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SUMMARY

High throughput sequencing of 16S ribosomal

RNA gene amplicons is a cost-effective method

for characterization of oral bacterial communities.

However, before undertaking large-scale studies,

it is necessary to understand the technique-

associated limitations and intrinsic variability of

the oral ecosystem. In this work we evaluated

bias in species representation using an in vitro-

assembled mock community of oral bacteria. We

then characterized the bacterial communities in

saliva and buccal mucosa of five healthy subjects

to investigate the power of high throughput

sequencing in revealing their diversity and bioge-

ography patterns. Mock community analysis

showed primer and DNA isolation biases and an

overestimation of diversity that was reduced after

eliminating singleton operational taxonomic units

(OTUs). Sequencing of salivary and mucosal

communities found a total of 455 OTUs (0.3% dis-

similarity) with only 78 of these present in all

subjects. We demonstrate that this variability was

partly the result of incomplete richness coverage

even at great sequencing depths, and so compar-

ing communities by their structure was more

effective than comparisons based solely on mem-

bership. With respect to oral biogeography, we

found inter-subject variability in community

structure was lower than site differences between

salivary and mucosal communities within sub-

jects. These differences were evident at very low

sequencing depths and were mostly caused by

the abundance of Streptococcus mitis and Gem-

ella haemolysans in mucosa. In summary, we

present an experimental and data analysis frame-

work that will facilitate design and interpretation

of pyrosequencing-based studies. Despite chal-

lenges associated with this technique, we dem-

onstrate its power for evaluation of oral diversity

and biogeography patterns.

INTRODUCTION

Bacteria dominate the microbial communities that co-

exist with humans. These assemblages of microor-

ganisms are thought to play an important role in
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homeostasis, metabolic processes, nutrition and

protection against deleterious infections (Mazmanian

et al., 2008; Ismail et al., 2009; Kau et al., 2011).

Indeed, disturbance of these communities and

changes in their composition have been associated

with the development of a variety of diseases (Eckburg

& Relman, 2007; Chang et al., 2008; Turnbaugh &

Gordon, 2009; Ravel et al., 2011). Most common oral

diseases are also a consequence of changes in the

structure of resident microbial communities, driven by

an interplay between the microorganisms and the

behavioral habits and immune system of the host

(Marsh, 2003). Hence, an understanding of the com-

position and ecological events that drive changes in

the structure, from health to disease, of oral microbial

communities is an important step in the development

of preventive strategies to promote oral health.

Highly parallel high throughput sequencing technol-

ogies, such as sequencing by synthesis in the 454

platform (454 Life Sciences/Roche Applied Sciences,

Branford, CT), have opened a new era in microbial

ecology. Obtaining sequences from amplicon libraries

generated by universal amplification of portions of the

16S ribosomal RNA (rRNA) gene is now a cost-

effective technique with thousands to hundreds of

thousands of sequence reads generated in a single

run. This approach allows an overview of the commu-

nities as a whole, overcoming the limited views that

previously employed techniques offered. These

advances are already generating open-ended studies

of the variability in the oral microflora as it relates to

oral diseases (Li et al., 2010; Belda-Ferre et al.,

2011; Pushalkar et al., 2011). However, before large-

scale studies are conducted, it is necessary to evalu-

ate the oral microbiome composition during health

because large inter-individual variability may limit the

discovery of disease-associated biomarkers. Indeed,

high throughput sequencing has already been used

to characterize the bacterial microbiome of healthy

subjects at different intra-oral niches (Zaura et al.,

2009). This study sequenced V5–V6 variable regions

of the 16S rRNA gene from intra-oral sites of three

systemically and orally healthy individuals and found

that subjects shared a great proportion of operational

taxonomic units (OTUs), thereby supporting the con-

cept of a core oral microbiome present during health.

In contrast, other studies have reported that although

a core microbiome exists, there is also great inter-

subject variability in the microbial communities of

humans (Eckburg et al., 2005; Diaz et al., 2006; Bik

et al., 2010; Lazarevic et al., 2010). Despite the pres-

ence of common taxa at higher taxonomic ranks, it

has been suggested that differences in the presence

and abundance of lower rank taxa generate a unique

microbiome signature for individuals (Diaz et al.,

2006; Lazarevic et al., 2010). One important aspect

in the detection of inter-individual variability is the

coverage of species richness obtained after sam-

pling. The lack of observation of a phylotype in a

sample is not indicative of its absence if the richness

in the sample is not fully covered. In this respect, the

determination of the number of sequence reads

needed to observe most phylotypes present in a

sample becomes crucial for the proper design of

studies aimed at defining the core microbiome and

large clinical studies that investigate shifts in the

microbial composition between health and disease or

intend to discover disease-associated biomarkers.

The biogeography of human microbial communities

has also received considerable attention through

studies that use 454-pyrosequencing (Costello et al.,

2009). Resident microbial communities of humans

assemble at body sites with dissimilar environmental

conditions such as surface characteristics, humidity,

oxygen tension, temperature and presence of body

fluids. These communities differ in their membership

and structure according to the body site sampled, an

indication that specific environments select for certain

types of microorganisms (Costello et al., 2009). This

pattern may also be evident within a specific niche,

with fine scale differences in community structure

occurring over short distances. Indeed, the intra-

niche biogeography of oral communities has been

studied using both culturing and molecular

approaches (Liljemark & Gibbons, 1971, 1972; Mager

et al., 2003; Aas et al., 2005; Zaura et al., 2009).

These investigations have revealed that the bacterial

microflora differs markedly among intraoral surfaces.

However, because most studies have pooled their

data by site, it is not clear if inter-subject variability is

greater than the variability among sites within the

same subject.

Before undertaking large-scale studies to answer

ecological or health-related questions, it is also

imperative to understand the technical limitations and

the intrinsic bias and variability inherent in 454-

sequencing of 16S rRNA amplicon libraries. For

example, it is known that targeting different regions
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of the 16S rRNA gene results in microbial communi-

ties with different structures (Sundquist et al., 2007;

Kumar et al., 2011). Among the hypervariable regions

of the 16S rRNA gene, those between the first 500

base pairs (bp) have been used for most molecular

surveys of oral flora because they allow good taxo-

nomic discrimination at the genus and even species

level (Diaz et al., 2006; Sundquist et al., 2007). We

and others have also demonstrated that DNA lysis

procedures influence the composition of microbial

communities assayed via molecular methods (Diaz

et al., 2006; Morgan et al., 2010). Although such

limitations may be insurmountable, their effects need

to be assessed on a ‘mock’ community of oral

organisms, an artificial community constructed in vitro

with some of the same members encountered in vivo.

This type of experiment constitutes an important first

step in understanding the inherent biases in the

technique chosen for a given study.

