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Abstract

A very promising idea for fast searching in traditional and

multimedia databases is to map objects into points in k-d

space, using k feature-extraction functions, provided by a

domain expert [25]. Thus, we can subsequently use highly

fine-tuned spatial access methods (SAMS), to answer several

types of queries, including the ‘Query By Example’ type

(which translates to a range query); the ‘all pairs’ query

(which translates to a spatial join [8]); the nearest-neighbor

or best-match query, etc.

However, designing feature extraction functions can be

hard. It is relatively easier for a domain expert to assess the

similarity/distance of two objects. Given only the distance

information though, it is not obvious how to map objects

into points.

This is exactly the topic of this paper. We describe a fast

algorithm to map objects into points in some k-dimensional

space (k is user-defined), such that the dis-similarit ies are

preserved. There are two benefits from this mapping: (a)

efficient ret rieval, in conjunction with a SAM, as discussed

before and (b) visualization and data-mining: the objects

can now be plotted as points in 2-d or 3-d space, revealing

pot ential clusters, correlations among attributes and other

regularities that data-mining is looklng for.

We introduce an older method from pat te~n recognition,

namely, MultLDirnensionral Scaling (MDS) [51]; although

unsuitable for indexing, we use it as yardstick for our

met hod. Then, we propose a much faster algorithm to solve

the problem in hand, while in addition it allows for indexing.

Experiments on real and synthetic data indeed show that

the proposed algorithm is significantly faster than MDS,

(being linear, as opposed to quadratic, on the database size

*On leave from Univ. of Maryland, College Park. This work..-
was partially supported by the Institute of Systems Research and

by the National Science Foundation under Grants No. CDR-

8803012, EEC-94-02384, IRI-8958546 and IRI-9205273), with

matching funds from Empress Software Inc. and Thinking

Machines Inc.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

?Machinery. o copy otherwise, or to republish, requires
a fee and/or specific permission.
SIGMOD’95,San Jose, CA USA
@ 1995 ACM 0-89791-731 -6/95/0005 ..$3.50

King-Ip (David) Lin

Dept. of Computer Science

Univ. of Maryland, College Park

N), while it manages to preserve distances and the overall

structure of the data-set.

1 Introduction

The objective of this work is to provide a retrieval

and visualization tool for large collections of traditional

as well as ‘exotic’ and multimedia datasets. An

excellent idea, suggested by Jagadish [25], was to

rely on domain experts to derive k feature-extraction

functions, thus mapping each object into a point in

k-dimensional space. Then the problem is reduced to

storing, retrieving and displaying k-dimensional points,

for which there is a plethora of algorithms available.

However, it is not always easy to derive the above

feature-extraction functions. Consider the case, eg.,

of typed English words, where the distance function

is the editing distance (minimum number of insertion,

deletions and substitutions to transform one string

to the other). It is not clear which the features

should be in this case. Similarly, in matching digitized

voice excerpts, we typically have to do some time-

warping [44], which makes it difficult to design feature-

extraction functions.

Overcoming these difficulties is exactly the motiva-

tion behind this work. Generalizing the approach by Ja-

gadish, we try to map objects into k-dimensional points,

assuming that a domain expert has only provided us

with a distance/dis-similarity function D(*, *). Notice

that this setting includes the case of features, by using

eg., the Euclidean distance between two feature vectors

as the distance function between the corresponding ob-

jects.

Given such a set of objects and the distance function

220, users would like (a) to find objects similar to a

given query object, (b) to find the pairs of objects that

are most similar to each other, as well as (c) to visualize

the distribution of objects into some appropriately

chosen space, in order to check for clusters and other

regularities.

Next, we shall use the following terminology:

Definition 1 The k-dimensional point Pi that corre-
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spends to the object Oi, will be called ‘the image’ of

object Oi. That is, P; ~ (z; ,1, z;, z, . . .,x~,~ )

Definition 2 The k-dimensional space containing the

‘images’ will be called target space.

Some of the applications that motivated the present

work are listed next. Some distance functions are also

described.

Image and, in general, multimedia databases: In

a collection of shapes [25] we would like to find

shapes similar to a give one; in a collection of

color images, we would like to find images with

similar colors, shapes or texture [35]. There we

used the Euclidean distance between appropriately

selected feature vectors (color attributes, moments

of inertia for shape, etc.) Search-by-content is

highly desirable in multimedia databases, with audio

(voice, music), video etc. [33]. For example, users

might want to retrieve, music scores, or video clips

that are similar to a target music score or video

clip, Once the similarity (or dis-similarity) function

has been determined, our proposed method can be

immediately applied.

