
ZU064-05-FPR main 16 August 2020 22:41

Under consideration for publication in J. Functional Programming 1

A Relational Logic for Higher-Order Programs
ALEJANDRO AGUIRRE

Imdea Software Institute & Universidad Politécnica de Madrid, Spain

GILLES BARTHE
Imdea Software Institute, Spain & MPI-SP, Germany

MARCO GABOARDI
University at Buffalo, SUNY, USA

DEEPAK GARG
MPI-SWS, Germany

PIERRE-YVES STRUB
École Polytechnique, France

Abstract

Relational program verification is a variant of program verification where one can reason
about two programs and as a special case about two executions of a single program on
different inputs. Relational program verification can be used for reasoning about a broad
range of properties, including equivalence and refinement, and specialized notions such as
continuity, information flow security or relative cost. In a higher-order setting, relational
program verification can be achieved using relational refinement type systems, a form of
refinement types where assertions have a relational interpretation. Relational refinement
type systems excel at relating structurally equivalent terms but provide limited support
for relating terms with very different structures.

We present a logic, called Relational Higher Order Logic (RHOL), for proving relational
properties of a simply typed λ-calculus with inductive types and recursive definitions.
RHOL retains the type-directed flavour of relational refinement type systems but achieves
greater expressivity through rules which simultaneously reason about the two terms as well
as rules which only contemplate one of the two terms. We show that RHOL has strong
foundations, by proving an equivalence with higher-order logic (HOL), and leverage this
equivalence to derive key meta-theoretical properties: subject reduction, admissibility of
a transitivity rule and set-theoretical soundness. Moreover, we define sound embeddings
for several existing relational type systems such as relational refinement types and type
systems for dependency analysis and relative cost, and we verify examples that were out of
reach of prior work.

1 Introduction

Many important aspects of program behavior go beyond the traditional charac-
terization of program properties as sets of traces (Alpern & Schneider, 1985).
Hyperproperties (Clarkson & Schneider, 2008) generalize properties and capture

ZU064-05-FPR main 16 August 2020 22:41

2 A. Aguirre et al.

a larger class of program behaviors, by focusing on sets of sets of traces. As an
intermediate point in this space, relational properties are sets of pairs of traces.
Relational properties encompass many properties of interest, including program
equivalence and refinement, as well as more specific notions such as non-interference
and continuity.

Relational verification is an instance of program verification that targets relational
properties. Expectedly, standard verification methods such as type systems, program
logics, and program analyses can be lifted to a relational setting. However, it
remains a challenge to devise sufficiently powerful methods that can be used to
verify a broad range of examples. In effect, most existing relational verification
methods are limited in the examples that they can naturally verify, due to the
fundamental tension between the syntax-directed nature of program verification,
and the need to relate structurally different programs. Moreover, approaches to
resolve this tension highly depend on the programming paradigm, on the class of
program properties considered, and on the verification method. In the (arguably
simplest) case of deductive verification of general properties of imperative programs,
one approach to reduce this tension is to use self-composition (Barthe et al., 2004),
which reduces relational verification to standard verification. However, reasoning
about self-composed programs might be cumbersome. Alternatively, there exist
expressive relational program logics that rely on an intricate set of rules to reason
about a pair of programs. These logics combine two-sided rules, in which the two
programs have the same top-level structure, and one-sided rules, which operate on
a single program. Rules for loops are further divided into synchronous, in which
both programs perform the same number of iterations, and asynchronous rules, that
do not have this restriction but introduce more complexity (Benton, 2004; Barthe
et al., 2017).

In contrast, deductive verification of general properties of (pure) higher-order
programs is less developed. One potential approach to solve the tension between
the syntax-directedness, and the need to relate structurally different programs, is to
reduce relational verification of pure higher-order programs to proofs in higher-order
logic. There are strong similarities between this approach and self-composition: it
reduces relational verification to standard verification, but this approach is very
difficult to use in practice. A better alternative is to use relational refinement types
such as rF∗ (Barthe et al., 2014), HOARe2 (Barthe et al., 2015), DFuzz (Gaboardi
et al., 2013) or RelCost (Çiçek et al., 2017). Informally, relational refinement type
systems use assertions to capture relationships between inputs and outputs of two
higher-order programs. They are appealing for two reasons:

• They capture many important properties of programs in a direct and intuitive
manner. For instance, the type {x :: N | x1 ≤ x2}→ {y :: N | y1 ≤ y2} captures
the set of pairs of functions that preserve the natural order on natural numbers,
i.e. pairs of functions f1,f2 : N→ N such that for every x1,x2 ∈ N, x1 ≤ x2
implies f1(x1) ≤ f2(x2). (The subscripts 1 and 2 on a variable refer to its
values in the two runs.)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 3

• They can potentially benefit from a long and successful line of founda-
tional (Freeman & Pfenning, 1991; Xi & Pfenning, 1999; Dunfield & Pfenning,
2004; Melliès & Zeilberger, 2015) and practical (Vazou et al., 2014; Swamy
et al., 2016) research on refinement types.

Unfortunately, existing relational refinement type systems fail to support the
verification of several examples. Broadly speaking, the two programs in a relational
judgment may be required to have the same type and the same control flow; moreover,
this requirement must be satisfied by their subprograms: if the two programs are
applications, then the two sub-programs in argument position (resp. in function
position) must have the same type and the same control flow; if the two programs
are case expressions, they must enter the same branch, and their branches must
themselves have the same control flow; if the two programs are recursive definitions,
then their bodies must perform the same sequence of recursive calls; etc. This
restriction, which can be found in more or less strict forms in the different relational
type systems, limits the ability to carry fine-grained reasoning about terms that
are structurally different. This raises the question whether the type-directed form
of reasoning purported by refinement types can be reconciled with an expressive
relational verification of higher-order programs. We provide a positive answer for pure
higher-order programs; extending our results to effectful programs is an important
goal, but we leave it for future work.

Our starting point is the observation that relational refinement type systems are
inherently restricted to reasoning about two structurally similar programs, because
relational assertions are embedded into types. In order to provide broad support for
one-sided rules (i.e., rules that contemplate only one of the two expressions), it is
therefore necessary to consider relational assertions at the top-level, since one-sided
rules have a natural formulation in this setting. Considering relational assertions at
the top-level can be done in two different ways: either by supporting a rich theory
of subtyping for relational refinement types, in such a way that each type admits a
normal form where refinements only arise at the top-level, or simply by adapting the
definitions and rules of refinement type systems so that only the top-level refinements
are considered. Although both approaches are feasible, we believe that the second
approach is more streamlined and leads to friendlier verification environments.

Contributions

We present a new logic, called Relational Higher Order Logic (RHOL, § 6), for
reasoning about relational properties of higher-order programs written in a variant
of Plotkin’s PCF (§ 2). The logic manipulates judgments of the form:

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ

where Γ is a simply typed context, σ1 and σ2 are (possibly different) simple types,
t1 and t2 are terms, Ψ is a set of assertions, and φ is an assertion. Our logic retains
the type-directed nature of (relational) refinement type systems, and features typing
rules for reasoning about structurally similar terms. However, disentangling types
from assertions also makes it possible to define type-directed rules operating on

ZU064-05-FPR main 16 August 2020 22:41

4 A. Aguirre et al.

a single term (left or right) of the judgment. This confers great expressivity to
the logic, without significantly affecting its type-directed nature, and opens the
possibility to alternate freely between two-sided and one-sided reasoning, as done in
the logics for first-order imperative languages.
The validity of judgments is expressed relative to a set-theoretical semantics—

our variant of PCF is restricted to terms which admit a set-theoretical semantics,
including strongly normalizing terms. More precisely, a judgment Γ |Ψ ` t1 : σ1 ∼
t2 : σ2 | φ is valid if for every valuation ρ (mapping variables in the context Γ to
elements in the interpretation of their types), the interpretation of φ is true whenever
the interpretation of (all the assertions in) Ψ is true. Soundness of the logic can
be proved through a standard model-theoretic argument; however, we provide an
alternative proof based on a sound and complete embedding into Higher-Order
Logic (HOL, § 4). We leverage this equivalence to establish several meta-theoretical
properties of the logic, notably subject reduction.
Moreover, we demonstrate that RHOL can be used as a general framework, by

defining sound embedding for several relational type systems: relational refinement
types (§ 7.2), the Dependency Core Calculus (DCC) for many dependency analyses,
including those for information flow security (§ 7.3), and the RelCost (§ 7.4) type
system for relative cost. The embedding of RelCost is particularly interesting, since it
exercises the ability of our logic to alternate between synchronous and asynchronous
reasoning. Afterwards, we verify several examples that go beyond the capabilities of
previous systems (§ 8). The system, its metatheory and the examples have been
mechanized in Coq. We comment on the Coq implementation in Section 9. In
Section 10, we conclude by presenting other relational systems based on RHOL that
have been developed since the conference version of this paper (Aguirre et al., 2017),
and commenting on how they extend RHOL.

Related Work

While dependent type theory is the prevailing approach to reason about (pure)
higher-order programs, several authors have explored another approach, which
is crisply summarized by Jacobs (1999): “A logic is always a logic over a type
theory”. Formalisms following this approach are defined in two stages; the first stage
introduces a (dependent) type theory for writing programs, and the second stage
introduces a predicate logic to reason about programs. This approach has been
pursued independently in a series of works on logic-enriched type theories (Aczel
& Gambino, 2000; Aczel & Gambino, 2006; Belo, 2007; Adams & Luo, 2010), and
on refinement types (Pfenning, 2008; Zeilberger, 2016). In the latter line of work,
programs are written in an intrinsically typed λ-calculus à la Church; then, a system
of sorts (a.k.a. refinements) is used to establish properties of programs typable in
the first system. Our approach is similar; however, these works are developed in a
unary setting, and do not consider the problem of relational verification. A further
approach consists of developing a logic in an untyped setting, as is the case of LTC
(Dybjer, 1985).

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 5

Moreover, there is a large body of work on relational verification; we focus on type-
based methods and deductive methods. Relational Hoare Logic (Benton, 2004) and
Relational Separation Logic (Yang, 2007) are two program logics, respectively based
on Hoare Logic and Separation Logic, for reasoning about relational properties
of (first-order) imperative programs. These logics have been used for a broad
range of examples and applications, ranging from program equivalence to compiler
verification and information flow analysis. Moreover, they have been extended in
several directions. For example, Probabilistic Relational Hoare Logic (Barthe et al.,
2009) and approximate probabilistic Relational Hoare Logic (Barthe et al., 2012) are
generalizations of Relational Hoare logic for reasoning about relational properties of
(first-order) probabilistic programs. These logics have been used for a broad range of
applications, including probabilistic information flow, side-channel security, proofs
of cryptographic strength (reductionist security) and differential privacy. Cartesian
Hoare Logic (Sousa & Dillig, 2016) is also a recent generalization of Relational
Hoare Logic for reasoning about bounded safety (i.e. k-safety for arbitrary but
fixed k) properties of (first-order) imperative programs. This logic has been used for
analyzing standard libraries. Experiments have demonstrated that such logics can
be very effective in practice. Our formalism can be seen as a proposal to adapt their
flexibility to pure higher-order programs.
Product programs (Barthe et al., 2004; Terauchi & Aiken, 2005; Zaks & Pnueli,

2008; Barthe et al., 2011) are a general class of constructions that emulate the
behavior of two programs and can be used for reducing relational verification to stan-
dard verification. While product programs naturally achieve (relative) completeness,
they are often difficult to use since they require global reasoning on the obtained
program—however recent works (Blatter et al., 2017) show how this approach can
be automated in specific settings. Building product programs for (pure) higher-order
languages is an intriguing possibility, and it might be possible to instrument RHOL
using ideas from (Barthe et al., 2017) to this effect; however, the product programs
constructed in (Barthe et al., 2017) are a consequence, rather than a means, of
relational verification.
Several type systems have been designed to support formal reasoning about

relational properties for functional programs. Some of the earlier works in this
direction have focused on the semantics foundations of parametricity, like the
work by Abadi et al. (1993) on System R, a relational version of System F. The
recent work by Ghani et al. (2016a) has further extended this approach to give
better foundations to a combination of relational parametricity and impredicative
polymorphism. Interestingly, similarly to RHOL, System R also supports relations
between expressions at different types, although, since System R does not support
refinement types, the only relations that System R can support are the parametric
ones on polymorphic terms. In RHOL, we do not support parametric polymorphism
à la System F currently but the relations that we support are more general. Adding
parametric polymorphism will require foregoing the set-theoretical semantics, but it
should still be possible to prove equivalence with a polymorphic variant of higher-
order logic.

ZU064-05-FPR main 16 August 2020 22:41

6 A. Aguirre et al.

Several type systems have been proposed to reason about information flow security,
a prime example of a relational property. Some examples include SLAM (Heintze &
Riecke, 1998), the type system underlying Flow Caml (Pottier & Simonet, 2002) and
DCC (Abadi et al., 1999). Most of these type systems consider only one expression
but they allow the use of information flow labels to specify relations between two
different executions of the expression. As we show in this paper, this approach can
also be implemented in RHOL. We show how to translate DCC since it is one of
the most general type systems; however, similar translations can also be provided
for the other type systems.

Relational Hoare Type Theory (RHTT) (Nanevski et al., 2013; Stewart et al., 2013)
is a formalism for relational reasoning about stateful higher-order programs. RHTT
was designed to verify security properties like authorization and information flow
policies but was used for the verification of heterogeneous pointer data structures
as well. RHTT uses a monad to separate stateful computations and relational
refinements on the monadic type express relational pre- and post-conditions. RHTT
supports reasoning about two different programs but the programs must have the
same types at the top-level. RHTT’s rules support both two- and one-sided reasoning
similar to RHOL, but the focus of RHTT is on verifying properties of the program
state. In particular, examples such as those in §8 or embeddings such as those in
§7 were not considered in RHTT. RHTT is proved sound over a domain-theoretic
model and continuity must be proven explicitly during the verification of recursive
functions (rules are provided to prove continuity in many cases). In contrast, RHOL’s
set-theoretic model is simpler, but admits only those recursive functions that have a
unique interpretation in set-theory.

Logical relations (Plotkin, 1973; Statman, 1985; Tait, 1967) provide a fundamental
tool for reasoning about programs. They have been used for a broad range of purposes,
including proving unary properties (for instance strong normalization or complexity)
and relational properties (for instance equivalence or information flow security). Our
work can be understood as an attempt to internalize the versatility of relational
logical relations in a syntactic framework. There is a large body of work on logics for
logical relations, from the early work by Plotkin & Abadi (1993) to more recent work
on logics for reasoning about states and concurrency (Dreyer et al., 2011; Dreyer
et al., 2010; Jung et al., 2015; Krogh-Jespersen et al., 2017). In particular, the IRIS
logic (Jung et al., 2015) can be seen as a powerful reasoning framework for logical
relations, as shown by Krogh-Jespersen et al. (2017). Even though we also aim to
internalize logical relations, the goal of RHOL differs from the goal of IRIS in that
we aim for syntax-driven relational verification, which IRIS does not.

We have already mentioned the works on relational refinement type systems
for verifying cryptographic constructions (Barthe et al., 2014), for differential pri-
vacy (Barthe et al., 2015; Gaboardi et al., 2013) and for relational cost analysis (Çiçek
et al., 2017). This line of works is probably the most related to our work. However,
RHOL improves over all of them, as also shown by some of the embeddings we
give in Section 7. Another work in this direction is that of (Asada et al., 2016),
which proposes a technique to reduce relational refinement to standard first-order
refinements. Their technique is incomplete but it works well on some concrete

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 7

examples. As discussed earlier, we believe that some technique of this kind can also
be applied to RHOL. However, this is orthogonal to our current goal and we leave
this investigation to future work.

In a recent paper, Grimm et al. (2018) propose an alternative manner of proving
relational properties of monadic computations in F?. Intrinsic specification of
monadic computations in this language needs to be unary, however relational
properties can be proven extrinsically by using a reification operator. This operator
exposes the computational content of the terms and turns them into pure expressions,
about which logical lemmas can be written and proven, exploiting the automation
features of F?. The idea of exposing the pure representation of a computation
generalizes the ideas behind our embeddings of DCC and RelCost. However, this
work offers no specific support for relational reasoning and would correspond in our
setting to embedding these frameworks directly into HOL rather that into RHOL.
Several works have explored how to automate the verification of higher order

programs by means of techniques inspired by model checking and Horn clause solving.
Some of the recent works in this direction (Kobayashi et al., 2017; Kobayashi et al.,
2018) have focused on the use of Higher-order modal Fixed point Logics (HFL). In
this approach, a program is translated to an HFL formula expressing the correctness
of the program with respect to a particular property, and the verification is performed
via HFL model checking. This approach is able to express several properties of
higher order programs in a uniform way. The verification technique based on HFL
is quite different from the one we present here but both techniques serve similar
purposes. Properties that have been targeted using HFL include reachability, and
trace properties, which are all non-relational. Instead, we focused on relational
properties including information flow, relational cost, and program equivalence.
Nevertheless, it would be interesting to investigate whether HFL model checking
could be used also to support the automated verification of relational properties.
Program verification based on Horn clauses has been also used for the verification
of relational properties of higher order programs (Unno et al., 2017). The technique
by Unno et al. focuses on a principled way to encode relational properties in Horn
clauses. In our approach instead, the relational nature of the properties is used in
the corresponding logic RHOL and its combined use with UHOL and HOL.

Since the publication of the conference version of this article, a few other papers
have built on top of RHOL to verify relational properties of effectful programs.
The Rc system (Radicek et al., 2018) establishes the relative cost of a pair of
higher-order programs. Meanwhile, Guarded RHOL (Aguirre et al., 2018) extends
RHOL with guarded recursion and probabilities, which allows reasoning about
probabilistic infinite data structures, such as Markov Chains. A recent paper, (Sato
et al., 2019), shows another extension of RHOL with continuous probabilities and
Bayesian conditioning. We further discuss these extensions in Section 10. These
results witness the versatility of the basic principles behind RHOL.

ZU064-05-FPR main 16 August 2020 22:41

8 A. Aguirre et al.

Comparison with conference version

This is an extended version of a conference paper (Aguirre et al., 2017). The
increments with respect to the conference version are:

• A mechanization of our system in the Coq proof assistant (§ 9).
• More detailed explanation of the system (§ 4, 5, and 6) and the examples
(§ 8). We also add an informal derivation of an example at the beginning of
the paper (§ 3), which helps in motivating the theoretical development that
follows.

• Detailed proofs of the main theoretical results of this paper.
• A new example (§ 8.3) showing 1-sensitivity of sorting, which we believe to
better showcase the advantages of relational reasoning.

• A discussion on extensions of our system that were presented after the
publication of the conference version (§ 10).

2 (A variant of) PCF

We consider a variant of PCF (Plotkin, 1977) with booleans, natural numbers,
lists, and recursive definitions. For the latter, we require that all recursive calls are
performed on strictly smaller elements—as a consequence, the fixpoint equation
derived from the definition has a unique set-theoretical solution. The method to
enforce this requirement is orthogonal to our design, and could for instance be based
on a syntactic guard predicate, or on sized types.
Types and terms of the language are defined by the following grammar:

τ ::= B | N | listτ | τ × τ | τ → τ

t ::= x | 〈t, t〉 | π1 t | π2 t | t t | λx : τ.t | c | S t | t :: t | case t of 0 7→ t;S 7→ t

| case t of tt 7→ t;ff 7→ t | case t of [] 7→ t;_ :: _ 7→ t | letrec f x= t

where x ranges over a set V of variables, c ranges over the set {tt,ff,0, []} of constants,
and λ-abstractions are à la Church. Throughout the paper we will use letters t,u,v
to range over terms, and letters x,y,z to range over variables. Occasionally, we will
also use f,g for variables with arrow types.

The operational behavior of terms is captured by βιµ-reduction →βιµ=→β ∪→ι

∪→µ, where β-reduction, ι-reduction and µ-reduction are defined as the contextual
closure of:

(λx.t) u →β t[u/x]
πi〈t1, t2〉 →β ti

case 0 of 0 7→ u;S 7→ v →ι u

case St of 0 7→ u;S 7→ v →ι (v t)
case tt of tt 7→ u;ff 7→ v →ι u

case ff of tt 7→ u;ff 7→ v →ι v

case [] of [] 7→ u;_ :: _ 7→ v →ι u

case h :: t of [] 7→ u;_ :: _ 7→ v →ι (v h t)
(letrec f x= t) (C ~t) →µ t[C ~t/x][letrec f x= t/f]

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 9

where t[u/x] denotes the usual (capture-free) notion of substitution on terms (replace
x by u in t). As usual, we let =βιµ denote the reflexive, symmetric, and transitive
closure of →βιµ. In particular, we only allow reduction of letrec when the argument
has a constructor C ∈ {tt,ff,0,S, [], ::} in head position.

Typing judgments are of the form Γ ` t : τ , where Γ is a set of typing declarations
of the form x : σ, such that each variable is declared at most once. The typing rules
are standard, except the one for recursive functions. In this rule, we require that the
domain of the recursive function be an inductive type (naturals or lists here) and
that the body of the recursive definition letrec f x= t satisfy a predicate Def (f,x, t)
which ensures that all recursive calls are performed on smaller arguments. The
typing rule for recursive definitions is thus:

Γ,f : I → σ,x : I ` e : σ Def (f,x, t) I ∈ {N, listτ}
Γ ` letrec f x = t : I → σ

We give set-theoretical semantics to this system. The choice of this model is motivated
by simplicity, but our construction would still work in a different model. For instance,
the Coq mechanization of this paper uses the Calculus of Inductive Constructions,
and the extension of RHOL presented in (Aguirre et al., 2018) has an interpretation
in the topos of trees.

For each type τ , its interpretation JτK is the set of its values:

JBK,B JNK,N Jlistτ K, listJτK Jσ→ τK, JσK→ JτK

where JσK→ JτK is the set of total functions with domain JσK and codomain JτK.
A valuation ρ for a context Γ (written ρ |= Γ) is a partial map such that ρ(x)∈ JτK

whenever (x : τ) ∈ Γ. For every valuation ρ let ρ[v/x] denote its unique extension ρ′
such that ρ′(y) = v if x= y and ρ′(y) = ρ(y) otherwise. Given a valuation ρ for a
context Γ, every term t for which a typing judgment Γ ` t : τ can be derived, has an
interpretation LtMρ:

LxMρ , ρ(x) L〈t,u〉Mρ , 〈LtMρ,LuMρ〉 Lπi tMρ , πi(LtMρ)

Lλx : τ.tMρ , λv : JτK.LtMρ[LvMρ/x] LcMρ , c LS tMρ , S LtMρ

Lt :: uMρ , LtMρ :: LuMρ

Lcase t of [] 7→ u;_ :: _ 7→ vMρ ,

{
LuMρ if LtMρ = []
LvMρ M N if LtMρ =M ::N

Lletrec f x= tMρ , F

In the case of letrec f x= t, we require that F be the unique solution of the fixpoint
equation extracted from the recursive definition—existence and uniqueness of the
solution follows from the validity of the Def (f,x, t) predicate.
The interpretation of well-typed terms is sound. Moreover, the interpretation

equates convertible terms. (This extends to η-conversion.)

ZU064-05-FPR main 16 August 2020 22:41

10 A. Aguirre et al.

Theorem 1 (Soundness of set-theoretic semantics)
The following hold:

• If Γ ` t : τ and ρ |= Γ, then LtMρ ∈ JτK.
• If Γ ` t : τ and Γ ` u : τ and t=βιµ u and ρ |= Γ, then LtMρ = LuMρ.

3 Introductory example

In this section we show a motivating example for our logic. We use an informal pre-
sentation style here. Later, in Section 8, we revisit the example and prove it formally.
Consider the following pair of programs corresponding to two implementations of
the factorial function:

fact1 , letrec f1 n1 = case n1 of 0 7→ 1;S 7→ λx1.(S x1)∗ (f1 x1)
fact2 , letrec f2 n2 = λacc.case n2 of 0 7→ acc;S 7→ λx2.f2 x2 ((S x2)∗acc)

We want to show a relation between the functions, namely that for any natural n,
and any initial value a of the accumulator, a∗ (fact1n) = fact2 n a. To avoid having
to name our programs, we assume our logic has two distinguished variables r1, r2,
that represent the pair of programs we reason about. Then, the relation we want to
show is

∀n.∀a.a∗ (r1 n) = r2 n a

This relation is not expressible in a relational refinement type system, since the two
programs have different types. But they still have similar structure, and we wish
to exploit this to find a proof. First we notice that both programs are recursive
functions, so we apply a rule for this case, [LETREC]. This gives us the inductive
hypothesis that the relation above holds for natural numbers strictly smaller than
n, and the proof obligation that, for the following two programs

case n of 0 7→ 1;S 7→ λx.(S x)∗ (f1 x)
λacc.case n of 0 7→ acc;S 7→ λx.f2 x ((S x)∗acc)

the result of the first one, times a, is equal to the result calling the second one with
argument a, that is,

∀a.a∗r1 = r2 a

But now we have a pair of programs that have not only different types, but also
different top-level term former: the first one has a case-analysis, while the second
one has an abstraction. We now apply a one-sided rule [ABS-R] that takes care
of the abstraction on the right and ignores the term on the left, leaving a pair of
programs

case n of 0 7→ 1;S 7→ λx.(S x)∗ (f1 x)
case n of 0 7→ acc;S 7→ λx.f2 x ((S x)∗a)

and a proof obligation
a∗r1 = r2

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 11

Finally we have two programs with the same type and the same structure. We
can do synchronous reasoning, using the fact that both programs need to take the
same branch. In the 0 branch, its trivial to check that a∗1 = a. In the successor
branch we can instantiate the inductive hypothesis, since the bound variable x is
the predecessor of n, and thus strictly smaller. This concludes the proof.

4 Higher-Order Logic

Higher-Order Logic is a predicate logic over simply-typed, higher-order terms. Its
rules are written in the style of natural deduction. More specifically, its assertions
are formulae over typed terms, and are defined by the following grammar:

φ ::= P (t1, . . . , tn) | > | ⊥ | φ∧φ | φ∨φ | φ⇒ φ | ∀x : τ.φ | ∃x : τ.φ

where P ranges over basic predicates, such as =, ≤, or sorted(l). As usual, we will
often omit the types of bound variables, when they are clear from the context. We
assume that predicates come equipped with an axiomatization. For instance, the
predicate All(l,λx.φ) is defined to capture lists whose elements e all satisfy φ[e/x].
This can be defined axiomatically for a given φ with a free variable x (which we
denote with and overloaded λ symbol):

All([],λx.φ) ∀ht.All(t,λx.φ)⇒ φ[h/x]⇒All(h :: t,λx.φ)

The notation λx.φ, used for simplicity, can be made formal by introducing a type
for propositions—adding such a type is straightforward and orthogonal to our work;
another alternative would be to use axiom schemes.

We define well-typed assertions using a judgment of the form Γ ` φ. This judgment
has the expected, straightforward rules. A HOL (inference) judgment is then of the
form Γ |Ψ ` φ, where Γ is a simply typed context, Ψ is a set of assertions, and φ
is an assertion, and such that Γ ` ψ for every ψ ∈Ψ, and Γ ` φ. The rules of this
judgment are given in Figure 1, where the notation φ[t/x] denotes the (capture-free)
substitution of x by t in φ. In addition to the usual rules for equality, implication
and universal quantification, there are rules for inductive types (only the rules for
lists are shown; similar rules exist for booleans and natural numbers): the rule
[LIST] models the induction principle for lists; the rules [NC] and [CONS] formalize
injectivity and non-overlap of constructors. A rule for strong induction [SLIST] can
be considered as well, and is in fact derivable from simple induction.
Higher-Order Logic inherits a set-theoretical interpretation from its underlying

simply-typed λ-calculus. We assume given for each predicate P an interpretation
JP K which is compatible with the type of P and its axioms. The interpretation of
assertions is then defined in the usual way. Specifically, the interpretation LφMρ of
an assertion φ w.r.t. a valuation ρ includes the clauses:

LP (t1, . . . , tn)Mρ , (Jt1Kρ, . . . ,JtnKρ) ∈ JP K L>Mρ , >̃ L⊥Mρ , ⊥̃

Lφ1∧φ2Mρ , Lφ1Mρ ∧̃ Lφ2Mρ Lφ1⇒ φ2Mρ , Lφ1Mρ ⇒̃ Lφ2Mρ

L∀x : τ.φMρ , ∀̃v.v ∈ JτK⇒̃ LφMρ[v/x]

ZU064-05-FPR main 16 August 2020 22:41

12 A. Aguirre et al.

φ ∈Ψ
Γ |Ψ ` φ AX

Γ ` t : τ Γ ` t′ : τ t=βιµ t′

Γ |Ψ ` t= t′
CONV

Γ |Ψ ` φ[t/x] Γ |Ψ ` t= u

Γ |Ψ ` φ[u/x] SUBST
Γ |Ψ,ψ ` φ

Γ |Ψ ` ψ⇒ φ
⇒I

Γ |Ψ ` ψ⇒ φ Γ |Ψ ` ψ
Γ |Ψ ` φ

⇒E
Γ,x : σ |Ψ ` φ
Γ |Ψ ` ∀x : σ.φ

∀I
Γ |Ψ ` ∀x : σ.φ Γ ` t : σ

Γ |Ψ ` φ[t/x]
∀E

Γ |Ψ ` >
>I

Γ |Ψ ` ⊥ Γ ` φ
Γ |Ψ ` φ

⊥E

Γ |Ψ ` φ[[]/l] Γ,h : τ, t : listτ |Ψ,φ ` φ[h :: t/t]
Γ |Ψ ` ∀t : listσ.φ

LIST
Γ ` h :: t : listτ
Γ | ∅ ` [] 6=h :: t NC

Γ |Ψ ` t1 :: t2 = t′1 :: t′2
Γ |Ψ ` ti = t′i

CONSi
Γ, t : listτ |Ψ,∀u : listτ .|u|< |t| ⇒ φ[u/t] ` φ

Γ |Ψ ` ∀t : listτ .φ
SLIST

Fig. 1. Selected rules for HOL

where the tilde (~) is used to distinguish between HOL connectives and meta-level
connectives. Higher-order logic is sound with respect to this semantics.