The great sampling depth possible with high

throughput community sequencing may help to

answer the question of how many phylotypes reside

in the oral cavity of humans because it is possible to

obtain data from rare phylotypes that are present at

very low abundance. However, estimations of rich-

ness using high throughput sequencing are usually

overinflated because of the inherent error in polymer-

ase chain reactions (PCR) and sequencing, as well

as by limitations in data analysis methodology

(Reeder & Knight, 2009; Schloss et al., 2011).

Ecological estimators commonly used in macroeco-

logy are applied to pyrosequencing datasets to

predict the number of unseen phylotypes in a sample

and to estimate the coverage obtained. However, the

accuracy of these estimators is limited by the error-

prone datasets provided as input. A mock community

can help to ascertain error because the number of

expected species is known a priori. With respect to

the use of estimators to predict undetected species,

it is also important to evaluate the behavior of the

estimator at different sequencing depths to determine

the minimum sequencing effort needed to reliably

predict the total phylotypes present and the richness

coverage obtained.

In this study, we provide experimental and data

analysis frameworks to help researchers better

understand the use of high throughput sequencing

and inform the design of large clinical studies. We

began by evaluating the bias of our DNA isolation,

PCR amplification and sequencing protocols using a

mock community of oral microorganisms. We also

evaluated the error in OTU assignment using a

recently developed data analysis pipeline (Schloss

et al., 2011) and investigated the impact of removing

singleton OTUs on decreasing this error. With this

knowledge, we then characterized, using a deep-

sequencing approach, the salivary and buccal

mucosa communities of three healthy individuals and

investigated the diversity at these sites. We then

determined the sampling effort needed to cover most,

or all, of the community richness and that to obtain

an accurate estimate of the total richness in salivary

and mucosal samples. Next, we sequenced the

microbiome of two additional individuals and com-

pared the b-diversity of salivary and buccal mucosa

microbial communities at different sequencing efforts,

followed by an OTU/phylotype-level analysis to explain

the observed biodiversity patterns. The questions we

wanted to answer were the following. What is the

diversity present in oral bacterial communities of sal-

iva and buccal mucosa? What is the sequencing

effort necessary to cover most of the richness in oral

microbial communities allowing membership-based

community comparisons? Does 454 pyrosequencing

reveal differences in biogeography similar to those

reported in the literature using culture-based or other

molecular approaches? What is the inter-individual

variability in the oral microbial communities of healthy

individuals and is this variability greater than the

expected intra-individual biogeographical differences?

And finally, how are these variability measures

affected by sampling effort? By answering these

questions, we demonstrate that community analysis

by 454-pyrosequencing of 16S rRNA amplicon

libraries is a technique that offers great advantages

but also has its limitations. These studies represent a

first step in the understanding of how to best capture

comprehensive information on oral microbial commu-

nities using this powerful approach.

METHODS

Preparation of mock communities of oral bacteria

Streptococcus oralis 34, Streptococcus mutans ATCC

10449, Lactobacillus casei LR1, Actinomyces oris

T14v, Fusobacterium nucleatum ATCC 10953, Por-

phyromonas gingivalis ATCC 33277 and Veillonella sp.

P.I. Diaz et al. Bacterial diversity in the oral cavity
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PK 1910 were grown at 37�C in appropriate media and

environmental conditions until cultures reached late

logarithmic phase. Streptococci, A. oris and L. casei

were grown in brain–heart infusion (BHI) medium

(Oxoid Ltd, Cambridge, UK) under aerobic static condi-

tions. Anaerobes were grown under an atmosphere of

90% N2, 5% H2 and 5% CO2. F. nucleatum was

grown in BHI supplemented with 0.5 g l)1 cysteine;

P. gingivalis was grown in BHI supplemented with

0.5 g l)1 cysteine, 5 mg l)1 haemin and 1 mg l)1

vitamin K; and Veillonella sp. was grown in BHI supple-

mented with the same concentrations of cysteine and

haemin and 0.6% (volume/volume) of lactic acid. Three

types of mock communities were assembled containing

these seven representative oral species. Mock 1 con-

sisted of a mixture of genomic DNA from the seven

organisms to obtain equal numbers of 16S rRNA gene

copies per species. To accomplish this, we first identi-

fied the genome size (n) in bp for each organism and

then calculated the mass of DNA (m) per genome using

the formula m = (n) (1.096 · 10)21 g bp)1). We then

normalized genome mass by the copy number of the

16S rRNA gene (ranging from three to five copies,

depending on the organism) and calculated the grams

of DNA containing the copy number of interest (1 · 105

16S rRNA molecules). Mock 2 was assembled by mix-

ing the same number of cells from each species. Mock

3 was assembled to mimic unevenly distributed natural

oral communities by mixing cells from the seven spe-

cies in the following proportions: 30% cells of S. oralis;

15% cells each of F. nucleatum, Veillonella sp. and

A. oris; and 8.3% cells each of S. mutans, L. casei and

P. gingivalis. Cell numbers were determined by using a

Petroff–Hausser counting chamber. Information on the

number of 16S rRNA copies of the seven species was

obtained from the Ribosomal RNA Operon Copy Num-

ber Database (RRNDB) (Klappenbach et al., 2001) and

used to normalize DNA amounts added to mock 1 and

to determine the expected number of sequence reads

per taxon in mocks 2 and 3. Mock communities were

assembled in duplicate and sequenced by combining

triplicate amplicon libraries generated from each sam-

ple (see below).

Human subject sampling

Subjects were enrolled via a protocol approved by

the University of Connecticut Health Center Institu-

tional Review Board. Criteria for inclusion of subjects

included being 21 years of age or older and willing

and able to provide informed consent. For the subset

of subjects used in this analysis, no subject had been

diagnosed with a systemic disease or was regularly

taking any medication other than multivitamin supple-

ments. All subjects had at least 25 teeth and were in

good oral health, defined by the absence of mucosal

disease, visible carious lesions or periodontal disease

defined by a Community Periodontal Index of Treat-

ment Needs ‡2 in any sextant of the mouth, with all

teeth present evaluated at six sites (Ainamo et al.,

1982). Additionally, no subject had taken systemic

antibiotics within 2 months before sampling or used

commercial probiotic supplements (‡108 organisms

per day). Subjects were instructed not to perform any

oral hygiene procedures for 4 h before sampling and

to refrain from eating or drinking anything other than

water for 1 h before sampling. Unstimulated saliva

was collected by allowing saliva to flow freely for

5 min over a polypropylene tube. Saliva samples

were immediately centrifuged at 6000 g and pellets

were stored at )80�C until processed further.

