussion on the k-means algorithm

• finds a local optimum 

• often converges quickly 
but not always

• the choice of initial points can have large influence in 
the result 

• tends to find spherical clusters
• outliers can cause a problem
• different densities may cause a problem
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Initialization

• random initialization 
• random, but repeat many times and take the best 

solution
• helps, but solution can still be bad

• pick points that are distant to each other
• k-means++
• provable guarantees
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k-means++

David Arthur and Sergei Vassilvitskii
k-means++: The advantages of careful seeding 
SODA 2007
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k-means algorithm: random initialization
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k-means algorithm: random initialization
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k-means algorithm: initialization with 
further-first traversal
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k-means algorithm: initialization with 
further-first traversal
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1

2

3

but... sensitive to outliers
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but... sensitive to outliers
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Here random may work well
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k-means++ algorithm

• interpolate between the two methods
• let D(x) be the distance between x and the nearest 

center selected so far
• choose next center with probability proportional to 

(D(x))a = Da(x)

✦ a = 0      random initialization
✦ a = ∞     furthest-first traversal
✦ a = 2      k-means++ 
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k-means++ algorithm

• initialization phase: 
• choose the first center uniformly at random
• choose next center with probability proportional to D2(x)

• iteration phase:
• iterate as in the k-means algorithm until convergence
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k-means++ initialization

1

2

3
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k-means++ result
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k-means++ provable guarantee

Theorem:

k-means++ is O(logk) approximate in expectation
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• approximation guarantee comes just from the first 
iteration (initialization)

• subsequent iterations can only improve cost

k-means++ provable guarantee
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• assume that k-means++ selects a center from a new 
optimal cluster  

• then
• k-means++ is 8-approximate in expectation

• intuition: if no points from a cluster are picked, then it 
probably does not contribute much to the overall error

• an inductive proof shows that the algorithm is O(logk) 
approximate

k-means++ analysis
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k-means++ proof : first cluster

• fix an optimal clustering C*

• first center is selected uniformly at random
• bound the total error of the points in the optimal cluster 

of the first center
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k-means++ proof : first cluster

• let A be the first cluster
• each point a0 ∈ A is equally likely to 

be selected as center

✦ expected error:

E[�(A)] =
X

a02A

1

|A|
X

a2A

||a� a0||2

= 2
X

a2A

||a� Ā||2 = 2�⇤(A)
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k-means++ proof : other clusters

• suppose next center is selected from a new cluster in 
the optimal clustering C* 

• bound the total error of that cluster
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k-means++ proof : other clusters
• let B be the second cluster and b0 the center selected

E[�(B)] =
X

b02B

D2(b0)P
b2B D2(b)

X

b2B

min{D(b), ||b� b0||2}

D(b0)  D(b) + ||b� b0||

triangle inequality:

D2(b0)  2D2(b) + 2||b� b0||2
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k-means++ proof : other clusters

• average over all points b in B

E[�(B)] =
X

b02B

D2(b0)P
b2B D2(b)

X

b2B

min{D(b), ||b� b0||2}

D2(b0)  2D2(b) + 2||b� b0||2

D2(b0) 
2

|B|
X

b2B

D2(b) +
2

|B|
X

b2B

||b� b0||2

✦ recall

 4
X

b2B

1

|B|
X

b02B

||b� b0||2 = 4
X

b2B

2||b� B̄||2 = 8�⇤(B)
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cluster  

• then
• k-means++ is 8-approximate in expectation

• an inductive proof shows that the algorithm is O(logk) 
approximate

k-means++ analysis
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Lesson learned

• no reason to use k-means and not k-means++

• k-means++ :
• easy to implement
• provable guarantee
• works well in practice
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The k-median problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given
• problem:

• find k points c1,...,ck (named medians)
• and partition X into {X1,...,Xk} by assigning each point xi in X to its nearest 

cluster median, 
• so that the cost

is minimized

nX

i=1

min
j

||x
i

� c

j

||2 =
kX

j=1

X

x2Xj

||x� c

j

||2
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the k-medoids algorithm

or PAM (partitioning around medoids)

1.randomly (or with another method) choose k medoids 
{c1,...,ck} from the original dataset X

2.assign the remaining n-k points in X to their closest 
medoid cj

3.for each cluster, replace each medoid by a point in the 
cluster that improves the cost

4.repeat (go to step 2) until convergence
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Discussion on the k-medoids algorithm

• very similar to the k-means algorithm 

• same advantages and disadvantages 

• how about efficiency?
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The k-center problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given
• problem:

• find k points c1,...,ck (named centers)
• and partition X into {X1,...,Xk} by assigning each point xi in X to its nearest 

cluster center, 
• so that the cost

is minimized
n

max

i=1

k
min

j=1
||xi � cj ||2
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Properties of the k-center problem

• NP-hard for dimension d≥2

• for d=1 the problem is solvable in polynomial time 
(how?)

• a simple combinatorial algorithm works well
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The k-center problem

• consider set X={x1,...,xn} of n points in Rd

• assume that the number k is given
• problem:

• find k points c1,...,ck (named centers)
• and partition X into {X1,...,Xk} by assigning each point xi in X to its nearest 

cluster center, 
• so that the cost

is minimized
n

max

i=1

k
min

j=1
||xi � cj ||2
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Furthest-first traversal algorithm

• pick any data point and label it 1
• for i=2,...,k
• find the unlabeled point that is furthest from {1,2,...,i-1}
• // use d(x,S) = min y∈S d(x,y)
• label that point i

• assign the remaining unlabeled data points to the 
closest labeled data point
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Furthest-first traversal algorithm: 
example

13 2

4
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• furthest-first traversal algorithm gives a factor 2 
approximation

Furthest-first traversal algorithm
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Furthest-first traversal algorithm

• pick any data point and label it 1
• for i=2,...,k
• find the unlabeled point that is furthest from {1,2,...,i-1}
• // use d(x,S) = min y∈S d(x,y)
• label that point i
• p(i) = argmin j<i d(i,j)
• Ri = d(i,p(i))

• assign the remaining unlabeled data points to the 
closest labeled data point
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Analysis

• Claim 1: R1 ≥ R2 ≥ ... ≥ Rk

• proof:
•Rj = d(j,p(j))

           = d(j,{1,2,...,j-1})
           ≤ d(j,{1,2,...,i-1})  // j > i
       ≤ d(i,{1,2,...,i-1}) = Ri
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• Claim 2: 
• let C be the clustering produced by the FFT algorithm
• let R(C) be the cost of that clustering
• then R(C) = Rk+1

• proof:
• for any i>k we have : 

d(i,{1,2,...,k}) ≤ d(k+1,{1,2,...,k}) = Rk+1

Analysis
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• let C be the clustering produced by the FFT algorithm

• let C* be the optimal clustering

• then R(C) ≤ 2R(C*)

• proof:
• let C*1,…, C*k be the clusters of the optimal k-clustering

• if these clusters contain points {1,…,k} then 
R(C) ≤ 2R(C*)                                   ✪

• otherwise suppose that one of these clusters contains two or more of the 
points in {1,…,k}

• these points are at distance at least Rk from each other

• this (optimal) cluster must have radius
½ Rk ≥ ½ Rk+1= ½ R(C)

Analysis
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x

z

✪                       R(C) ≤ 2R(C*)

R(C) ≤ x ≤ z + R(C*) ≤ 2R(C*)

R(C*)
a labeled
point in 
the cluster