Theorem 2 (Soundness of set-theoretical semantics)
If Γ |Ψ ` φ, then for every valuation ρ |= Γ,

∧
ψ∈ΨLψMρ implies LφMρ.

In particular, HOL is consistent, i.e. there is no derivation of Γ | ∅ ` ⊥ for any Γ.

5 Unary Higher-Order Logic

As a stepping stone towards Relational Higher-Order Logic, we define Unary Higher-
Order Logic (UHOL). UHOL retains the flavor of refinement types, but dissociates
typing from assertions; judgments of UHOL are of the form:

Γ |Ψ ` t : τ | φ

where a distinguished variable r, which doesn’t appear in Γ, may appear free in φ
as a synonym of t. A judgment is well-formed if t has type τ , Ψ is a valid set of
assertions in the context Γ, and φ is a valid assertion in the context Γ,r : τ . Not
only is UHOL a logical system in its own right, but it is also a key component for
deriving one-sided rules in RHOL (Section 6). When reasoning about two terms
with different structures, RHOL relies on UHOL to express proof obligations that
affect only one of the two terms.

Figure 2 presents selected typing rules. The [ABS] rule allows proving formulas that
refer to λ-abstractions, expressing that if the argument satisfies a precondition φ′,
then the result satisfies a postcondition φ. The [APP] rule, dually, proves a condition
φ on an application t u provided that the argument u satisfies the precondition φ′ of
the function t. The motivation behind the substitution [r x/r] in both rules is that
the type of r changes from the premise to the conclusion, and when r is bound to

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 13

an arrow type, it needs to appear on the left of an application construct to recover
its original type.
The [VAR] rule introduces a variable from the context with a formula proven in

HOL. Rules for constants (e.g. [NIL]) work in the same way. Rule [CONS] proves
a formula φ for a non-empty list, provided that φ on the entire list is a logical
consequence (in HOL) of some conditions φ′,φ′′ on its head and its tail, respectively.
Rule [PAIR] allows the construction of judgments about pairs in a similar manner.
The rules [PROJi] for i= 1,2 establish judgments about the projections of a pair.
The rule [SUB] (subsumption) allows strengthening the assumed assertions Ψ and
weakening the concluding assertion φ. It generates a HOL proof obligation. The
rule [CASE] can be used for a case analysis over the constructor of a term. Finally,
the rule [LETREC] supports inductive reasoning about recursive function. Recall
that the domain of a recursive definition is an inductive type, for which a natural
notion of size exists. If, assuming that a proposition holds for all elements smaller
than the argument, we can prove that the proposition holds for the body, then the
proposition must hold for the function as well. Furthermore, we require that the
function we are verifying satisfies the predicate Def (f,x, t), as was the case in HOL.
The induction is performed over the < order, which varies depending on the type of
the argument.
We now discuss the main meta-theoretic results of UHOL. The following result

establishes that every HOL judgment can be proven in UHOL and vice versa.

Theorem 3 (Equivalence with HOL)
For every context Γ, simple type σ, term t, set of assertions Ψ and assertion φ, the
following are equivalent:

• Γ |Ψ ` t : σ | φ
• Γ |Ψ ` φ[t/r]

The forward implication follows by induction on the derivation of Γ |Ψ ` t : σ | φ.
The reverse implication is immediate from the rule [SUB] and the observation that
Γ |Ψ ` t : σ | > whenever t is a term of type σ.

We lift the HOL semantics to UHOL. Terms, types and formulas are interpreted
as before. The following corollary states the soundness of UHOL.

Corollary 4 (Set-theoretical soundness and consistency)
Let t be a term such that Γ | Ψ ` t : σ | φ and ρ a valuation such that ρ |= Γ.
If
∧
ψ∈ΨLψMρ, then LφMρ[LtMρ/r]. In particular, there is no proof of the judgment

Γ | ∅ ` t : σ | ⊥ for any Γ, t and σ.

Next, we prove subject conversion for UHOL. This result follows immediately
from Theorem 3 and subject conversion of HOL, which is itself a direct consequence
of the [CONV] and [SUBST] rules.

Corollary 5 (Subject conversion)
Assume that t=βιµ t

′ and Γ |Ψ ` t : σ | φ. Then Γ |Ψ ` t′ : σ | φ.

ZU064-05-FPR main 16 August 2020 22:41

14 A. Aguirre et al.

Γ ` x : σ Γ |Ψ ` φ[x/r]
Γ |Ψ ` x : σ | φ VAR

Γ,x : τ |Ψ,φ′ ` t : σ | φ
Γ |Ψ ` λx : τ.t : τ → σ | ∀x.φ′⇒ φ[r x/r]

ABS

Γ |Ψ ` t : τ → σ | ∀x.φ′[x/r]⇒ φ[r x/r] Γ |Ψ ` u : τ | φ′

Γ |Ψ ` t u : σ | φ[u/x] APP

Γ |Ψ `HOL φ[[]/r]
Γ |Ψ ` [] : listσ | φ

NIL

Γ |Ψ ` h : σ | φ′ Γ |Ψ ` t : listσ | φ′′
Γ |Ψ `HOL ∀xy.φ′[x/r]⇒ φ′′[y/r]⇒ φ[x :: y/r]

Γ |Ψ ` h :: t : listσ | φ
CONS

Γ |Ψ ` t : σ× τ | φ[πi(r)/r]
Γ |Ψ ` πi(t) : σ | φ

PROJi

Γ |Ψ ` t : σ | φ′ Γ |Ψ ` u : τ | φ′′
Γ |Ψ `HOL ∀xy.φ′[x/r]⇒ φ′′[y/r]⇒ φ[〈x,y〉/r]

Γ |Ψ ` 〈t,u〉 : σ× τ | φ PAIR

Γ |Ψ ` t : σ | φ′ Γ |Ψ `HOL φ
′[t/r]⇒ φ[t/r]

Γ |Ψ ` t : σ | φ SUB

Γ ` l : listτ
Γ |Ψ, l = [] ` u : σ | φ

Γ |Ψ ` v : τ → listτ → σ | ∀ht.l = h :: t⇒ φ[r h t/r]
Γ |Ψ ` case l of [] 7→ u;_ :: _ 7→ v : σ | φ LISTCASE

Def (f,x, t)
Γ,x : I,f : I→ σ |Ψ,φ′,∀m.|m|< |x| ⇒ φ′[m/x]⇒ φ[m/x][f m/r] ` e : σ | φ

Γ |Ψ ` letrec f x = t : I→ σ | ∀x.φ′⇒ φ[r x/r]
LETREC

where I ∈ {N, listτ}

Fig. 2. Unary Higher-Order Logic rules

6 Relational Higher-Order Logic

Relational Higher-Order Logic (RHOL) extends UHOL’s separation of assertions
and types to a relational setting. Formally, RHOL is a relational type system which
manipulates judgments of the form

Γ |Ψ ` t1 : τ1 ∼ t2 : τ2 | φ

which combine a typing judgment for a pair of PCF terms and permit reasoning
about the relation between them. The judgment means that t1 and t2 respectively
have types τ1 and τ2 in Γ and that t1, t2 are related by the assertion φ. Well-
formedness of the judgment requires Ψ to be a valid set of assertions in Γ and φ
to be a valid assertion in Γ,r1 : τ1,r2 : τ2, where the special variables r1 and r2 are
used as synonyms for t1 and t2 in φ.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 15

6.1 Proof Rules

The type system combines two-sided rules (Figure 3), which apply when the two
terms have the same top-level constructors and one-sided rules (Figure 5), which
analyze either one of the two terms. For instance, the [APP] rule applies when the
two terms are applications, and requires that the functions t1 and t2 relate and
the arguments u1 and u2 relate. Specifically, t1 and t2 must map values related by
φ′ to values related by φ, and u1 and u2 must be related by φ′. The [ABS] rule is
dual. The [PAIR] rule requires that the left and right components of a pair relate
independently (a stronger rule is discussed at the end of this section). The [PROJi]
rules require in their premise an assertion that only refers to the first or the second
component of the pair. The rules for lists require that the two lists are either both
empty, or both non-empty. The rule [CONS] requires that the two heads and the
two tails relate independently. The [CASE] rule derives judgments about two case
constructs when the terms over which the matching happens reduce to the same
branch (i.e. have the same constructor) on both sides.

In contrast, one-sided typing rules only analyze one term; therefore, they come in
two flavors: left rules (shown in Figure 5) and right rules (omitted but similar). Rule
[ABS-L] considers the case where the left term is a λ-abstraction, and requires the
body of the abstraction to be related to the right term u2 whenever the argument
on the left side satisfies a non-relational assertion φ′. Dually, rule [APP-L] considers
the case where the left term is of the form t1 u1, and t1 is related to the right
term u2; specifically, t1 should map every value satisfying φ′ to a value satisfying φ.
Moreover, u1 should satisfy φ′ in UHOL (not RHOL, since φ′ is a non-relational
assertion). One-sided rules for pairs and lists follow a similar pattern.

In addition, RHOL has structural rules (Figure 4). The rule [SUB] can be used for
weakening the conclusion; the ensuing side-condition is discharged in HOL. Other
structural rules assimilate rules of HOL. For instance, if we can prove two different
assertions for the same terms we can prove the conjunction of the assertions ([∧I]).
Other logical connectives have similar rules. Finally, the rule [UHOL-L] (and a dual
rule [UHOL-R]) allow falling back to UHOL in a RHOL proof.

Rules [LETREC] and [LETREC-L] introduce recursive function definitions (Figure 6).
These rules allow for a style of reasoning very similar to strong induction. If, assuming
that the function’s specification holds for all smaller arguments, we can prove that
the functions specification holds, then the specification must hold for all arguments.
We require that the two functions we are relating satisfy the predicates Def (fi,xi, ti),
as was the case in HOL and UHOL. The induction is performed over the simultaneous
order (a,b)< (c,d), which holds whenever both a≤ b and c≤ d, and at least one of
the inequalities is strict.

6.2 Discussion

6.2.1 Management of the typing context

In a relational judgment Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ, the context Γ contains variables
that can appear free in both t1 and t2. This forces us to add additional premises to

ZU064-05-FPR main 16 August 2020 22:41

16 A. Aguirre et al.

Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ x1 6∈ FV(t2) x2 6∈ FV(t1)
Γ |Ψ ` λx1 : τ1.t1 : τ1→ σ1 ∼ λx2 : τ2.t2 : τ2→ σ2 | ∀x1,x2.φ

′⇒ φ[r1 x1/r1][r2 x2/r2]
ABS

Γ |Ψ ` t1 : τ1→ σ1 ∼ t2 : τ2→ σ2 | ∀x1,x2.φ
′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2] APP

Γ ` x1 : σ1 Γ ` x2 : σ2 Γ |Ψ ` φ[x1/r1][x2/r2]
Γ |Ψ ` x1 : σ1 ∼ x2 : σ2 | φ

VAR

Γ |Ψ `HOL φ[tt/r1][tt/r2]
Γ |Ψ ` tt : B∼ tt : B | φ TRUE

Γ |Ψ `HOL φ[[]/r1][[]/r2]
Γ |Ψ ` [] : listσ1 ∼ [] : listσ2 | φ

NIL

Γ |Ψ ` h1 : σ1 ∼ h2 : σ2 | φ′ Γ |Ψ ` t1 : listσ1 ∼ t2 : listσ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1y2.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][y2/r2]⇒ φ[x1 :: y1/r1][x2 :: y2/r2]
Γ |Ψ ` h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | φ

CONS

Γ |Ψ ` l1 : listτ1 ∼ l2 : listτ2 | r1 = []⇔ r2 = []
Γ |Ψ, l1 = [], l2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |
∀h1h2t1t2.l1 = h1 :: t1⇒ l2 = h2 :: t2⇒ φ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ |Ψ ` case l1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case l2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ
LISTCASE

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1y2.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][y2/r2]⇒ φ[〈x1,y1〉/r1][〈x2,y2〉/r2]
Γ |Ψ ` 〈t1,u1〉 : σ1× τ1 ∼ 〈t2,u2〉 : σ2× τ2 | φ

PAIR

Γ |Ψ ` t1 : σ1× τ1 ∼ t2 : σ2× τ2 | φ[πi(r1)/r1][πi(r2)/r2]
Γ |Ψ ` πi(t1) : σ1 ∼ πi(t2) : σ2 | φ

PROJi

Fig. 3. Two-sided rules

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ `HOL φ
′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
SUB

Γ |Ψ ` t1 : σ2 ∼ t2 : σ2 | φ Γ |Ψ ` t1 : σ2 ∼ t2 : σ2 | φ′

Γ |Ψ ` t1 : σ2 ∼ t2 : σ2 | φ∧φ′
∧I

Γ |Ψ,φ′[t1/r1][t2/r2] ` t1 : σ2 ∼ t2 : σ2 | φ
Γ |Ψ ` t1 : σ2 ∼ t2 : σ2 | φ′⇒ φ

⇒I

Γ |Ψ ` t1 : σ1 | φ[r/r1][t2/r2] Γ ` t2 : σ2
Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ

UHOL−L

Fig. 4. Structural rules

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 17

Γ,x1 : τ1 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ x1 6∈ FV(t2)
Γ |Ψ ` λx1 : τ1.t1 : τ1→ σ1 ∼ t2 : σ2 | ∀x1.φ

′⇒ φ[r1 x1/r1]
ABS−L

Γ |Ψ ` t1 : τ1→ σ1 ∼ u2 : σ2 | ∀x1.φ
′[x1/r1]⇒ φ[r1 x1/r1]

Γ |Ψ ` u1 : σ1 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1] APP−L

φ[x1/r1] ∈Ψ r2 6∈ FV (φ) Γ ` t2 : σ2
Γ |Ψ ` x1 : σ1 ∼ t2 : σ2 | φ

VAR−L

Γ |Ψ ` φ[[]/r1][t2/r2] Γ ` t2 : σ2
Γ |Ψ ` [] : listσ1 ∼ t2 : σ2 | φ

NIL−L

Γ |Ψ ` h1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` t1 : listσ1 ∼ t2 : σ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][x2/r2]⇒ φ[x1 :: y1/r1][x2/r2]
Γ |Ψ ` h1 :: t1 : listσ1 ∼ t2 : σ2 | φ

CONS−L

Γ ` t1 : listτ
Γ |Ψ, t1 = [] ` u1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1⇒ φ[r1 h1 l1/r1]
Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ t2 : σ2 | φ

LISTCASE−L

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` u1 : τ1 ∼ t2 : σ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][x2/r2]⇒ φ[〈x1,y1〉/r1][x2/r2]
Γ |Ψ ` 〈t1,u1〉 : σ1× τ1 ∼ t2 : σ2 | φ

PAIR−L

Γ |Ψ ` t1 : σ1× τ1 ∼ t2 : σ2 | φ[π1(r1)/r1]
Γ |Ψ ` π1(t1) : σ1 ∼ t2 : σ2 | φ

PROJ1−L

Fig. 5. One-sided rules

Def (f1,x1, t1) Def (f2,x2, t2) x1,f1 6∈ FV(t2) x2,f2 6∈ FV(t1)
Γ,x1 : I1,x2 : I2,f1 : I1→ σ,f2 : I2→ σ2 |

Ψ,φ′,∀m1m2.(|m1|, |m2|)< (|x1|, |x2|)⇒ φ′[m1/x1][m2/x2]⇒
φ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] ` t1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` letrec f1 x1 = t1 : I1→ σ2 ∼
letrec f2 x2 = t2 : I2→ σ2

| ∀x1x2.φ
′⇒ φ[r1 x1/r1][r2 x2/r2]

LETREC

Def (f1,x1, t1) x1,f1 6∈ FV(t2)
Γ,x1 : I1,f1 : I1→ σ |Ψ,φ′,∀m1.|m1|< |x1| ⇒ φ′[m1/x1]⇒

φ[m1/x1][f1 m1/r1][t2/r2] ` t1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` letrec f1 x1 = t1 : I1→ σ2 ∼ t2 : σ2 | ∀x1.φ
′⇒ φ[r1 x1/r1]

LETREC−L

where I1, I2 ∈ {N, listτ}

Fig. 6. Recursion rules

ZU064-05-FPR main 16 August 2020 22:41

18 A. Aguirre et al.

Γ |Ψ ` t1 : τ1→ σ1 ∼ t2 : τ2→ σ2 | φ[r1 u1/r1][r2 u2/r2]
Γ |Ψ ` t1 u1 : σ1 ∼ t2 u2 : σ2 | φ

APP−FUN

Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ[t1 r1/r1][t2 r2/r2]
Γ |Ψ ` t1 u1 : σ1 ∼ t2 u2 : σ2 | φ

APP−ARG

Γ |Ψ ` t1 : τ1 ∼ t2 : τ2 | φ[〈r1,u1〉/r1][〈r2,u2〉/r2]
Γ |Ψ ` 〈t1,u1〉 : τ1×σ1 ∼ 〈t2,u2〉 : τ2×σ2 | φ

PAIR−FST

Γ |Ψ ` u1 : σ1 ∼ u2 : σ2 | φ[〈t1,r1〉/r1][〈t2,r2〉/r2]
Γ |Ψ ` 〈t1,u1〉 : τ1×σ1 ∼ 〈t2,u2〉 : τ2×σ2 | φ

PAIR−SND

Γ |Ψ ` t1 : listτ1 ∼ t2 : listτ2 | >
Γ |Ψ, t1 = [], t2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ, t2 = [] ` v1 : τ1→ listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1⇒ φ[r1 h1 l1/r1]
Γ |Ψ, t1 = [] ` u1 : σ1 ∼ v2 : τ2→ listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2⇒ φ[r2 h2 l2/r2]

Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |
∀h1h2l1l2.t1 = h1 :: l1⇒ t2 = h2 :: l2⇒ φ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ
LLCASE−A

Fig. 7. Some derived rules

the abstraction rules to ensure the terms in the conclusion remain well-typed. Note
that we could have another sound (but less expressive) version of the [ABS] rule
where we abstract over the same variable on both sides.

An alternative choice of presentation is to have separate contexts Γ1 and Γ2 for
the terms on each side of the relational judgments, eliminating the need for the
extra premises. However, there would be no other benefit to this alternative. For
instance, UHOL premises as in [APP-L] would still need to use both contexts Γ1
and Γ2, since the logical context Ψ is typed under both.

6.2.2 Variants of the rules

Our choice of the rules is guided by the practical considerations of being able to verify
examples easily, without specifically aiming for minimality or exhaustiveness. In
fact, many of our rules can be derived from others, or reduced to a more elementary
form. For instance:

• The structural rules to reason about logical connectives, such as [∧I], can be
derived by induction on the length of derivations with the help of [SUB].

• The [VAR-L] (similarly, [NIL-L]) rule can be weakened, without affecting the
strength of the system,

φ[x1/r1] ∈Ψ r2 6∈ FV (φ)
Γ |Ψ ` x1 : σ1 ∼ x2 : σ2 | φ

VAR−L

• The premise of the [VAR] rule in Figure 3 (and similarly, [NIL]) can be changed
to φ[x/r] ∈Ψ. We can recover the original rule by one application of [SUB].

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 19

• The rules [APP-FUN] and [APP-ARG] in Figure 7 (adapted from (Ghani et al.,
2016b)) can be derived from the rule [APP]. To derive [APP-FUN], instantiate
φ′ to r1 = u1 ∧ r2 = u2 in [APP]. To derive [APP-ARG], we have to prove a
trivial condition ∀x1x2.φ[t1 x1/r1][t2 x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] on t1, t2.

• The [PAIR-FST] and [PAIR-SND] rules in Figure 7 can be derived in a similar
way. These rules overcome a limitation of the original [PAIR] rule, namely, that
the relations for the two components of the pair must be independent. [PAIR-
FST] and [PAIR-SND] allow relating, for instance, pairs of integers 〈m1,n1〉
and 〈m2,n2〉 such that m1 +n1 =m2 +n2.

• The [LLCASE-A] rule can be used to reason about case constructs when the
terms over which we discriminate do not necessarily reduce to the same branch.
It is equivalent to applying [LISTCASE-L] followed by [LISTCASE-R].

6.3 Meta-theory

RHOL retains the expressiveness of HOL, and is relatively complete with respect to
it, as formalized in the following theorem.

Theorem 6 (Equivalence with HOL)
For every context Γ, simple types σ1 and σ2, terms t1 and t2, set of assertions Ψ
and assertion φ, if Γ ` t1 : σ1 and Γ ` t2 : σ2, then the following are equivalent:

• Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
• Γ |Ψ ` φ[t1/r1][t2/r2]

Proof
The easier direction is the reverse implication. To prove it, we can trivially apply
[SUB] instantiating φ′ as a tautology that matches the structure of the types. For
instance, for a base type N we would use >, for an arrow type N→ N we would use
∀x.⊥⇒>, and so on.

The forward implication follows by induction on the derivation of Γ |Ψ ` t1 : σ1 ∼
t2 : σ2 | φ. We show here the cases for abstraction and application:

Case [ABS]. The rule is:

Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ |Ψ ` λx1.t1 : τ1→ σ1 ∼ λx2.t2 : τ2→ σ2 | ∀x1,x2.φ

′⇒ φ[r1 x1/r1][r2 x2/r2]

By applying the induction hypothesis on the premise:
Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` φ[t1/r1][t2/r2] (1)
By applying [⇒I] on (1):
Γ,x1 : τ1,x2 : τ2 |Ψ ` φ′⇒ φ[t1/r1][t2/r2] (2)
By applying [∀I] twice on (2):
Γ |Ψ ` ∀x1x2.φ

′⇒ φ[t1/r1][t2/r2] (3)
Finally, by applying CONV on (3):
Γ |Ψ ` ∀x1x2.φ

′⇒ φ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]
The proof for [ABS-L] (and [ABS-R]) is analogous.

ZU064-05-FPR main 16 August 2020 22:41

20 A. Aguirre et al.

Case [APP]. The rule is

Γ |Ψ ` t1 : τ1→ σ1 ∼ t2 : τ2→ σ2 | ∀x1,x2.φ
′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

By applying the induction hypothesis on the premises we have:
Γ |Ψ ` ∀x1x2.φ

′[x1/r1][x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] (1)
and
Γ |Ψ ` φ′[u1/r1][u2/r2] (2)
By applying twice [∀E] to (1) with u1,u2:
Γ |Ψ ` φ′[u1/r1][u2/r2]⇒ φ[t1 u1/r1][t2 u2/r2] (3)
and by applying [⇒E] to (3) and (2):
Γ |Ψ ` φ[t1 u1/r1][t2 u2/r2]
The proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding
(Theorem 3) for the premise about the argument. Proofs for [CONS] and [PAIR] also
follow the same structure.

This immediately entails soundness of RHOL, as formalized next.

Corollary 7 (Set-theoretical soundness and consistency)
Let t1, t2 be two terms such that Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ and ρ a valuation such
that ρ |= Γ. If

∧
ψ∈ΨLψMρ, then LφMρ[Lt1Mρ/r1],[Lt2Mρ/r2]. In particular, there is no proof

of the judgment Γ | ∅ ` t1 : σ1 ∼ t2 : σ2 | ⊥ for any Γ, t1, t2, σ1 and σ2.

The equivalence also entails subject conversion (and as special cases subject reduction
and subject expansion). This follows immediately from subject conversion of HOL
(which, as stated earlier, is itself a direct consequence of the [CONV] and [SUBST]
rules).

Corollary 8 (Subject conversion)
Assume that t1 =βιµ t′1 and t2 =βιµ t′2 and Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ. Then we have
Γ |Ψ ` t′1 : σ1 ∼ t′2 : σ2 | φ.

Another useful consequence of the equivalence is the admissibility of the transitivity
rule.

Corollary 9 (Admissibility of transitivity rule)
Assume that:

• Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
• Γ |Ψ ` t2 : σ2 ∼ t3 : σ3 | φ′

Then, Γ |Ψ ` t1 : σ1 ∼ t3 : σ3 | φ[t2/r2]∧φ′[t2/r1].

Finally, we prove an embedding lemma for UHOL. The proof can be carried by
induction on the structure of derivations, or using the equivalence between UHOL
and HOL (Theorem 3).

Lemma 10 (Embedding lemma)
Assume that:

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 21

• Γ |Ψ ` t1 : σ1 | φ
• Γ |Ψ ` t2 : σ2 | φ′

Then Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ[r1/r]∧φ′[r2/r].

Proof
By the embedding into HOL (Theorem 3), we have:

• Γ |Ψ ` φ[t1/r]
• Γ |Ψ ` φ′[t2/r]

and by the [∧I] rule,
Γ |Ψ ` φ[t1/r]∧φ′[t2/r].

Finally, by Theorem 6:

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ[r1/r]∧φ′[r2/r].

The embedding is reminiscent of the approach of (Beringer & Hofmann, 2007) to
encode information flow properties in Hoare logic.

7 Embeddings

In this section, we establish the expressiveness of RHOL and UHOL by embedding
several existing refinement type systems (three relational and one non-relational)
from a variety of domains. All embeddings share the common idea of separating the
simple typing information from the more fine-grained refinement information in the
translation. We use uniform notation to represent similar ideas across the different
embeddings. In particular, we use vertical bars | · | to denote the erasure of a type
into a simple type, and floor bars b·c to denote the embedding of the refinement of
a type in a HOL formula.
For clarity of exposition, we often present fragments or variants of systems that

appear in the literature, notably excluding recursive functions that do not satisfy
our well-definedness predicate. Moreover, the embeddings are given for a version
of RHOL à la Curry, in which λ-abstractions do not carry the type of their bound
variable.

7.1 Refinement Types

Refinement types (Freeman & Pfenning, 1991; Swamy et al., 2016; Vazou et al.,
2014) are a variant of simple types where for every basic type τ , there is a type
{x : τ | φ} which is inhabited by the elements t of τ that satisfy the logical assertion
φ[t/x]. This includes dependent refinements Π(x : τ).σ, in which the variable x is
also bound in the refinement formulas appearing in σ. Here we present a simplified
variant of these systems. (Refined) types are defined by the grammar

τ := B | N | listτ | {x : τ | φ} |Π(x : τ).τ

ZU064-05-FPR main 16 August 2020 22:41

22 A. Aguirre et al.

Γ ` τ
Γ ` τ � τ

Γ ` τ1 � τ2 Γ ` τ2 � τ3
Γ ` τ1 � τ3

Γ ` τ1 � τ2
Γ ` listτ1 � listτ2

Γ ` {x : τ | φ}
Γ ` {x : τ | φ} � τ

Γ ` τ � σ Γ,x : τ ` φ
Γ ` τ � {x : σ | φ}

Γ ` σ2 � σ1 Γ,x : σ2 ` τ1 � τ2
Γ `Π(x : σ1).τ1 �Π(x : σ2).τ2

Γ,x : τ ` x : τ
Γ,x : τ ` t : σ

Γ ` λx.t : Π(x : τ).σ
Γ ` t1 : Π(x : τ).σ Γ ` t2 : τ

Γ ` t1 t2 : σ[t2/x]

Γ ` t : listτ Γ ` t1 : σ Γ ` t2 : Π(h : τ).Π(l : listτ).σ
Γ ` case t of [] 7→ t1;_ :: _ 7→ t2 : σ

Γ ` τ � σ Γ ` t : τ
Γ ` t : σ

Γ,x : τ,f : Π({y : τ | y < x}).σ[y/x] ` t : σ Def (f,x, t)
Γ ` letrec f x= t : Π(x : τ).σ

Fig. 8. Refinement types rules (subtyping and typing)

As usual, we shorten Π(x : τ).σ to τ → σ if x 6∈ FV (σ). We also shorten bindings
of the form x : {x : τ | φ} to {x : τ | φ}. Typing rules are presented in Figure 8; note
that the [LETREC] rule requires that recursive definitions satisfy the well-definedness
predicate. Judgments of the form Γ ` τ are well-formedness judgments. Judgments
of the form Γ ` φ are logical judgments; we omit a formal description of the rules,
but assume that the logic of assertions is consistent with HOL, i.e. Γ ` φ implies
|Γ| | bΓc ` φ, where the erasure functions are defined below.
This system can be embedded in UHOL. The embedding highlights the relation

between these two systems, i.e. between logical assertions embedded in the types
(as in refinement types) and logical assertions at the top-level, separate from simple
types (as in UHOL). The intuitive idea behind the embedding is therefore to separate
refinement assertions from types. Specifically, from every refinement type we can
obtain a simple type by repeatedly extracting the type τ from {x : τ | φ}. We
represent this extraction using the following translation function |τ |:

|B|, B |N|,N |listτ |, list|τ | |{x : τ | φ}|, |τ | |Π(x : τ).σ|, |τ | → |σ|

Since |τ | loses refinement information, we define a second translation that extracts
the refinement as a logical predicate over a variable x that names the typed expression.
This second translation is written bτc(x).

bBc(x),bNc(x),> blistτ c(x),All(x,λy.bτc(y))

b{y : τ | φ}c(x), bτc(x)∧φ[x/y] bΠ(x : τ).σc(x), ∀y.bτc(y)⇒ bσc(x y)

The refinement of simple types is trivial. If t is an expression of type {x : τ | φ}, then
t must satisfy both the refinement formula φ and the refinement of τ . The refinement
of a list uses the predicate All, which as defined in §4, means that all elements of a
list satisfy a given formula. Finally, if t is an expression of type Π(x : τ).σ, then it

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 23

must be the case that for every x satisfying the refinement of τ , (t x) satisfies the
refinement of σ.
The syntax of assertions and expressions is exactly the same as in HOL, and

therefore there is no need for a translation. The embedding of types can be lifted to
contexts in the natural way.

|x : τ,Γ|, x : |τ |, |Γ| bx : τ,Γc, bτc(x),bΓc

To encode judgments, all that remains is to put the previous definitions together.
The main result about embedding typing judgments is the following:

Theorem 11
If Γ ` t : τ is derivable in the refinement type system, then |Γ| | bΓc ` t : |τ | | bτc(r)
is derivable in UHOL.