A mucosal swab sample was collected by passing a

single CATCHALL� swab through the entire area of the

right and left buccal mucosa for 10 s per side, avoid-

ing contact with teeth. The swab was immediately

swirled in a tube containing 500 ll of TE buffer

(20 mM Tris–HCl pH 7.4, 2 mM EDTA) and pressed

against the tube walls to transfer the material to the

solution, which was stored at )80�C.

DNA isolation procedures

DNA was isolated by a protocol tested in preliminary

experiments to efficiently disrupt difficult to lyse

gram-positive oral organisms (data not shown). The

protocol consisted of mixing the TE-resuspended

sample (pure cultures, mock communities or human-

derived) with lysozyme (final concentration of 20 mg

ml)1) followed by incubation at 37�C for 30 min. This

was followed by addition of buffer AL (Qiagen, Valencia,

CA) and Proteinase K (final concentration 1.23 mg

ml)1) and incubation at 56�C overnight. Samples

were then incubated at 95�C for 5 min and DNA was

isolated using a commercially available kit according

to the instructions of the manufacturer (DNeasy

Blood and Tissue kit; Qiagen). DNA was eluted in

MD5 solution (MoBio Laboratories, Carlsbad, CA)

and its concentration was measured using a

Bacterial diversity in the oral cavity P.I. Diaz et al.
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NanoDrop instrument (ThermoScientific, Willmington,

DE). A negative control containing only buffer was

carried through extraction and quantification.

Preparation and sequencing of amplicon libraries

Amplicon libraries were prepared in triplicate from a

�420-bp region of the 16S rRNA gene spanning V1

and V2 (the hypervariable regions that perform best

when assigning species taxonomy to short sequence

reads), using primers 8F 5¢-agagtttgatcmtggctcag-3¢
and 431R 5¢-cyiactgctgcctcccgtag-3¢ (Escherichia coli

numeration) (Sundquist et al., 2007). These primers

also included the 454 Life Sciences adapters A or B

and in some cases a unique multiplex identifier

sequence (MID). The PCR contained 10 ng purified

DNA, 1 U platinum iTaq polymerase (Invitrogen,

Carlsbad, CA), 1.5 mM MgCl2, 200 lM dNTPs, iTaq

buffer (1·), 0.5 lM of each forward and reverse

primer and molecular grade water to a final volume

of 25 ll. Thermal cycler conditions were: initial step

at 95�C for 3 min; 25 cycles of denaturation at 95�C
for 30 s, annealing at 50�C for 30 s and extension

at 72�C for 1 min; and a final extension step at

72�C for 9 min. A DNA isolation negative control

and a PCR control without template were included.

Following successful amplification (assayed by

agarose gel electrophoresis), triplicate PCR were

combined and PCR products were purified using the

QIAquick PCR purification kit (Qiagen). Quantifica-

tion and quality control of amplicon libraries was

determined via Experion DNA 1K-chip analysis

(BioRad Laboratories, Hercules, CA). Amplicon

libraries were sequenced using 454 Titanium chemis-

try (454 Life Sciences) following emulsion PCR,

bead recovery and enrichment. Sequences are avail-

able at the Short Reads Archive (accession number

SRA048222).

Data analysis

Sequences were preprocessed following the proto-

cols described by Schloss et al. (2011), using mothur

(Schloss et al., 2009). First, primers and barcodes

were trimmed followed by removal of sequences

shorter than 200 bp, or with homopolymers greater

than eight nucleotides or with ambiguous base calls.

Sequences were then filtered according to quality

scores using the sliding window approach, which

trims sequences when the average quality score over

a 50-bp sliding window drops below 35. Unique

sequences were aligned using the SILVA database as

a reference (Schloss, 2010) and trimmed so that

sequences only included a comparable anchor

region. Sequences were further denoized by a modifi-

cation of the single linkage algorithm (Huse et al.,

2010; Schloss et al., 2011) to find sequences with up

to 2 bp difference from a more abundant sequence

and then merge their counts. This step reduces vari-

ability but also diminishes errors caused by pyrose-

quencing. Chimeric sequences were then removed

by applying the UChime algorithm (Edgar et al.,

2011), as implemented in mothur.

To group similar sequences into clusters that may

represent biological species (OTUs), a distance

matrix was generated by calculating uncorrected pair-

wise distances using default settings in mothur penal-

izing consecutive gaps as one gap. Sequences were

then clustered into OTUs using the average neighbor

algorithm (Schloss & Westcott, 2011) and a 3% dis-

similarity cutoff. Sequences were individually classi-

fied using the Ribosomal Database Project (RDP)

classifier (Wang et al., 2007), which uses a Bayesian

approach and also runs a bootstrapping algorithm.

The threshold for bootstrapping assignment to a spe-

cific taxonomy was set at 80%. Template taxonomies

used were the large RDP reference dataset and the

Human Oral Microbiome Database (HOMD), a

curated dataset for oral taxa (Dewhirst et al., 2010).

The OTUs were assigned a taxonomic classification

based on the consensus taxonomic assignment for

the majority of sequences within that OTU. If a con-

sensus taxonomic assignment was not possible at

the species level, then the nearest taxonomical level

where a consensus was obtained was reported. Clas-

sified sequences were also used to group sequences

into phylotypes (from genus to phylum level) based

on taxonomic identity. In some cases OTUs with only

one sequence across all datasets (singletons) were

eliminated.

The a-diversity was calculated by the reciprocal of

the Simpson Index (Simpson, 1949; Marrugan &

McGill, 2011), the non-parametric Shannon Index

(Chao & Shen, 2003) and the Shannon evenness

index [EShannon = DShannon/ln(S)], as described in

Marrugan & McGill (2011) and implemented in

mothur. We observed that these estimators were not

sensitive to sequencing effort and thus comparison of

P.I. Diaz et al. Bacterial diversity in the oral cavity
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samples with different sampling depths was possible.

Rarefaction curves were constructed using output

from mothur. Coverage of richness at a given sam-

pling effort was determined via the Good–Turing esti-

mator (Good, 1953). Total richness was also

estimated via CATCHALL (Bunge, 2011), as imple-

mented in mothur. The number of sequence reads

needed to observe all the OTUs estimated by CATCH-

ALL to exist in a given sample was calculated by

assuming a logarithmic dependency of the number of

OTUs y on the number of sequence reads x (y = a ln

(x) + b). Parameters a and b of this model were esti-

mated by least squares best fit of observed data

points. This dependency function gave the best fit to

our data among other functions with the same num-

ber (two) of parameters.

b-diversity was measured by the incidence-based

Jaccard Index for comparisons of communities based

on membership and the hYC distance (Yue & Clayton,

2005) for comparisons of communities based on

structure. A phylogenetic tree was constructed with

CLEARCUT (Evans et al., 2006) as implemented in

mothur, using the neighbor-joining algorithm. Com-

munities were then compared based on phylogenetic

distances using the UNIFRAC weighted and unweighted

metrics (Lozupone & Knight, 2005). Principal Coordi-

nate Analysis was performed in mothur and graphs

were visualized using the RGL application within the R

package. Relative abundances of OTUs or phylo-

types were compared among saliva and mucosal

sites and tested for statistical significance using META-

STATS and LEFSE (White et al., 2009; Segata et al.,

2011).