Medical databases, where l-d objects (eg., ECGS),

2-d images (eg., X-rays) and 3-d images (eg., MRI

brain scans) [5] are stored. Ability to retrieve

quickly past cases with similar symptoms would be

valuable for diagnosis, as well as for medical teaching

and research purposes. Notice that the distance

functions are complicated, typically requiring some

warping of the two images, to make sure that

the anatomical structures (eg., bones) are properly

aligned, before we consider the differences [50]. This

warping makes it difficult to find features that would

adequately describe each image (and therefore, map

it into a point in feature space).

Time series, with, eg. financial data, such as stock

prices, sales numbers etc., or scientific databases,

with time series of sensor data, weather [11],

geological, environmental, astrophysics [53] data,

etc., In such databases, typical queries would be

‘jind companies whose stock prices move similarly’,

or ‘find past days in which the solar magnettc wind

showed patterns similar to today’s pattern> [53].

The goal is to aid forecasting, by examining similar

patterns that may have appeared in the past. In [1]

we used the Euclidean distance (sum of squared

errors) as the distance function between two time

series.

Similarity searching in string databases, as in the

case of spelling, typing [30] and OCR error correc-

tion [26]. There, given a wrong string, we should

search a dictionary to find the closest strings to

it. Conceptually identical is the case of approxi-

mate matching in DNA databases, where there is a

large collection of strings from a four-letter alphabet

(A, G, C,T); a new string has to be matched against

the old strings, to find the best candidates [4]. In

all these applications, the distance is typically the

editing distance ie., minimum number of insertions,

deletions or substitutions that are needed to trans-

form the first string to the second.

Data mining [3], [2] and visualization applications.

For example, given records of patients (with at-

tributes like gender, age, blood-pressure etc.), we

would like to help the physician detect any clusters,

or correlations among symptoms, demographic data

and diseases.

From the above descriptions, two types of queries

seem to be very desirable: ‘query-by-example’ requests

and ‘all pairs’ queries. Specifically:

Definition 3 The term query-by-example (or, equiva-

lently ‘range query’ or ‘similarity query’) will signify

queries of the following form: Given a desirable object

(termed query object), search a collection of objects to

find the ones that are within a user- dejined distance e

from the query object.

Definition 4 The term all pairs query (or, equivalently

‘spatial join’) wiIl signify queries of the form: In a

collection of objects, find the pairs of objects which are

within distance c from each other. Again, c is user-

defined.

All the above applications would benefit by a mapping

of objects into points in some k-d space. Such a mapping

provides two major benefits:

1.

2.

It can accelerate the search time for queries. The

reason is that we can employ highly fine-tuned

Spatial Access Methods (SAMS), like the R*-trees

[7] and the z-ordering [37]. These methods provide

fast searching for range queries as well as spatial

joins [8].

it can help with visualization, clustering and data-

mining: Plotting objects as points in k=2 or 3 di-

mensions can reveal much of the structure of the

dataset, such as the existence of major clusters, the

general shape of the distribution (linear versus curvi-

linear versus Gaussian) etc.. These observations can

provide powerful insights in formulating hypotheses

and discovering rules.

Thus, as discussed before, the general problem is defined

as follows. We shall refer to it as the ‘ distance case’,

to highlight the fact that only the distance function is

known:

General Problem (’distance’ case)
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Given N objects and distance information about

them (eg., an N x N distance matrix, or

simply the distance function D(*, *) between two

objects)

Find N points in a k-dimensional space,

such that the distances are maintained as well

as possible.

We expect that the distance function V() is non-

negative, symmetric and obeys the triangular inequal-

ity. In the ‘target’ (k-d) space, we typically use the

Euclidean distance, because it is invariant under rota-

tions. Alternative distance metrics could be any of the

Lp metrics, like the L1 (’city-block’ or ‘Manhattan’ dis-

tance).

A special case is when we have already extracted

features from the objects, but we still want to do a

projection, usually because the features are

(’dimensionality curse’). We shall refer to

‘features’ case:

Specialized Problem (’features’ case)

Given N vectors with n attributes each,

Find N vectors in a k-dimensional space,

too many

it as the

such that the distances are maintained as well

as possible.

Again, the distance between two vectors in either of

the two spaces could be any Lp metric. As before, we

choose to use the Euclidean distance (L2 metric).

In the above problems, the ideal mapping should

fulfill the following requirements:

1, It should be fast to compute: O(N) or O(N log N),

but not 0(N2) or higher, because the cost will be

prohibitive for large databases.

2. It should preserve distances, leading to smal.

crepancies (low ‘stress’ - see (Eq. 1)).

3. It should provide a very fast algorithm to

dis-

map

a new object (eg., a query object) to its image.

