Partitional Clustering

o Clustering: David Arthur, Sergei Vassilvitskii. k-means
++.: The Advantages of Careful Seeding. In SODA 2007

e Thanks A. Gionis and S. Vassilvitskii for the slides
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What 1s clustering?

e a grouping of data objects such that the objects within
a group are similar (or near) to one another and
dissimilar (or far) from the objects in other groups




How to capture this objective?

a grouping of data objects such that the objects within
a group are similar (or near) to one another and
dissimilar (or far) from the objects in other groups

minimize

maximize
Intra-cluster inter-cluster
distances distances




The clustering problem

e Given a collection of data objects

e Find a grouping so that
e similar objects are in the same cluster
e dissimilar objects are in different clusters

Why we care ?

stand-alone tool to gain insight into the data
visualization

preprocessing step for other algorithms
iIndexing or compression often relies on clustering



Applications of clustering

e Image processing
o cluster images based on their visual content

e Web mining
e cluster groups of users based on their access patterns on webpages
o cluster webpages based on their content

e bioinformatics

e cluster similar proteins together (similarity wrt chemical structure and/or
functionality etc)

e many more...



The clustering problem

e Given a collection of data objects

e Find a grouping so that
e similar objects are in the same cluster
e dissimilar objects are in different clusters

Basic questions:
what does similar mean?
what is a good partition of the objects?
l.e., how is the quality of a solution measured?
how to find a good partition?



Notion of a cluster can be ambiguous

How many clusters? Six Clusters

Two Clusters Four Clusters



Types of clusterings

e Partitional
e each object belongs in exactly one cluster

e Hierarchical
» a set of nested clusters organized in a tree



Hierarchical clustering
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Partitional clustering

Original Points A Partitional Clustering



Partitional algorithms

e partition the n objects into k clusters

e each object belongs to exactly one cluster

o the number of clusters k is given in advance



The k-means problem

e consider set X={x1,...,xn} of n points in R“
e assume that the number k is given

e problem:

e find k points c1,...,ck (named centers or means)
so that the cost
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The k-means problem

o consider set X={x1,...,xn} of n points in R4
e assume that the number k is given

e problem:;

e find k points c1,...,ck (named centers or means)

e and partition X into {X1,..., Xk} by assigning each point xj in X to its nearest
cluster center,

e SO that the cost

me\lwz CJHQ—Z D lz =l

j=1lzeX,;
IS mlnlmlzed



The k-means problem

e k=1 and k=n are easy special cases (why?)

e an NP-hard problem if the dimension of the data is at
least 2 (d=2)

o for d=2, finding the optimal solution in polynomial time is infeasible

e for d=1 the problem is solvable in polynomial time

e In practice, a simple iterative algorithm works quite well



The k-means
algorithm

e voted among the top-10
algorithms in data mining

e one way of solving the k-
means problem
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The k-means algorithm

1. (or with another method) pick k cluster
centers {c1,...,Cx}

2.for each |, set the cluster X to be the set of points in X
that are Ci

3.for each | let cj be X
(mean of the vectors in X))

4.repeat (go to step 2) until convergence



Sample execution
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Properties of the k-means algorithm

e finds a local optimum

e often converges quickly
but not always

e the choice of initial points can have large influence In
the result



Effects of bad initialization

[teration |

Y. e
& _"i_i
-t ]
e P *
vy,
A i_l_-.....l -
- e
&
E 1l -.._ 51 L]
i i
A
ll..._. -
&

g
|— e
"
- | &
- 8 &-
. "
® L 1]
1

=
< P
L 1]

L
%:-
=

| "
=

Convergence

25



Limitations of k-means: different sizes
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Limitations of k-means: different density
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Limitations of k-means: non-spherical
shapes
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Original Points K-means (2 Clusters)



Discussion on the k-means algorithm

e finds a local optimum

e often converges quickly
but not always

e the choice of initial points can have large influence In
the result

e tends to find spherical clusters

e outliers can cause a problem

o different densities may cause a problem



Initialization

e random Initialization

e random, but repeat many times and take the best

solution
e helps, but solution can still be bad

e pick points that are distant to each other

e K-means++
e provable guarantees



K-means++

David Arthur and Sergei Vassilvitskii
k-means++: The advantages of careful seeding
SODA 2007



k-means algorithm: random initialization



k-means algorithm: random Initialization
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kK-means algorithm: initialization with
further-first traversal
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kK-means algorithm: initialization with
further-first traversal
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but... sensitive to outliers
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but... sensitive to outliers
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Here random may work well
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K-means++ algorithm

e interpolate between the two methods

e let D(x) be the distance between x and the nearest
center selected so far

e choose next center with probability proportional to
(D(x))2 = D3(x)

a=0  random initialization
a =oo furthest-first traversal

a="2 k-means++



kK-means++ algorithm

e Initialization phase:
e choose the first center uniformly at random
e choose next center with probability proportional to D?(x)

e teration phase.:
e iterate as in the k-means algorithm until convergence



kK-means++ [nitialization
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k-means++ result




K-means++ provable guarantee

Theorem:

k-means++ is O(logk) approximate in expectation



K-means++ provable guarantee

e approximation guarantee comes just
(initialization)
e subsequent iterations cost