Proof
By induction on the derivation. We show the most interesting cases:

Case.
Γ,x : τ ` t : σ

Γ ` λx.t : Π(x : τ).σ
To prove: |Γ| | bΓc ` λx.t : |Π(x : τ).σ| | bΠ(x : τ).σc(r).
Expanding the definitions:
|Γ| | bΓc ` λx.t : |τ | → |σ| | ∀x.bτc(x)⇒ bσc(rx)
By induction hypothesis on the premise:
|Γ|,x : |τ | | bΓc,bτc(x) ` t : |σ| | bσc(r)
Directly by [ABS].

Case.
Γ ` t : Π(x : τ).σ Γ ` u : τ

Γ ` t u : σ[u/x]
To prove: |Γ| | bΓc ` t u : |σ[u/x]| | bσ[u/x]c(r).
Expanding the definitions:
|Γ| | bΓc ` t e2 : |σ| | bσc(r)[u/x]
By induction hypothesis on the premise:
|Γ| | bΓc ` t : |τ | → |σ| | ∀x.bτc(x)⇒ bσc(rx)
and
|Γ| | bΓc ` u : |τ | | bτc(r)
We get the result directly by [APP].

Case.
Γ ` τ � σ Γ ` t : τ

Γ ` t : σ
To prove: |Γ| | bΓc ` t : |σ| | bσc(r).
This follows from applying the induction hypothesis to the second premise, and then
applying the rule [SUB] with Theorem 12 below. Note that the first premise implies
|σ| ≡ |τ |.

Case.
Γ,x : τ,f : Π(y : {r : τ | y < x}).σ[y/x] ` t : σ Def (f,x, t)

Γ ` letrec f x= t : Π(x : τ).σ
To prove: |Γ| | bΓc ` letrec f x= t : |Π(x : τ).σ| | bΠ(x : τ).σc(r)

ZU064-05-FPR main 16 August 2020 22:41

24 A. Aguirre et al.

By induction hypothesis on the premise:
|Γ|,x : |τ |,f : |τ | → |σ| | bΓc,bτc(x),∀y.bτc(y)∧y < x⇒bσ[y/x]c(fy) ` t : |σ| | bσc(r)
Directly by [LETREC].

The above proof relies on the following theorem about subtyping.

Theorem 12
If Γ ` τ � σ is derivable in a refinement type system, then |Γ|,x : |τ | | bΓc,bτc(x) `
bσc(x) is derivable in HOL.

Proof
The proof is by induction on the derivation. We show here only the case of the
dependent product:

Case.
Γ ` σ2 � σ1 Γ,x : σ2 ` τ1 � τ2

Γ `Π(x : σ1).τ1 �Π(x : σ2).τ2
To show: |Γ|,f : |Π(x : σ1).τ1| | bΓc,bΠ(x : σ1).τ1c(f) ` bΠ(x : σ2).τ2c(f)
Expanding the definitions:
|Γ|,f : |Π(x : σ1).τ1| | bΓc,∀x.bσ1c(x)⇒ bτ1c(fx) ` ∀x.bσ2c(x)⇒ bτ2c(fx)
By the rules [∀I] and [⇒I] it suffices to prove:
|Γ|,f : |Π(x : σ1).τ1|,x : |σ2| | bΓc,∀x.bσ1c(x)⇒ bτ1c(fx),bσ2c(x) ` bτ2c(fx) (1)
On the other hand, by induction hypothesis on the premises:
|Γ|,x : |σ2| | bΓc,bσ2c(x) ` bσ1c(x) (2)
and
|Γ|,x : |σ2|,y : |τ1| | bΓc,bσ2c(x),bτ1c(y) ` bτ2c(y) (3)
which we can weaken respectively to:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | |Γ|,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bσ1c(x) (4)
and
|Γ|,x : |σ2|,y : |τ1|,f : |Π(x : σ1).τ1| | |Γ|,bσ2c(x),bτ1c(y),∀x.bσ1c(x)⇒ bτ1c(fx) `
bτ2c(y) (5)
From (4), by doing a cut with its own premise ∀x.bσ1c(x)⇒ bτ1c(fx), we derive:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bτ1c(fx) (6)
From (5), by [⇒I] and [∀I] we can derive:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x), ,∀x.bσ1c(x)⇒ bτ1c(fx) ` ∀y.bτ1c(y)⇒
bτ2c(y)
And by [∀E]
|Γ|,x : |σ2|,f : |Π(x :σ1).τ1| | bΓc,bσ2c(x), ,∀x.bσ1c(x)⇒bτ1c(fx)` bτ1c(fx)⇒bτ2c(fx)
(7)
Finally, from (6) and (7) by [⇒E] we get:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bτ2c(fx)
and by one last application of [⇒I] we get what we wanted to prove.

Soundness of refinement types w.r.t. the set-theoretical semantics follows immedi-
ately from Theorem 11 and the set-theoretical soundness of UHOL (Corollary 4).

Corollary 13 (Soundness of refinement types)
If Γ ` t : τ , then for every valuation ρ |= Γ we have JtKρ ∈ JτKρ.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 25

As a final remark, note that a function with a refinement type can be interpreted
in two different ways: 1) As a map whose domain is the domain type restricted
to its (the type’s) refinement, or 2) As a map whose domain is the entire domain
type (disregarding the refinement), but whose result satisfies the co-domain’s
refinement only if the argument satisfies the domain’s refinement. We use the
second interpretation, while some prior work, for example (Freeman & Pfenning,
1991), uses the first. Type systems using the first interpretation can inhabit types
that this embedding would erase into uninhabited simple types. For instance, consider
the type {x : N | x > 1∧x < 1}→ Emp where Emp denotes the empty type. This is
inhabited (under appropriate subtyping rules), but it would be erased into the type
N→ Emp, which is not inhabited.

7.2 Relational Refinement Types

Relational refinement types (Barthe et al., 2014; Barthe et al., 2015) are a variant
of refinement types that can be used to express relational properties via a syntax
of the form {r :: τ | φ} where φ is a relational assertion—i.e. it may contain a left
and right copy of r, which are denoted as r1 and r2 respectively, as well as a left
and a right copy of every variable in the context. In this section, we introduce a
simple relational refinement type system and establish a type-preserving translation
to RHOL.

The syntax of relational refinement types is given by the grammar:

τ ::= B | N | τ → τ

T,U ::= τ | listT |Π(x :: T).U | {x :: T | φ}

Relational refinement types are naturally ordered by a subtyping relation Γ ` T �
U , where Γ is a sequence of variables declarations of the form x :: U .
Typing judgments are of the form Γ ` t1 ∼ t2 :: T . We present selected typing

rules in Figure 9. Note that the form of judgments requires that t1 and t2 have
the same simple type, and the typing rules require that t1 and t2 have the same
structure1. In the [CASELIST] rule, we require that both terms reduce to the same
branch; the case rule for natural numbers is similar. The [LETREC] rule uses (a
straightforward adaptation of) the Def (f,x, t) predicate from our simply-typed
language, and requires that the two recursive definitions perform exactly the same
recursive calls.
Subtyping rules are the same as in the unary case, and therefore we refer to

Figure 8 for them (allowing their instantiation for relational types T,U as well as
unary types σ,τ).

1 The typing rules displayed in the figure will in fact force t1 and t2 to be the same term
modulo renaming. This is not the case in existing relational refinement type systems;
however, rules that introduce different terms on the right and on the left are limited,
since both terms still need to have the same type and most one-sided rules break this
invariant. For instance, in (Barthe et al., 2014) there is a rule similar to [LLCASE-A],
and a rule for reducing one of the terms of a judgment.

ZU064-05-FPR main 16 August 2020 22:41

26 A. Aguirre et al.

VAR-RT
(x : T) ∈ Γ

Γ ` x1 ∼ x2 :: T
ABS-RT

Γ,x :: T ` u1 ∼ u2 :: U
Γ ` λx1.u1 ∼ λx2.u2 :: Π(x :: T).U

APP-RT
Γ ` t1 ∼ t2 :: Π(x :: T).U Γ ` u1 ∼ u2 :: T

Γ ` t1 u1 ∼ t2 u2 :: U [u1/x1][u2/x2]
NIL

Γ ` T
Γ ` []∼ [] :: listT

CONS
Γ ` h1 ∼ h2 :: T Γ ` t1 ∼ t2 :: listT

Γ ` h1 :: t1 ∼ h2 :: t2 :: listT
Sub

Γ ` t1 ∼ t2 :: T Γ ` T � U
Γ ` t1 ∼ t2 :: U

LETREC-RT

Γ,x :: T,f :: Π({y :: T | (y1,y2)< (x1,x2)}).U [y/x] ` t1 ∼ t2 :: U
Γ `Π(x :: T).U Def (f,x, t)

Γ ` letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U

CASELIST

Γ ` t1 ∼ t2 :: listτ Γ ` t1 = []⇔ t2 = []
Γ ` u1 ∼ u2 :: T Γ ` v1 ∼ v2 :: Π(h :: τ).Π(t :: listτ).T

Γ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 :: T

Fig. 9. Relational Typing (Selected Rules)

The embedding of refinement types into UHOL can be adapted to the relational
setting. From each relational refinement type T we can extract a simple type |T |.
On the other hand, we can erase every relational refinement type T into a relational
formula TTU, which is parametrized by two expressions and defined as follows:

TlistτU(x1,x2),
∧

i∈{1,2}
All(xi,λy.bτc(y))

TlistTU(x1,x2),All2(x1,x2,λy1.λy2.TTU(y1,y2))

T{y : τ | φ}U(x1,x2),
∧

i∈{1,2}
bτc(xi)∧φ[xi/y]

T{y :: T | φ}U(x1,x2), TTU(x1,x2)∧φ[x1/y1][x2/y2]

TΠ(y : τ).σU(x),
∧

i∈{1,2}
∀y.bτc(y)⇒ bσc(xy)

TΠ(y :: T).UU(x1,x2), ∀y1y2.TTU(y1,y2)⇒ TUU(x1y1, x2y2)

The predicate All2 relates two lists element-wise and is defined axiomatically:

All2([], [],λx1.λx2.φ)

∀h1h2t1t2.All2(t1, t2,λx1.λx2.φ)⇒ φ(h1,h2)⇒All2(h1 :: t1,h2 :: t2,λx1.λx2.φ)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 27

To extend the embedding to contexts, we need to duplicate every variable in
them:

|x :: T,Γ|, x1,x2 : |T |, |Γ| Tx :: T,ΓU, TTU(x1,x2),TΓU

Now we state the main result:

Theorem 14 (Soundness of embedding)
If Γ ` t1 ∼ t2 :: T , then |Γ| | TΓU ` t1 : |T | ∼ t2 : |T | | TTU(r1,r2). Also, if Γ ` T � U
then |Γ|,x1,x2 : |T | | TΓU,TTU(x1,x2) ` TUU(x1.x2).

Proof
The proof proceeds by induction on the structure of derivations. Most cases are very
similar to the unary case, so we will only show the most interesting ones:

Case.
Γ ` T

Γ ` []∼ [] :: listT
To show: |Γ| | TΓU ` [] : |listT | ∼ [] : |listT | | TlistTU(r1,r2).
There are two options. If T is a unary type, we have to prove:
|Γ| | TΓU ` [] : |listT | ∼ [] : |listT | |

∧
i∈{1,2}All(ri,λx.bτc(x))

And by the definition of All we can directly prove:
∅ | ∅ `All([],λx.bτc(x))∧All([],λx.bτc(x))
If T is a relational type, we have to prove:
|Γ| | TΓU ` [] : |listT | ∼ [] : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:
∅ | ∅ `All2([], [],λx1.λx2.TTU(x1,x2))

Case.
Γ ` h1 ∼ h2 :: T Γ ` t1 ∼ t2 :: listT

Γ ` h1 :: t1 ∼ h2 :: t2 :: listT
To show: |Γ| | TΓU ` h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
There are two options. If T is a unary type, we have to prove:
|Γ| | TΓU ` h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |

∧
i∈{1,2}All(ri,λx.bT c(x))

By induction hypothesis we have:
|Γ| | TΓU ` h1 : |T | ∼ h2 :: t2 : |T | |

∧
i∈{1,2}bT c(ri)

and
|Γ| | TΓU ` t1 : |listT | ∼ t2 : |listT | |

∧
i∈{1,2}All(ri,λx.bT c(x))

And by the definition of All we can directly prove:∧
i∈{1,2}bT c(hi)⇒

∧
i∈{1,2}All(ti,λx.bT c(x))⇒

∧
i∈{1,2}All(hi :: ti,λx.bT c(x))

So by the [CONS] rule, we prove the result. If T is a relational type, we have to
prove:
|Γ| | TΓU ` h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
By induction hypothesis we have:
|Γ| | TΓU ` h1 : |T | ∼ h2 :: t2 : |T | | TTU(r1,r2)
and
|Γ| | TΓU ` t1 : |listT | ∼ t2 : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:
TTU(h1,h2)⇒All2(t1, t2,λx1.λx2.TTU(x1,x2))⇒All(h1 :: t1,h1 ::h2,λx1.λx2.TTU(x1,x2))

ZU064-05-FPR main 16 August 2020 22:41

28 A. Aguirre et al.

So by the [CONS] rule, we prove the result.

Case.

Γ,x :: T,f :: Π(y :: {y :: T | (y1,y2)< (x1,x2)}).U [y/x] ` t1 ∼ t2 :: U
Γ `Π(x :: T).U Def (f1,x1, t1) Def (f2,x2, t2)
Γ ` letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U

To show:
|Γ| | TΓU ` letrec f1 x1 = t1 : |Π(x :: T).U | ∼ letrec f2 x2 = t2 : |Π(x :: T).U | | TΠ(x ::
T).UU(r1,r2)
Expanding the definitions:
|Γ| |TΓU` letrec f1 x1 = t1 : |T |→ |U | ∼ letrec f2 x2 = t2 : |T |→ |U | | ∀x1x2.TTU(x1,x2)⇒
TUU(r1x1, r2x2)
By induction hypothesis on the premise:
|Γ|,x1,x2 : |T |,f1,f2 : |T | → |U | | TΓU,TTU(x1,x2),∀y1,y2.(TTU(y1,y2)∧ (y1,y2) <
(x1,x2))⇒ TUU(f1x1, f2x2) ` t1 : |U | ∼ t2 : |U | | TUU(r1,r2)
And we apply the [LETREC] rule to get the result.

Soundness of relational refinement types w.r.t. set-theoretical semantics follows
immediately from Theorem 14 and the set-theoretical soundness of RHOL (Corol-
lary 7).

Corollary 15 (Soundness of relational refinement types)
If Γ ` t1 ∼ t2 :: T , then for every valuation θ |= Γ we have (Lt1Mθ,Lt2Mθ) ∈ LT Mθ.

7.3 Dependency Core Calculus

The Dependency Core Calculus (DCC) (Abadi et al., 1999) is a higher-order calculus
with a type system that tracks data dependencies. DCC was designed as a unifying
framework for dependency analysis and it was shown that many other calculi for
information flow analysis (Heintze & Riecke, 1998; Volpano et al., 1996), binding-
time analysis (Hatcliff & Danvy, 1997), and program slicing, all of which track
dependencies, can be embedded in DCC. Here, we show how a fragment of DCC
can be embedded into RHOL. Transitively, the corresponding fragments of all the
aforementioned calculi can also be embedded in RHOL. The fragment of DCC we
consider excludes recursive functions. DCC admits general recursive functions, while
our definition of RHOL only admits a subset of these. Extending the embedding to
recursive functions admitted by RHOL is not difficult.
DCC is an extension of the simply typed lambda-calculus with a monadic type

family T`(τ), indexed by labels `, which are elements of a lattice. Unlike other uses
of monads, DCC’s monad does not encapsulate any effects. Instead, its only goal
is to track dependence. The type system forces that the result of an expression of
type T`(τ) can depend on an expression of type T`′(τ ′) only if `′ v ` in the lattice.
Dually, if `′ 6v `, then even if an expression e of type T`(τ) mentions a variable x of
type T`′(τ ′), then e’s result must be independent of the substitution provided for x
during evaluation.
For simplicity and without any loss of generality, we consider here only a two

point lattice {L,H} with L @ H. The syntax of DCC’s types and expressions is

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 29

shown below. We use e to denote DCC expressions, to avoid confusion with HOL’s
expressions.

τ ::= B | τ → τ | τ × τ | T`(τ)
e ::= x | λx.e | e1 e2 | tt | ff | case e of tt 7→ et;ff 7→ ef | 〈e1,e2〉 | π1(e) | π2(e)

| η`(e) | bind(e1,x.e2)

Here, η`(e) and bind(e1,x.e2) are respectively the return and bind constructs for
the monad T`(τ). Typing rules for these two constructs are shown below. Typing
rules for the remaining constructs are the standard ones.

Γ ` e : τ
Γ ` η`(e) : T`(τ)

Γ ` e1 : T`(τ1) Γ,x : τ1 ` e2 : τ2 τ2↘ `

Γ ` bind(e1,x.e2) : τ2

The crux of the dependency tracking is the relation τ2↘ ` in the premise of the rule
for bind. The relation, read “τ2 protected at level `” and defined below, informally
means that all primitive (boolean) values extractable from e2 are protected by a
monadic construct of the form T`′(τ), with `v `′. Hence, the rule forces that the
result obtained by eliminating the type T`(τ1) flow only into types protected at ` in
this sense.

`v `′

T`′(τ)↘ `

τ ↘ `

T`′(τ)↘ `

τ1↘ ` τ2↘ `

τ1× τ2↘ `

τ2↘ `

τ1→ τ2↘ `

This fragment of DCC has a relational set-theoretical interpretation. For every type
τ , we define a carrier set |τ |:

|B|, B |τ1→ τ2|, |τ1| → |τ2| |τ1× τ2|, |τ1|× |τ2| |T`(τ)|, |τ |

Next, every type τ is interpreted as a lattice-indexed family of relations bτca ⊆
|τ |× |τ |. The role of the lattice element a is that it defines what can be observed
in the system. Specifically, an expression of type T`(τ) can be observed only if
`v a. When ` 6v a, expressions of type T`(τ) look like “black-boxes”. Technically, we
force bT`(τ)ca = |τ |× |τ | when ` 6v a. DCC’s typing rules are sound with respect to
this model. The soundness implies that if ` 6v `′ and x : T`(B) ` e : T`′(B), then for
e1,e2 : T`(B), e[e1/x] and e[e2/x] are equal booleans in the set-theoretical model.
This result, called noninterference, formalizes that DCC’s dependency tracking is
correct.
To translate DCC to RHOL, we actually embed this set-theoretical model in

RHOL. We start by defining an erasing translation, |τ |, from DCC’s types into
RHOL’s simple types. This translation is exactly the same as the definition of
carrier sets shown above, except that we treat × and → as RHOL’s syntactic type

ZU064-05-FPR main 16 August 2020 22:41

30 A. Aguirre et al.

constructs instead of set-theoretical constructs. Next, we define an erasure of terms:

|tt|, tt |ff|, ff |case e of tt 7→ et;ff 7→ ef |, case |e| of tt 7→ |et|;ff 7→ |ef |

|x|, x |λx.e|, λx.|e| |e1 e2|, |e1| |e2| |〈e1,e2〉|, 〈|e1|, |e2|〉

|π1(e)|, π1(|e|) |π2(e)|, π2(|e|) |η`(e)|, |e|

|bind(e1,x.e2)|, (λx.|e2|) |e1|

It is fairly easy to see that if ` e : τ in DCC, then ` |e| : |τ |. Next, we define the
lattice-indexed family of relations bτca in HOL. For technical convenience, we write
the relations as logical assertions, indexed by variables x,y representing the two
terms to be related.

bBca(x,y), (x= tt∧y = tt)∨ (x= ff ∧y = ff)

bτ1→ τ2ca(x,y), ∀vw.bτ1ca(v,w)⇒ bτ2ca(x v,y w)

bτ1× τ2ca(x,y), bτ1ca(π1(x),π1(y))∧bτ2ca(π2(x),π2(y))

bT`(τ)ca(x,y),
{
bτca(x,y) `v a
> ` 6v a

The most important clause is the last one: When ` 6v a, any two x,y are in the
relation bT`(τ)ca. This generalizes to all protected types in the following sense.

Lemma 16
If ` 6v a and τ ↘ `, then ` ∀xy.(bτca(x,y)≡>) in HOL.

Proof
By induction on the derivation of τ ↘ `.

Case.
`v `′

T`′(τ)↘ `

Since ` 6v a (given) and `v `′ (premise), it must be the case that `′ 6v a. Hence,
by definition, bT`′(τ)ca(x,y) =>.

Case.
τ ↘ `

T`′(τ)↘ `
We consider two cases:

If `′ 6v a, then bT`′(τ)ca(x,y) => by definition.

If `′ v a, then bT`′(τ)ca(x,y) = bτca(x,y) by definition. By i.h. on the premise,
we have bτca(x,y)≡>. Composing, bT`′(τ)ca(x,y)≡>.

Case.
τ1↘ ` τ2↘ `

τ1× τ2↘ `

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 31

By i.h. on the premises, we have bτica(x,y)≡> for i= 1,2 and all x,y. Therefore,
bτ1× τ2ca(x,y), bτ1ca(π1(x),π1(y))∧bτ2ca(π2(x),π2(y))≡>∧>≡>.

Case.
τ2↘ `

τ1→ τ2↘ `
By i.h. on the premise, we have bτ2ca(x,y) ≡ > for all x,y. Hence, bτ1 →

τ2ca(x,y) , (∀v,w.bτ1ca(v,w)⇒ bτ2ca(x v,y w)) ≡ (∀v,w.bτ1ca(v,w)⇒ >) ≡ >.

The translations extend to contexts as follows:
|x1 : τ1, . . . ,xn : τn|, x1

1 : |τ1|,x1
2 : |τ1|, . . . ,xn1 : |τn|,xn2 : |τn|

bx1 : τ1, . . . ,xn : τnca , bτ1ca(x1
1,x

1
2), . . . ,bτnca(xn1 ,xn2)

The following theorem states that the whole translation is sound: It preserves
well-typedness. In the statement of the theorem, |e|1 and |e|2 replace each variable
x in |e| with x1 and x2, respectively.

Theorem 17 (Soundness of embedding)
If Γ` e : τ in DCC, then for all a∈ {L,H}: |Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2).

Proof
By induction on the given derivation of Γ ` e : τ . We show here the cases correspond-
ing to the monadic constructions only:

Case.
Γ ` e : τ

Γ ` η`(e) : T`(τ)
To show: |Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bT`(τ)ca(r1,r2).
By i.h. on the premise: |Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2) (1)
If `v a, then bT`(τ)ca(r1,r2), bτca(r1,r2), so the required result is the same as
(1).
If ` 6v a, then bT`(τ)ca(r1,r2),> and the required result follows from rule SUB
applied to (1).

Case.
Γ ` e : T`(τ) Γ,x : τ ` e′ : τ ′ τ ′↘ `

Γ ` bind(e,x.e′) : τ ′
To show: |Γ| | bΓca ` (λx.|e′|1) |e|1 : |τ ′| ∼ (λx.|e′|2) |e|2 : |τ ′| | bτ ′ca(r1,r2).
By i.h. on the first premise:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bT`(τ)ca(r1,r2) (1)
By i.h. on the second premise:
|Γ|,x1 : |τ |,x2 : |τ | | bΓca,bτca(x1,x2) ` |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | bτ ′ca(r1,r2) (2)
We consider two cases:
Subcase. `v a. Here, bT`(τ)ca(r1,r2), bτca(r1,r2), so (1) can be rewritten to:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2) (3)
Applying rule ABS to (2) yields:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| |
∀x1x2.bτca(x1,x2)⇒ bτ ′ca(r1 x1,r2 x2) (4)
Applying rule APP to (4) and (3) yields:

ZU064-05-FPR main 16 August 2020 22:41

32 A. Aguirre et al.

|Γ| | bΓca ` (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | bτ ′ca(r1,r2)
which is what we wanted to prove.
Subcase. ` 6v a. Here, bT`(τ)ca(r1,r2), bτca(r1,r2), so (1) can be rewritten to:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | > (5)
Applying rule ABS to (2) yields:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| |
∀x1x2.bτca(x1,x2)⇒ bτ ′ca(r1 x1,r2 x2)
By Lemma 16 applied to the subcase assumption ` 6v a and the premise τ ′↘ `, we
have bτ ′ca(r1 x1,r2 x2)≡>. So, by rule SUB:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| | ∀x1x2.bτca(x1,x2)⇒>
Since (∀x1x2.bτca(x1,x2)⇒>)≡>≡ (∀x1,x2.>⇒>), we can use SUB again to
get:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| | ∀x1,x2.>⇒> (6)
Applying rule APP to (6) and (5) yields:
|Γ| | bΓca ` (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | >
which is the same as our goal since bτ ′ca(r1,r2)≡>.

DCC’s noninterference theorem is a corollary of this theorem and the soundness
of RHOL in set theory.

7.4 Relational Cost

RelCost (Çiçek et al., 2017) is a relational refinement type-and-effect system designed
to reason about relative cost—the difference in the execution costs of two similar
programs or of two runs of the same program on two different inputs. RelCost
combines reasoning about the maximum and minimum costs of a single program
with relational reasoning about the relative cost of two programs. This combination
of reasoning styles is motivated by the following observation: if two programs are
structurally similar, then relational reasoning can improve precision when computing
their relative cost. And if this approach fails, one can still establish an upper bound
on the relative cost by computing the difference of the maximum cost of one program
and the minimum cost of the other.

Here, we show how a fragment of RelCost can be embedded into RHOL. Similar
to what we did for DCC, to just convey the main intuition, we consider a fragment
of RelCost excluding recursive functions. The syntax of RelCost is based on two
sorts of types:

A ::= N | listA[n] |A exec(k,l)−−−−−−→A | ∀i
exec(k,l)

:: S.A (unary types)

τ ::= Nr | listτ [n]α | τ diff(k)−−−−→ τ | ∀i
diff(k)

:: S.τ | UA |�τ (relational types)

Unary types are used to type one program and they are mostly standard except
for the effect annotation exec(k, l) on arrow types and universally quantified types
representing the min and max cost k and l of the body of the closure, respectively.
Relational types ascribe two programs, so they are interpreted as pairs of expressions.
In relational types, arrow types and universally quantified types have an effect

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 33

annotation diff(k) representing the relative cost k of the two closures. Besides, the
superscript α refines list types with the number of elements that can differ in two
lists. The type UA is the weakest relation over elements of the unary type A, i.e.
it can be used to type two arbitrary terms, while the type �τ is the diagonal
subrelation of τ , i.e. it can be used to type only two terms that are equal. There are
two kinds of typing judgments, unary and relational:

∆;Φ;Ω `lk t :A ∆;Φ;Γ ` t1	 t2 . l : τ

The unary judgment states that the execution cost of t is lower bounded by k and
upper bounded by l, and the expression t has the unary type A. The relational
judgment states that the relative cost of t1 with respect to t2 is upper bounded
by l and the two expressions have the relational type τ . Here Ω is a unary type
environment, Γ is a relational type environment, ∆ is an environment for index
variables and Φ for assumed constraints over the index terms. Figure 10 shows
selected rules.