The algorithm should be O(1) or O(log N). This

requirement is vital for ‘queries-by-example’,

The outline of this paper is as follows. In section 2

we present a brief survey of Multi-Dimensional Scaling

(MDS), related dimensionality reduction methods (K-

L, SVD etc) and pointers to literature on clustering

and spatial access methods. In section 3 we present

our method. In section 4 we give some experimental

results on real and synthetic datasets. In section 5 we

list the conclusions.

2 Survey

Here we present some background information about

older attempts to solve the problem. First we dis-

cuss the Multidimensional Scaling (MDS) method that

has been used in several diverse fields (eg., social sci-

ences, psychology, market research, physics [55]) to

solve the ‘distance’ case problem. Then, we present

the Karhunen-Lo&we (K-L) transform and the closely

related Singular Value Decomposition (SVD) that has

been used for dimensionality reduction (’features’ case).

Finally, we provide a brief survey of spatial access meth-

ods, as well as pointers to clustering algorithms.

2.1 Multi-Dimensional Scaling (MDS)

Multidimensional scaling (MDS) is used to discover

the underlying (spatial) structure of a set of data

items from the (dis)similarity information among them.

There are several variations, but the basic method (eg.,

see [29] ) is described next. Following the ‘distance’

case setting, the method expects (a) a set of N items,

(b) their pair-wise (dis)similarities and (c) the desirable

dimensionality k.

Then, the algorithm will map each object to a point in

a k dimensional space, to minimize the stress function:

where dij is the dissimilarity y measure between object

Oi and object Oi and & is the (Euclidean) distance

between their ‘images’ Pi and Pj. The ‘stress’ function

gives the relative error that the distances in k-d space

suffer from, on the average.

To achieve its goal, MDS starts with a guess and

iteratively improves it, until no further improvement is

possible. In its simplest version, the algorithm works

roughly as follows: It originally assigns each item to

a k-d point (eg., using some heuristic, or even at

random). Then, it examines every point, computes

the distances from the other N – 1 points and moves

the point to minimize the discrepancy between the

actual dissimilarities and the estimated k-d distances.

Technically, MDS employs the method of ‘steepest

descent’ to update the positions of the k-d points.

Intuitively, it treats each pair-wise distance as a ‘spring’

between the two points; then, the algorithm tries to re-

arrange the positions of the k-d points to minimize the

‘stress’ of the springs.

The above version of MDS is called metric mul-

tidimensional scaling [51], because the distances are

given as numbers. Several generalizations and exten-

sions have been proposed to the above basic algorithm:

Kruskal [29] proposed a method that automatically de-

termines a good value for k; Shepard [48], and Kruskal

[28] proposed the non-metric MDS where the distance

between items are specified qualitatively; Young [55]

describes the individual difference MDS, which incor-

porates multiple distance messures, corresponding to

different observers’ perception of the dat a’s difference.

MDS has been used in numerous, diverse applications,

including the following: semantic structure analysis of
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words; perceived personality trait relationships [41],

operating on 60 different personality traits and people’s

perception of what goes together (like ‘warm’ and

‘trusting’); physics (nuclear gamma-ray spectra pattern

recognition, recognizing the different type of spins

and their relationships); political science (determining

ideological shifts) [55]; texture analysis [40].

However, for our applications, MDS suffers from two

drawbacks:

●

●

It requires 0(N2 ) time, where N is the number of

items. Thus, it is impractical for large datasets.

In the applications presented above, the number of

items was small (typically, N= 10-100).

Its use for fast retrieval is questionable: In the

‘query-by-example’ setting, the query item has to

be mapped to a point in k-d space. MDS is not

prepared for this operation: Given that the MDS

algorithm is 0(N2), an incremental algorithm to

search/add a new item in the database would be

O(N) at best. Thus, the complexity of answering a

query would be as bad as sequential scanning.

The above two drawbacks are the motivation behind

this present paper. Despite the above problems, we use

MDS as a yardstick, against which we measure the speed

and ‘stress’ of our method.

2,2 Dimensionality reduction techniques

In the ‘features’ case, the problem has been studied

extensively in statistical pattern recognition and matrix

algebra, The optimal way to map n-dimensional points

to k-dimensional points (k < n) is the ATar%unen-Lo2ve

(’K-L’) transform (eg., see [12], [17]). K-L is optimal

in the sense that it minimizes the mean square error,

where the error is the distance between each n-d point

and its k-d image.

Figure 1 shows a set of 2-d points, and the corre-

sponding 2 directions (x’ and y’) that the K-L transform

suggests: If we are allowed only k= 1, the best direction

to project on is the direction of z’; the next best is y’

etc.

.J2cz
, . x,

i .
. .

0-

.

. .
..O

.

Figure 1: Illustration of the Karhunen-Lo&ve (K-L)

transformation - the ‘best’ axis to project is x’.