RESULTS

Elimination of singleton OTUs decreases the

number of erroneous OTUs in pyrosequencing

datasets

The 454-pyrosequencing of amplicon libraries pro-

duces significant errors with sequence datasets yield-

ing more OTUs than those existing in reality (Kunin

et al., 2010; Schloss et al., 2011). As a consequence,

application of a strict pipeline for dataset curation is a

crucial component of data analysis. In this study, we

evaluated the error in amplicon pyrosequencing

methods using laboratory-created mock communities

of oral microorganisms with defined compositions as

a training set. Table 1 lists the libraries from mock

communities sequenced in this study. Although

sequence curation eliminated �35% of low-quality/

chimeric sequences, some of these curated datasets

still generated more OTUs than the seven expected

OTUs contained in mock communities (from 0 to +12

extra OTUs). We have frequently observed that sin-

gleton OTUs, defined as OTUs containing only one

sequence across datasets, can be manually identified

as chimeric sequences. To correct for this, we have

added a step to our analysis pipeline to eliminate sin-

gleton OTUs. As Table 1 shows, this step decreases

Table 1 Mock communities sequenced

Library name Composition

Reads

obtained

Reads

used for

analysis

Number of

extra OTUs

Number of

extra OTUs

without singletons

Mock 1a Equal number of 16S rRNA

molecules for seven species

6471 4004 0 0

Mock 1b Equal number of 16S rRNA

molecules for seven species

6833 4239 1 1

Mock 2a Equal number of cells for

seven species

6131 3778 0 0

Mock 2b Equal number of cells for

seven species

6186 4222 12 4

Mock 3a Unequal number of cells for

seven species

5607 3778 3 1

Mock 3b Unequal number of cells for

seven species

5132 3268 0 0

OTU, operational taxonomic unit.

Bacterial diversity in the oral cavity P.I. Diaz et al.
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the erroneous OTUs appearing in sequenced

libraries.

Evaluation of bias in species representation

using mock communities

Using data analysed as described above, we evalu-

ated the accuracy of 454-pyrosequencing in estimat-

ing the relative abundance of species in a

community. We used three types of mock communi-

ties containing equal numbers of 16S rRNA mole-

cules (mock 1), equal numbers of cells (mock 2) or

unequal numbers of cells (mock 3) for seven different

oral microorganisms (Table 1). Mock 1 is comprised

of genomic DNA and is expected to yield an equal

number of reads for each species if PCR and

sequencing bias are not present. Mocks 2 and 3

could be affected by both PCR/sequencing bias and

by differences in cell lysis procedures. As shown in

Fig. 1, mock 1 yielded a greater than expected num-

ber of reads for F. nucleatum and lower than

expected read numbers for A. oris and L. casei.

Starting with known numbers of cells, as in mocks 2

and 3, showed both F. nucleatum and S. oralis as

over-represented, a finding that suggests that S. oral-

is was more easily lysed than other organisms. In

addition to being under-represented in mock 1,

A. oris and L. casei were also under-represented in

mocks 2 and 3, as predicted from PCR bias. Both

S. mutans and P. gingivalis appeared in lower

abundance than expected only in mocks 2 and 3, a

finding that suggests that these organisms are less

efficiently lysed. These results demonstrated that

although 454-pyrosequencing of amplicon libraries is

a powerful technique simultaneously detecting all

members in a microbial community, species

abundance is subject to empirical bias introduced

through methods for DNA isolation and amplification.

Deep-sequencing of salivary and mucosal bacte-

rial communities to determine a-diversity

We next investigated whether 454-pyrosequencing of

amplicon libraries can be used to estimate the num-

ber of taxa in the oral cavity of individuals. This

knowledge is not only required to understand differ-

ences among sites, subjects and disease states, but

has important experimental implications because

most studies using 454 amplicon sequencing are

conducted via a multiplexing approach, where multi-

ple samples are sequenced in parallel at a decreased

sequencing depth. Hence, it is necessary to be

aware of the number of undetected species when

interpreting results, especially if communities are

compared based solely on membership. From eco-

logical patterns followed by most microbial communi-

ties, it is expected that rare species will remain

unseen even at a great sequencing depth, because

Figure 1 Accuracy of 16S ribosomal RNA (rRNA) amplification followed by 454-pyrosequencing in estimating species abundance. Graph

depicts expected and obtained sequence reads for each species in three different types of mock communities. Mock 1 is a community

formed by mixing equal amounts of 16S rRNA molecules for seven organisms. Mock 2 is formed by mixing equal numbers of bacterial cells

from each species. Mock 3 is formed by mixing unequal number of bacterial cells to obtain a community where some species are more abun-

dant than others. Expected numbers of sequence reads for mocks 2 and 3 were normalized according to the number of 16S rRNA copies in

the genome of each organism. Number of total reads per sample was normalized to 3268 reads to allow comparisons. Duplicate libraries are

indicated by the letters a and b.

P.I. Diaz et al. Bacterial diversity in the oral cavity
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species abundance distribution curves usually show

a long tail with most species being rare (Marrugan &

McGill, 2011). In ecological terms, the number of

species in a given community is known as richness.

To investigate richness at two oral sites, we con-

ducted a moderately deep-sequencing survey (at

least 30,000 sequences per sample) of the microbial

communities in saliva and buccal mucosa of three

subjects. We then tested the performance of two esti-

mators of richness and coverage as a function of

increasing sequencing efforts. The number of

observed OTUs and measures of diversity at maxi-

mum sequencing effort are shown in Table 2, and

the rarefaction curves for these samples are depicted

in Fig. 2.