To embed RelCost in RHOL, we define a monadic-style cost-instrumented transla-
tion of RelCost types. The translation is given in two-steps: First, we define an erasure
of cost and size information into simple types and then we define a cost-passing style
translation of simple types with a value-translation and an expression-translation.
The erasure function is defined as follows:

|N|, |Nr|, N |listA[n]|, list|A| |listτ [n]α|, list|τ | |UA|, |A|

|�τ |, |τ | |∀i
exec(k,l)

:: S.A|, N→ |A| |∀i
diff(k)

:: S.τ |, N→ |τ |

|A exec(k,l)−−−−−−→B|, |A| → |B| |τ1
diff(k)−−−−→ τ2|, |τ1| → |τ2|

The cost-passing style translation of simple types is

LNMv , N LlistAMv , listLAMv LA→BMv , LAMv→ LBMe LAMe , LAMv×N

Guided by the translation of types above we can provide a cost-instrumented
translation of simply-typed λ-expressions (Figure 11). This translation maps an
expression of the simple type τ to an expression of type τ ×N, where the second
component is the number of reduction steps under an eager, call-by-value reduction
strategy (which is the semantics of RelCost). It is fairly easy to see that this
translation preserves typability and that it counts steps accurately.
However, this translation forgets the cost and size information in types. To

recover these, we define a HOL formula for every unary type. But, first, we define
axiomatically a predicate listU(n, l,P) that captures size information about lists:

∀l,P. listU(0, l,P)≡ l = []

∀n, l,P. listU(n+ 1, l,P)≡ ∃w1,w2. l = w1 :: w2∧P (w1)∧ listU(n,w2,P)

ZU064-05-FPR main 16 August 2020 22:41

34 A. Aguirre et al.

var
Ω(x) =A

∆;Φa;Ω `0
0 x :A

const
∆;Φa;Ω `0

0 n : int

lam
∆;Φa;x :A1,Ω `lk t :A2

∆;Φa;Ω `0
0 λx.t :A1

exec(k,l)
−−−−−−→A2

app
∆;Φa;Ω `l1k1

t1 :A1
exec(k,l)
−−−−−−→A2 ∆;Φa;Ω `l2k2

t2 :A1

∆;Φa;Ω `l1+l2+l+capp

k1+k2+k+capp
t1 t2 :A2

r-var
Γ(x) = τ

∆;Φa;Γ ` x	x. 0 : τ
r-const

∆;Φa;Γ ` n	n. 0 : intr

r-cons1
∆;Φa;Γ ` t1	 t′1 . l1 : τ ∆;Φa;Γ ` t2	 t′2 . l2 : listτ [n]α

∆;Φa;Γ ` cons(t1, t2)	 cons(t′1, t′2). l1 + l2 : listτ [n+ 1]α+1

r-cons2
∆;Φa;Γ ` t1	 t′1 . l1 :�τ ∆;Φa;Γ ` t2	 t′2 . l2 : listτ [n]α

∆;Φa;Γ ` cons(t1, t2)	 cons(t′1, t′2). l1 + l2 : listτ [n+ 1]α

r-caseL

∆;Φa;Γ ` t	 t′ . l : listτ [n]α ∆;Φa∧n= 0;Γ ` t1	 t′1 . l′ : τ ′

i,∆;Φa∧n= i+ 1;h :�τ, tl : listτ [i]α,Γ ` t2	 t′2 . l′ : τ ′

i,β,∆;Φa∧n= i+ 1∧α= β+ 1;h : τ, tl : listτ [i]β ,Γ ` t2	 t′2 . l′ : τ ′

∆;Φa;Γ ` case t of nil → t1
| h :: tl → t2

	 case t′ of nil → t′1
| h :: tl → t′2

. l+ l′ : τ ′

r-lam
∆;Φa;x : τ1,Γ ` t1	 t2 . l : τ2

∆;Φa;Γ ` λx.t1	λx.t2 . 0 : τ1
diff(l)
−−−−→ τ2

r-app

∆;Φa;Γ ` t1	 t′1 . l1 : τ1
diff(l)
−−−−→ τ2

∆;Φa;Γ ` t2	 t′2 . l2 : τ1
∆;Φa;Γ ` t1 t2	 t′1 t′2 . l1 + l2 + l : τ2

r-iLam

i :: S,∆;Φa;Γ ` t	 t′ . l : τ
i 6∈ FIV(Φa;Γ)

∆;Φa;Γ ` Λt	Λt′ . 0 : ∀i
diff(l)

:: S.τ

r-iApp

∆;Φa;Γ ` t	 t′ . l : ∀i
diff(l′)

:: S.τ
∆ ` J : S

∆;Φa;Γ ` t[] 	 t′[] . l+ l′[J/i] : τ{J/i}

nochange

∆;Φa;Γ ` t	 t. l : τ
∀x ∈ dom(Γ). ∆;Φa |= Γ(x)v�Γ(x)

∆;Φa;Γ,Γ′;Ω ` t	 t. 0 :�τ

switch
∆;Φa;Γ `l1k1

t1 :A ∆;Φa;Γ `l2k2
t2 :A

∆;Φa;Γ ` t1	 t2 . l1−k2 : U A

Fig. 10. RelCost Unary and Relational Typing (Selected Rules)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 35

LxM, (x,0) Lλx.tM, (λx.LtM,0) LΛ.tM, (λ_.LtM,0)

LtuM, letx= LtM in lety = LuM in letz = π1(x) π1(y) in(π1(z),π2(x) +π2(y) +π2(z) + capp)

Lt[]M, letx= LtM in lety = π1(x) 0 in(π1(y),π2(x) +π2(y) + ciapp) LnilM, (nil,0)

Lcons(t1, t2)M, letx= Lt1M in lety = Lt2M in(π1(x) :: π1(y),π2(x) +π2(y))

L case t′ of nil → t′1 | h :: tl→ t′2M,{ letx= Lt′M in case π1(x) of
nil → lety = Lt′1M in(π1(y),π2(x) +π2(y) + ccase)
| h :: tl→ lety = Lt′2M in(π1(y),π2(x) +π2(y) + ccase)

Fig. 11. Cost-instrumented translation of expressions.

We can now define a HOL formula inductively on unary types.

bNcv(x),> blistA[n]cv(x), listU(n,x,bAcv)

bA exec(k,l)−−−−−−→Bcv(x), ∀y.bAcv(y)⇒ bBck,le (x y)

b∀i
exec(k,l)

:: S.Acv(x), ∀y.>⇒ ∀i.bAck,le (x y)

bAck,le (x), bAcv(π1x)∧k ≤ π2x≤ l

The type translation can also be extended to type environments: L|x1 :A1, . . . ,xn :
An|M = x1 : L|A1|Mv, . . . ,xn : L|An|Mv Similarly, we can associate to a type environ-
ment an HOL context that we can use to recover the cost and size informa-
tion: bx1 :A1, . . . ,xn :Anc= bA1cv(x1), . . . ,bAncv(xn). Now we can provide a cost-
instrumented translation of unary judgments.

Theorem 18
If ∆;Φ;Ω `lk t :A, then: L|Ω|M,∆ | Φ,bΩc ` LtM : L|A|Me | bAck,le (r)

Proof
By induction on the derivation of ∆;Φ;Ω `lk t :A. We show selected cases.

Case.
∆;Φa;Ω,x :A `0

0 x :A
We can conclude by the following derivation:

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` x : L|A|Mv | bAcv(r)
Var

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` 0 : N | 0≤ r≤ 0
Nat

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` (x,0) : L|A|Mv×N | bAcv(π1r)∧0≤ π2r≤ 0
Pair-L

where the additional proof condition that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case.
∆;Φa;Ω `0

0 n : int

ZU064-05-FPR main 16 August 2020 22:41

36 A. Aguirre et al.

Then we can conclude by the following derivation:

L|Ω|M,∆ | Φa,bΩc ` n : N | >
Nat

L|Ω|M,∆ | Φa,bΩc ` 0 : N | 0≤ r≤ 0
Nat

L|Ω|M,∆ | Φa,bΩc ` (n,0) : N×N | 0≤ π2r≤ 0
Pair-L

where the additional proof condition that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case.
∆;Φa;x :A1,Ω `lk t :A2

∆;Φa;Ω `0
0 λx.t :A1

exec(k,l)−−−−−−→A2
By induction hypothesis we have L|Ω|M,x : L|A1|Mv,∆ |Φ,bΩc,bA1cv(x) ` LtM : L|A2|Me |
bAck,le (r) and we can conclude by the following derivation:

L|Ω|M,x : L|A1|Mv,∆ | Φ,bΩc,bA1cv(x) `
LtM : L|A2|Me | bA2ck,le (r)

L|Ω|M,∆ | Φ,bΩc ` λx.LtM : L|A1|Mv → L|A2|Me |
∀x.bA1cv(x)⇒ bA2ck,le (rx)

Abs

L|Ω|M,∆ | Φ,bΩc ` 0 : N | 0≤ r≤ 0
L|Ω|M,∆ | Φ,bΩc ` (λx.LtM,0) : (L|A1|Mv → L|A2|Me)×N |
∀x.bA1cv(x)⇒ bA2ck,le ((π1r)x)∧0≤ π2r≤ 0

Pair-L

where the additional proof condition that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case
∆;Φa;Ω `l1k1

t1 :A1
exec(k,l)−−−−−−→A2 ∆;Φa;Ω `l2k2

t2 :A1

∆;Φa;Ω `l1+l2+l+capp
k1+k2+k+capp t1 t2 :A2

By induction hypothesis and unfolding some some definitions we have

L|Ω|M,∆ | Φa,bΩc ` Lt1M : (L|A1|Mv→ (L|A2|Mv×N))×N |
∀h.bA1cv(h)⇒ (bA2cv(π1((π1(r))h))∧k ≤ π2((π1(r))h)≤ l)∧k1 ≤ π2(r)≤ l1

and L|Ω|M,∆ |Φa,bΩc ` Lt2M : L|A1|Mv×N | bA1cv(π1(r))∧k2 ≤ π2(r)≤ l2. So, we can
prove:

L|Ω|M,∆ | Φa,bΩc ` letx= Lt1M in lety = Lt2M inπ1(x)π1(y) : L|A2|Mv×N |
bA2cv(π1(r))∧k ≤ π2(r)≤ l∧k1 ≤ π2(x)≤ l1∧k2 ≤ π2(y)r≤ l2

This combined with the definition of the cost-passing translation Lt1 t2M, letx=
Lt1M in lety = Lt2M in letz = π1(x) π1(y) in(π1(z),π2(x) +π2(y) +π2(z) + capp) allows
us to prove as required the following:

L|Ω|M,∆ | Φa,bΩc ` Lt1 t2M : L|A2|Mv×N |
bA2cv(π1(r))∧k+k1 +k2 + capp ≤ π2(r)≤ l+ l1 + l2 + capp.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 37

For the embedding of cost and size information in the relational case we first
define a predicate listR(n, l1, l2,a,P) in HOL axiomatically:

∀l1, l2,a,P. listR(0, l1, l2,a,P)≡ l1 = l2 = [] ∀n, l1, l2,a,P. listR(n+1, l1, l2,a,P)≡

∃w1,z1,w2,z2. l1 = w1 :: w2∧ l2 = z1 :: z2∧P (w1,z1)∧
(((w1 = z1)∧ listR(n,w2,z2,a,P))∨

(a > 0∧∃b.a= b+ 1∧ listR(n,w2,z2, b,P)))

Let τ denote RelCost’s erasure of the binary type τ to a unary type.2 This erasure
maps listτ [n]α to listτ [n], τ diff(l)−−−−→ σ to τ exec(0,∞)−−−−−−−→ σ, etc. Next, we define HOL
formulas for the binary types.

TNUv(x,y), x= y TUAUv(x,y), bAcv(x)∧bAcv(y)

T�τUv(x,y), (x= y)∧ (TτUv(x,y))

Tτ
diff(l)−−−−→ σUv(x,y),

{
bτ exec(0,∞)−−−−−−−→ σcv(x)∧bτ exec(0,∞)−−−−−−−→ σcv(y)∧
(∀z1,z2.TτUv(z1,z2)⇒ TσUle(x z1,y z2))

T∀i
diff(l)

:: S.τUv(x,y),
{
b∀i

exec(0,∞)
:: S.τcv(x)∧b∀i

exec(0,∞)
:: S.τcv(y)∧

(∀z1z2.>⇒ ∀i.TτUle(x z1,y z2))

Tlistτ [n]αUv(x,y), listR(n,x,y,α,TτUv)

TτUle(x,y), TτUv(π1x,π1y)∧ (π2x−π2y ≤ l)

The type translation can also be extended to relational type environments pointwise:
‖x1 : τ1, . . . ,xn : τn‖, x1

1 : L|τ1|Mv,x1
2 : L|τ1|Mv, . . . ,xn1 : L|τn|Mv,xn2 : L|τn|Mv We also need

to derive from a type relational environment an HOL context that remembers the
cost and size information: Tx1 : τ1, . . . ,xn : τnU,Tτ1Uv(x1

1,x
1
2), . . . ,TτnUv(xn1 ,xn2).

Now we can provide the translation of relational judgments.

Theorem 19
If ∆;Φ;Γ ` t1	 t2 . l : τ , then:

‖Γ‖,∆ | Φ,TΓU ` Lt1M1 : L|τ |Me ∼ Lt2M2 : L|τ |Me | TτUle(r1,r2),

where LtiMj is a copy of ti where each variable x is replaced by a variable xj for
j ∈ {1,2}.

To prove Theorem 19, we need three lemmas.

Lemma 20
Suppose ∆;Φ ` τ wf.3 Then, the following hold:

2 In RelCost, this erasure is written |τ |. We use a different notation to avoid confusion
with our own erasure function from RelCost’s types to simple types.

3 This judgment simply means that τ is well-formed in the context ∆;Φ. It is defined in
the original RelCost paper (Çiçek et al., 2017).

ZU064-05-FPR main 16 August 2020 22:41

38 A. Aguirre et al.

1. ∆ | Φ ` ∀xy.TτUv(x,y)⇒ bτcv(x)∧bτcv(y)
2. ∆ | Φ ` ∀xy.TτUte(x,y)⇒ bτc0,∞e (x)∧bτc0,∞e (y)

Also, (3) TΓU⇒bΓ1c∧bΓ2c where Γ1 and Γ2 are obtained by replacing each variable
x in Γ with x1 and x2, respectively.

Proof
(1) and (2) follow by a simultaneous induction on the given judgment. (3) follows
immediately from (1).

Lemma 21
If ∆;Φa;Γ ` e1	e2 . t : τ in RelCost, then ∆;Φ;Γ `∞0 ei : τ for i∈ {1,2} in RelCost.

Proof
By induction on the given derivation.

Lemma 22
If ∆;Φ |= τ1 v τ2, then ∆;Φ ` ∀xy.Tτ1Uv(x,y)⇒ Tτ2Uv(x,y).

Proof
By induction on the given derivation of ∆;Φ |= τ1 v τ2.

Proof of Theorem 19
The proof is by induction on the given derivation of ∆;Φ;Γ ` t1	 t2 . k : τ . We
show only a few representative cases here.

Case:

i :: S,∆;Φa;Γ ` e	e′ . t : τ i 6∈ FIV(Φa;Γ)

∆;Φa;Γ ` Λe	Λe′ . 0 : ∀i
diff(t)

:: S.τ

r-iLam

To show: ‖Γ‖,∆ | Φa,TΓU ` (λ_.LeM1,0) : (N→ L|τ |Me)×N ∼ (λ_.Le′M2,0) : (N→

L|τ |Me)×N | T∀i
diff(t)

:: S.τU0
e(r1,r2).

Expand T∀i
diff(t)

:: S.τU0
e(r1,r2) to T∀i

diff(t)
:: S.τUv(π1 r1,π1 r2)∧π2r1−π2 r2 ≤ 0,

and apply the rule [PAIR] to reduce to two proof obligations:
(A) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le′M2 : N→ L|τ |Me |

T∀i
diff(t)

:: S.τUv(r1,r2)
(B) ‖Γ‖,∆ | Φa,TΓU ` 0 : N∼ 0 : N | r1−r2 ≤ 0

(B) follows immediately by rule [ZERO]. To prove (A), we start by expanding

T∀i
diff(t)

:: S.τUv(r1,r2) and apply rule [∧I]. We get three proof obligations.

(C) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N → L|τ |Me ∼ λ_.Le′M2 : N → L|τ |Me | b∀i
exec(0,∞)

::
S.τcv(r1)

(D) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N → L|τ |Me ∼ λ_.Le′M2 : N → L|τ |Me | b∀i
exec(0,∞)

::
S.τcv(r2)
(E) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N→ L|τ |Me ∼ λ_.Le′M2 : N→ L|τ |Me |
∀z1z2.>⇒ ∀i.TτUte(r1 z1,r2 z2)
To prove (C), apply Lemma 34 to the given derivation (not just the premise),

obtaining a RelCost derivation for ∆;Φa;Γ `∞0 Λe : (∀i
exec(0,∞)

:: S.τ). Applying

Theorem 18 to this yields LΓM,∆ |Φa,bΓc ` (λ_.LeM,0) : (N→ L|τ |Me)×N | b∀i
exec(0,∞)

::

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 39

S.τc0,∞e (r) in UHOL, which is the same as LΓM,∆ | Φa,bΓc ` (λ_.LeM,0) : (N→

L|τ |Me)×N | b∀i
exec(0,∞)

:: S.τcv(π1 r)∧ 0 ≤ π2 r ≤∞. Applying rule [PROJ1], we

get LΓM,∆ | Φa,bΓc ` π1(λ_.LeM,0) : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). By subject

conversion, LΓM,∆ | Φa,bΓc ` λ_.LeM : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). Renaming

variables, we get LΓM1,∆ | Φa,bΓ1c ` λ_.LeM1 : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r).
Now note that by definition, ‖Γ‖ ⊇ LΓM1 and by Lemma 33(3), TΓU⇒bΓ1c. Hence,

we also get ‖Γ‖,∆ |Φa,TΓU ` λ_.LeM1 :N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). (C) follows
immediately by rule [UHOL-L].

(D) has a similar proof.
To prove (E), apply the rule [ABS], getting the obligation:

‖Γ‖,∆,z1,z2 : N | Φa,TΓU ` LeM1 : L|τ |Me ∼ Le′M2 : L|τ |Me | ∀i.TτUte(r1,r2)
Since z1,z2 do not appear anywhere else, we can strengthen the context to remove
them, thus reducing to: ‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ Le′M2 : L|τ |Me | ∀i.TτUte(r1,r2)
Next, we transpose to HOL using Theorem 6. We get the obligation:
‖Γ‖,∆ | Φa,TΓU ` ∀i.TτUte(LeM1,Le′M2)
This is equivalent to:
‖Γ‖,∆, i : S | Φa,TΓU ` TτUte(LeM1,Le′M2)
The last statement follows immediately from i.h. on the premise, followed by
transposition to HOL using Theorem 6.

Case:
∆;Φa;Γ ` e	e. t : τ ∀x ∈ dom(Γ). ∆;Φa |= Γ(x)v�Γ(x)

∆;Φa;Γ,Γ′;Ω ` e	e. 0 :�τ
nochange

To show: ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | T�τU0
e(r1,r2).

Expanding the definition of T�τU0
e, this is equivalent to:

‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)∧ (π1 r1 = π1 r2)∧
(π2 r1−π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:
(A) ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)
(B) ‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | (π1 r1 = π1 r2)∧(π2 r1−π2 r2 ≤ 0)

By i.h. on the first premise,
‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)∧ (π2 r1−π2 r2 ≤ t)
By rule [SUB],
‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)
which is the same as (A).

To prove (B), apply Lemma 35 to the second premise to get for every x∈ dom(Γ) that
∆ | Φa ` TΓ(x)Uv(x1,x2)⇒ T�Γ(x)Uv(x1,x2). Since T�Γ(x)Uv(x1,x2)⇒ x1 = x2
and from TΓU we know that TΓ(x)Uv(x1,x2), it follows that ‖Γ‖,∆ | Φa,TΓU `
x1 = x2. Since this holds for every x ∈ dom(Γ), it follows immediately that ‖Γ‖,∆ |
Φa,TΓU ` LeM1 = LeM2. By Theorem 6, ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me |
r1 = r2. (B) follows immediately by rule [SUB].

ZU064-05-FPR main 16 August 2020 22:41

40 A. Aguirre et al.

RelCost’s type-soundness theorem can be derived from Theorem 19 and the
soundness of RHOL in set theory.

8 Examples

We present some illustrative examples to show how RHOL’s rules work in practice.
Our first example shows the functional equivalence of two recursive functions that are
synchronous—they perform the same number of recursive calls. The second example
shows the equivalence of two asynchronous recursive functions. The third example
shows a sensitivity property of sorting. Finally, our fourth example illustrates
reasoning about the relative cost of two programs, using an encoding similar to that
of RelCost, but the example cannot be verified in RelCost itself.

Notational simplifications Throughout this section, we often omit types and
typing contexts when they are clear. We also apply the [SUB] rule implicitly in some
places, e.g., to change the assertion of a function from ∀x.φ to ∀x.>⇒ φ so that we
can apply [ABS], to rearrange the order of quantified variables; or to pull quantifiers
outwards when there is no variable capture.

8.1 First Example: Factorial

Expanding on Section 3, we show that the two following standard implementations
of factorial, with and without an accumulator, are functionally equivalent:

fact1 , letrec f1 n1 = case n1 of 0 7→ 1;S 7→ λx1.(S x1)∗ (f1 x1)
fact2 , letrec f2 n2 = λa.case n2 of 0 7→ a;S 7→ λx2.f2 x2 ((S x2)∗a)

Our goal is to prove that the result is the same on both implementations after
scaling the result on the first one by the accumulator. In RHOL, this is expressed
by the following judgment (with empty contexts):

fact1 : N→ N∼ fact2 : N→ N→ N | ∀n1n2.n1 = n2⇒∀a.(r1 n1)∗a= r2 n2 a

The proof starts by applying [LETREC], which has the following main premise:

Ψ `
case n1 of
0 7→ 1;
S 7→ λx1.(S x1)∗ (f1 x1)

∼
λa. case n2 of

0 7→ a;
S 7→ λx2.f2 x2 ((S x2)∗a)

| ∀a.r1 ∗a= r2 a

where Ψ , n1 = n2,∀y1y2.(y1,y2) < (n1,n2)⇒ y1 = y2 ⇒ ∀a.(f1 y1) ∗ a = f2 y2 a

asserts the inductive hypothesis and the equality between the arguments.
To prove this premise, we start by applying the one-sided [ABS-R] rule, with a

trivial condition on a. Then we can apply a two-sided [CASE] rule, which has 3
premises. The first one asserts that the same branch is taken on both sides. The
other two consider respectively the zero and the successor case. Since the branching
is synchronous we do not need to consider the crossed cases:

1. Ψ ` n1 = 0⇔ n2 = 0

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 41

2. Ψ,n1 = 0,n2 = 0 ` 1∼ a | r1 ∗a= r2
3. Ψ ` λx1.(S x1) ∗ (f1 x1) ∼ λx2.f2 x2 ((S x2) ∗ a) | ∀x1x2.n1 = S x1 ⇒ n2 =
S x2⇒ (r1 x1)∗a= r2 x2

Premise 1 is a direct consequence of the assertion n1 = n2 in Ψ. Premise 2 is
a trivial arithmetic identity which can be proven in HOL (using rule SUB or by
invoking Theorem 6). To prove premise 3, we first apply the (two-sided) [ABS] rule,
which leaves the following proof obligation:

Ψ,n1 = S x1,n2 = S x2 ` (S x1)∗ (f1 x1)∼ f2 x2 ((S x2)∗a) | r1 ∗a= r2

This is proven in HOL by instantiating the inductive hypothesis in Ψ with y1 7→
x1,y2 7→ x2,a 7→ (S x1)∗a.

8.2 Second Example: Take and Map

This example establishes the equivalence of two programs that compute the same
result, but using different number of recursive calls. Consider the following function
take that takes a list l and a natural number n and returns the first n elements of
the list (or the whole list if its length is less than n).

take , letrec f1 l1 = λn1.case l1 of [] 7→ []
_ :: _ 7→ λh1t1. case n1 of 1 7→ []

S 7→ λy1.h1 :: (f1 t1 y1)

Next, consider the standard function map that applies a function g to every element
of a list l pointwise.

map , letrec f2 l2 = λg2. case l2 of [] 7→ []
;_ :: _ 7→ λh2t2.(g2 h2) :: (f2 t2 g2)

Intuitively, it should be clear that for all g,n, l, map (take l n) g = take (map l g) n
(mapping g over the first n elements of the list is the same as mapping g over the
whole list and then taking the first n elements). However, the computations on
the two sides of the equality are very different: For a list l of length more than
n, map (take l n) g only examines the first n elements, whereas take (map l g) n
traverses the whole list. In the following we formalize this property in RHOL
(Theorem 23) and outline the high-level idea of the proof. The full proof is in the
appendix (Section D.3).

Theorem 23
l1, l2 : listN,n1,n2 : N,g1,g2 : N→ N | l1 = l2,n1 = n2,g1 = g2 `
map (take l1 n1) g1 : listN ∼ take (map l2 g2) n2 : listN | r1 = r2

Proof idea
Since the two sides make an unequal number of recursive calls, we need to reason
asynchronously on the two sides (specifically, we use the rule [LLCASE-A]). However,
equality cannot be established inductively with asynchronous reasoning: If two
function applications are to be shown equal, and a recursion step is taken in only
one of them, then the induction hypothesis cannot be applied. So, we strengthen the

ZU064-05-FPR main 16 August 2020 22:41

42 A. Aguirre et al.

induction hypothesis, replacing the assertion r1 = r2 in the theorem statement with
r1 v r2∧|r1|= min(n1, |l1|)∧|r2|= min(n2, |l2|) where v denotes the prefix ordering
on lists and | · | is the list length function. This assertion implies r1 = r2 and can be
established inductively. The full proof is in the appendix, but at a high-level, the
proof requires proving two judgments, one for the inner map-take pair and another
for the outer one:

• Ψ ` take l1 n1 ∼map l2 g2 | r1 vg2 r2
• Ψ `map∼ take | ∀m1m2.m1 vg2 m2⇒

(∀g1.g1 = g2⇒∀x2.x2 ≥ |m1| ⇒ (r1 m1 g1)v (r2 m2 x2))

wherem1vgm2 is an axiomatically defined predicate equivalent to (map m1 g)vm2
and Ψ are the assumptions in the statement of the theorem (in particular, l1 = l2).
The proof of the first premise proceeds by an analysis of map using synchronous
rules. For the second premise, after applying [LETREC] we apply the asynchronous
[LLCASE-A] rule, and then prove the following premises:

1. Ψ,Φ,x2 ≥ |m1|,g1 = g2,m1 = [],m2 = [] ` []∼ [] | r1 v r2
2. Ψ,Φ,x2 ≥ |m1|,g1 = g2,m1 = [] ` [] ∼ λh2t2.case x2 of 0 7→ [];S 7→ λy2.h2 ::
f2 t2 y2 |
∀h2t2.m2 = h2 :: t2⇒ r1 v (r2 h2 t2)

3. Ψ,Φ,x2 ≥ |m1|,g1 = g2,m2 = [] ` λh1t1.(g1 h1) :: (f1 t1 g1) ∼ [] | ∀h1t1.m1 =
h1 :: t1⇒ (r1 h1 t1)v r2

4. Ψ,Φ,x2 ≥ |m1|,g1 = g2 ` λh1t1.(g1 h1) :: (f1 t1 g1) ∼ λh2t2.case x2 of 0 7→
[];S 7→ λy2.h2 :: f2 t2 y2 | ∀h1t1h2t2.m1 = h1 :: t1⇒m2 = h1 :: t1⇒ (r1 h1 t1)v
(r2 h2 t2)

where Φ is the inductive hypothesis obtained from the [LETREC] application. The
first two premises follow directly from the definition of v, while the third one follows
from the contradictory assumptions m1 vg m2, m1 = h1 :: t1 and m2 = []. The last
premise is proved by first applying the [NATCASE-R] rule and then applying the
induction hypothesis.

The proof presented here is intended to show how the one-sided rules can deal
with asynchronous reasoning, but we remark that a much simpler proof could be
written using equational rewriting rules. However, note that our system can also be
seen as a framework in which to embed and prove sound such rewriting rules, in the
style of Benton (2004).

8.3 Third example: Selection sort

This example showcases a property, namely sensitivity, that is out of reach of
equational reasoning, but that is easy to prove using relational reasoning.
Given two lists of integers of the same length, we define the distance between

them as the maximum of the pointwise distances:

d(l1, l2) , maxi |l1[i]− l2[i]| if l1, l2 have the same length
d(l1, l2) , ∞ otherwise

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 43

It is routine to check that this defines in fact a metric. Furthermore, it is known
that sorting is 1-Lipschitz continuous under this metric: If sort(l) denotes the list
obtained by sorting l, then, for all l1, l2 we have that d(sort(l1),sort(l2))≤ d(l1, l2).
This result can be proved directly by showing that for any k the function mink,

which picks the k−th smallest element of a list, is 1-Lipschitz continuous. The above
result then follows by noting that sort(l) = [min1(l),min2(l), ...,minn(l)] where n is
the length of l.
Here, we provide a different proof. We prove that a particular implementation

of sorting, namely, selection sort has this property. Selection sort is a basic sorting
algorithm that traverses a list, finds the least element, puts it in front, and then
sorts the rest of the list recursively. The function ssort below implements selection
sort.

ssortl , ssort′ l (length l)

ssort′ , letrec ssort′ l =
λn.case n of

0 7→ [];
S 7→ λm.case l of

[] 7→ []
_ :: _ 7→ λht. let(rest,min) = restmin t h

in min :: ssort′ rest m

restmin, letrec restmin l =
λa.case l of

[] 7→ ([],a)
_ :: _ 7→ λht.let M = max(a,h)

m= min(a,h)
(rest,min) = restmin m t

in 〈M :: rest,min〉
We then want to prove the following in RHOL:

Theorem 24 (1-Lipschitz continuity of ssort)

` ssort∼ ssort | ∀l1l2δ. |l1|= |l2| ⇒ d(l1, l2)≤ δ⇒ d(r1 l1,r2 l2)≤ δ
Note that the postcondition above is equivalent to

∀l1l2. |l1|= |l2| ⇒ d(r1 l1,r2 l2)≤ d(l1, l2)

but our version is easier to prove, because we need an explicit δ to appear in the
verification of ssort’ and restmin. The proof is entirely synchronous, and relies on
the property of restmin that, for two lists of equal length satisfying the invariant of
being closer than δ under the metric defined above, (1) the two returned minimas
are spaced less than δ (under the usual metric for the integers) and (2) the two
returned remaining lists satisfy the same invariant. In RHOL, this is expressed as:

` restmin∼ restmin | ∀l1l2.d(l1, l2)≤ δ⇒∀h1h2. |h1−h2| ≤ δ⇒D(r1 l1 h1,r2 l2 h2)≤ δ

ZU064-05-FPR main 16 August 2020 22:41

44 A. Aguirre et al.

where we use D to denote the distance induced by the maximum of the component-
wise distances.

The only interesting case is where we reach the h :: t branch of restmin. Here, we
use the following (mathematical) lemma about max and min. This lemma must be
proved in HOL with sufficient axiomatization.