‘K-L’ is often used in pattern matching [17] to choose

the most important features (actually, linear combi-

nations of features), for a given set of vectors. It

computes the eigenvectors of the covariance matrix,

sorts them in decreasing eigenvalue order, and approx-

imates each data vector with its projections on the

first k eigenvectors. The operation is closely related

to the Singular Value Decomposition (SVD) [49, 39, 19]

of the object-feature matrix. Our implementation of

the K-L transform in Mathematical [54] is available

in Appendix A, as well as on ‘mosaic’ (URL: f tp:

//olympos. cs. umd. edu /pub/SRC/ kl m).

However, the K-L transform suffers from two draw-

backs:

● it can not be applied at all on the ‘distance’ case

● even in the ‘features’ case, it may be slow for large

databases (N > 1) with many attributes (n> 1)

The latter situation appears, eg., in information re-

trieval and filtering [16], [13], where documents corre-

spond to V-dimensional vectors (V being the vocabu-

lary size of the collection, typically in the tens of thou-

sands). In section 4 we provide experimental results on

such a dataset.

2.3 Retrieval and Clustering

As mentioned before, the retrieval engine will be a

Spatial Access Method (SAM), which, by definition,

is a method that can handle k-dimensional points,

rectangles, or even more complicated shapes. The most

popular methods form three classes: (a) tree-based

methods like the R-tree [20], and its variants (R+-

tree [45], hB-tree [31], P-tree [24], R*-tree [7], Hilbert R-

trees [27] etc.) (b) methods using linear quadtrees [18]

or, equivalently, the z-ordering [37, 38], or other space-

filling curves [14, 23] and finally (c) methods that use

grid-files [36, 22].

There are also retrieval methods for the case where

only the triangular inequality holds [10], [46], [47],

[6]. All these methods try to exploit the triangular

inequality in order to prune the search space on a range

query. However, none of them tries to map objects

into points in ‘target space’, nor to provide a tool for

visualization.

Finally, our work could be beneficial to research on

clustering algorithms, where several approaches have

been proposed. See, eg., [32], [21] for surveys, [34] for

a recent application in GIS, [43] [52] for applications in

Information Retrieval.

3 Proposed Method

In the first part, we describe the proposed algorithm,

which achieves a fast mapping of objects into points,

so that distances are preserved well. Then, we give an

arithmetic example with a small distance matrix, and a

larger example with real data. Table 1 lists the symbols

and their definitions.
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Symbols ] Definitions.

N I Number of ob.iects in database

I n \ dimensionality of original space

I I (’features’ case only)

~

dimensionality of ‘target space’

distance function between two objects

Table 1: Summary of Symbols and Definitions

3.1 Algorithm

The goal is to solve the problem for the ‘distance’

case, that is, to find N points in k-d space, whose

Euclidean distances will match the distances of a given

N x N distance matrix. The key idea is to pretend

that objects are indeed points in some unknown, n-

dimensional space, and to try to project these points

on k mutually orthogonal directions. The challenge is

to compute these projections from the distance matrix

only, since it is the only input we have.

For the rest of this discussion, an object will be

treated as if it were a point in an n-d space, (with

unknown n).

The heart of the proposed method is to project the

objects on a carefully selected ‘line’. To do that, we

choose two objects Oa and ob (referred to as ‘piuot

objects’ from now on), and consider the ‘line’ that passes

through them in n-d space. The algorithm to choose

pivot objects is discussed later (see Figure 4).

The projections of the objects on that line are

computed using the cosine law. See Figure 2 for an

illustration.

Theorem 1 (Cosine Law) In any triangle oaoiob,

the cosine law gives:

db,i2 = da,i2 + da,b2 – 2xida,b (2)

Proof From the Pythagorean theorem in the two

rectangles OaEOi and ObEOi.

Eq. 2 can be solved for ~i, the first coordinate of

obiect Oi:

da,i2 + da,b2 _ db,i2
Xi z

2da,b
(3)

In the above equations, di,j is a shorthand for the

distance V(O,, OJ) (for i, j = 1, ..., N. Notice that

the computation of xi only needs the distances between

objects, which are given.

Observe that, thanks to Eq. 3, we can map objects

into points on a line, preserving some of the distance

information: For example, if Oi is reasonably close to

the pivot 0., x; wi 11be small. Thus, we have solved the

problem for k=l.

Oa

01

*0,

xi

dab

Figure 2: Illustration of the ‘cosine law’ - projection on

the line Oaob.

?
Ob

!4=%
E

Oi
D

xi .Xj I Oj

cl 08
I I 1

I 1
I I
1 1

I
1
I

Figure 3: Projection on a hyper-plane M, perpendicular

to the line o.ob of the previous figure.