The Good–Turing estimator, which calculates the

percentage of observed OTUs with two or more

sequences, is most commonly used in microbial

ecology studies to predict coverage (Eckburg et al.,

2005; Lemos et al., 2011). According to the Good–

Turing estimator, richness in all samples was covered

to a minimum of 99% (Table 2). Using this estimator,

we calculated the minimal number of sequence reads

needed to achieve an acceptable level of coverage of

98% (Table 3). Assuming that the number of OTUs

at the maximum sequencing effort closely approxi-

mates total richness (sampling universe), we then

determined the percentage of OTUs (based on total

number of OTUs observed), that were actually

detected at the sequencing effort predicted to yield

98% coverage. As Table 3 illustrates, if sampling was

to terminate at a level of 98% Good–Turing cover-

age, a great proportion of richness would not be cap-

tured as the result of insufficient sampling. These

Table 2 Subject-derived amplicon libraries

Subject

(library name) Site Reads obtained

Reads used

for analysis

Good–Turing’s

coverage (%)

Deep sequencing

1 (1S) Saliva 57,592 34,936 99.9

2 (2S) Saliva 68,786 39,785 99.9

3 (3Sa) Saliva 45,792 24,835 99.8

3 (3Sb)1 Saliva 55,401 36,456 99.9

1 (1M) Buccal mucosa 31,179 16,917 99.8

2 (2M) Buccal mucosa 135,216 51,911 99.9

3 (3Ma) Buccal mucosa 46,654 24,361 99.9

3 (3Mb)1 Buccal mucosa 69,422 51,107 99.9

Multiplex sequencing

4 (4S) Saliva 8595 5545 99.6

5 (5S) Saliva 9741 6166 99.6

4 (4M) Buccal mucosa 6950 4631 99.5

5 (5M) Buccal mucosa 6043 3866 99.0

1Technical replicates obtained by a new amplification and sequencing of DNA previously isolated from subject 3.

A B

Figure 2 Rarefaction curves for deep-sequenced saliva (S) and buccal mucosa (M) communities from three subjects (1–3).
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results demonstrate that despite its broad application,

Good–Turing alone is not a sufficient measure of

richness coverage in microbial community sampling.

Moreover, because Good–Turing is based on the

number of singletons, its use as an estimator of cov-

erage appears particularly inadequate for less evenly

distributed communities, such as those from buccal

mucosa (Table 3).

We also measured richness coverage using the

parametric estimator of diversity CATCHALL, which

estimates species based on finite mixture models

(Bunge, 2011). As seen in Table 3, our sequencing

effort covered only a percentage (36–86%) of the

number of OTUs predicted by CATCHALL to exist in

our samples. We then calculated the number of

sequences needed to cover at least 98% of the

CATCHALL-predicted number of OTUs. As Table 3

shows, covering 98% of the predicted richness

requires 10–100 times more sequences than those

required for 98% Good–Turing’s coverage. Further-

more, in contrast to Good–Turing’s estimator, CATCH-

ALL demonstrated that the less rich but more uneven

mucosal communities would require greater sequenc-

ing effort than salivary communities.

We next evaluated the minimum number of

sequences required to reliably use CATCHALL as an

estimator of total richness and asked whether CATCH-

ALL is affected by a possible increase in the number

of erroneous OTUs as sequencing effort increases.

As seen in Fig. 3, the number of OTUs estimated by

CATCHALL increased initially with sequencing effort,

but reached relative stability around 3000–5000

sequence reads, defining the minimum sampling

effort needed to predict the richness in an oral sam-

ple. Furthermore, increasing sampling effort, which

may also increase error, did not affect the estimator.

Taken together, these results demonstrate that a

great sequencing effort is needed to display all the

richness contained in an individual oral sample. How-

ever, using an accurate estimator of richness, such

as CATCHALL, allows prediction of the number of

unseen phylotypes in a given sample, provided

enough sequences are obtained for the estimator to

be accurate.

Comparing inter-subject and inter-site variability

in salivary and buccal mucosa communities at

different sequencing efforts

Although the previous analysis showed that observa-

tion of the great majority of OTUs in saliva and

mucosal communities would require a great sampling

effort, it has been shown that even in under-sampled

communities, it is still possible to detect diversity pat-

terns as this will depend on the effect size measured

(Kuczynski et al., 2010). Hence, we examined the

Table 3 Alpha diversity estimates for deep-sequenced microbial communities

Sample Sobs
1

Reads needed

for 98%

Good–Turing’s

coverage

Sobs (%) at

sequencing

effort in

previous

column2

SCATCHALL

(lci–uci)

Richness

coverage (%)

at

maximum

sequencing

effort

according to

CATCHALL
3

Number of

sequences

needed for 98%

CATCHALL richness

coverage

DInv

Simpson

DNp

Shannon EShannon

1S 194 416 22.2 282 (242–355) 69 (55–80) 7.5E04 (5.0E04–1.4E05) 6.8 2.6 0.5

2S 318 3342 54.4 369 (351–397) 86 (80–91) 4.3E04 (3.6E04–5.3E04) 19.9 3.6 0.6

3Sa 181 1048 34.3 228 (206–264) 79 (69–88) 5.2E04 (3.7E04–8.2E04) 10.5 3.0 0.6

3Sb 169 998 35.0 248 (223–288) 68 (59–76) 7.1E04 (5.1E04–1.2E05) 8.9 2.9 0.6

1M 126 939 40.5 197 (162–264) 64 (48–78) 5.8E04 (3.1E04–1.4E05) 4.1 2.2 0.5

2M 136 416 13.2 377 (360–395) 36 (34–38) 5.6E05 (5.1E05–6.3E05) 1.6 1.0 0.2

3Ma 78 150 12.8 161 (111–280) 49 (28–70) 1.6E05 (5.8E04–6.9E05) 3.2 1.6 0.4

3Mb 74 50 8.1 141 (104–228) 53 (32–71) 2.0E05 (8.3E04–7.9E05) 2.9 1.5 0.4

1Sobs are operational taxonomic units (OTUs) observed at maximum sequencing effort and defined at 3% dissimilarity.
2This column represents the percentage of observed OTUs, based on total observed OTUs, if sampling efforts were stopped at 98% Good–

Turing’s coverage.
3Coverage of richness, calculated as the percentage Sobs from those predicted by CATCHALL.
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dissimilarity patterns arising from under-sampled ver-

sus exhaustively sampled communities. For this anal-

ysis we sequenced the communities of two more

subjects using a multiplexing approach. The general

characteristics and a-diversity estimates of the sali-

vary and mucosa communities from these two sub-

jects are presented in Tables 2 and 4. In agreement

with results for deep-sequenced communities, muco-

sal communities were less diverse, both in terms of

richness and evenness, than salivary communities.

Dissimilarity analysis of deep-sequenced communi-

ties (Fig. 4A), based on the Jaccard index (takes into

account membership only), showed no clustering of

samples based on site or subject. In contrast, com-

parison of community structure in deep-sequenced

communities by the hYC measure of dissimilarity

(takes into account relative abundance of taxa) clus-

tered communities by site of origin, rather than by

subject (P < 0.001).