Lemma 25
Let δ a non-negative real number. For every a1, b1,a2, b2 real, if |a1−a2| ≤ δ and
|b1− b2| ≤ δ, then:

|max(a1, b1)−max(a2, b2)| ≤ δ and
|min(a1, b1)−min(a2, b2)| ≤ δ

8.4 Fourth Example: Insertion Sort

Insertion sort is a standard sorting algorithm that sorts a list h :: t by sorting the
tail t recursively and then inserting h at the appropriate position in the sorted
tail. Consider the following implementations of the insertion function, insert, and
the insertion sort function, isort, each returning a pair, whose first element is the
usual output list (inserted list for insert and sorted list for isort) and whose second
element is the number of comparisons made during the execution (assuming an
eager, call-by-value evaluation strategy).

insert, λx. letrec insert l = case l of [] 7→ ([x],0);
_ :: _ 7→ λht.case x≤ h of

tt 7→ (x :: l,1);
ff 7→ let s= insert t in

(h :: (π1 s),1 + (π2 s))
isort, letrec isort l = case l of [] 7→ ([],0);

_ :: _ 7→ λht. let s= isort t

let s′ = insert h (π1 s) in
(π1 s

′,(π2 s) + (π2 s
′))

Using this implementation, we prove the following interesting fact about insertion
sort: Among all lists of the same length, insertion sort computes the fastest (with
fewest comparisons) on lists that are already sorted. This is a property about the
relational cost of insertion sort (on two different inputs), which cannot be established
in RelCost. To state the property in RHOL, we define a list predicate sorted(l) in
HOL axiomatically:

sorted([])≡> ∀ht.sorted(h :: t)≡ (sorted(t)∧h≤ lmin(t))

where the function lmin(l) returns the minimum element of l:

lmin, letrec f l = case l of [] 7→∞;_ :: _ 7→ λht.min(h,f t)

As in the previous example, let | · | be the standard list length function. The property
of insertion sort mentioned above is formalized in the following theorem. In words,
the theorem says that if isort is executed on lists x1 and x2 of the same length and

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 45

x1 is sorted, then the number of comparisons made during the sorting of x1 is no
more than the number of comparisons made during the sorting of x2.

Theorem 26
Let τ , listN → listN. Then, • | • ` isort : τ ∼ isort : τ | ∀x1x2.(sorted(x1)∧ |x1| =
|x2|)⇒ π2(r1 x1)≤ π2(r2 x2).

A full proof is shown in the appendix (Section D.5). The proof proceeds mostly
synchronously in the two sides. Following the structure of isort, we apply the rules
[LETREC], [LISTCASE] and [APP] + [ABS] (for the let binding, which, as usual,
is defined as a function application), followed by an application of the inductive
hypothesis for the recursive call to isort. Eventually, we expose the call to insert
on both sides. At this point, the observation is that since x1 is already sorted, its
head element must be no greater than all elements in its tail, so insert must return
immediately with at most 1 comparison on the x1 side. Formally, this last proof
step can be completed by switching to either UHOL or HOL and using subject
conversion; in the appendix, we switch to HOL.

9 Implementation

We have mechanized our system in the Coq proof assistant (The Coq Development
Team, 2018). Instead of building the mechanization of the system over a set-theoretic
model, we build it over the Calculus of Inductive Constructions that underlies Coq
via a shallow embedding. In other words, we make a slight change to the system—in
place of PCF (Section 2) and HOL (Section 4) as the language and the underlying
logic of refinements, we use Coq’s language and Coq’s Prop logic, respectively. In
addition to allowing us to leverage Coq directly for proofs in the underlying logic, this
also shows that our syntax-directed unary and relational rules are not particularly
tied to set-theory or HOL. Another reason for using Coq is that it supports type
quantification, which we exploit in our embedding (see the definition of j_rhol
below). We believe that a mechanization could also be carried out in a HOL-based
proof assistant like Isabelle/HOL but since these assistants typically lack support
for type quantification, the mechanization would be more involved (Wildmoser &
Nipkow, 2004).
A judgment in RHOL (similarly for UHOL) is mechanized as a function that

receives an element of type A1, an element of type A2 and a function of type A1
-> A2 -> Prop and returns a Prop, namely the result of applying the latter to the
former.

De f i n i t i o n j_rhol : f o r a l l (A1 A2 : Type) ,
A1 −> A2 −> (A1 −> A2 −> Prop) −> Prop :=
fun A1 A2 t1 t2 P => P t1 t2 .

Notation "|− t1 ; A1 ~ t2 ; A2 | P" := (j_rhol A1 A2 t1 t2 P)

Our relational and unary proof rules are mechanized as lemmas. We describe
as an example the application rule. We require that the arguments t1 and t2 be

ZU064-05-FPR main 16 August 2020 22:41

46 A. Aguirre et al.

related by P, and that the functions f1 and f2 send arguments related by P to
results related by Q. This can be described through the following lemma.

Lemma App2 :
f o r a l l (A1 A2 B1 B2 : Type)

(P : A1 −> A2 −> Prop) (Q: A1 −> A2 −> B1 −> B2 −> Prop)
(f 1 : A1 −> B1) (f2 : A2 −> B2) (t1 : A1) (t2 : A2) ,

(|− t1 ; A1 ~ t2 ; A2 | P) −>
(|− f 1 ; A1 −> B1 ~ f2 ; A2 −> B2 |

(fun r1 r2 => f o r a l l (x1 : A1) (x2 : A2) ,
P x1 x2 −> Q x1 x2 (r1 x1) (r2 x2))) −>

(|− (f 1 t1) ; B1 ~ (f2 t2) ; B2 | Q t1 t2) .

Working with a shallow embedding allows us to use Coq directly to manage most
of the type and logical context. So, in general, they do not need to explicitly appear
in the rules. However, notice that we need to pass t1 and t2 as arguments to Q
since they appear in its context. Compare this to the way the quantified variables
get replaced by the arguments in the conclusion of the [APP] rule in Section 6.
The choice of Coq as a base language also allows us to have a more general

recursion rule, that inducts on some arbitrary well-founded order:

Lemma RecWF2 :
f o r a l l (A B1 B2 : Type)

(P : A −> A −> Prop) (Q : A −> A −> B1 −> B2 −> Prop)
(f 1 : A −> B1) (f2 : A −> B2)
(R : A −> A −> Prop) ,

(well_founded R) −>
(f o r a l l (x1 x2 : A) ,

P x1 x2 −> (f o r a l l y1 y2 ,
R y1 x1 −> R y2 x2 −> P y1 y2 −>

Q y1 y2 (f1 y1) (f 2 y2)) −>
|− (f 1 x1) ; B1 ~ (f2 x2) ; B2 | Q x1 x2) −>

|− f 1 ; (A −> B1) ~ f2 ; (A −> B2) |
(fun r1 r2 => f o r a l l (x1 x2 : A) ,

P x1 x2 −> Q x1 x2 (r1 x1) (r2 x2)) .

Since the embedding is shallow, the proof of a lemma is also a proof of soundness of
the rule that the lemma is implementing. The choice of a shallow embedding makes
the proofs go through smoothly, and most of them can be fully automated with the
default auto tactic. This takes care of proving the forward implications (soundness)
in Theorems 3 and 6. To prove the reverse implications (relative completeness) we
need additional theorems, which can also be proven with auto. For instance, the
relative completeness of RHOL is expressed as

Theorem rhol_complete : f o r a l l (A1 : Type) (A2 : Type)
(t1 : A1) (t2 : A2)
(P : A1 −> A2 −> Prop) ,

(wt_uhol A1 t1) −> (wt_uhol A2 t2) −> P t1 t2 −>
|− t1 ; A1 ~ t2 ; A2 | P.

Proof .
auto .

Qed .

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 47

where wt_uhol is a predicate expressing well-typedness.
Our implementation also includes the proof of the two examples presented in

Sections 8.1 and Section 8.2. We verified these using the rules as lemmas. See for
example the following (abridged) proof of the first example.

Theorem fact_equiv :
|− f a c t o r i a l ; nat −> nat ~ f a c t o r i a l_a c c ; nat −> nat −> nat |

fun r1 r2 => f o r a l l n1 n2 , n1 = n2 −>
f o r a l l k , ((r1 n1)∗k)%nat = r2 n2 k .

Proof .
(∗∗ We s t a r t by apply ing the 2−s ided r e cu r s i on ru l e ∗)
apply (RecNat2 _ _ _

(fun _ _ r1 r2 =>
f o r a l l k , (r1 ∗k)%nat = r2 k) f a c t o r i a l f a c t o r i a l_a c c) .

i n t r o s x1 x2 Heq IH .
auto_absR .
(∗∗ We unfo ld the d e f i n i t i o n s ∗)
(∗ 2 l i n e s omitted ∗)
(∗∗ We s t a r t the case an a l y s i s ∗)
apply CaseNat2 .
d e s t ruc t Heq .
− (∗∗ We f i r s t need to show that both terms

take the same branch . ∗)
easy .

− (∗∗ Now we prove the 0 ~ 0 case ∗)
auto with a r i t h .

− (∗∗ F ina l l y we show the S ~ S case . ∗)
auto_abs2 .
apply Var2 .
(∗∗ The r e s t o f the proo f i s ba s i c r eason ing in

FOL with Arithmet ic . We j u s t need to
i n s t a n t i a t e the induct i on hypothes i s IH ∗)

(∗ 10 l i n e s omitted ∗)
r i ng .

Qed .

Here, the auto_abs tactics provide automation for some common patterns of
application of the rule [ABS]. Notice also how the structure of the Coq proof follows
the proof in Section 8.1.

10 Extensions

The system presented in this paper allows us to prove relational properties about
pure programs. Our system has four ingredients:

1. A base language and its typing rules (PCF)
2. A logic over such programs, based on inference rules (HOL)
3. A system of refinements over the type system defined in the first step (UHOL),

where the refinements are expressed in the logic of the second step
4. A similar system of refinements on pair of programs (RHOL), which uses the

unary system defined in the third step in the one-sided rules

ZU064-05-FPR main 16 August 2020 22:41

48 A. Aguirre et al.

The way these components interact is key to having a system that allows for an
informal style of reasoning while retaining completeness with respect to the base
logic. Abstracting a bit, the four steps above can be seen as a general recipe for
building a syntax-directed system for proving relational properties of programs. The
key idea is to keep types and refinements separate but, at the same time, make the
refinements mirror the construction of the types in such a way that type and logical
inference can be done simultaneously (see, e.g., how the logical implication in the
refinement of function abstraction mirrors the arrow in the type). Finding the right
way to achieve this is crucial in building unary and relational systems from the base
language’s type system and the base logic.

The work presented in this paper only considers simply-typed terms, but systems
for reasoning about pure programs are already very common in the literature. A
question that may arise is whether the approach used in this paper could also be
used to build a relational logic for a more expressive language and base logic, while
retaining an informal reasoning style and relative completeness. The answer to
this question is affirmative: since the publication of the conference version of this
article (Aguirre et al., 2017), a few systems based on the ideas of RHOL have been
developed to reason about programs in richer languages with effects. While the
individual designs of these systems are guided by the effects considered and by the
relational properties of interest, they all use recipes similar to the one described
above. The common challenge in the design of these systems is identifying abstraction
mechanisms which permit reasoning about the effects and their relational properties
in a natural way. These abstraction mechanisms often also require changes to the
underlying logic. We comment on some of these systems briefly.

Monadic Relational Cost (Radicek et al., 2018). This work starts from a
PCF-like language that has a monad to track the cost of a computation. The base
logic is HOL extended with principles to establish equality of monadic computations
with costs. The combination of functional refinements with the cost monad results in
a very expressive system where the proof of the cost of a computation may depend
on functional properties. Following the recipe described here, the work develops two
syntax-directed systems: a unary system UC to reason about the cost of a single
computation, and a relational system RC to reason about the difference in the costs
of two computations.

Guarded RHOL (Aguirre et al., 2018). This work extends the present article
in two ways: (1) it adds the later modality to the language and the base logic,
which allows reasoning about infinite data structures inductively, and (2) it adds
a monad of discrete probability distributions. Combined, the two extensions allow
the representation of, and reasoning about, stochastic processes such as Markov
Chains. The relational system syntax-directed system uses probabilistic couplings, a
common tool from probability theory, to express relations between pairs of Markov
Chains. One-sided rules help in proving properties of unsynchronized runs of a pair
of Markov Chains.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 49

Probabilistic RHOL (Sato et al., 2019). This work presents a relational logic
to reason about PCFp, a higher-order language with probabilistic sampling and
Bayesian conditioning. It presents a new base logic, PL, to express and prove
properties of probabilistic programs in PCFp. On top of this logic, two syntax-
directed systems are built using the recipe described above—a unary one (UPL)
and a relational one (RPL).

11 Conclusion

We have developed Relational Higher-Order Logic (RHOL), a new formalism to
reason about relational properties of (pure) higher-order programs written in a
simply typed λ-calculus with inductive types and recursive definitions. The system
is expressive, has solid foundations via an equivalence with Higher-Order Logic, and
yet retains the (nice) “feel” of relational refinement type systems. An important
direction for future work is to extend Relational Higher-Order Logic to other kinds
of effects, in particular mutable state.

For practical purposes, it will also be interesting to automate RHOL. We believe
that much of the technology developed for (relational) refinement types, and in
particular the automated generation of verification conditions (maybe with user
hints to switch between unary and binary modes of reasoning) and the connection
to SMT-solvers can be lifted without significant hurdle to Relational Higher-Order
Logic.

References

Abadi, Martín, Cardelli, Luca, & Curien, Pierre-Louis. (1993). Formal parametric
polymorphism. Pages 157–170 of: Conference Record of the Twentieth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Charleston,
South Carolina, USA, January 1993.

Abadi, Martín, Banerjee, Anindya, Heintze, Nevin, & Riecke, Jon G. (1999). A core
calculus of dependency. Pages 147–160 of: POPL ’99, Proceedings of the 26th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Antonio,
TX, USA, January 20-22, 1999.

Aczel, Peter, & Gambino, Nicola. (2000). Collection principles in dependent type theory.
Pages 1–23 of: Callaghan, Paul, Luo, Zhaohui, McKinna, James, & Pollack, Robert (eds),
Types for Proofs and Programs, International Workshop, TYPES 2000, Durham, UK,
December 8-12, 2000, Selected Papers. Lecture Notes in Computer Science, vol. 2277.
Springer.

Aczel, Peter, & Gambino, Nicola. (2006). The generalised type-theoretic interpretation of
constructive set theory. J. symb. log., 71(1), 67–103.

Adams, Robin, & Luo, Zhaohui. (2010). Classical predicative logic-enriched type theories.
Ann. pure appl. logic, 161(11), 1315–1345.

Aguirre, Alejandro, Barthe, Gilles, Gaboardi, Marco, Garg, Deepak, & Strub, Pierre-Yves.
(2017). A relational logic for higher-order programs. PACMPL, 1(ICFP), 21:1–21:29.

Aguirre, Alejandro, Barthe, Gilles, Birkedal, Lars, Bizjak, Ales, Gaboardi, Marco, & Garg,
Deepak. (2018). Relational reasoning for markov chains in a probabilistic guarded lambda
calculus. Pages 214–241 of: Ahmed, Amal (ed), Programming Languages and Systems -

ZU064-05-FPR main 16 August 2020 22:41

50 A. Aguirre et al.

27th European Symposium on Programming, ESOP 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10801.
Springer.

Alpern, Bowen, & Schneider, Fred B. (1985). Defining liveness. Inf. process. lett., 21(4),
181–185.

Asada, Kazuyuki, Sato, Ryosuke, & Kobayashi, Naoki. (2016). Verifying relational
properties of functional programs by first-order refinement. Science of computer
programming.

Barthe, Gilles, D’Argenio, Pedro R., & Rezk, Tamara. (2004). Secure information flow
by self-composition. Pages 100–114 of: 17th IEEE Computer Security Foundations
Workshop, (CSFW-17 2004), 28-30 June 2004, Pacific Grove, CA, USA.

Barthe, Gilles, Grégoire, Benjamin, & Béguelin, Santiago Zanella. (2009). Formal
certification of code-based cryptographic proofs. Pages 90–101 of: Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009.

Barthe, Gilles, Crespo, Juan Manuel, & Kunz, César. (2011). Relational verification using
product programs. Pages 200–214 of: FM 2011: Formal Methods - 17th International
Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011. Proceedings.

Barthe, Gilles, Köpf, Boris, Olmedo, Federico, & Béguelin, Santiago Zanella. (2012).
Probabilistic relational reasoning for differential privacy. Pages 97–110 of: Proceedings of
the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012.

Barthe, Gilles, Fournet, Cédric, Grégoire, Benjamin, Strub, Pierre-Yves, Swamy, Nikhil, &
Béguelin, Santiago Zanella. (2014). Probabilistic relational verification for cryptographic
implementations. Pages 193–206 of: Jagannathan, Suresh, & Sewell, Peter (eds),
Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL’14.

Barthe, Gilles, Gaboardi, Marco, Gallego Arias, Emilio Jesús, Hsu, Justin, Roth, Aaron,
& Strub, Pierre-Yves. (2015). Higher-order approximate relational refinement types
for mechanism design and differential privacy. Pages 55–68 of: Rajamani, Sriram K.,
& Walker, David (eds), Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,
January 15-17, 2015.

Barthe, Gilles, Grégoire, Benjamin, Hsu, Justin, & Strub, Pierre-Yves. (2017). Coupling
proofs are probabilistic product programs. Pages 161–174 of: Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017,
Paris, France, January 18-20, 2017.

Belo, João Filipe. (2007). Dependently sorted logic. Pages 33–50 of: Miculan, Marino,
Scagnetto, Ivan, & Honsell, Furio (eds), Types for Proofs and Programs, International
Conference, TYPES 2007, Cividale del Friuli, Italy, May 2-5, 2007, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 4941. Springer.

Benton, Nick. (2004). Simple relational correctness proofs for static analyses and program
transformations. Pages 14–25 of: Jones, Neil D., & Leroy, Xavier (eds), Proceedings of
the 31th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’04.

Beringer, Lennart, & Hofmann, Martin. (2007). Secure information flow and program
logics. Pages 233–248 of: 20th IEEE Computer Security Foundations Symposium, CSF
2007, 6-8 July 2007, Venice, Italy. IEEE Computer Society.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 51

Blatter, Lionel, Kosmatov, Nikolai, Gall, Pascale Le, & Prevosto, Virgile. (2017). Deductive
verification with relational properties. In Proc. of the 23th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2017),
Uppsala, Sweden. To Appear.

Çiçek, Ezgi, Barthe, Gilles, Gaboardi, Marco, Garg, Deepak, & Hoffmann, Jan. (2017).
Relational cost analysis. Pages 316–329 of: Castagna, Giuseppe, & Gordon, Andrew D.
(eds), Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. ACM.

Clarkson, Michael R., & Schneider, Fred B. (2008). Hyperproperties. Pages 51–65 of:
Proceedings of CSF’08.

Dreyer, Derek, Neis, Georg, Rossberg, Andreas, & Birkedal, Lars. (2010). A relational
modal logic for higher-order stateful adts. Pages 185–198 of: Proceedings of the 37th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2010, Madrid, Spain, January 17-23, 2010.

Dreyer, Derek, Ahmed, Amal, & Birkedal, Lars. (2011). Logical step-indexed logical
relations. Logical methods in computer science, 7(2).

Dunfield, Joshua, & Pfenning, Frank. (2004). Tridirectional typechecking. Pages 281–292
of: Jones, Neil D., & Leroy, Xavier (eds), Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2004, Venice,
Italy, January 14-16, 2004. ACM.

Dybjer, Peter. (1985). Program verification in a logical theory of constructions. Pages 334–
349 of: Jouannaud, Jean-Pierre (ed), Functional Programming Languages and Computer
Architecture, FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings. Lecture
Notes in Computer Science, vol. 201. Springer.

Freeman, Timothy S., & Pfenning, Frank. (1991). Refinement types for ML. Pages
268–277 of: Wise, David S. (ed), Proceedings of the ACM SIGPLAN’91 Conference on
Programming Language Design and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991. ACM.

Gaboardi, Marco, Haeberlen, Andreas, Hsu, Justin, Narayan, Arjun, & Pierce, Benjamin C.
(2013). Linear dependent types for differential privacy. Pages 357–370 of: Giacobazzi,
Roberto, & Cousot, Radhia (eds), The 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013. ACM.

Ghani, Neil, Forsberg, Fredrik Nordvall, & Simpson, Alex. (2016a). Comprehensive
parametric polymorphism: Categorical models and type theory. Pages 3–19 of:
Foundations of Software Science and Computation Structures - 19th International
Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings.

Ghani, Neil, Forsberg, Fredrik Nordvall, & Simpson, Alex. (2016b). Comprehensive
parametric polymorphism: Categorical models and type theory. Pages 3–19 of: Jacobs,
Bart, & Löding, Christof (eds), Foundations of Software Science and Computation
Structures - 19th International Conference, FOSSACS 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The
Netherlands, April 2-8, 2016, Proceedings. Lecture Notes in Computer Science, vol. 9634.
Springer.

Grimm, Niklas, Maillard, Kenji, Fournet, Cédric, Hritcu, Catalin, Maffei, Matteo,
Protzenko, Jonathan, Ramananandro, Tahina, Rastogi, Aseem, Swamy, Nikhil, &
Béguelin, Santiago Zanella. (2018). A monadic framework for relational verification:
applied to information security, program equivalence, and optimizations. Pages 130–145
of: Andronick, June, & Felty, Amy P. (eds), Proceedings of the 7th ACM SIGPLAN

ZU064-05-FPR main 16 August 2020 22:41

52 A. Aguirre et al.

International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles,
CA, USA, January 8-9, 2018. ACM.

Hatcliff, John, & Danvy, Olivier. (1997). A computational formalization for partial
evaluation. Mathematical structures in computer science, 7, 507–541.

Heintze, Nevin, & Riecke, Jon G. (1998). The slam calculus: Programming with secrecy and
integrity. Pages 365–377 of: POPL ’98, Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA, USA, January
19-21, 1998.

Jacobs, B. (1999). Categorical logic and type theory. Studies in Logic and the Foundations
of Mathematics, no. 141. Amsterdam: North Holland.

Jung, Ralf, Swasey, David, Sieczkowski, Filip, Svendsen, Kasper, Turon, Aaron, Birkedal,
Lars, & Dreyer, Derek. (2015). Iris: Monoids and invariants as an orthogonal basis
for concurrent reasoning. Pages 637–650 of: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015.

Kobayashi, Naoki, Lozes, Étienne, & Bruse, Florian. (2017). On the relationship between
higher-order recursion schemes and higher-order fixpoint logic. Pages 246–259 of:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017.

Kobayashi, Naoki, Tsukada, Takeshi, & Watanabe, Keiichi. (2018). Higher-order program
verification via HFL model checking. Pages 711–738 of: Programming Languages and
Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings.

Krogh-Jespersen, Morten, Svendsen, Kasper, & Birkedal, Lars. (2017). A relational model
of types-and-effects in higher-order concurrent separation logic. Pages 218–231 of:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017.

Melliès, Paul-André, & Zeilberger, Noam. (2015). Functors are type refinement systems.
Pages 3–16 of: Rajamani, Sriram K., & Walker, David (eds), Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. ACM.

Nanevski, Aleksandar, Banerjee, Anindya, & Garg, Deepak. (2013). Dependent type theory
for verification of information flow and access control policies. ACM trans. program.
lang. syst., 35(2), 6:1–6:41.

Pfenning, Frank. (2008). Church and Curry: Combining intrinsic and extrinsic typing.
Pages 303–338 of: C.Benzmüller, C.Brown, J.Siekmann, & R.Statman (eds), Reasoning
in Simple Type Theory: Festschrift in Honor of Peter B. Andrews on His 70th Birthday.
Studies in Logic 17. College Publications.

Plotkin, Gordon. (1973). Lambda-definability and logical relations.
Plotkin, Gordon. (1977). Lcf considered as a programming language. Theoretical computer
science, 5(3), 223 – 255.

Plotkin, Gordon D., & Abadi, Martín. (1993). A logic for parametric polymorphism. Pages
361–375 of: Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18,
1993, Proceedings.

Pottier, François, & Simonet, Vincent. (2002). Information flow inference for ML. Pages
319–330 of: Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, Portland, OR, USA, January 16-18, 2002.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 53

Radicek, Ivan, Barthe, Gilles, Gaboardi, Marco, Garg, Deepak, & Zuleger, Florian. (2018).
Monadic refinements for relational cost analysis. PACMPL, 2(POPL), 36:1–36:32.

Sato, Tetsuya, Aguirre, Alejandro, Barthe, Gilles, Gaboardi, Marco, Garg, Deepak, & Hsu,
Justin. (2019). Formal verification of higher-order probabilistic programs: reasoning
about approximation, convergence, bayesian inference, and optimization. PACMPL,
3(POPL), 38:1–38:30.

Sousa, Marcelo, & Dillig, Isil. (2016). Cartesian hoare logic for verifying k-safety properties.
Pages 57–69 of: Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June
13-17, 2016.

Statman, R. (1985). Logical relations and the typed λ-calculus. Information and control,
65(2-3), 85–97.

Stewart, Gordon, Banerjee, Anindya, & Nanevski, Aleksandar. (2013). Dependent types
for enforcement of information flow and erasure policies in heterogeneous data structures.
Pages 145–156 of: 15th International Symposium on Principles and Practice of Declarative
Programming, PPDP ’13, Madrid, Spain, September 16-18, 2013.

Swamy, Nikhil, Hritcu, Catalin, Keller, Chantal, Rastogi, Aseem, Delignat-Lavaud, Antoine,
Forest, Simon, Bhargavan, Karthikeyan, Fournet, Cédric, Strub, Pierre-Yves, Kohlweiss,
Markulf, Zinzindohoue, Jean Karim, & Béguelin, Santiago Zanella. (2016). Dependent
types and multi-monadic effects in F. Pages 256–270 of: Bodík, Rastislav, & Majumdar,
Rupak (eds), Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016. ACM.

Tait, William W. (1967). Intensional interpretations of functionals of finite type I. J. symb.
log., 32(2), 198–212.

Terauchi, Tachio, & Aiken, Alex. (2005). Secure information flow as a safety problem.
Pages 352–367 of: Hankin, Chris, & Siveroni, Igor (eds), Static Analysis Symposium.
lncs, vol. 3672.

The Coq Development Team. 2018 (Apr.). The coq proof assistant, version 8.8.0.
Unno, Hiroshi, Torii, Sho, & Sakamoto, Hiroki. (2017). Automating induction for solving
horn clauses. Pages 571–591 of: Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II.

Vazou, Niki, Seidel, Eric L., Jhala, Ranjit, Vytiniotis, Dimitrios, & Jones, Simon L. Peyton.
(2014). Refinement types for haskell. Pages 269–282 of: Jeuring, Johan, & Chakravarty,
Manuel M. T. (eds), Proceedings of the 19th ACM SIGPLAN international conference
on Functional programming, Gothenburg, Sweden, September 1-3, 2014. ACM.

Volpano, Dennis, Smith, Geoffrey, & Irvine, Cynthia. (1996). A sound type system for
secure flow analysis. Journal of computer security, 4(3), 1–21.

Wildmoser, Martin, & Nipkow, Tobias. (2004). Certifying machine code safety: Shallow
versus deep embedding. Pages 305–320 of: Theorem Proving in Higher Order Logics,
17th International Conference, TPHOLs 2004, Park City, Utah, USA, September 14-17,
2004, Proceedings.

Xi, Hongwei, & Pfenning, Frank. (1999). Dependent types in practical programming. Pages
214–227 of: Appel, Andrew W., & Aiken, Alex (eds), POPL ’99, Proceedings of the 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Antonio, TX, USA, January 20-22, 1999. ACM.

Yang, Hongseok. (2007). Relational separation logic. Theoretical computer science, 375(1-3),
308–334.

ZU064-05-FPR main 16 August 2020 22:41

54 A. Aguirre et al.

Zaks, Anna, & Pnueli, Amir. (2008). CoVaC: Compiler Validation by Program Analysis of
the Cross-Product. Pages 35–51 of: Cuéllar, Jorge, Maibaum, T. S. E., & Sere, Kaisa
(eds), Formal Methods. Lecture Notes in Computer Science, vol. 5014.

Zeilberger, Noam. (2016). Principles of type refinement. Notes for OPLSS 2016 school.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 55

A Semantics

A.1 Semantics of HOL

A.1.1 Types

The interpretation for the types corresponds directly to the usual representation of
pairs, lists and functions in set theory.

JBK, {ff, tt}
JNK, N

Jlistτ K, listJτK

Jτ1× τ2K, Jτ1K× Jτ2K

Jτ1→ τ2K, Jτ1K→ Jτ2K

A.1.2 Terms

The terms are given an interpretation with respect to a valuation ρ which is a partial
function mapping variables to elements in the interpretation of their type. Given ρ,
we use the notation ρ[v/x] to denote the unique extension of ρ such that if y = x

then ρ[v/x](y) = v and, otherwise, ρ[v/x](y) = ρ(y).

LxMρ , ρ(x) L〈t,u〉Mρ := 〈LtMρ,LuMρ〉 Lπi tMρ , πi(LtMρ)

Lλx : τ.tMρ , λv : JτK.LxMρ[LvMρ/v] LcMρ , c LS tMρ , S LtMρ

Lt :: uMρ , LtMρ :: LuMρ

Lcase t of [] 7→ u;_ :: _ 7→ vMρ ,

{
LuMρ if LtMρ = []
LvMρ M N if LtMρ =M ::N

Lletrec f x= tMρ , F where F is the unique solution of the fixpoint equation

A.1.3 Formulas

We assume that for predicate P of arity τ1× ·· ·× τn, we have an interpretation
JP K∈ Jτ1K×·· ·×JτnK that satisfies the axioms for P. The interpretation of a formula
is defined as follows:

ZU064-05-FPR main 16 August 2020 22:41

56 A. Aguirre et al.

LP (t1, . . . , tn)Mρ , (Jt1Kρ, . . . ,JtnKρ) ∈ JP K

L>Mρ , >̃
L⊥Mρ , ⊥̃

Lφ1∧φ2Mρ , Lφ1Mρ ∧̃ Lφ2Mρ
Lφ1⇒ φ2Mρ , Lφ1Mρ ⇒̃ Lφ2Mρ
L∀x : τ.φMρ , ∀̃v.v ∈ JτK⇒̃ LφMρ[v/x]

where we use the tilde (∼) to distinguish between the (R)HOL connectives and
the meta-level connectives.

A.1.4 Soundness

We have the following result:

Theorem 27 (Soundness of set-theoretical semantics)
If Γ |Ψ ` φ, then for every valuation ρ |= Γ,

∧
ψ∈ΨLψMρ implies LφMρ.

Proof
By induction on the length of the derivation of Γ |Ψ ` φ.