The question is whether we can extend this method,

so that we can map the objects into points in 2-d space,

and eventually, k-d space. The answer is affirmative,

and the idea is as follows: Pretending that the objects

are indeed points in n-d space, consider a (n – 1)-d

hyper-plane ‘H that is perpendicular to the line (0=,

O~); then, project our objects on this hyper-plane. Let

Oi’ stand for the projection of Oi (for i = 1, ..., N).

The problem is the same as the original problem, with

n and k decreased by one. This should not create

problems, because n was unknown to begin with!

The only missing part is to determine the distance

function ‘D’() between two of the projections on the

hyper-plane ‘H, such as, Oil and Oi’. Once this is done,

we can recursively apply the previous steps.

Figure 3 depicts two objects Oi, Oj, and their

projections Oi’, Oj’ on the ‘l-i hyper-plane. A key

observation is the next Lemma:

Lemma 1 On the hyper-plane ‘H, the Euclidean dis-

tance V’() between the projections 0~1 and 01’ can be

computed from the original dist ante D(), as follows:

(’D’(Oi’,0j’))2 = (D(Oi)Oj))2-(~i-~j)2 i, j = 1,.. .,N

(4)
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Proof From the Pythagorean theorem on the triangle

OiCOj (with the right angle at ‘C’) we have:

(o,’oj’)’ = (Coj)’ = (o,oj)’ - (OK7)2 (5)

where (AB) indicates the length of the line segment

AB. Since (OiC) = (DE) = [ [~~ – x~ 112, the proof is

complete.

Ability to compute the distance D’() allows us to

project on a second line, lying on the hyper-plane fi,

and, therefore, orthogonal to the first line (O., 0~) by

construction.

Thus, we can solve the problem for a 2-d ‘target’

space. More importantly, we can apply the same steps

recursively, k times, thus solving the probiem for any k.

The point that we have not discussed is how to choose

the ‘pivot objects’ 0. and ob. Clearly, we would like

to find a line on which the projections are as far apart

from each other as possible. To achieve that, we need

to choose 0. and ob such that the distance ‘D(O., Ob)

is maximized. However, this would require 0(N2)

distance computations. Thus, we propose the linear

heuristic algorithm choose-distant-objectso, illustrated

in Figure 4

Algorithm 1 choose-distant-objects ( 0, dist () )

begin

1) Choose arbitrarily an object, and let it be the

second pivot object ob

2) let O. = (the object that is farthest apart

from ob ) (according to the distance function

dist ())

3) let ob = (the object that is farthest apart from

0.)
4) report the objects 0. and ob as the desired

pair of objects.

end

Figure 4: Heuristic to choose two distant objects.

All the steps in the above algorithm are linear on

N. The middle two steps can be repeated a constant

number of times, still maintaining the linearity of the

heuristic. In all our experiments, we have 5 iterations.

Now we are ready to describe our basic algorithm.

According to the problem definition ([dist ante’ case),

the algorithm accepts as input (a) a set O of N objects

(eg., typed words, ASCII documents, color images, or

n-d vectors) (b) a distance function D() that obeys

the triangular inequality and (c) the desired number

of dimensions k, and it maps the objects into points in

k-d space, so that the distances are preserved as well

as possible. The output vectors are written in a global

variable, the N x k array Xo. The algorithm also records

the ‘pivot objects’ for each recursive call, in the global

2 x k array PAD. Figure 3.1 gives the pseudo-code for

FastMap.

Algorithm 2 FastMap

begin

Global variables:

N x k array X[ ] /* At the end of the algorithm,

the i-th row is the image of the i-th object.

*I
2 x k pivot array PAD /* stores the ids of the pivot

objects - one pair per recursive call */

int col# =0; /* points to the column of the Xo

array currently being updated */

Algorithm I’astlfap( k, D(), O )

1) if (k < O)

{ return; }

else

{col# ++;}
2) /* choose pivot objects */

let 0. and ob be the result of choose-dwtant-

objects( 0, ‘D());

3) /* record the ids of the pivot objects */

PA[l, col#] = a; PA[2, col#]= b;

4) if ( D(O.,0~) = O)

set X[ i, col#] =0 for every i and return

/* since all inter-object distances are O */

5) /* project objects on line (O., Ob) */

for each object Oi,

compute x, using Eq. 3 and update the global

array: X[i, coi#] = z~

6) /* consider the projections of the objects on

a hyper-plane perpendicular to the line (O.,

Ob); the dist ante function D’ () between two

projections is given by Eq. 4 */

call FastMap( k – 1,D’(),0)

end

Figure 5: Algorithm ‘ FastMap’

Thus, the algorithm determines the coordinates of the

N objects on a new axis, after each of the k recursive

calls. Therefore, the i-th object is mapped to the point

F’i= (X[i, 1], X[i,2], X[i, k]) where X[i, j] is the j-th

co-ordinate P;, the image of the i-th object.