To evaluate the efficacy of sequencing efforts, we

pooled all the libraries sequenced and normalized by

random subsampling so that each community con-

tained the same number of sequences. Even at a

sequencing effort of �4250, and with the inclusion of

two more subjects, we still observed similar clustering

to that at a deep-sequencing effort (Fig. 4B). We fur-

ther decreased sampling (to as few as 40 sequences

per library) and observed that even at this very

low level of sequencing, the hYC index separated

communities based on sites of origin (Fig. 4C). We

performed similar tests using a phylogenetic

approach to analyse community composition and

structure and obtained similar results (data not

shown). One of these analyses is shown in Fig. 5A,

which depicts principal coordinates analysis of the

phylogenetic distance among communities (subsam-

pled to �4250), based on the weighted UNIFRAC

measure, showing that saliva communities clustered

separately from mucosal communities using phyloge-

netic distance.

We then measured inter-site and inter-subject vari-

ability using different metrics (Fig. 5B). This analysis

also includes intra-sample variability measures from

new amplification and deep-sequencing of DNA from

saliva and buccal mucosa of subject 3. As this figure

A

B

Figure 3 Stability of the richness estimator CATCHALL at different

sampling efforts. Graphs depict CATCHALL-estimated OTUs present

in salivary (S) and mucosal (M) communities of three individuals

(1–3) as a function of sampling effort demonstrating that the estima-

tor reaches stability relatively early.

Table 4 Alpha diversity estimates for microbial communities sequenced by multiplexing

Sample Sobs
1 DInverse Simpson DNp Shannon EShannon SCATCHALL (lci–uci)

Richness

coverage (%)

according to

CATCHALL
2

4S 120 14.3 3.6 0.7 145 (135–164) 82 (73–89)

5S 160 11.7 3.4 0.7 198 (184–221) 80 (72–87)

4M 63 2.3 1.7 0.4 111 (84–174) 57 (36–75)

5M 100 2.5 1.9 0.4 166 (136–221) 60 (45–74)

1Sobs are operational taxonomic units (OTUs) observed at maximum sequencing effort and defined at a 0.3% dissimilarity.
2Coverage of richness, calculated as the percentage of OTUs observed (Sobs) from the OTUs predicted to exist by CATCHALL.
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illustrates, a comparison of communities based only

on membership revealed large differences even

within the same sample. For example, of 218 OTUs

found in the deep-sequenced salivary communities of

subject 3, only 139 (63.8%) were present in both rep-

licates. In contrast, intra-sample variability based on

community structure revealed pronounced agreement

within the same sample, whereas salivary and

mucosal communities differed greatly with inter-site

distance within a subject being larger than the inter-

subject distance at each site. Interestingly, the hYC

metric showed that salivary communities were more

variable than mucosal communities, which was the

opposite of what was shown when communities were

compared based on their phylogenetic relatedness by

the weighted UNIFRAC metric.

A B C

Figure 4 Dissimilarity between salivary (blue) and mucosal (red) communities at different sequencing efforts. Top trees in each panel depict

the distance among communities calculated by the Jaccard Index, which takes into account membership only. Lower trees depict the dis-

tance among communities calculated by hYC which compares communities based on their structure. (A) Deep-sequenced salivary and muco-

sal communities from first three subjects. (B) Relationships of all communities sequenced in this study. As a result of great differences in

sequencing effort, the number of reads in each community was normalized, by random sampling, to that of the community with fewer reads

(4254). (C) Relationships of communities randomly sampled to contain only 40 sequences per community.

A B

Figure 5 Distance among bacterial communities. (A) Principal coordinates analysis of phylogenetic distance among communities according

to the weighted UNIFRAC metric. Salivary communities appear in blue, mucosal communities appear in red. (B) Intra-sample variability, intra-

subject (mucosa versus saliva within a subject) and the inter-subject variability at each site. Intra-sample variability was calculated from saliva

and mucosal replicate samples of subject 3.
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The large variability in community membership was

confirmed by evaluating those OTUs shared among

subjects. In total, we found 455 OTUs at the 0.3%

level of dissimilarity across all sequenced samples.

The number of observed OTUs ranged from 120 to

318 per subject (SCATCHALL 145–369) in saliva and

from 63 to 136 OTUs (SCATCHALL was 111–377) in

mucosa. Of the 455 observed OTUs, only 78 (17.1%)

were present in all subjects, whereas 125 (27.5%)

were present in four subjects and 182 (40%) were

present in three subjects. These results could

suggest large inter-individual variability in the oral

microbiome, however, this needs to be cautiously

interpreted because of large intra-sample variability.

In conclusion, because large biogeographical differ-

ences exist in community structure, it is possible to

detect these differences even at low sequencing

efforts. Comparison of communities based on their

membership, however, revealed great variability

among all samples. Even within a deep-sequenced

replicate sample not all OTUs were shared. These

results could be explained by the incomplete cover-

age of sample richness obtained (36–86%). Hence, it

appears that with the current available methods, the

determination of the ‘true’ core microbiome, that is

those bacterial species present in all humans, is not

a feasible endeavor because inter-subject variability

in community membership will always prevail, unless

the full richness in a sample is surveyed.

OTUs and phylotypes differentially represented in

saliva and buccal mucosa that explain biogeo-

graphical patterns

Figure 6 depicts the most abundant OTUs in saliva

and mucosa samples. Analysis of OTUs differentially

represented in saliva or mucosa via METASTATS (White

et al., 2009) found that 79 OTUs were significant,

with 66 OTUs more abundant in saliva and 13 in

mucosa (see Supplementary material, Tables S1 and

S2). Although OTUs identified to species level have

to be accepted with caution because of the biological

variance within an OTU, it is evident that the different

structure in mucosal samples is primarily caused by

Streptococcus mitis (Fig. 6). Differentially represented

OTUs were also analysed via LEFSE, which calculates

the effect size of each feature after Linear Discrimi-

nant Analysis (Segata et al., 2011). Figure 7 shows

the results of LEFSE analysis, which revealed two

OTUs more abundant in mucosa and 38 OTUs more

abundant in saliva. METASTATS and LEFSE analyses

largely agreed although the stricter statistical tests

Figure 6 Relative abundance in saliva and mucosa of 25 most abundant operational taxonomic units (OTUs) across samples. Environment

in which the OTU is over-represented (saliva or mucosa, S or M), as calculated by METASTATS, is indicated by *after each OTU name. OT fol-

lowed by a number indicates the specific Oral Taxon from the Human Oral Microbiome Database.

Bacterial diversity in the oral cavity P.I. Diaz et al.
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used by LEFSE resulted in a decreased number of

significant features compared with METASTATS. More-

over, LEFSE analysis confirmed that S. mitis has the

greatest effect size discriminating mucosal samples

and that Gemella haemolysans also has high affinity

for mucosal tissues.