A.2 Semantics of UHOL

The intended meaning of a UHOL judgment Γ |Ψ ` t : τ | φ is:

for all ρ. s.t. ρ |= Γ, L
∧

ΨMρ implies LφMρ[LtMρ/r]

We have the following result:

Theorem 28 (Set-theoretical soundness and consistency of UHOL)
If Γ |Ψ ` t : σ | φ, then for every valuation ρ |= Γ,

∧
ψ∈ΨLψMρ implies LφMρ[LtMρ/r].

In particular, there is no proof of Γ | ∅ ` t : σ | ⊥ in UHOL.

Proof
It is a direct consequence of the embedding from UHOL into HOL and the soundness
of HOL.

A.3 Semantics of RHOL

The intended meaning of a RHOL judgment Γ |Ψ ` t1 : τ1 ∼ t2 : τ2 | φ is:

for all ρ. s.t. ρ |= Γ, L
∧

ΨMρ implies LφMρ[Lt1Mρ/r1][Lt2Mρ/r2]

We have the following result:

Theorem 29 (Set-theoretical soundness and consistency of RHOL)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 57

If Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ, then for every valuation ρ |= Γ,
∧
ψ∈ΨLψMρ implies

LφMρ[Lt1Mρ/r1],[Lt2Mρ/r2]. In particular, there is no proof of Γ | ∅ ` t1 : σ1 ∼ t2 : σ2 | ⊥
for any Γ.

Proof
It is a direct consequence of the embedding of RHOL into HOL and the soundness
of HOL.

B Additional rules

For reasons of space, we have omitted some derivable and admissible rules in HOL,
UHOL and RHOL. These are useful to prove some theorems and examples. We now
discuss the most interesting among them:

B.1 HOL

The following rules are derivable in HOL:

• A cut rule can be derived from [⇒I] and [⇒E]:

Γ |Ψ,φ′ ` φ Γ |Ψ ` φ′

Γ |Ψ ` φ CUT

• A rule for case analysis can be derived from [LIST]:

Γ ` l : listτ Γ |Ψ, l = [] ` φ Γ,h : τ, t : listτ |Ψ, l = h :: t ` φ
Γ |Ψ ` φ DESTR−LIST

• A rule [S-LIST] for strong induction can be derived from [LIST]:

Γ |Ψ ` φ[[]/t] Γ,h : τ, t : listτ |Ψ,∀u : listτ .|u| ≤ |t| ⇒ φ[u/t] ` φ[h :: t/t]
Γ |Ψ ` ∀t : listτ .φ

• A rule [D-LIST] for (weak) double induction can be derived by applying [LIST]
twice:

Γ |Ψ ` φ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 |Ψ,φ[t1/l1][[]/l2] ` φ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 |Ψ,φ[[]/l1][t2/l2] ` φ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t2 : listτ2 ,h2 : τ2, t2 : listτ2 |Ψ,φ[t1/l1][t2/l2] ` φ[h1 :: t1/l1][h2 :: t2/l2]
Γ |Ψ ` ∀l1l2.φ

ZU064-05-FPR main 16 August 2020 22:41

58 A. Aguirre et al.

• A rule [S-D-LIST] for strong double induction can be derived from [D-LIST]:

Γ |Ψ ` φ[[]/l1][[]/l2]
Γ,h1 : τ1, t1 : listτ1 |Ψ,∀m1.|m1| ≤ |t1| ⇒ φ[m1/l1][[]/l2] ` φ[h1 :: t1/l1][[]/l2]
Γ,h2 : τ2, t2 : listτ2 |Ψ,∀m2.|m2| ≤ |t2| ⇒ φ[[]/l1][m2/l2] ` φ[[]/l1][h2 :: t2/l2]

Γ,h1 : τ1, t1 : listτ1 ,h2 : τ2, t2 : listτ2 |
Ψ,∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |h2 :: t2|)⇒ φ[m1/l1][m2/l2] `

φ[h1 :: t1/l1][h2 :: t2/l2]
Γ |Ψ ` ∀l1l2.φ

B.2 RHOL

The following version [NATCASE*] of the case rule with an extra premise on the
case guards is admissible:

Γ |Ψ ` t1 : listτ1 ∼ t2 : listτ2 | φ′∧ (r1 = 0⇔ r2 = 0)
Γ |Ψ,φ′[0/r1][0/r2] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.φ
′[Sx1/r1][Sx2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2;S 7→ v2 : σ2 | φ

The one sided version is admissible as well:
Γ |Ψ ` t1 : listτ1 ∼ t2 : σ2 | φ′

Γ |Ψ,φ′[0/r1][t2/r2] ` u1 : σ1 ∼ t2 : σ2 | φ
Γ |Ψ ` v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.φ

′[Sx1/r1]⇒ φ[r1 x1/r1]
Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ t2 : σ2 | φ

NATCASE∗−L

Notice that we can always recover the initial version of the rule by instantiating
φ′ as t1 = r1∧ t2 = r2.

C Proofs

C.1 Proof of Theorem 6

The easier direction is the reverse implication. To prove it, one just notices that we
can trivially apply [SUB] instantiating φ′ as a tautology that matches the structure
of the types, For instance, for a base type N we would use >, for an arrow type
N→ N we would use ∀x.⊥⇒>, and so on.

We now prove the direct implication by induction on the derivation of Γ |Ψ ` t1 :
σ1 ∼ t2 : σ2 | φ. Suppose the last rule is:
Case. [VAR] (similarly, [NIL] and [PROJ])
The premise of the rule is already the judgment we want to prove.

Case [ABS]. The rule is

Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ
Γ |Ψ ` λx1.t1 : τ1→ σ1 ∼ λx2.t2 : τ2→ σ2 | ∀x1,x2.φ

′⇒ φ[r1 x1/r1][r2 x2/r2]

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 59

By applying the induction hypothesis on the premise:
Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` φ[t1/r1][t2/r2] (1)
By applying [⇒I] on (1):
Γ,x1 : τ1,x2 : τ2 |Ψ ` φ′⇒ φ[t1/r1][t2/r2] (2)
By applying [∀I] twice on (2):
Γ |Ψ ` ∀x1x2.φ

′⇒ φ[t1/r1][t2/r2] (3)
Finally, by applying CONV on (3):
Γ |Ψ ` ∀x1x2.φ

′⇒ φ[(λx1.t1) x1/r1][(λx2.t2) x2/r2]
Proof for [ABS-L] (and [ABS-R]) is analogous.

Case [APP]. The rule is

Γ |Ψ ` t1 : τ1→ σ1 ∼ t2 : τ2→ σ2 | ∀x1,x2.φ
′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2]

By applying the induction hypothesis on the premises we have:
Γ |Ψ ` ∀x1x2.φ

′[x1/r1][x2/r2]⇒ φ[t1 x1/r1][t2 x2/r2] (1)
and
Γ |Ψ ` φ′[u1/r1][u2/r2] (2)
By applying twice [∀E] to (1) with u1,u2:
Γ |Ψ ` φ′[u1/r1][u2/r2]⇒ φ[t1 u1/r1][t2 u2/r2] (3)
and by applying [⇒E] to (3) and (2):
Γ |Ψ ` φ[t1 u1/r1][t2 u2/r2]
Proof for [APP-L] (and APP-R) is analogous, and it uses the UHOL embedding for
the premise about the argument. Proofs for [CONS] and [PAIR] are very similar as
well.

Case [SUB]. The rule is

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ `HOL φ
′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ

Applying the inductive hypothesis on the premises we have:
Γ |Ψ ` φ′[t1/r1][t2/r2]
and
Γ |Ψ ` φ′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]
The proof is simply applying [⇒E].

ZU064-05-FPR main 16 August 2020 22:41

60 A. Aguirre et al.

Case [LETREC]. The rule is

Def (f1,x1,e1) Def (f2,x2,e2)
Γ,x1 : I1,x2 : I2,f1 : I1→ σ,f2 : I2→ σ2 |Ψ,φ′,

∀m1m2.(|m1|, |m2|)< (|x1|, |x2|)⇒ φ′[m1/x1][m2/x2]⇒
φ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] `

e1 : σ1 ∼ e2 : σ2 | φ
Γ |Ψ ` letrec f1 x1 = e1 : I1→ σ2 ∼ letrec f2 x2 = e2 : I2→ σ2 |

∀x1x2.φ
′⇒ φ[r1 x1/r1][r2 x2/r2]

As an example, we prove the list and nat case, but for other datatypes the proof is
similar. Applying the inductive hypothesis on the premise we have:

Γ, l1,n2,f1,f2 |Ψ,∀m1m2.(|m1|, |m2|)< (|l1|, |n2|)⇒ φ[f1m1/r1][f2m2/r2] `
φ[e1/r1][e2/r2]

By [∀I] we derive:

Γ |Ψ ` ∀f1,f2, l1,n2.(∀m1m2.(|m1|, |m2|)< (|l1|, |n2|)⇒
φ[f1m1/r1][f2m2/r2])⇒ φ[e1/r1][e2/r2] . (Φ)

We want to prove

Γ |Ψ ` ∀l1n2.φ[F1 l1/r1][F2 n2/r2]

where we use the abbreviations

F1 := letrec f1 x1 = e1

F2 := letrec f2 x2 = e2

We will use strong double induction over natural numbers and lists. We need to
prove four premises. Since we can prove (Φ) from Γ,Ψ, we can add it to the axioms:

(A) Γ |Ψ,Φ ` φ[F1 []/r1][F2 0/r2]
(B) Γ,h1, t1 |Ψ,Φ,∀m1.|m1| ≤ |t1|⇒φ[F1 m1/r1][F2 0/r2]`φ[F1 (h1 :: t1)/r1][F2 0/r2]
(C) Γ,x2 |Ψ,Φ,∀m2.|m2| ≤ |x2|⇒φ[F1 []/r1][F2 m2/r2]`φ[F1 []/r1][F2 (Sx2)/r2]
(D) Γ,h1, t1,x2 |Ψ,Φ,∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒

φ[F1 m1/r1][F2 m2/r2] ` φ[F1 (h1 :: t1)/r1][F2 (Sx2)/r2]

To prove them, we will instantiate the quantifiers in Φ with the appropriate
variables.

To prove (A), we instantiate Φ at F1,F2, [],0:

(∀m1m2.(|m1|, |m2|)< (|[]|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and, since (|m1|, |m2|)< (|[]|, |0|) is trivially false, then

φ[e1/r1][e2/r2][[]/l1][0/n2][F1/f1][F2/f2]

and by beta-expansion and [CONV]:

φ[F1 []/r1][F2 0/r2]

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 61

.

To prove (B), we instantiate Φ at F1,F2,h1 :: t1,0

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][h1 :: t1/l1][0/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |0|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[F1 h1 :: t1/r1][F2 0/r2]

Since (|m1|, |m2|) < (|h1 :: t1|, |0|) is only satisfied if |m1| ≤ |t1| ∧m2 = 0, we can
write it as:

(∀m1m2.(|m1| ≤ |t1|∧m2 = 0)⇒φ[F1m1/r1][F2m2/r2])⇒φ[F1 h1 :: t1/r1][F2 0/r2]

Meanwhile, one of the antecedents of (B) is ∀m1.|m1| ≤ |t1| ⇒ φ[F1 m1/r1][F2 0/r2],
so by [⇒E] we prove φ[F1 h1 :: t1/r1][F2 0/r2], which is the consequent of (B).

The proof of (C) is symmetrical to the proof of (B).
To prove (D), we instantiate Φ at F1,F2,h1 :: t1,Sx2

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[e1/r1][e2/r2][h1 :: t1/l1][Sx2/n2][F1/f1][F2/f2]

by beta-expansion:

(∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒ φ[F1m1/r1][F2m2/r2])⇒
φ[F1 h1 :: t1/r1][F2 (Sx2)/r2]

One of the antecedents of (D) is exactly ∀m1m2.(|m1|, |m2|)< (|h1 :: t1|, |Sx2|)⇒
φ[F1 m1/r1][F2 m2/r2], so by [⇒E] we prove φ[F1 h1 :: t1/r1][F2 (Sx2)/r2], which
is the consequent of (D).
Proof of [LETREC-L] (and [LETREC-R]) is analogous, and uses simple strong

induction.

Case [CASE]. The rule:

Γ |Ψ ` l1 : listτ1 ∼ l2 : listτ2 | r1 = []⇔ r2 = []
Γ |Ψ, l1 = [], l2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |
∀h1h2t1t2.l1 = h1 :: t1⇒ l2 = h2 :: t2⇒ φ[r1 h1 t1/r1][r2 h2 t2/r2]

Γ |Ψ ` case l1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case l2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ

We prove the rule for natural numbers. Applying the induction hypothesis to the
premises of the rule, we have:

(A) Γ |Ψ ` t1 = 0⇔ t2 = 0
(B) Γ |Ψ, t1 = 0, t2 = 0 ` φ[u1/r1][u2/r2]
(C) Γ |Ψ ` ∀x1,x2.t1 = Sx1⇒ t2 = Sx2⇒ φ[v1 x1/r1][v2 x2/r2]

We want to prove:

Γ |Ψ ` φ[(case t1 of 0 7→ u1;S 7→ v1)/r1][(case t2 of 0 7→ u2;S 7→ v2)/r2]

ZU064-05-FPR main 16 August 2020 22:41

62 A. Aguirre et al.

By applying [DESTR-NAT] twice, we get four premises:

1. Γ |Ψ, t1 = 0, t2 = 0 ` φ[(case t1 of 0 7→ u1;S 7→ v1)/r1][(case t2 of 0 7→ u2;S 7→
v2)/r2]

2. Γ,m2 |Ψ, t1 = 0, t2 = Sm2 ` φ[(case t1 of 0 7→ u1;S 7→ v1)/r1][(case t2 of 0 7→
u2;S 7→ v2)/r2]

3. Γ,m1 |Ψ, t1 = Sm1, t2 = 0 ` φ[(case t1 of 0 7→ u1;S 7→ v1)/r1][(case t2 of 0 7→
u2;S 7→ v2)/r2]

4. Γ,m1,m2 |Ψ, t1 =Sm1, t2 =Sm2 `φ[(case t1 of 0 7→u1;S 7→ v1)/r1][(case t2 of 0 7→
u2;S 7→ v2)/r2]

We can prove (2) and (3) by deriving a contradiction with [NC] and (A). After
beta-reducing in (1) and (4) we can easily derive them from (B) and (C) respectively.
Proof of [CASE-L] (and [CASE-R]) is analogous.

C.2 Proof of Lemma 10

By the embedding into HOL, we have:

• Γ |Ψ ` φ[t1/r]
• Γ |Ψ ` φ′[t2/r]

and by the [∧I] rule,
Γ |Ψ ` φ[t1/r]∧φ′[t2/r].

Finally, by undoing the embedding:

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ.

C.3 Proof of Theorem 11

By induction on the derivation:

Case. x : τ,Γ ` x : τ
To prove : x : |τ |, |Γ| ` bτc(x),bΓc ` x : |τ | | bτc(r). Directly by [VAR].

Case.
Γ,x : τ ` t : σ

Γ ` λx.t : Π(x : τ).σ
To prove: |Γ| | bΓc ` λx.t : |Π(x : τ).σ| | bΠ(x : τ).σc(r).
Expanding the definitions:
|Γ| | bΓc ` λx.t : |τ | → |σ| | ∀x.bτc(x)⇒ bσc(rx)
By induction hypothesis on the premise:
|Γ|,x : |τ | | bΓc,bτc(x) ` t : |σ| | bσc(r)
Directly by [ABS].

Case.
Γ ` t : Π(x : τ).σ Γ ` u : τ

Γ ` t u : σ[u/x]
To prove: |Γ| | bΓc ` t u : |σ[u/x]| | bσ[u/x]c(r).

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 63

Expanding the definitions:
|Γ| | bΓc ` t e2 : |σ| | bσc(r)[u/x]
By induction hypothesis on the premise:
|Γ| | bΓc ` t : |τ | → |σ| | ∀x.bτc(x)⇒ bσc(rx)
and
|Γ| | bΓc ` u : |τ | | bτc(r)
We get the result directly by [APP].

Case.
Γ ` t : listτ Γ ` u : σ Γ ` v : τ → listτ → σ

Γ ` case t of [] 7→ u;_ :: _ 7→ v : σ
To prove: |Γ| | bΓc ` case t of [] 7→ u;_ :: _ 7→ v : |σ| | bσc(r)
By induction hypothesis on the premises:
|Γ| | bΓc ` t : |listτ | | blistτ c(r), (1)
|Γ| | bΓc ` u : |σ| | bσc(r), (2)
and
|Γ| | bΓc ` v : |τ → listτ → σ| | bτ → listτ → σc(r) (3)
Expanding the definitions on (3) we get:
|Γ| | bΓc ` v : |τ | → |listτ | → |σ| | ∀x.bτc(x)⇒∀y.blistτ c(y)⇒ bσc(r x y) (4)
And from (1), (2) and (4) we apply [LISTCASE*] and we get the result. Notice that
(2) and (4) are stronger than the premises of the rule, so we will first need to apply
[SUB] to weaken them

Case.
Γ ` τ

Γ ` [] : listτ
To prove: |Γ| | bΓc ` [] : |listτ | | blistτ c(r)
Expanding the definitions: |Γ| | bΓc ` [] : list|τ | |All(r,x,bτc(x))
And by the definition of All for the empty case, trivially All([],x,bτc(x)), so we
apply the [NIL] rule and we get the result.

Case.
Γ ` h : τ Γ ` t : listτ

Γ ` h :: t : listτ
To prove: |Γ| | bΓc ` h :: t : |listτ | | blistτ c(r).
Expanding the definitions: |Γ| | bΓc ` h :: t : list|τ | |All(r,λx.bτc(x)).
By induction hypothesis on the premises, we have:
|Γ| | bΓc ` h : |τ | | bτc(r)
and
|Γ| | bΓc ` t : list|τ | |All(r,λx.bτc(x)).
We complete the proof by the [CONS] rule and the definition of All in the inductive
case.

Case.
Γ ` τ � σ Γ ` t : τ

Γ ` t : σ
To prove: |Γ| | bΓc ` t : |σ| | bσc(r)
and, since |σ| ≡ |τ |, it is the same as writing
|Γ| | bΓc ` t : |τ | | bτc(r)

ZU064-05-FPR main 16 August 2020 22:41

64 A. Aguirre et al.

By induction hypothesis on the premises:
|Γ|,x : |τ | | bΓc,bτc(x) ` bσc(x)
and
|Γ| | bΓc ` t : |τ | | bτc(r)
The proof is completed by applying [⇒I] to the first premise, and then [SUB].

Case.
Γ,x : τ,f : Π(y : {r : τ | y < x}).σ[y/x] ` t : σ Def (f,x, t)

Γ ` letrec f x= t : Π(x : τ).σ
To prove: |Γ| | bΓc ` letrec f x= t : |Π(x : τ).σ| | bΠ(x : τ).σc(r)
By induction hypothesis on the premise:
|Γ|,x : |τ |,f : |τ | → |σ| | bΓc,bτc(x),∀y.bτc(y)∧y < x⇒bσ[y/x]c(fy) ` t : |σ| | bσc(r)
Directly by [LETREC].

C.4 Proof of Theorem 12

We will use without proof the following results:

Lemma 30
If Γ ` τ � σ in refinement types, then |τ | ≡ |σ|.

Proof
By induction on the derivation.

Lemma 31
For every type τ and expression e and variable x 6∈ FV (τ,e), bτc(e) = bτc(x)[e/x]

Proof
By structural induction.

Now we proceed with the proof of the theorem.
By induction on the derivation:

Case.
Γ ` τ

Γ ` τ � τ
To show: |Γ|,x : |τ | | bτc(x) ` bτc(x). Directly by [AX].

Case.
Γ ` τ1 � τ2 Γ ` τ2 � τ3

Γ ` τ1 � τ3
To show: |Γ|,x : |τ1| | bΓc,bτ1c(x) ` bτ3c(x).
By induction hypothesis on the premises,
|Γ|,x : |τ1| | bΓc,bτ1c(x) ` bτ2c(x)
and
|Γ|,x : |τ2| | bΓc,bτ2c(x) ` bτ3c(x).
We complete the proof by [CUT]. Notice that |τ1| ≡ |τ2| ≡ |τ3|.

Case.
Γ ` τ1 � τ2

Γ ` listτ1 � listτ2
To show: |Γ|,x : |listτ1 | | bΓc,blistτ1c(x) ` blistτ2c(r)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 65

Expanding the definitions: |Γ|,x : list|τ1| | bΓc,> ` >,
which is trivial.

Case.
Γ ` {r : τ | φ}

Γ ` {r : τ | φ} � τ
To show: |Γ|,x : |{r : τ | φ}| | b{r : τ | φ}c(x) ` bτc(x).
Expanding the definitions: |Γ|,x : |{r : τ | φ}| | bτc(x)∧φ[x/r] ` bτc(x)
and now the proof is completed trivially by [∧E] and [AX].

Case.
Γ ` τ � σ Γ,r : τ ` φ

Γ ` τ � {r : σ | φ}
To show: |Γ|,r : |τ | ` bΓc,bτc(r) ` b{r : σ | φ}c(r)
Expanding the definition: |Γ|,r : |τ | | bΓc,bτc(r) ` bσc(r)∧φ
By induction hypothesis on the premises we have:
|Γ|,r : |τ | | bΓc,bτc(r) ` bσc(r)
and:
|Γ|,r : |τ | | bΓc,bτc(r) ` φ
We complete the proof by applying the [∧I] rule.

Case.
Γ ` σ2 � σ1 Γ,x : σ2 ` τ1 � τ2

Γ `Π(x : σ1).τ1 �Π(x : σ2).τ2
To show: |Γ|,f : |Π(x : σ1).τ1| | bΓc,bΠ(x : σ1).τ1c(f) ` bΠ(x : σ2).τ2c(f)
Expanding the definitions:
|Γ|,f : |Π(x : σ1).τ1| | bΓc,∀x.bσ1c(x)⇒ bτ1c(fx) ` ∀x.bσ2c(x)⇒ bτ2c(fx)
By the rules [∀I] and [⇒I] it suffices to prove:
|Γ|,f : |Π(x : σ1).τ1|,x : |σ2| | bΓc,∀x.bσ1c(x)⇒ bτ1c(fx),bσ2c(x) ` bτ2c(fx) (1)
On the other hand, by induction hypothesis on the premises:
|Γ|,x : |σ2| | bΓc,bσ2c(x) ` bσ1c(x) (2)
and
|Γ|,x : |σ2|,y : |τ1| | bΓc,bσ2c(x),bτ1c(y) ` bτ2c(y) (3)
which we can weaken respectively to:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | |Γ|,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bσ1c(x) (4)
and
|Γ|,x : |σ2|,y : |τ1|,f : |Π(x : σ1).τ1| | |Γ|,bσ2c(x),bτ1c(y),∀x.bσ1c(x)⇒ bτ1c(fx) `
bτ2c(y) (5)
From (4), by doing a cut with its own premise ∀x.bσ1c(x)⇒ bτ1c(fx), we derive:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bτ1c(fx) (6)
From (5), by [⇒I] and [∀I] we can derive:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x) ⇒ bτ1c(fx) ` ∀y.bτ1c(y) ⇒
bτ2c(y)
And by [∀E]

|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) `
bτ1c(fx)⇒ bτ2c(fx) (7)

ZU064-05-FPR main 16 August 2020 22:41

66 A. Aguirre et al.

Finally, from (6) and (7) by [⇒E] we get:
|Γ|,x : |σ2|,f : |Π(x : σ1).τ1| | bΓc,bσ2c(x),∀x.bσ1c(x)⇒ bτ1c(fx) ` bτ2c(fx)
and by one last application of [⇒I] we get what we wanted to prove.

C.5 Proof of Theorem 14

We can recover the lemma from the unary case:

Lemma 32
For every type τ , expressions t1, t2 and variables x1,x2 6∈ FV (τ, t1, t2),

TτU(t1, t2) = TτU(x1,x2)[t1/x1][t2/x2]

Most cases are very similar to the unary case, so we will only show the most
interesting ones:

Case.
Γ ` T

Γ ` []∼ [] :: listT
To show: |Γ| | TΓU ` [] : |listT | ∼ [] : |listT | | TlistTU(r1,r2).
There are two options. If T is a unary type, we have to prove:
|Γ| | TΓU ` [] : |listT | ∼ [] : |listT | |

∧
i∈{1,2}All(ri,λx.bτc(x))

And by the definition of All we can directly prove:
∅ | ∅ `All([],λx.bτc(x))∧All([],λx.bτc(x))
If T is a relational type, we have to prove:
|Γ| | TΓU ` [] : |listT | ∼ [] : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:
∅ | ∅ `All2([], [],λx1.λx2.TTU(x1,x2))

Case.
Γ ` h1 ∼ h2 :: T Γ ` t1 ∼ t2 :: listT

Γ ` h1 :: t1 ∼ h2 :: t2 :: listT
To show: |Γ| | TΓU ` h1 :: t2 : |listT | ∼ h2 :: t2 : |listT | | listT .
There are two options. If T is a unary type, we have to prove:
|Γ| | TΓU ` h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |

∧
i∈{1,2}All(ri,λx.bT c(x))

By induction hypothesis we have:
|Γ| | TΓU ` h1 : |T | ∼ h2 :: t2 : |T | |

∧
i∈{1,2}bT c(ri)

and
|Γ| | TΓU ` t1 : |listT | ∼ t2 : |listT | |

∧
i∈{1,2}All(ri,λx.bT c(x))

And by the definition of All we can directly prove:∧
i∈{1,2}bT c(hi)⇒

∧
i∈{1,2}All(ti,λx.bT c(x))⇒

∧
i∈{1,2}All(hi :: ti,λx.bT c(x))

So by the [CONS] rule, we prove the result. If T is a relational type, we have to
prove:
|Γ| | TΓU ` h1 :: t1 : |listT | ∼ h2 :: t2 : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
By induction hypothesis we have:
|Γ| | TΓU ` h1 : |T | ∼ h2 :: t2 : |T | | TTU(r1,r2)
and
|Γ| | TΓU ` t1 : |listT | ∼ t2 : |listT | |All2(r1,r2,λx1.λx2.TTU(x1,x2))
And by the definition of All2 we can directly prove:

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 67

TTU(h1,h2)⇒All2(t1, t2,λx1.λx2.TTU(x1,x2))⇒All(h1 :: t1,h1 ::h2,λx1.λx2.TTU(x1,x2))
So by the [CONS] rule, we prove the result.

Case.

Γ ` t1 ∼ t2 :: listT
Γ ` t1 = []⇔ t2 = [] Γ ` u1 ∼ u2 :: U Γ ` v1 ∼ v2 :: Π(h :: T).Π(t :: listT).U

Γ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 :: U
To show:
|Γ| | TΓU ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : |U | ∼ case t2 of [] 7→ u2;_ :: _ 7→ r2 : |U | |
TUU(r1,r2)
By induction hypothesis we have:
|Γ| | TΓU ` t1 = []⇔ t2 = [],
|Γ| | TΓU ` u1 : |U | ∼ u2 : |U | | TUU(r1,r2)
and
|Γ| |TΓU` v1 :T → listT →U ∼ v2 :T → listT →U | ∀h1h2.TTU(h1,h2)⇒∀t1t2.TlistTU(t1, t2)⇒
TUU(r1h1t1, h2t2r2)
By applying the [LISTCASE*] rule to the three premises we get the result.

Case.

Γ,x :: T,f :: Π(y :: {y :: T | (y1,y2)< (x1,x2)}).U [y/x] ` t1 ∼ t2 :: U
Γ `Π(x :: T).U Def (f1,x1, t1) Def (f2,x2, t2)
Γ ` letrec f1 x1 = t1 ∼ letrec f2 x2 = t2 :: Π(x :: T).U

To show:
|Γ| | TΓU ` letrec f1 x1 = t1 : |Π(x :: T).U | ∼ letrec f2 x2 = t2 : |Π(x :: T).U | | TΠ(x ::
T).UU(r1,r2)
Expanding the definitions:
|Γ| |TΓU` letrec f1 x1 = t1 : |T |→ |U | ∼ letrec f2 x2 = t2 : |T |→ |U | | ∀x1x2.TTU(x1,x2)⇒
TUU(r1x1, r2x2)
By induction hypothesis on the premise:
|Γ|,x1,x2 : |T |,f1,f2 : |T | → |U | | TΓU,TTU(x1,x2),∀y1,y2.(TTU(y1,y2)∧ (y1,y2) <
(x1,x2))⇒ TUU(f1x1, f2x2) ` t1 : |U | ∼ t2 : |U | | TUU(r1,r2)
And we apply the [LETREC] rule to get the result.

C.6 Proof of Lemma 16

By induction on the derivation of τ ↘ `.

Case.
`v `′

T`′(τ)↘ `

Since ` 6v a (given) and `v `′ (premise), it must be the case that `′ 6v a. Hence,
by definition, bT`′(τ)ca(x,y) =>.

Case.
τ ↘ `

T`′(τ)↘ `
We consider two cases:

ZU064-05-FPR main 16 August 2020 22:41

68 A. Aguirre et al.

If `′ 6v a, then bT`′(τ)ca(x,y) => by definition.

If `′ v a, then bT`′(τ)ca(x,y) = bτca(x,y) by definition. By i.h. on the premise,
we have bτca(x,y)≡>. Composing, bT`′(τ)ca(x,y)≡>.

Case.
τ1↘ ` τ2↘ `

τ1× τ2↘ `
By i.h. on the premises, we have bτica(x,y)≡> for i= 1,2 and all x,y. Therefore,
bτ1× τ2ca(x,y), bτ1ca(π1(x),π1(y))∧bτ2ca(π2(x),π2(y))≡>∧>≡>.

Case.
τ2↘ `

τ1→ τ2↘ `
By i.h. on the premise, we have bτ2ca(x,y) ≡ > for all x,y. Hence, bτ1 →

τ2ca(x,y), (∀v,w.bτ1ca(v,w)⇒ bτ2ca(x v,y w))≡ (∀v,w.bτ1ca(v,w)⇒>)≡>.