The complexity of the ‘FastMap’ algorithm is O(iVk)

distance calculations: At each recursive call, the longest

steps are steps 2 and 5, each of which is O(N).

The reason that we need to record the ‘pivot objects’

in each recursive call is to facilitate queries. The search

algorithm is as follows: when a ‘query-by-example’

request arrives, the query object 0~ is mapped into

a k-d point in ‘target space’, by projecting it on the

lines of appropriate ‘pivot objects’, with the appropriate

distance function each time. That is, we repeat step 5

of the FastMap algorithm for the query object only.

Notice that the complexity of the mapping operation

is constant (0(1)) with respect to the database size N.
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More detailed, the algorithm requires El(k) distance-

calculation operations, because we need to compute the

distance of the query object from each of the 2 * k pivot

objects. Even if we decide to compute the distances

between the pivot objects on the fly, we have to add k

more distance calculations to the count, for a total of

3*k.

Due to space limitations, we omit an arithmetic

example, as well as an illustration of how to apply our

method for a collection of documents. The details are

in a technical report [15], also available on ‘mosaic’.

4 Experiments

We implemented our method in ‘C++’ and UNIX(TMIJ

on a DECStation 5000/25 and run several experiments,

in two groups. In the first group we compared our

method with the traditional MDS, with respect to

speed and to quality of the output, as measured by

the ‘stress’ function (Eq. 1). For the implementation

of MDS, we use the procedure MSIDV from the IMSL

STAT/LIBRARY FORTRAN routines.

The second group of experiments is designed to

illustrate the visualization and clustering abilities of

our algorithm for several applications. We used several

datasets, real as well as synthetic. The real datasets

are:

D OCS: It consists of 35 text documents in 7 groups

(each with 5 documents):

ABS: Abstracts of computer science technical re-

ports.

BBR: Reports about basketball games.

CAL: ‘Call for papers’ for technical conferences.

MAT: Portions of the Bible in King James’ Version

(taken from the Gospel of Matthew).

REC: Cooking recipes.

WOR: ‘World News’: documents about the Middle

East (October 1994).

SAL: Sale advertisements for computers and soft-

ware

The above dat asets are taken from various news-

groups or text repositories on the Internet (eg., MAT

is available electronically from wuarchive. Wustl .

edu). The distance function is the Euclidean dis-

tance of the document vectors, after normalization

to unit vectors; it is closely related to the popular

‘cosine-similarity’ function of Information Retrieval

(for more details, see the technical report [15]).

WINE: N= 154 records, with results of a chemical

analysis of wines grown in the same region in Italy,

but derived from three different cultivars. Thus,

we expect to see 3 clusters. The file was obtained

from the UC-Iruin e reposit ory of machine learning

databases and domain theories.lEach row has 13

attributes, indicating the amount of each of the

13 constituents found in the specific sample of

wine. For the dis-similarity measure, we used the

Euclidean distance, after normalizing each attribute

domain to the unit interval.

The synthetic datasets are as follows:

GAUSSIAN5D: We generated a dataset of N=120

points in 5-dimensional space. The points form 6

clusters, with the same number of points in each

cluster. The centers of the clusters were chosen

to be the points (0,0,0,0,0) (10,0,0,0,0) (0,10,0,0,0)
(0,0,10,0,0) (0,0,0,10,0) (0,0,0,0,10). The data points

in each cluster follow a Gaussian distribution, with

standard deviation a = 1 on each axis and covari-

ance p~,~ = O for any i # j. Again, the distance

between two such points is the Euclidean distance.

This dataset is a simplified version of the one used

in a Pattern Recognition textbook [17, p. 46].

SPIRAL: 30 points on a 3-d spiral, as suggested by

Duda and Hart [12, p. 243]:

zl(i) = cos zs(i)

z?(i) = sin #s(i)

Zs(i) = i/ti, i= 0,1, ...29 (6)

4.1 Comparison with MDS

In the first group of experiments, we compare our

method with the traditional MDS, using the ‘WINE’

dataset. To see the dependency on N, we run both

algorithms on subsets of varying sizes, namely, N = 45,

60, 75, 90 and 105. For both methods, we experiment

with k=2 and 3. Figure 6 plots the time required by

each method as a function of the number of records

N, in logarithmic scales. We used the time utility

of UNIX, and we report user times. In Figure 6 we

also plotted a linear and a quadratic curve, which, in

logarithmic scales, become straight lines with slopes 1

and 2, respectively. These lines, labeled as ‘O(x)’ and

‘O(X’2)’ respectively, are intended as visual aids, to

highlight the fact that MDS requires roughly quadratic

time while FastMap requires linear time on the database

size N.