METASTATS and LEFSE can also be used to analyse

sequences grouped into phylotypes according to

taxonomical classifications. Figure 8 depicts the 25

most abundant genera found across samples. META-

STATS identified two genera, Streptococcus and Gem-

ella, as over-represented in mucosa, whereas 26

genera were over-represented in saliva, largely

agreeing with the OTU-based analysis (see Supple-

mentary material, Tables S3 and S4). Figure 9 shows

LEFSE analysis of all taxa, classified from the genus to

the phylum levels, differentially represented in either

niche and ranked according to the effect size. As

Fig. 9 shows, the phyla Proteobacteria, Bacteroidetes

and Fusobacteria displayed the least affinity for

mucosal surfaces, while the Firmicutes were over-

represented in mucosa. Figure 10A shows all phyla

across samples and their differential representation

according to METASTATS, and confirms LEFSE results.

According to METASTATS, only the phylum Firmicutes

was over-represented in the communities from buccal

mucosa, whereas seven out of nine identified phyla

were over-represented in saliva. Although the Firmi-

cutes as a whole appeared more abundant in

mucosa, the cladogram for this phylum, shown in

Fig. 10B, demonstrates that this difference was lar-

gely caused by Streptococcus and Gemella, and

other Firmicutes genera do not display predilection

for mucosal surfaces.

DISCUSSION

This study provides a methodological framework for

the analysis of the oral microbiome based on 454-

pyrosequencing of 16S rRNA-derived libraries.

Figure 7 Operational taxonomic units (OTUs) differentially represented in saliva or mucosa as revealed by LEFSE. Salivary communities

appear in green, while mucosal communities appear in red. OTUs are ranked according to their linear discriminant analysis scores.
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Although the objective of this study was not to

compare PCR primer pairs or DNA isolation proto-

cols, we provide evidence from mock communities of

oral microorganisms that DNA isolation, PCR and

sequencing bias introduce variability into the results

that has to be considered when interpreting data.

These results also highlight the importance of using

standardized operating protocols by different labora-

tories to make results comparable across the oral

research community. The primers used in this study

have been assessed by other investigators for their

ability to amplify a vast number of bacterial taxa

(Sundquist et al., 2007). Using a mock community

with the same number of 16S rRNA copies (mock 1),

we confirm that this primer pair detected all species

in the community but their relative abundances dif-

fered from those expected. After checking the primer

pair for mismatches to the 16S rRNA gene from

sequences in the RDP, we could not attribute the

results obtained to primer mismatches. In fact, the

reverse primer had one mismatch to F. nucleatum,

an organism over-represented in mock communities,

but no sequence mismatches were present with

L. casei, an under-represented organism. Hence,

other parameters such as different primer binding

energies or interferences from DNA flanking the tem-

plate region may better explain the observed quanti-

tative results (Hansen et al., 1998; Polz &

Cavanaugh, 1998).

Moreover, the DNA isolation protocol used in this

study was chosen from a group of protocols tested in

our laboratory for their efficiency in lysing both gram-

positive and gram-negative organisms (data not

shown). Despite this, sequence analysis of mock 2

(equal number of cells) did not yield an evenly distrib-

uted community, nor a community that resembled the

abundances in mock 1. Mocks 2 and 3 showed

biases in the same species, which suggests that the

actual relative abundance of species in the commu-

nity does not unduly influence the bias introduced.

The species with greater over-representation in

mocks 2 and 3 as a consequence of DNA-isolation

bias was S. oralis. This finding agrees with previously

published results demonstrating over-representation

Figure 8 Relative abundance in saliva and mucosa of 25 most abundant genera found across samples. Environment in which the specific

genus is over-represented (saliva or mucosa, S or M), as calculated by METASTATS, is indicated by *after each genus name. Sequences that

could not be classified to the genus level were not included in this graph.
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of streptococci after 16S rRNA amplification, cloning

and Sanger sequencing (Kroes et al., 1999) and dis-

agrees with our previous findings that streptococci

were accurately represented after Sanger methods

(Diaz et al., 2006). These discrepancies could be

explained by intra-genus variability in lysis efficiency,

as exemplified by S. mutans under-representation in

mocks 2 and 3. Although such findings of inherent

biases may discourage the use of an open-ended

molecular method, they do not diminish the great

advantages of using powerful high-throughput

approaches, which can reveal the breadth and depth

of bacterial diversity in a given sample. They do,

however, highlight the importance of investigator

awareness of limitations, and adoption of standard-

ized protocols when possible to minimize errors.

Our work also presents an improvement in an

already highly effective data analysis pipeline

(Schloss et al., 2011). By removing singleton OTUs

we are able to decrease the number of erroneous

OTUs to almost zero. Most singleton OTUs appeared

to be chimeric sequences, in agreement with recent

results (Schloss et al., 2011). This improvement is of

great advantage when using deep-sequenced data to

determine richness because the inclusion of amplifi-

cation and sequencing artifacts could cause rarefac-

tion curves to appear as never leveling. Although

application of this correction to real samples could

eliminate true taxa, this is preferable to the inclusion

of erroneous OTUs, which artifactually increase dis-

similarity among datasets. Elimination of singleton

OTUs may not be necessary once chimera detection

methods improve. It is also noteworthy that mock

communities were not deep-sequenced and the num-

ber of erroneous OTUs could increase with sequenc-

ing effort, as recently reported (Schloss et al., 2011).

As a consequence, our deep-sequenced samples

could contain more erroneous OTUs than those

reported for mock communities. However, this

increase is expected to occur in a linear fashion and

it may not greatly affect the richness results. It could

partly account, however, for the lack of a complete

asymptote in rarefaction curves, although it is also

expected that not all richness was sampled.

Our study also assessed estimators of richness

and coverage. Deep-sequencing of three subjects

allowed us to capture a number of OTUs close to

those in the sampling universe. Results demonstrated

that basing coverage on Good–Turing’s estimator

greatly underestimates the number of sequences

needed to achieve acceptable coverage of richness.

CATCHALL provided results that better approximated

reality and was more accurate when used in uneven

communities than Good–Turing. We also show that

CATCHALL rapidly stabilizes and so, after obtaining

�3000–5000 sequences, it can be used as a reliable

estimator of total richness in a sample, even though

detection of nearly all OTUs would require 100 times

more sequences. Hence, although Good–Turing is

Figure 9 Taxa (classified from the genus to the phylum level) dif-

ferentially represented in saliva or mucosa as revealed by LEFSE.

Salivary communities appear in green, mucosal communities

appear in red. Taxa are ranked according to their linear discriminant

analysis scores.
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widely used by microbial ecologists, these results

confirm that this non-parametric estimator is down-

wardly biased and of lower accuracy. Reduction of

sequencing error and the identification of an estima-

tor that reliably predicts total richness allowed us

then to answer the question of how many OTUs

existed in the microbial communities sampled. This

analysis resulted in a range of observed OTUs at

each site of 63–318, and total estimated OTUs at

each site from 111 to 377. These results are in strik-

ing agreement with findings of Zaura et al. (2009),

who reported a range of 123–326 OTUs (also defined

at 3% dissimilarity) in each oral site they sampled.