C.7 Proof of Theorem 17

By induction on the given derivation of Γ ` e : τ .

Case.
Γ ` tt : B

To show: |Γ| | bΓca ` tt : B∼ tt : B | (r1 = tt∧r2 = tt)∨ (r1 = ff ∧r2 = ff).
By rule TRUE, it suffices to show (tt = tt∧ tt = tt)∨ (tt = ff∧ tt = ff) in HOL, which
is trivial.

Case.
Γ ` e : B Γ ` et : τ Γ ` ef : τ

Γ ` case e of tt 7→ et;ff 7→ ef : τ
To show: |Γ| | bΓca ` (case |e|1 of tt 7→ |et|1;ff 7→ |ef |1) : |τ | ∼ (case |e|2 of tt 7→
|et|2;ff 7→ |ef |2) : |τ | | bτca(r1,r2).
By i.h. on the first premise:
|Γ| | bΓca ` |e|1 : B∼ |e|2 : B | (r1 = tt∧r2 = tt)∨ (r1 = ff ∧r2 = ff)
By i.h. on the second premise:
|Γ| | bΓca ` |et|1 : |τ | ∼ |et|2 : |τ | | bτca(r1,r2)
By i.h. on the third premise:
|Γ| | bΓca ` |ef |1 : |τ | ∼ |ef |2 : |τ | | bτca(r1,r2)
Applying rule BOOLCASE to the past three statements yields the required result.

Case.
Γ,x : τ ` x : τ

To show: |Γ|,x1 : |τ |,x2 : |τ | | bΓca,bτca(x1,x2) ` x1 : |τ | ∼ x2 : |τ | | bτca(r1,r2).
This follows immediately from rule VAR.

Case.
Γ,x : τ1 ` e : τ2

Γ ` λx.e : τ1→ τ2
To show: |Γ| | bΓca `λx1.|e|1 : |τ1|→ |τ2| ∼λx2.|e|2 : |τ1|→ |τ2| | ∀x1,x2.bτ1ca(x1,x2)⇒
bτ2ca(r1 x1,r2 x2).

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 69

By i.h. on the premise: |Γ|,x1 : |τ1|,x2 : |τ2| | bΓca,bτ1ca(x1,x2) ` |e|1 : |τ2| ∼ |e|2 :
|τ2| | bτ2ca(r1,r2).
Applying rule ABS immediately yields the required result.

Case.
Γ ` e : τ1→ τ2 Γ ` e′ : τ1

Γ ` e e′ : τ2
To show: |Γ| | bΓca ` |e|1 |e′|1 : |τ2| ∼ |e|2 |e′|2 : |τ2| | bτ2ca(r1,r2).
By i.h. on the first premise:
|Γ| | bΓca ` |e|1 : |τ1|→ |τ2| ∼ |e|2 : |τ1|→ |τ2| | ∀x1,x2.bτ1ca(x1,x2)⇒bτ2ca(r1 x1,r2 x2)
By i.h. on the second premise:
|Γ| | bΓca ` |e′|1 : |τ1| ∼ |e′|2 : |τ1| | bτ1ca(r1,r2)
Applying rule APP immediately yields the required result.

Case.
Γ ` e : τ Γ ` e′ : τ ′

Γ ` 〈e,e′〉 : τ × τ ′
To show: |Γ| | bΓca ` 〈|e|1, |e′|1〉 : |τ |×|τ ′| ∼ 〈|e|2, |e′|2〉 : |τ |×|τ ′| | bτca(π1(r1),π1(r2))∧
bτ ′ca(π2(r1),π2(r2)).
By i.h. on the first premise:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2)
By i.h. on the second premise:
|Γ| | bΓca ` |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | bτ ′ca(r1,r2)
The required result follows from the rule PAIR. We only need to show the third
premise of the rule, i.e., the following in HOL:

∀x1x2y1y2.bτca(x1,x2)⇒bτ ′ca(y1,y2)⇒ (bτca(π1〈x1,y1〉,π1〈x2,y2〉)∧bτ ′ca(π2〈x1,y1〉,π2〈x2,y2〉))

Since π1〈x1,y1〉= x1, etc., this implication simplifies to:

∀x1x2y1y2.bτca(x1,x2)⇒ bτ ′ca(y1,y2)⇒ (bτca(x1,x2)∧bτ ′ca(y1,y2))

which is an obvious tautology.

Case.
Γ ` e : τ × τ ′

Γ ` π1(e) : τ
To show: |Γ| | bΓca ` π1(|e|1) : |τ | ∼ π1(|e|2) : |τ | | bτca(r1,r2).
By i.h. on the premise:
|Γ| | bΓca ` |e|1 : |τ |×|τ ′| ∼ |e|2 : |τ |×|τ ′| | bτca(π1(r1),π1(r2))∧bτ ′ca(π2(r1),π2(r2))
By rule SUB:
|Γ| | bΓca ` |e|1 : |τ |× |τ ′| ∼ |e|2 : |τ |× |τ ′| | bτca(π1(r1),π1(r2))
By rule PROJ1, we get the required result.

Case.
Γ ` e : τ

Γ ` η`(e) : T`(τ)
To show: |Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bT`(τ)ca(r1,r2).
By i.h. on the premise: |Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2) (1)
If `v a, then bT`(τ)ca(r1,r2), bτca(r1,r2), so the required result is the same as
(1).

ZU064-05-FPR main 16 August 2020 22:41

70 A. Aguirre et al.

If ` 6v a, then bT`(τ)ca(r1,r2),> and the required result follows from rule SUB
applied to (1).

Case.
Γ ` e : T`(τ) Γ,x : τ ` e′ : τ ′ τ ′↘ `

Γ ` bind(e,x.e′) : τ ′
To show: |Γ| | bΓca ` (λx.|e′|1) |e|1 : |τ ′| ∼ (λx.|e′|2) |e|2 : |τ ′| | bτ ′ca(r1,r2).
By i.h. on the first premise:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bT`(τ)ca(r1,r2) (1)
By i.h. on the second premise:
|Γ|,x1 : |τ |,x2 : |τ | | bΓca,bτca(x1,x2) ` |e′|1 : |τ ′| ∼ |e′|2 : |τ ′| | bτ ′ca(r1,r2) (2)
We consider two cases:
Subcase. `v a. Here, bT`(τ)ca(r1,r2), bτca(r1,r2), so (1) can be rewritten to:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | bτca(r1,r2) (3)
Applying rule ABS to (2) yields:
|Γ| | bΓca `λx1.|e′|1 : |τ |→ |τ ′| ∼λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.bτca(x1,x2)⇒bτ ′ca(r1 x1,r2 x2)
(4)
Applying rule APP to (4) and (3) yields:
|Γ| | bΓca ` (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | bτ ′ca(r1,r2)
which is what we wanted to prove.
Subcase. ` 6v a. Here, bT`(τ)ca(r1,r2), bτca(r1,r2), so (1) can be rewritten to:
|Γ| | bΓca ` |e|1 : |τ | ∼ |e|2 : |τ | | > (5)
Applying rule ABS to (2) yields:
|Γ| | bΓca `λx1.|e′|1 : |τ |→ |τ ′| ∼λx2.|e′|2 : |τ |→ |τ ′| | ∀x1x2.bτca(x1,x2)⇒bτ ′ca(r1 x1,r2 x2)
By Lemma 16 applied to the subcase assumption ` 6v a and the premise τ ′↘ `, we
have bτ ′ca(r1 x1,r2 x2)≡>. So, by rule SUB:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| | ∀x1x2.bτca(x1,x2)⇒>
Since (∀x1x2.bτca(x1,x2)⇒>)≡>≡ (∀x1,x2.>⇒>), we can use SUB again to
get:
|Γ| | bΓca ` λx1.|e′|1 : |τ | → |τ ′| ∼ λx2.|e′|2 : |τ | → |τ ′| | ∀x1,x2.>⇒> (6)
Applying rule APP to (6) and (5) yields:
|Γ| | bΓca ` (λx1.|e′|1) |e|1 : |τ ′| ∼ (λx2.|e′|2) |e|2 : |τ ′| | >
which is the same as our goal since bτ ′ca(r1,r2)≡>.

C.8 Proof of Theorem 18

By induction on the derivation of ∆;Φ;Ω `lk t :A. We will show few cases.

Case.
∆;Φa;Ω,x :A `0

0 x :A

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 71

We can conclude by the following derivation:

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` x : L|A|Mv | bAcv(r)
VAR

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` 0 : N | 0≤ r≤ 0
Nat

L|Ω|M,x : L|A|Mv,∆ | Φa,bΩc,bAcv(x) ` (x,0) : L|A|Mv×N | bAcv(π1r)∧0≤ π2r≤ 0
PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case.
∆;Φa;Ω `0

0 n : int
Then we can conclude by the following derivation:

L|Ω|M,∆ | Φa,bΩc ` n : N | >
Nat

L|Ω|M,∆ | Φa,bΩc ` 0 : N | 0≤ r≤ 0
Nat

L|Ω|M,∆ | Φa,bΩc ` (n,0) : N×N | 0≤ π2r≤ 0
PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case.
∆;Φa;x :A1,Ω `lk t :A2

∆;Φa;Ω `0
0 λx.t :A1

exec(k,l)−−−−−−→A2
By induction hypothesis we have L|Ω|M,x : L|A1|Mv,∆ |Φ,bΩc,bA1cv(x) ` LtM : L|A2|Me |
bAck,le (r) and we can conclude by the following derivation:

L|Ω|M,x : L|A1|Mv ,∆ | Φ,bΩc,bA1cv(x) ` LtM :
L|A2|Me | bA2ck,le (r)

L|Ω|M,∆ | Φ,bΩc ` λx.LtM : L|A1|Mv → L|A2|Me |
∀x.bA1cv(x)⇒ bA2ck,le (rx)

ABS

L|Ω|M,∆ | Φ,bΩc ` 0 : N | 0≤ r≤ 0
L|Ω|M,∆ | Φ,bΩc ` (λx.LtM,0) : (L|A1|Mv → L|A2|Me)×N | ∀x.bA1cv(x)⇒ bA2ck,le ((π1r)x)∧0≤ π2r≤ 0

PAIR-L

where the additional proof conditions that is needed for the [PAIR-L] rule can be
easily proved in HOL.

Case
∆;Φa;Ω `l1k1

t1 :A1
exec(k,l)−−−−−−→A2 ∆;Φa;Ω `l2k2

t2 :A1

∆;Φa;Ω `l1+l2+l+capp
k1+k2+k+capp t1 t2 :A2

By induction hypothesis and unfolding some some definitions we have

L|Ω|M,∆ | Φa,bΩc ` Lt1M : (L|A1|Mv→ (L|A2|Mv×N))×N |
∀h.bA1cv(h)⇒ (bA2cv(π1((π1(r))h))∧k ≤ π2((π1(r))h)≤ l)∧k1 ≤ π2(r)≤ l1

and L|Ω|M,∆ |Φa,bΩc ` Lt2M : L|A1|Mv×N | bA1cv(π1(r))∧k2 ≤ π2(r)≤ l2. So, we can
prove:

L|Ω|M,∆ | Φa,bΩc ` letx= Lt1M in lety = Lt2M inπ1(x)π1(y) : L|A2|Mv×N |
bA2cv(π1(r))∧k ≤ π2(r)≤ l∧k1 ≤ π2(x)≤ l1∧k2 ≤ π2(y)r≤ l2

ZU064-05-FPR main 16 August 2020 22:41

72 A. Aguirre et al.

This combined with the definition of the cost-passing translation Lt1 t2M, letx=
Lt1M in lety = Lt2M in letz = π1(x) π1(y) in(π1(z),π2(x) +π2(y) +π2(z) + capp) allows
us to prove as required the following:

L|Ω|M,∆ | Φa,bΩc ` Lt1 t2M : L|A2|Mv×N |
bA2cv(π1(r))∧k+k1 +k2 + capp ≤ π2(r)≤ l+ l1 + l2 + capp.

C.9 Proof of Theorem 19

To prove Theorem 19, we need three lemmas.

Lemma 33
Suppose ∆;Φ ` τ wf.4 Then, the following hold:

1. ∆ | Φ ` ∀xy.TτUv(x,y)⇒ bτcv(x)∧bτcv(y)
2. ∆ | Φ ` ∀xy.TτUte(x,y)⇒ bτc0,∞e (x)∧bτc0,∞e (y)

Also, (3) TΓU⇒bΓ1c∧bΓ2c where Γ1 and Γ2 are obtained by replacing each variable
x in Γ with x1 and x2, respectively.

Proof
(1) and (2) follow by a simultaneous induction on the given judgment. (3) follows
immediately from (1).

Lemma 34
If ∆;Φa;Γ ` e1	e2 . t : τ in RelCost, then ∆;Φ;Γ `∞0 ei : τ for i∈ {1,2} in RelCost.

Proof
By induction on the given derivation.

Lemma 35
If ∆;Φ |= τ1 v τ2, then ∆;Φ ` ∀xy.Tτ1Uv(x,y)⇒ Tτ2Uv(x,y).

Proof
By induction on the given derivation of ∆;Φ |= τ1 v τ2.

Proof of Theorem 19
The proof is by induction on the given derivation of ∆;Φ;Γ ` t1	 t2 . k : τ . We
show only a few representative cases here.

Case:

i :: S,∆;Φa;Γ ` e	e′ . t : τ i 6∈ FIV(Φa;Γ)

∆;Φa;Γ ` Λe	Λe′ . 0 : ∀i
diff(t)

:: S.τ

r-iLam

To show: ‖Γ‖,∆ | Φa,TΓU ` (λ_.LeM1,0) : (N→ L|τ |Me)×N ∼ (λ_.Le′M2,0) : (N→

L|τ |Me)×N | T∀i
diff(t)

:: S.τU0
e(r1,r2).

Expand T∀i
diff(t)

:: S.τU0
e(r1,r2) to T∀i

diff(t)
:: S.τUv(π1 r1,π1 r2)∧π2r1−π2 r2 ≤ 0,

and apply the rule [PAIR] to reduce to two proof obligations:

4 This judgment simply means that τ is well-formed in the context ∆;Φ. It is defined in
the original RelCost paper (Çiçek et al., 2017).

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 73

(A) ‖Γ‖,∆ |Φa,TΓU`λ_.LeM1 :N→ L|τ |Me∼λ_.Le′M2 :N→ L|τ |Me |T∀i
diff(t)

:: S.τUv(r1,r2)
(B) ‖Γ‖,∆ | Φa,TΓU ` 0 : N∼ 0 : N | r1−r2 ≤ 0

(B) follows immediately by rule [ZERO]. To prove (A), expand T∀i
diff(t)

:: S.τUv(r1,r2)
and apply rule [∧I]. We get three proof obligations.

(C) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N → L|τ |Me ∼ λ_.Le′M2 : N → L|τ |Me | b∀i
exec(0,∞)

::
S.τcv(r1)

(D) ‖Γ‖,∆ | Φa,TΓU ` λ_.LeM1 : N → L|τ |Me ∼ λ_.Le′M2 : N → L|τ |Me | b∀i
exec(0,∞)

::
S.τcv(r2)
(E) ‖Γ‖,∆ |Φa,TΓU`λ_.LeM1 :N→ L|τ |Me∼λ_.Le′M2 :N→ L|τ |Me | ∀z1z2.>⇒∀i.TτUte(r1 z1,r2 z2)

To prove (C), apply Lemma 34 to the given derivation (not just the premise),

obtaining a RelCost derivation for ∆;Φa;Γ `∞0 Λe : (∀i
exec(0,∞)

:: S.τ). Applying

Theorem 18 to this yields LΓM,∆ |Φa,bΓc ` (λ_.LeM,0) : (N→ L|τ |Me)×N | b∀i
exec(0,∞)

::
S.τc0,∞e (r) in UHOL, which is the same as LΓM,∆ | Φa,bΓc ` (λ_.LeM,0) : (N→

L|τ |Me)×N | b∀i
exec(0,∞)

:: S.τcv(π1 r)∧ 0 ≤ π2 r ≤∞. Applying rule [PROJ1], we

get LΓM,∆ | Φa,bΓc ` π1(λ_.LeM,0) : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). By subject

conversion, LΓM,∆ | Φa,bΓc ` λ_.LeM : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). Renaming

variables, we get LΓM1,∆ | Φa,bΓ1c ` λ_.LeM1 : N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r).
Now note that by definition, ‖Γ‖ ⊇ LΓM1 and by Lemma 33(3), TΓU⇒bΓ1c. Hence,

we also get ‖Γ‖,∆ |Φa,TΓU ` λ_.LeM1 :N→ L|τ |Me | b∀i
exec(0,∞)

:: S.τcv(r). (C) follows
immediately by rule [UHOL-L].

(D) has a similar proof.
To prove (E), apply the rule [ABS], getting the obligation:

‖Γ‖,∆,z1,z2 : N | Φa,TΓU ` LeM1 : L|τ |Me ∼ Le′M2 : L|τ |Me | ∀i.TτUte(r1,r2)
Since z1,z2 do not appear anywhere else, we can strengthen the context to remove
them, thus reducing to: ‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ Le′M2 : L|τ |Me | ∀i.TτUte(r1,r2)
Next, we transpose to HOL using Theorem 6. We get the obligation:
‖Γ‖,∆ | Φa,TΓU ` ∀i.TτUte(LeM1,Le′M2)
This is equivalent to:
‖Γ‖,∆, i : S | Φa,TΓU ` TτUte(LeM1,Le′M2)
The last statement follows immediately from i.h. on the premise, followed by
transposition to HOL using Theorem 6.

Case:
∆;Φa;Γ ` e	e. t : τ ∀x ∈ dom(Γ). ∆;Φa |= Γ(x)v�Γ(x)

∆;Φa;Γ,Γ′;Ω ` e	e. 0 :�τ
nochange

To show: ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | T�τU0
e(r1,r2).

Expanding the definition of T�τU0
e, this is equivalent to:

‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)∧ (π1 r1 = π1 r2)∧
(π2 r1−π2 r2 ≤ 0)
Using rule [∧I], we reduce this to two obligations:
(A) ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)

ZU064-05-FPR main 16 August 2020 22:41

74 A. Aguirre et al.

(B) ‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | (π1 r1 = π1 r2)∧(π2 r1−π2 r2 ≤ 0)

By i.h. on the first premise,
‖Γ‖,∆ |Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)∧ (π2 r1−π2 r2 ≤ t)
By rule [SUB],
‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me | TτUv(π1 r1,π2 r2)
which is the same as (A).

To prove (B), apply Lemma 35 to the second premise to get for every x∈ dom(Γ) that
∆ | Φa ` TΓ(x)Uv(x1,x2)⇒ T�Γ(x)Uv(x1,x2). Since T�Γ(x)Uv(x1,x2)⇒ x1 = x2
and from TΓU we know that TΓ(x)Uv(x1,x2), it follows that ‖Γ‖,∆ | Φa,TΓU `
x1 = x2. Since this holds for every x ∈ dom(Γ), it follows immediately that ‖Γ‖,∆ |
Φa,TΓU ` LeM1 = LeM2. By Theorem 6, ‖Γ‖,∆ | Φa,TΓU ` LeM1 : L|τ |Me ∼ LeM2 : L|τ |Me |
r1 = r2. (B) follows immediately by rule [SUB].

D Examples

D.1 Factorial

This example shows that the two following implementations of factorial, with and
without accumulator, are equivalent:

fact1 , letrec f1 n1 = case n1 of 0 7→ 1;S 7→ λx1.Sx1 ∗ (f1 x1)
fact2 , letrec f2 n2 = λacc.case n2 of 0 7→ acc;S 7→ λx2.f2 x2 (Sx2 ∗acc)

Our goal is to prove that:

∅ | ∅ ` fact1 :N→N∼ fact2 :N→N→N | ∀n1n2.n1 =n2⇒∀acc.(r1 n1)∗acc= r2 n2 acc

Since both programs do the same number of iterations, we can do synchronous
reasoning for the recursion at the head of the programs. However, the bodies of the
functions have different types since fact2 receives an extra argument, the accumulator.
Therefore, we will need a one-sided application of [ABS-R], before we can go back to
reasoning synchronously. We will then apply the [CASE] rule, knowing that both
terms reduce to the same branch, since n1 = n2. On the zero branch, we will need
to prove the trivial equality 1∗acc= acc. On the successor branch, we will need to
prove that Sx∗(fact x)∗acc= fact2 x2 (Sx2 ∗acc), knowing by induction hypothesis
that such a property holds for every m less that x.
Now we will expand on the details. We start the proof applying the [LETREC]

rule, which has 2 premises:

1. Both functions are well-defined
2. n1 = n2,∀y1y2.(y1,y2)< (n1,n2)⇒ y1 = y2⇒∀acc.(f1 y1)∗acc= f2 y2 acc `

case n1 of 0 7→ 1;S 7→ λx1.Sx1 ∗ (f1 x1) ∼ λacc.case n2 of 0 7→ acc;S 7→
λx2.f2 x2 (Sx2 ∗acc) | n1 = n2⇒∀acc.r1 ∗acc= r2 acc

We assume that the first premise is provable.

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 75

To prove the second premise, we start by applying ABS-R, which leaves the
following proof obligation:

n1 = n2,∀y1y2.(y1,y2)< (n1,n2)⇒ y1 = y2⇒∀acc.(f1 y1)∗acc= f2 y2 acc,n1 = n2 `
case n1 of 0 7→ 1;S 7→ λx1.Sx1 ∗ (f1 x1)∼ case n2 of 0 7→ acc;S 7→ λx2.f2 x2 (Sx2 ∗acc) | r1 ∗acc= r2

Now we can apply [CASE], and we have 3 premises, where Ψ denotes the axioms
of the previous judgment:

• Ψ ` n1 ∼ n2 | r1 = 0⇔ r2 = 0
• Ψ,n1 = 0,n2 = 0 ` 1∼ acc | r1 ∗acc= r2
• Ψ ` λx1.Sx1 ∗ (f1 x1)∼ λx2.f2 x2 (Sx2 ∗acc) | ∀x1x2.n1 = Sx1⇒ n2 = Sx2⇒

(r1 x1)∗acc= r2 x2

Premise 1 is a direct consequence of n1 = n2. Premise 2 is a trivial arithmetic
identity. To prove premise 3, we first apply the ABS rule:

Ψ,n1 = Sx1,n2 = Sx2 ` Sx1 ∗ (f1 x1)∼ f2 x2 (Sx2 ∗acc) | r1 ∗acc= r2

and then by Theorem 6 we can finish the proof in HOL by deriving.

Ψ,n1 = Sx1,n2 = Sx2 ` Sx1 ∗ (f1 x1)∗acc= f2 x2 (Sx2 ∗acc)

From the premises we can first prove that (x1,x2)< (n1,n2) so by the inductive
hypothesis from the [LETREC] rule, and the [⇒E] rule, we get

∀acc.(f1 x1)∗acc= f2 x2 acc,

which we then instantiate with Sx1 ∗acc to get

(f1 x1)∗Sx1 ∗acc= f2 x2 (Sx1 ∗acc).

On the other hand, from the hypotheses we also have x1 = x2, so by [CONV] we
finally prove

(f1 x1)∗Sx1 ∗acc= f2 x2 (Sx2 ∗acc)

D.2 List reversal

A related example for lists is the equivalence of reversal with and without accumulator.
The structure of the proof is the same as in the factorial example, but we will briefly
show it to illustrate how the LISTCASE rule is used. The functions are written:

rev1 , letrec f1 l1 = case l1 of [] 7→ [];_ :: _ 7→ λh1.λt1.(f1 t1) ++[x1]
rev2 , letrec f2 l2 = λacc.case l2 of [] 7→ acc;_ :: _ 7→ λh2.λt2.f2 t2 (h2 :: acc)

We want to prove they are related by the following judgment:

∅ | ∅ ` rev1 : listτ → listτ ∼ rev2 : listτ → listτ | ∀l1, l2.l1 = l2⇒∀acc. (r1 l1)++acc= r2 l2 acc

By the [LETREC] rule, we have to prove 2 premises:

1. Both functions are well-defined.
2. l1 = l2,∀m1m2.(|m1|, |m2|)< (|l1|, |l2|)⇒m1 =m2⇒∀acc.(f1 m1)++acc=
f2 m2 acc` case l1 of [] 7→ [];_ :: _ 7→λh1.λt1.(f1 t1)++[x1]∼λacc.case l2 of [] 7→
acc;_ :: _ 7→ λh2.λt2.f2 t2 (h2 :: acc) | ∀acc. r1 + +acc= r2 acc

ZU064-05-FPR main 16 August 2020 22:41

76 A. Aguirre et al.

For the second premise, similarly as in factorial, we apply ABS-R. We have the
following premise, where Ψ denotes the axioms in the previous judgment:

Ψ ` case l1 of [] 7→ [];_ :: _ 7→ λh1.λt1.(f1 t1) ++[x1]∼
case t2 of [] 7→ acc;_ :: _ 7→ λh2.λt2.f2 t2 (h2 :: acc) |

r1 + +acc= r2

and then LISTCASE, which has three premises:

• Ψ ` l1 ∼ l2 | r1 = []⇔ r2 = []
• Ψ, l1 = [], l2 = [] ` []∼ acc | r1 + +acc= r2
• Ψ ` λh1.λt1.(f1 t1) ++[x1]∼ λh2.λt2.f2 t2 (h2 :: acc) |
∀h1t1h2t2.l1 = h1 :: t1⇒ l2 = h2 :: t2⇒ r1 + +acc= r2

We complete the proof in a similar way as in the factorial example.

D.3 Proof of Theorem 23

We will use without proof two unary lemmas:

Lemma 36
• | • ` take : listN→ N→ listN | ∀ln.|r l n|=min(n, |l|)

Lemma 37
• | • `map : listN→ (N→ N)→ listN | ∀lf.|r l f |= |l|

Now we proceed with the proof of the theorem
We want to prove

l1 = l2,n1 = n2,g1 = g2 `map (take l1 n1) g1 ∼ take (map l2 g2) n2 |
r1 v r2∧|r1|= min(n1, |l1|)∧|r2|= min(n2, |l2|)

where r1 v r2 is the prefix ordering and is defined as an inductive predicate:

∀l.[]v l ∀hl1l2.l1 v l2⇒ h :: l1 v h :: l2

By the helping lemmas and Lemma 10, it suffices to prove just the first conjunct:

l1 = l2,n1 = n2,g1 = g2 `map (take l1 n1) g1 ∼ take (map l2 g2) n2 | r1 v r2

The derivation begins by applying the APP-R rule. We get the following judgment
on n2:

l1 = l2,n1 = n2,g1 = g2 ` n2 | r≥ |take l1 n1| (1)
and a main premise:

l1 = l2,n1 = n2,g1 = g2 `map (take l1 n1) g1 ∼ take (map l2 g2) |
∀x2.x2 ≥ |take l1 n1| ⇒ r1 v (r2 x2) (2)

Notice that we have chosen the premise x2 ≥ |take l1 n1| because we are trying to
prove r1 v (r2 x2), which is only true if we take a larger prefix on the right than
on the left. The judgment (1) is easily proven from the fact that |take l1 n1| =
min(n1, |l1|)≤ n1 = n2, which we get from the lemmas. To prove (2) we first apply
APP-L with a trivial condition g1 = g2 on g1. Then we apply APP and we have two
premises:

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 77

(A) Ψ ` take l1 n1 ∼map l2 g2 | r1 vg2 r2
(B) Ψ `map∼ take |
∀m1m2.m1vg2 m2⇒ (∀g1.g1 = g2⇒∀x2.x2≥ |m1|⇒ (r1 m1 g1)v (r2 m2 x2))

where vg is defined as an inductive predicate parametrized by g:

∀l.[]vg l ∀hl1l2.l1 vg l2⇒ h :: l1 vg (gh) :: l2

We first show how to prove (A). We start by applying APP with a trivial condition
for the arguments to get:

Ψ ` take l1 ∼map l2 | ∀x1g2.(r1 x1)vg2 (r2 g2)

We then apply APP, which has two premises, one of them equating l1 and l2. The
other one is:

Ψ ` take∼map | ∀m1m2.m1 =m2⇒∀x1g2.(r1 m1 x1)vg2 (r2 m2 g2)

To complete this branch of the proof, we apply LETREC. We need to prove the
following premise:

Ψ,m1 =m2,∀k1k2.(k1,k2)< (m1,m2)⇒ k1 = k2⇒∀x1g2.(f1 k1 x1)vg2 (f2 k2 g2) `
λn1.e1 ∼ λg2.e2 | ∀x1g2.(r1 x1)vg2 (r2 g2)

Where e1,e2 abbreviate the bodies of the functions:

e1 , case m1 of [] 7→ []
;_ :: _ 7→ λh1t1.case x1 of 0 7→ []

;S 7→ λy1.h1 :: f1 t1 y1

e2 , case m2 of [] 7→ []
;_ :: _ 7→ λh2t2.(g2 h2) :: (f2 t2 g2)

If we apply ABS we get a premise:

Ψ,m1 =m2,∀k1k2.(k1,k2)< (m1,m2)⇒ k1 = k2⇒
∀x1g2.(f1 k1 x1)vg2 (f2 k2 g2) ` e1 ∼ e2 | r1 vf r2

And now we can apply a synchronous CASE rule, since we have a premise
m1 = m2. This yields 3 proof obligations, where Ψ′ is the set of axioms in the
previous judgment:

(A.1) Ψ′ `m1 ∼m2 | r1 = []⇔ r2 = []
(A.2) Ψ′ ` []∼ [] | r1 vf r2
(A.3) Ψ′ ` λh1t1.case x1 of 0 7→ [];S 7→ λy1.h1 :: f1 t1 y1 ∼

λh2t2.(g2 h2) :: (f2 t2 g2) | ∀h1t1h2t2.m1 =h1 :: t1⇒m2 =h2 :: t2⇒ (r1 h1 t1)vg2
(r2 h2 t2)

Premises (A.1) and (A.2) are trivial. To prove (A.3) we first apply ABS twice:

Ψ′,m1 = h1 :: t1,m2 = h2 :: t2 `
case n1 of 0 7→ [];S 7→ λy1.h1 :: f1 t1 y1 ∼ (g2 h2) :: (f2 t2 g2) | r1 vg2 r2

Next, we apply CASE-L, which has the following two premises:

ZU064-05-FPR main 16 August 2020 22:41

78 A. Aguirre et al.

(A.3.i) Ψ′,m1 = h1 :: t1,m2 = h2 :: t2,n1 = 0 ` []∼ (g2 h2) :: (f2 t2 g2) | r1 vg2 r2
(A.3.ii) Ψ′,m1 =h1 :: t1,m2 =h2 :: t2 `λy1.h1 :: f1 t1 y1∼ (g2 h2) :: (f2 t2 g2) | ∀y1.n1 =

Sy1⇒ (r1 y1)vg2 r2

Premise (A.3.i) can be directly derived in HOL from the definition of vg2 . To
prove (A.3.ii) we need to make use of our inductive hypothesis:

∀k1k2.(k1,k2)< (m1,m2)⇒ k1 = k2⇒∀x1g2.(f1 k1 x1)vg2 (f2 k2 g2)

In particular, from the premises m1 = h1 :: t1 and m2 = h2 :: t2 we can deduce
(t1, t2) < (m1,m2). Additionally, from the premise m1 = m2 we prove t1 = t2.
Therefore, from the inductive hypothesis we derive ∀x1g2.(f1 t1 x1)vg2 (f2 t2 g2),
and by definition of vg2 , and the fact that h1 = h2, for every y we can prove
h1 :: (f1 t1 y) vg2 (g2 h2) :: f2 t2. By Theorem 6, we can prove (A.3.ii).