K-means++ analysis

e consider optimal clustering C’

e assume that k-means++ selects a center from a new
optimal cluster

e then
e k-means++ is 8-approximate in expectation

e intuition: if no points from a cluster are picked, then it
probably does not contribute much to the overall error

e an inductive proof shows that the algorithm is O(logk)
approximate



kK-means++ proof : first cluster

o fix an optimal clustering C’
o first center is selected uniformly at random

e bound the total error of the points in the optimal cluster
of the first center



kK-means++ proof : first cluster

e each point ap € Ais equally likely to O

o let A be the first cluster O
be selected as center O

expected error:
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k-means++ proof : other clusters
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e suppose next center is selected from a new cluster in
the optimal clustering C

e bound the total error of that cluster



k-means++ proof : other clusters

e let B be the second cluster and bo the center selected

Z ZD2 (bo) Zmln{D Hb—boHQ}

boc B bEB bEB

triangle inequality: © 9
o ® 0 %
D(bo) < D(b) + [[b— by S

D?(bg) < 2D?(b) + 2||b — bol|?




k-means++ proof : other clusters

D?*(bg) < 2D?(b) + 2||b — bo]|?
e average over all points b in B

ZDQ | ZHb—bOHQ
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recall
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boc B bGB bEB
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K-means++ analysis

o T that k-means++ selects a center from a new optimal
cluster

e then
e kK-means++ is 8-approximate in expectation

e an inductive proof shows that the algorithm is O(logk)
approximate



| esson learned

e NO reason to use k-means and not k-means++

e K-means++ :
e easy to implement
e provable guarantee
o works well in practice



The k-median problem

o consider set X={x1,...,xn} of n points in R4
e assume that the number k is given

e problem:
e find k points c1,...,ck (named medians)

e and partition X into {X1,.... Xk} by assigning each point x; in X to its nearest
cluster median,

e SO that the cost

ZmlﬂH% — ¢jll2 = Z >l = el

j=lzeX;
IS minimized



the k-medoids algorithm

or PAM (partitioning around medoids)

1. (or with another method) choose k medoids
{c1,...,ck} from the original dataset X

2.assign the remaining n-k points in X to their
C

3.for each cluster, replace each medoid by a point in the
cluster that

4.repeat (go to step 2) until convergence



Discussion on the k-medoids algorithm

e very similar to the k-means algorithm
e same advantages and disadvantages

e how about efficiency?



The k-center problem

o consider set X={x1,...,xn} of n points in R4
e assume that the number k is given

e problem:;

e find k points c1,...,ck (named centers)

e and partition X into {X1,.... Xk} by assigning each point x; in X to its nearest
cluster center,

e SO that the cost

" k
s minimized 111X MI1N | ‘sz — Cy | |2
1=1 g9=1



Properties of the k-center problem

o NP-hard for dimension d=2

o for d=1 the problem is solvable in polynomial time
(how?)

e a simple combinatorial algorithm works well



The k-center problem

o consider set X={x1,...,xn} of n points in R4
e assume that the number k is given

e problem:;

e find k points c1,...,ck (named centers)

e and partition X into {X1,.... Xk} by assigning each point x; in X to its nearest
cluster center,

e SO that the cost

" k
s minimized 111X MI1N | ‘sz — Cy | |2
1=1 g9=1



Furthest-first traversal algorithm

e pick any data point and label it 1

o fOri=2,....k
e find the unlabeled point that is furthest from {1,2,...,i-1}
e /[ use d(x,S) = min yes d(X,y)
e label that point i
e assign the remaining unlabeled data points to the
closest labeled data point



Furthest-first traversal algorithm:
example

800 O 0
O OOO O
30 O' 1 O OO
o O
O O O
5 O

OO
O,



Furthest-first traversal algorithm

e furthest-first traversal algorithm gives a factor 2
approximation



Furthest-first traversal algorithm

e pick any data point and label it 1

o fOri=2,... .k
 find the unlabeled point that is furthest from {1,2,...,i-1}
e /[ use d(x,S) = min yes d(Xx,y)
e label that point i
e p(i) = argmin j<id(i,j)
e Ri=d(i,p(i))
e assign the remaining unlabeled data points to the
closest labeled data point



Analysis

e Clam1:R12R> =2 ... 2 Rk

e proof:

e R =d(j,p(j))
=d(j,{1,2,...j-1})
<d(j,{1,2,....i-1}) //]>]

<d(i,{1,2,...,i-1}) =R



Analysis

e Claim 2:

o let C be the clustering produced by the FFT algorithm
o let R(C) be the cost of that clustering
e then R(C) = Rk+1

e proof:

e for any i>k we have :
d(i,{1,2,...,k}) = d(k+1,{1,2,...,k}) = Rk+1



Analysis

e [Theorem

e let C be the clustering produced by the FET algorithm
e let C be the optimal clustering
e then R(C)<2R(C)

e proof:
e letC'y,..., C'k be the clusters of the optimal k-clustering
e If these clusters contain points {1,... k} then

R(C) < 2R(C") Ok
@ otherwise suppose that one of these clusters contains two or more of the
points in {1,... .k}

these points are at distance at least Rk from each other
this (optimal) cluster must have radius
Y2 Rk 2 /2 Rk+1= 72 R(C)



R(C) < 2R(C*)

R(C")
a labeled

point in - "
the cluster

R(C)<sx<z+ R(C) <2R(C)