The important conclusion is that FastMap achieves

dramatic time savings over MDS, even for small datasets.

Next, we want to study the performance of each

method as the dimensionality k of the target space

increases. We used the 60-point subset and we varied k

from 2 to 6. Figure 7 shows the time for each method

versus k, again in logarithmic scales. Notice that the

1 ics . uci . edu: // ftp/pub/machine-learn ing-databases/wine
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time of our method increases with k, as expected,

while the time for MDS grows even faster. Again,

Fasilfap provides dramatic savings in time.
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Figure 6: Response time vs. database size N for the

WINE dataset; MDS and FasWap, with k=2,3. Both

axes logarithmic.

:-
2 3 4 56

Iw(k)

Figure 7: Response time vs. number of dimensions

k for the WINE subset (N=60) - MDS (solid) and

FastMap (dashed line). Both axes logarithmic.

The final experiment is to estimate the stress of

each method. For the same dimensionality k, MDS

clearly takes longer, as we saw, but it gives lower stress.

The question is to find the ‘price/performance’ of each

algorithm, that is, how much can each algorithm reduce

the ‘stress’, in a given amount of time. Thus, Figure 8

gives the ‘stress’ for each method, as a function of the

response time, in logarithmic scales. The independent

variable was the dimensionality k. In these graphs, the

‘ideal’ method should give zero ‘stress’, in zero time.

The closer a method goes to the origin (O ,0), the better

it is. FastMap is in general closer to the ‘ideal’ point

(0,0). Alternatively, for the same value of ‘stress’ (=

quality), we see that FastMap can produce a mapping

almost an order of magnitude faster.
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Figure 8: Response time vs. stress with varying k,

for the WINE subset with N=60 - MDS (solid) and

FastMap (dashed line). Both axes logarithmic.

The conclusion of this group of experiments is that,

thanks to its linearity, FastMap achieves significant

savings in time, without loss in output quality.

4.2 Clustering/visualization properties of

Fast Map

In this group of experiments our goal is to show that

the proposed algorithm is useful for visualization and

clustering. Here we present the results on several

datasets. Unless otherwise stated, we ask for k=3

dimensions. Recall that .fI, .fZ and j~ stand for the

first three ‘ FastMap-attributes’.

First we present the results with the synthetic

datasets and then with the real ones.

4.2.1 Synthetic Data

Figure 9 gives the resulting mapping for k=3, for

the GAUSSIAN5D dataset (N=120 points, forming 6

clusters, with 20 points per cluster). In the plots, the

points of a given cluster are all indicated by the same

letter. Figure 9(a) gives the scatter-plot of .fl vs $2,

while (b) gives the scatter-plot of ~1 vs. ~3, and (c)

gives the 3-d plot with all three ‘ FastMap-attributes’.

Notice that, even with the first two only dimensions

~1 and fz, we can detect roughly 4 clusters; using the

next scatter-plot (b), the clusters can be completely

separated, because any two clusters are disjoint in at

least one of the scatter-plots. Figure 9(c) confirms the

previous observation, showing that all 6 clusters are

disjoint in the 3-d ‘target’ space.

Although it uses a fictitious dataset, this example il-

lustrates the ability of FastMap to help with visualiza-

tion and clustering.

The next experiment involves the SPIRAL dataset.

Figure 10(a) plots the original dataset in 3-d and (b)

shows the result of FastMap for k=2 dimensions.

Notice that the projections (Figure 10(b)) give much
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Figure 9: FustMap on the GAUSSIAN5D dataset (a) ~z vs ~1 (b) ~3 vs jl

information about the original dat aset: the points seems

to form a l-d curve, with no obvious clusters, and with

some type of oscillation.
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Figure 10: (a) 3-d points on a spiral (SPIRAL dataset)

and (b) the result of FastMap,

4.2.2

Next, we

in Figure

Real Data

present the results

11. The layout is

for k=2

for the WINE dataset,

as in Figure 9 for the

GAU~SIAN5D dataset: (a) gives a 2~d scatter-plot

using the first two ‘ FastMap-coordinates’ ~1, ~z, (b)

gives the scatter-plot for ~1 and ~s and (c) combines

the previous two into a 3-d scatter-plot.

The symbols (’+’, ‘Cl’, ‘?’) denote members of the

first, second and third class, respectively. Notice that

the ~1-~z scatter-plot manages to separate one of the

three clusters (the one labeled with ‘?’). The jl-~s

scatter-plot provides some more information to help

separate the clusters even better. The 3-d scatter-plot

gives the whole picture and separates the clusters almost

completely.