Richness detected in other oral sites may be higher

and may also increase as communities associated

with individuals suffering from oral disease are analy-

sed by future studies, because an increased diversity

is believed to be associated with the development of

conditions such as periodontal disease (Paster et al.,

2001; Diaz, 2012).

Another important consideration for large-scale

sequencing analysis of communities is the level of

sequencing depth needed to answer a specific ques-

tion or measure an effect. Our analysis demonstrates

that a large number of sequences is required to com-

pletely cover the richness in salivary or mucosal sam-

ples. If communities are compared based on

prevalence data, it may be necessary to sample to a

greater depth to conclude that a specific phylotype is

absent. A similar limitation applies to studies that aim

A

B

Figure 10 Differential representation of all phyla found across samples in saliva and mucosa. (A) Relative abundance of different phyla.

Environment in which the specific phylum is over-represented (saliva or mucosa, S or M), as calculated by METASTATS, is indicated by *after

each phylum name. Sequences that could not be classified to any phylum appear as Unclassified Bacteria. (B) A cladogram depicting the

phylum Firmicutes and its differentially represented taxa analysed via LEFSE. Notice that although the phylum appeared over-represented in

mucosa according to METASTATS, only certain clades within the phylum display affinity for mucosa whereas most of the genera within the phy-

lum are over-represented in saliva.
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at defining the core oral microbiome, those phylo-

types highly prevalent in all human hosts, which will

most likely be impacted by under-sampling. We dem-

onstrate, however, that comparing communities

based on structure is more feasible than comparisons

based on membership. Moreover, depending on the

effect size measured, it may not be necessary to

achieve great richness coverage. As few as 40

sequences were able to discriminate between saliva

and buccal mucosa communities because of consid-

erable differences in structures. Clearly, researchers

will benefit from preliminary studies like the one

herein to define sequencing depth and associated

costs before embarking on large-scale sequencing

enterprises.

We demonstrate that patterns in biogeography of

oral communities from 454-pyrosequencing of 16S

rRNA amplicons largely agree with those previously

reported using culturing or other molecular methods,

and we further expand the characterization of salivary

and buccal mucosa communities. For instance, our

results agree with those of Aas et al. (2005), in that

S. mitis, S. mitis bv. 2 and G. haemolysans were the

predominant species of the buccal epithelium. It is

interesting to highlight the intra-genus variability in the

affinity of microorganisms for buccal mucosal surfaces

because several cultured and uncultured streptococci

other than S. mitis, as well as Gemella sanguinis, are

over-represented in saliva (see Supplementary mate-

rial, Table S2). These differences in fine-scale bioge-

ography support the concept of an interplay between

environmental selection and microbial traits as a driv-

ing force of community assemblage. The attachment

of S. mitis to oral epithelial surfaces is mediated by

adhesins that bind to sialic acid receptors (Gibbons,

1989; Childs & Gibbons, 1990). The mechanism used

by G. haemolysans has not been studied. The abun-

dance of these microorganisms at mucosal surfaces

during health suggests a role as prime commensals of

the oral cavity of humans. Discerning the mechanisms

by which they interact with, and are tolerated by the

host as well as their interactions with mucosal patho-

gens will be important to understand how the dynamics

of the host–oral flora cross-talk may promote health or

disease.

Moreover, our results expand knowledge on the sali-

vary flora of healthy individuals by the deployment of a

powerful open-ended molecular method. Mager et al.

(2003) used the checkerboard DNA–DNA hybridization

technique to evaluate the presence and abundance of

40 bacterial species in healthy individuals. Our results

and the latter study agree in finding Veillonella parvula,

Prevotella melaninogenica, Fusobacterium periodonti-

cum and S. mitis as predominant microorganisms in

the saliva of healthy individuals. Our study broadens

this knowledge base by demonstrating that 11 of the 25

most abundant organisms in saliva across individuals

were uncultured ‘species-level’ phylotypes, belonging

to the genera Prevotella, Porphyromonas, Streptococ-

cus, Haemophilus, Aggregatibacter and Rothia. Of

particular interest is the great abundance of

Porphyromonas and Prevotella sp., organisms typically

thought to favor the subgingival environment because

of their oxygen requirements. In a previous study we

identified these two genera as present in initial commu-

nities formed for 4 or 8 h on the enamel surfaces of

healthy individuals (Diaz et al., 2006), a finding in

agreement with their pronounced abundance in saliva

and their low affinity for soft tissues. Characterization of

the properties of these uncultured Prevotella and Por-

phyromonas species and comparison with cultured

species such as Porphyromonas gingivalis or Prevotel-

la nigrescens that are considered pathogenic microor-

ganisms of the subgingival environment (Socransky

et al., 1998), remains a question for future investiga-

tions. The high abundance of the genus Neisseria in

saliva and its low abundance at mucosal surfaces are

also interesting findings. Species of Neisseria, in partic-

ular Neisseria mucosa, have not been previously dem-

onstrated to differ among oral sites (Mager et al.,

2003). Here we show species-level phylotypes identi-

fied as Neisseria sicca and Neisseria flavescens pres-

ent in great abundance in saliva and with low affinity for

buccal mucosal surfaces. One speculation is that the

great abundance of obligate anaerobes in saliva may

depend on the presence of these aerobic, oxygen-

metabolizing organisms, as has been suggested by in

vitro modeling of oral bacterial consortia (Bradshaw

et al., 1996).

In conclusion, 454-pyrosequencing of microbial

communities is a powerful method for evaluation of

oral biodiversity. However, investigators using this

strategy should be aware of limitations and minimize

technical error by accounting for it in the design of

experimental studies and data analysis. Use of similar

operating procedures among oral researchers is highly

encouraged. It is also advisable to use a mock commu-

nity of oral organisms to refine protocols before under-
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taking large-scale studies. Researchers should also

determine the best sequencing effort needed based on

their specific study question. Studies directed at deter-

mining the existence of a core microbiome in the oral

cavity should first assess coverage with a reliable esti-

mator such as CATCHALL before concluding on differ-

ences or commonalities. Studies interested in

determining drivers of community structure should first

determine optimal sequencing depth, depending on

the effect size of the expected change. By using these

methods we present evidence that fine-scale biogeog-

raphy variation within the oral cavity is larger than

inter-subject variability in the structure of either salivary

or mucosal communities. This finding enables the use

of 16S rRNA community profiling to understand micro-

bial shifts associated with the development of mucosal

disease.
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