For our last dataset, DOCS, the results are shown in

Figure 12. The figure shows the 3-d scatter-plot, (a)

in its entirety and (b) after zooming into the center,

to illustrate that FastMap manages to cluster well the

documents of each class. Notice that the

separated well, in only k=3 dimensions!

7 classes are

fl

(c)

and (c) the 3-d scatter-plot (~1, .f2, ~3)

(a) (b)

Figure 12: The DOCS dataset, after FastMap in k=3-d

space (a) The big picture (b) the contents of the dashed

box in more detail,

5 Conclusions

We have proposed a fast algorithm to map objects into

points in k-dimensional space, so that the distances

between the objects are preserved as well as possible.

In an earlier approach for similarity searching in non-

traditional/multimedia databases [25], a domain expert

was expected to provide feature extraction functions.

Thanks to the proposed cFastMap’ algorithm, the

domain expert need only provide a distance function,

from which our algorithm will infer the appropriate

features for each object.

Mapping objects into points has the following two

applications. Firstly, it can accelerate searching for

several types of queries (’query-by-example’ or ‘range’

queries, ‘all pairs’ queries or spatial joins [9, 8], nearest

neighbor queries [42] etc.), because several, highly

optimized spatial access methods are readily available

(R-trees [20], R*-trees [7] etc.). Secondly, such a

mapping is useful for data-mining, cluster analysis and

visualization of a high-dimensionality dataset.

The main contribution of this paper is the design of

FastMap, a linear algorithm that- f~lfills all the d&ign
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1.

2.

3.

it solves the general problem (’distance’ case) (while,

eg., the Karhunen-Loeve (K-L) and the Singular

Value Decomposition (SVD) can only solve the

specialized version (’features’ case))

it is linear on the database size, and therefore much

faster than Multi-Dimensional Scaling (MDS) and

at the same time, it leads to fast indexing, being

able to map a new, arbitrary object into a k-d

point in O(k) distance calculations, regardless of the

database size N.

The algorithm uses theorems from traditional geom-

etry (such as the cosine law), and it quickly projects

each object on an appropriate direction at each of the k

recursive calls. With respect to quality of output (mea-

sured by the ‘stress’ function), we experimented with

FastMap on real datasets: The result is that it achieves

the same ‘stress’ levels as MDS, for a fraction of the

time.

A second contribution of the paper is that it intro-

duces tools from pattern recognition, social sciences and

matrix algebra, and specifically, the Multi-Dimensional

Scalzng method (MDS) and the Karhunen-Lo3ve trans-

form (or Singular Value Decomposition, SVD). Al-

though not as general or as fast as the proposed al-

gorithm, these tools could be added to the arsenal of

database research, to help with indexing and visualiza-

tion of non-traditional datasets. MDS has been used in

diverse applications to map objects into k-d points using

a quadratic, iterative algorithm. Being quadratic on N

and unable to handle ‘queries-by-example’ easily, MDS

is a good choice for visualization of small datasets. The

SVD and the K-L transform provide the optimal solu-

tion for the ‘features’ case (although unable to handle

the general problem of the ‘distance’ case).

Finally, we have demonstrated the speed and the

output quality of our proposed algorithm on real and

synthetic datasets. There, ‘ FastMap’ managed to

separate all or most of the existing clusters, even with

low values for the dimensionality k of the target space

(k=2 or 3 dimensions).

Future work includes:

●

●

●

Application of the algorithm to multimedia databases,

where FastMap should automatically determine the

features for the given dataset, from the given dis-

tance function.

study of its benefits for interactive data mining and

clustering and

the application of the algorithm for document

retrieval.
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A Karhunen-Lo&e Transform

This is the code for the K-L transform in Mathemat-

ical [54]

(* given a matrix mat_ with

$n$ vectors of $m$ attributes,

it creates a matrix with $n$ vectors

and their f lrst $k$ most ‘ important’

attributes (le. , the K-L expansions of these
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$n$ vectors) *)

KLexpansion[ mat_, k_:2] :=

mat . Transpose[ KL[mat, k] ];

(* given a matrix with $n$ vectors Of

$h$ dimensions, computes the first $k$

singular vectors, ie., the axes

of the first $k$ K-L expansion *)

KLC mat_ , k_:2 1:= Module[

{n,m, avgvec, newmat,i, val, vec 3,
{n,m}= Dimensi.ons[mat];

avgvec= Apply[ plus, mat] I n IIN;

(* translate vectors, so the mean = O *)

newmat= Table[ mat[[ill - avgvec, {i,l,nll;

{val, vecl= Eigensystem[

Transpose[newmat] . newmat 1;

vec[[ Range[l,k] 11

1
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