We will now show how to prove (B) :

Ψ `map∼ take | ∀m1m2.m1 vg2 m2⇒
(∀g1.g1 = g2⇒∀x2.x2 ≥ |m1| ⇒ (r1 m1 g1)v (r2 m2 x2))

On this branch we will also use LETREC. We have to prove a premise:

Ψ,Φ ` λg1.e2 ∼ λx2.e1 | ∀g1.g1 = g2⇒∀x2.x2 ≥ |m1| ⇒ (r1 g1)v (r2 x2)

where

Φ ,


m1 vg2 m2,

∀k1k2.(k1,k2)< (m1,m2)⇒ k1 vg2 k2⇒
(∀g1.g1 = g2⇒∀x2.x2 ≥ |k1| ⇒ (r1 k1 g1)v (r2 k2 x2))


We start by applying ABS. Our goal is to prove:

Ψ,Φ,x2 ≥ |m1|,g1 = g2 `

case m1 of [] 7→ []
;_ :: _ 7→ λh1t1.(g1 h1) :: (f1 t1 g1) ∼

case m2 of [] 7→ []
;_ :: _ 7→ λh2t2.case x2 of 0 7→ []
;S 7→ λy2.h2 :: f2 t2 y2

| r1 v r2

Notice that we have α-renamed the variables to have the appropriate subscript.
Now we want to apply a CASE rule, but the lists over which we are matching are not
necessarily of the same length. Therefore, we use the asynchronous LISTCASE-A
rule. We have to prove four premises:
(B.1) Ψ,Φ,x2 ≥ |m1|,g1 = g2,m1 = [],m2 = [] ` []∼ [] | r1 v r2
(B.2) Ψ,Φ,x2 ≥ |m1|,g1 = g2,m1 = [] ` []∼

λh2t2.case x2 of 0 7→ [];S 7→ λy2.h2 :: f2 t2 y2 | ∀h2t2.m2 = h2 :: t2 ⇒ r1 v
(r2 h2 t2)

(B.3) Ψ,Φ,x2 ≥ |m1|,g1 = g2,m2 = [] ` λh1t1.(g1 h1) :: (f1 t1 g1) ∼ [] | ∀h1t1.m1 =
h1 :: t1⇒ (r1 h1 t1)v r2

(B.4) Ψ,Φ,x2 ≥ |m1|,g1 = g2 ` λh1t1.(g1 h1) :: (f1 t1 g1)∼
λh2t2.case x2 of 0 7→ [];S 7→ λy2.h2 :: f2 t2 y2 |
∀h1t1h2t2.m1 = h1 :: t1⇒m2 = h1 :: t1⇒ (r1 h1 t1)v (r2 h2 t2)

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 79

Premises (B.1) and (B.2) are trivially derived from the definition of the v
predicate. To prove premise (B.3) we see that we have premises m1 vg2 m2, m2 = [],
and m1 = h1 :: t2, from which we can derive a contradiction.

It remains to prove (B.4). To do so, we apply ABS twice and then NATCASE-R,
which has two premises:

(B.4.i) Ψ,Φ,x2≥ |m1|,g1 = g2,m1 =h1 :: t1,m2 =h1 :: t1,x2 = 0` (g1 h1) :: (f1 t1 g1)∼
[] | r1 v r2

(B.4.ii) Ψ,Φ,x2 ≥ |m1|,g1 = g2,m1 = h1 :: t1,m2 = h1 :: t1 ` (g1 h1) :: (f1 t1 g1) ∼
λy2.h2 :: f2 t2 y2 |
∀y2.x2 = Sy2⇒ r1 v (r2 y2)

To prove (B.4.i) we derive a contradiction between the premises. From x2 = 0 and
the premise x2 ≥ |m1| we derive m1 = [] and, together with m1 = h1 :: t1 we arrive
at a contradiction by applying NC.

To prove (B.4.ii) we need to use the induction hypothesis. Fromm1 = h1 :: t1,m2 =
h1 :: t1 we can prove that |t1|< |m1| and |t2|< |m2|, so we can do a CUT with the
i.h. and derive:

t1 vg2 t2⇒ (∀g1.g1 = g2⇒∀x2.x2 ≥ |t1| ⇒ (f1 t1 g1)v (f2 t2 x2))

By assumption, m1 vg2 m2, so t1 vg2 t2. Moreover, also by assumption g1 = g2, and
Sy2 = x2 ≥ |m1| = S|t1|, so y2 ≥ |t1|. So if we instantiate the i.h. with g1 and y2,
and apply CUT again, we can prove:

(f1 t1 g1)v (f2 t2 y2)

On the other hand, since h1 :: t1 vg2 h2 :: t2, then (by elimination of vg2) we can
derive g1h1 = h2 and by definition of v, (g1 h1) :: (f1 t1 g1) v h2 :: (f2 t2 y2). So
we can apply Theorem 6 and prove (B.4.ii). This ends the proof.

D.4 Proof of Theorem 24

We start by proving the key property of restmin, i.e.,

Lemma 38
Let restmin1 and restmin2 denote two α-renamings of restmin where every bound
variable gets a subindex 1 or 2 respectively. Then,

` restmin1∼ restmin2 | ∀l1l2.d(l1, l2)≤ δ⇒∀h1h2.|h1−h2| ≤ δ⇒D(r1 l1 h1,r2 l2 h2)≤ δ

Proof
The proof is a simple synchronous derivation. We start by applying [LETREC], which
gives us the inductive hypothesis:

∀m1m2.(|m1|, |m2|)≤ (|l1|, |l2|)⇒ d(l1, l2)≤ δ⇒∀h1h2.|h1−h2| ≤ δ⇒
D(r1 l1 h1,r2 l2 h2)≤ δ

and we apply [ABS] immediately after. Then we do a synchronous case analysis
with the [CASE] rule. In the empty list case, we simply instantiate the premise that
|a1−a2| ≤ δ. Since d([], []) = 0≤ δ, we can conclude that D(([],a1),([],a2))≤ δ.

ZU064-05-FPR main 16 August 2020 22:41

80 A. Aguirre et al.

In the h :: t case, we start by applying the [LET] rule three times. On the first
two we need to use the lemma about max and min to prove that |M1−M2| ≤ δ and
|m1−m2| ≤ δ and introduce them in the logical context.
On the third one, to introduce the hypothesis on (rest,min), we instantiate the

inductive hypothesis for restmin. Here we need to prove three facts: (1) (t1, t2)≤
(l1, l2), (2) |m1−m2| ≤ δ and d(t1, t2)≤ δ. Numbers (1) and (3) follow from the fact
that l1 = h1 :: t1 and l2 = h2 :: t2. Number (2) follows from the let binding of m1
and m2. This introduces in the logical context the premises d(rest1, rest2)≤ δ and
|min1−min2| ≤ δ.
Finally, we need to show that d(M1 :: rest1,M1 :: rest2) ≤ δ. and that |min1−

min2| ≤ δ. The latter follows directly from the logical context, and the former follows
from the inductive definition of the distance.

Now we need to prove for ssort′ that:

` ssort′1∼ ssort′2 | ∀l1l2.d(l1, l2)≤ δ⇒∀n1n2.|l1|=n1∧|l2|=n2≤ δ⇒ d(r1 l1 n1,r2 l2 n2)≤ δ

The derivation is entirely synchronous and routinary. The only interesting point is
instantiating the lemma above for restmin. This concludes the proof of the theorem.

D.5 Proof of Theorem 26

We need two straightforward lemmas in UHOL. The lemmas state that sorting
preserves the length and minimum element of a list.

Lemma 39
Let τ , listN→ listN. Then, (1) • | • ` insert : N→ τ | ∀xl. |π1(r x l)| = 1 + |l|, and
(2) • | • ` isort : τ | ∀x. |π1(r x)|= |x|.

Lemma 40
Let τ , listN→ listN. Then, (1) • | • ` insert :N→ τ | ∀xl. lmin(π1(r x l)) = min(x, lmin(l)),
and (2) • | • ` isort : τ | ∀x. lmin(π1(r x)) = lmin(x).

Proof of Theorem 26
We prove the theorem using LETREC. We actually show the following stronger
theorem, which yields a stronger induction hypothesis in the proof.

• | • ` isort : τ ∼ isort : τ | ∀x1x2.(sorted(x1)∧|x1|= |x2|)⇒
(π2(r1 x1)≤ π2(r2 x2))∧ (r1 x1 = isort x1)∧ (r2 x2 = isort x2)

Let ι denote the inductive hypothesis:

ι, ∀m1m2.(|m1|, |m2|)< (|x1|, |x2|)⇒ (sorted(m1)∧|m1|= |m2|)
⇒ π2(isort1 m1)≤ π2(isort2 m2)∧
(isort1 m1 = isort m1)∧ (isort2 m2 = isort m2)

and e denote the body of the function isort:

e, case l of [] 7→ ([],0);
_ :: _ 7→ λht. let s= isort t

let s′ = insert h (π1 s) in
(π1 s

′,(π2 s) + (π2 s
′))

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 81

By LETREC, it suffices to prove the following (we omit simple types for easier
reading; they play no essential role in the proof).

isort1, isort2,x1,x2 | sorted(x1), |x1|= |x2|, ι `

e[isort1/isort][x1/l]∼ e[isort2/isort][x2/l] |

 π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2


Following the structure of e, we next apply the rule LISTCASE. This yields the

following two main proof obligations, corresponding to the two case branches (the
third proof obligation, x1 = []⇔ x2 = [] follows immediately from the assumption
|x1|= |x2|).

isort1, isort2,x1,x2 | sorted(x1), |x1|= |x2|, ι,x1 = x2 = [] ` ([],0)∼ ([],0) |
(π2 r1 ≤ π2 r2)∧ (r1 = isort x1)∧ (r2 = isort x2)

(D 1)

isort1, isort2,x1,x2,h1, t1,h2, t2 | sorted(x1), |x1|= |x2|, ι,x1 = h1 :: t1,x2 = h2 :: t2 `

let s= isort1 t1
let s′ = insert h1 (π1 s) in
(π1 s

′,(π2 s) + (π2 s
′))

∼
let s= isort2 t2
let s′ = insert h2 (π1 s) in
(π1 s

′,(π2 s) + (π2 s
′))

∣∣∣∣∣
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(D 2)
(D 1) is immediate: By Theorem 6, it suffices to show that (π2([],0)≤ π2([],0))∧

(([],0) = isort x1)∧ (([],0) = isort x2). Since x1 = x2 = [] by assumption here, this
is equivalent to (π2([],0)≤ π2([],0))∧ (([],0) = isort [])∧ (([],0) = isort []), which is
trivial by direct computation.
To prove (D2), we expand the outermost occurrences of let in both to function

applications using the definition let x= e1 in e2 , (λx.e2) e1. Applying the rules
APP and ABS, it suffices to prove the following for any φ of our choice.

isort1, isort2,x1,x2,h1, t1,h2, t2 | sorted(x1), |x1|= |x2|, ι,x1 = h1 :: t1,x2 = h2 :: t2 `
isort1 t1 ∼ isort2 t2| φ

(D 3)

isort1, isort2,x1,x2,h1, t1,h2, t2,s1,s2 |
sorted(x1), |x1|= |x2|, ι,x1 = h1 :: t1,x2 = h2 :: t2φ[s1/r1][s2/r2] `

let s′ = insert h1 (π1 s1) in
(π1 s

′,(π2 s1) + (π2 s
′)) ∼ let s′ = insert h2 (π1 s2) in

(π1 s
′,(π2 s2) + (π2 s

′))

∣∣∣∣∣
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(D 4)
We choose φ as follows:

φ,π2 r1≤π2 r2∧r1 = isort(t1)∧r2 = isort(t2)∧|π1 r1|= |π1 r2|∧ lmin(t1) = lmin(π1 r1)

ZU064-05-FPR main 16 August 2020 22:41

82 A. Aguirre et al.

Proof of (D 3): By Theorem 6, it suffices to prove the following five statements in
HOL under the context of (D 3). These statements correspond to the five conjuncts
of φ.

π2(isort1 t1)≤ π2(isort2 t2) (D 5)

isort1 t1 = isort t1 (D 6)

isort1 t2 = isort t2 (D 7)

|π1(isort1 t1)|= |π1(isort2 t2)| (D 8)

lmin(t1) = lmin(π1(isort1 t1)) (D 9)

(D5)–(D7) follow from the induction hypothesis ι instantiated with m1 :=
t1,m2 := t2. Note that because x1 = h1 :: t1 and x2 = h2 :: t2, we can prove (in
HOL) that (|t1|, |t2|)< (|x1|, |x2|). Since, |x1|= |x2|, x1 = h1 :: t1 and x2 = h2 :: t2,
we can also prove that |t1|= |t2|. Finally, from the axiomatic definition of sorted
and the assumption sorted(x1) it follows that sorted(t1). These together allow us to
instantiate the i.h. ι and immediately derive (D 5)–(D 7).
To prove (D8), we use (D 6) and (D7), which reduces (D 8) to |π1(isort t1)| =
|π1(isort t2)|. To prove this, we apply Theorem 3 to Lemma 39, yielding ∀x. |π1(isort x)|=
|x|. Hence, we can further reduce our goal to proving |t1|= |t2|, which we already
did above.

To prove (D 9), we use (D 6), which reduces (D 9) to lmin(t1) = lmin(π1(isort t1)).
This follows immediately from Theorem 3 applied to Lemma 40.
This proves (D 3).

Proof of (D 4): We expand the definition of let and apply the rules APP and ABS
to reduce (D 4) to proving the following for any φ′.

isort1, isort2,x1,x2,h1, t1,h2, t2,s1,s2 |
sorted(x1), |x1|= |x2|, ι,x1 = h1 :: t1,x2 = h2 :: t2,φ[s1/r1][s2/r2] `
insert h1 (π1 s1)∼ insert h2 (π1 s2) | φ′

(D 10)

isort1, isort2,x1,x2,h1, t1,h2, t2,s1,s2,s
′
1,s
′
2 |

sorted(x1), |x1|= |x2|, ι,x1 = h1 :: t1,x2 = h2 :: t2φ[s1/r1][s2/r2],φ′[s′1/r1][s′2/r2] `

(π1 s
′
1,(π2 s1) + (π2 s

′
1))∼ (π1 s

′
2,(π2 s2) + (π2 s

′
2))

∣∣∣∣∣
π2 r1 ≤ π2 r2
∧ r1 = isort x1
∧ r2 = isort x2

(D 11)
We pick the following φ′:

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 83

φ′ , π2 r1 ≤ π2 r2∧r1 = insert h1 (π1 s1)∧r2 = insert h2 (π1 s2)
Proof of (D 10): We start by applying Theorem 6. This yields three subgoals in
HOL, corresponding to the three conjuncts in φ′:

π2(insert h1 (π1 s1))≤ π2(insert h2 (π1 s2)) (D 12)

insert h1 (π1 s1) = insert h1 (π1 s1) (D 13)

insert h2 (π1 s2) = insert h2 (π1 s2) (D 14)
(D 13) and (D 14) are trivial, so we only have to prove (D 12). Since s1 = isort t1

and s2 = isort t2 are conjuncts in the assumption φ[s1/r1][s2/r2], (D 12) is equivalent
to:

π2(insert h1 (π1(isort t1)))≤ π2(insert h2 (π1(isort t2))) (D 15)
To prove this, we split cases on the shapes of π1(isort t1) and π1(isort t2). From the

conjuncts in φ[s1/r1][s2/r2], it follows immediately that |π1(isort t1)|= |π1(isort t2)|.
Hence, only two cases apply:
Case: π1(isort t1) =π1(isort t2) = []. In this case, by direct computation, π2(insert h1 (π1(isort t1))) =
π2(insert h1 []) = π2([h1],0) = 0. Similarly, and π2(insert h2 (π1(isort t2))) = 0. So,
the result follows trivially.
Case: π1(isort t1) = h′1 :: t′1 and π1(isort t2) = h′2 :: t′2. We first argue that h1 ≤ h′1.
Note that from the second and fifth conjuncts in φ[s1/r1][s2/r2], it follows that
lmin(t1) = lmin(π1(isort t1)). Since π1(isort t1) = h′1 :: t′1, we further get lmin(t1) =
lmin(π1(isort t1)) = lmin(h′1 :: t′1) = min(h′1, lmin(t′1))≤ h′1. Finally, from the axiomatic
definition of sorted(x1) and x1 = h1 :: t1, we derive h1 ≤ lmin(t1). Combining, we
get h1 ≤ lmin(t1)≤ h′1.

Next, π2(insert h1 (π1(isort t1))) = π2(insert h1 (h′1 :: t′1)). Expanding the definition
of insert and using h1 ≤ h′1, we immediately get π2(insert h1 (π1(isort t1))) =
π2(insert h1 (h′1 :: t′1)) = π2(h1 :: h′1 :: t′1,1) = 1. On the other hand, it is fairly easy
to prove (by case analyzing the result of h2 ≤ h′2) that π2(insert h2 (π1(isort t2))) =
π2(insert h2 (h′2 :: t′2))≥ 1. Hence, π2(insert h1 (π1(isort t1))) = 1≤π2(insert h2 (π1(isort t2))).
This proves (D 15) and, hence, (D 12) and (D 10).

Proof of (D 11): By Theorem 6, it suffices to show the following in HOL, under the
assumptions of (D 11):

π2(π1 s
′
1,(π2 s1) + (π2 s

′
1))≤ π2(π1 s

′
2,(π2 s2) + (π2 s

′
2)) (D 16)

(π1 s
′
1,(π2 s1) + (π2 s

′
1)) = isort x1 (D 17)

ZU064-05-FPR main 16 August 2020 22:41

84 A. Aguirre et al.

(π1 s
′
2,(π2 s2) + (π2 s

′
2)) = isort x2 (D 18)

By computation, (D 16) is equivalent to (π2 s1) + (π2 s′1) ≤ (π2 s2) + (π2 s′2).
Using the definition of φ, it is easy to see that π2 s1 ≤ π2 s2 is a conjunct in the
assumption φ[s1/r1][s2/r2]. Similarly, using the definition of φ′, π2 s

′
1 ≤ π2 s

′
2 is a

conjunct in the assumption φ′[s′1/r1][s′2/r2]. (D 16) follows immediately from these.
To prove (D 17), note that since x1 = h1 :: t1, expanding the definition of isort, we

get

isort x1 = (π1(insert h1 (π1(isort t1))),π2(isort t1) +π2(insert h1 (π1(isort t1))))

Matching with the left side of (D 17), it suffices to show that s′1 = insert h1 (π1(isort t1))
and s1 = isort t1. These are immediate: s1 = isort t1 is a conjunct in the assumption
φ[s1/r1][s2/r2], while s′1 = insert h1 (π1(isort t1)) follows trivially from this and the
conjunct s′1 = insert h1 (π1 s1) in φ′[s′1/r1][s′2/r2]. This proves (D 17).
The proof of (D 18) is similar to that of (D 17).

This proves (D 11) and, hence, (D 4).

E Full RHOL rules

The full set of RHOL rules is in the following figures:

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 85

Γ,x1 : τ1,x2 : τ2 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ x1 6∈ FV(t2),x2 6∈ FV(t1)
Γ |Ψ ` λx1.t1 : τ1→ σ1 ∼ λx2.t2 : τ2→ σ2 | ∀x1,x2.φ

′⇒ φ[r1 x1/r1][r2 x2/r2]
ABS

Γ |Ψ ` t1 : τ1→ σ1 ∼ t2 : τ2→ σ2 | ∀x1,x2.φ
′[x1/r1][x2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ t2u2 : σ2 | φ[u1/x1][u2/x2] APP

Γ |Ψ `HOL φ[0/r1][0/r2]
Γ |Ψ ` 0 : N∼ 0 : N | φ ZERO

Γ |Ψ ` t1 : N∼ t2 : N | φ′
Γ |Ψ `HOL ∀x1x2φ

′[x1/r1][x2/r2]⇒ φ[Sx1/r1][Sx2/r2]
Γ |Ψ ` St1 : N∼ St2 : N | φ SUCC

Γ |Ψ ` φ[x1/r1][x2/r2] Γ ` x1 : σ1 Γ ` x1 : σ1
Γ |Ψ ` x1 : σ1 ∼ x2 : σ2 | φ

VAR

Γ |Ψ ` t1 : τ1 ∼ t2 : τ2 | φ′ Γ,x1 : τ1,x2 : τ2 |Ψ,φ′[x1/r1][x2/r2] ` u1 : σ1 ∼ u2 : σ2 | φ
Γ |Ψ ` let x1 = t1 in u1 : σ1 ∼ let x2 = t2 in u2 : σ2 | φ

LET

Γ |Ψ `HOL φ[tt/r1][tt/r2]
Γ |Ψ ` tt : B∼ tt : B | φ TRUE

Γ |Ψ `HOL φ[ff/r1][ff/r2]
Γ |Ψ ` ff : B∼ ff : B | φ FALSE

Γ |Ψ `HOL φ[[]/r1][[]/r2]
Γ |Ψ ` [] : listσ1 ∼ [] : listσ2 | φ

NIL

Γ |Ψ ` h1 : σ1 ∼ h2 : σ2 | φ′ Γ |Ψ ` t1 : listσ1 ∼ t2 : listσ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1y2.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][y2/r2]⇒ φ[x1 :: y1/r1][x2 :: y2/r2]
Γ |Ψ ` h1 :: t1 : listσ1 ∼ h2 :: t2 : listσ2 | φ

CONS

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` u1 : τ1 ∼ u2 : τ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1y2.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][y2/r2]⇒ φ[〈x1,y1〉/r1][〈x2,y2〉/r2]
Γ |Ψ ` 〈t1,u1〉 : σ1× τ1 ∼ 〈t2,u2〉 : σ2× τ2 | φ

PAIR

Γ |Ψ ` t1 : σ1× τ1 ∼ t2 : σ2× τ2 | φ[πi(r1)/r1][πi(r2)/r2]
Γ |Ψ ` πi(t1) : σ1 ∼ πi(t2) : σ2 | φ

PROJi

Fig. E 1. Core two-sided rules

ZU064-05-FPR main 16 August 2020 22:41

86 A. Aguirre et al.

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ `HOL φ
′[t1/r1][t2/r2]⇒ φ[t1/r1][t2/r2]

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ
SUB

Γ |Ψ′ ` t1 : σ2 ∼ t2 : σ2 | φ Γ |Ψ′ ` t1 : σ2 ∼ t2 : σ2 | φ′

Γ |Ψ′ ` t1 : σ2 ∼ t2 : σ2 | φ∧φ′
∧I

Γ |Ψ′,φ′[t1/r1][t2/r2] ` t1 : σ2 ∼ t2 : σ2 | φ
Γ |Ψ′ ` t1 : σ2 ∼ t2 : σ2 | φ′⇒ φ

⇒I

Γ |Ψ ` t1 : σ1 | φ[r/r1][t2/r2]
Γ |Ψ ` t1 : σ1 ∼ t2 : σ1 | φ

UHOL−L

Fig. E 2. Structural rules

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 87

Γ,x1 : τ1 |Ψ,φ′ ` t1 : σ1 ∼ t2 : σ2 | φ x1 6∈ FV(t2)
Γ |Ψ ` λx1.t1 : τ1→ σ1 ∼ t2 : σ2 | ∀x1.φ

′⇒ φ[r1 x1/r1]
ABS−L

Γ |Ψ ` t1 : τ1→ σ1 ∼ u2 : σ2 | ∀x1.φ
′[x1/r1]⇒ φ[r1 x1/r1]

Γ |Ψ ` u1 : σ1 | φ′

Γ |Ψ ` t1u1 : σ1 ∼ u2 : σ2 | φ[u1/x1] APP−L

Γ ` t2 : σ2
Γ |Ψ `HOL φ[0/r1][t2/r2]
Γ |Ψ ` 0 : N∼ t2 : σ2 | φ

ZERO−L

Γ |Ψ ` t1 : N∼ t2 : σ2 | φ′
Γ |Ψ `HOL ∀x1x2φ

′[x1/r1][x2/r2]⇒ φ[Sx1/r1][x2/r2]
Γ |Ψ ` St1 : N∼ t2 : σ2 | φ

SUCC−L

Γ |Ψ `HOL φ[tt/r1][t2/r2] Γ ` t2 : σ2
Γ |Ψ ` tt : B∼ t2 : σ2 | φ

TRUE−L

Γ |Ψ `HOL φ[ff/r1][t2/r2] Γ ` t2 : σ2
Γ |Ψ ` ff : B∼ t2 : σ2 | φ

FALSE−L

φ[x1/r1] ∈Ψ r2 6∈ FV (φ) Γ ` t2 : σ2
Γ |Ψ ` x1 : σ1 ∼ t2 : σ2 | φ

VAR−L

Γ |Ψ ` φ[[]/r1][t2/r2] Γ ` t2 : σ2
Γ |Ψ ` [] : listσ1 ∼ t2 : σ2 | φ

NIL−L

Γ |Ψ ` h1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` t1 : listσ1 ∼ t2 : σ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][x2/r2]⇒ φ[x1 :: y1/r1][x2/r2]
Γ |Ψ ` h1 :: t1 : listσ1 ∼ t2 : σ2 | φ

CONS−L

Γ |Ψ ` t1 : σ1 ∼ t2 : σ2 | φ′ Γ |Ψ ` u1 : τ1 ∼ t2 : σ2 | φ′′
Γ |Ψ `HOL ∀x1x2y1.φ

′[x1/r1][x2/r2]⇒ φ′′[y1/r1][x2/r2]⇒ φ[〈x1,y1〉/r1][x2/r2]
Γ |Ψ ` 〈t1,u1〉 : σ1× τ1 ∼ t2 : σ2 | φ

PAIR−L

Γ |Ψ ` t1 : σ1× τ1 ∼ t2 : σ2 | φ[π1(r1)/r1]
Γ |Ψ ` π1(t1) : σ1 ∼ t2 : σ2 | φ

PROJ1−L

Fig. E 3. Core one-sided rules

ZU064-05-FPR main 16 August 2020 22:41

88 A. Aguirre et al.

Γ |Ψ ` t1 : B∼ t2 : B | (r1 = tt∧r2 = tt)∨ (r1 = ff ∧r2 = ff)
Γ |Ψ, t1 = tt, t2 = tt ` u1 : σ1 ∼ u2 : σ2 | φ
Γ |Ψ, t1 = ff, t2 = ff ` v1 : σ1 ∼ v2 : σ2 | φ

Γ |Ψ ` case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of tt 7→ u2;ff 7→ v2 : σ2 | φ
BOOLCASE

Γ |Ψ ` t1 : N∼ t2 : N | r1 = 0⇔ r2 = 0
Γ |Ψ, t1 = 0, t2 = 0 ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1⇒ t2 = Sx2⇒ φ[r1 x1/r1][r2 x2/r2]
Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2;S 7→ v2 : σ2 | φ

NATCASE

Γ |Ψ ` t1 : listτ1 ∼ t2 : listτ2 | r1 = []⇔ r2 = []
Γ |Ψ, t1 = [], t2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |
∀h1h2l1l2.t1 = h1 :: l1⇒ t2 = h2 :: l2⇒ φ[r1 h1 l1/r1][r2 h2 l2/r2]

Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ
LISTCASE

Fig. E 4. Synchronous case rules

Γ ` t1 : B
Γ |Ψ, t1 = tt ` u1 : σ1 ∼ t2 : σ2 | φ
Γ |Ψ, t1 = ff ` v1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ t2 : σ2 | φ
BOOLCASE−L

Γ ` t1 : N
Γ |Ψ, t1 = 0 ` u1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` v1 : N→ σ1 ∼ t2 : σ2 | ∀x1.t1 = Sx1⇒ φ[r1 x1/r1]
Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ t2 : σ2 | φ

NATCASE−L

Γ ` t1 : listτ
Γ |Ψ, t1 = [] ` u1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` v1 : τ → listτ → σ1 ∼ t2 : σ2 | ∀h1l1.t1 = h1 :: l1⇒ φ[r1 h1 l1/r1]
Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ t2 : σ2 | φ

LISTCASE−L

Fig. E 5. One-sided case rules

ZU064-05-FPR main 16 August 2020 22:41

A Relational Logic for Higher-Order Programs 89

Γ |Ψ ` t1 : B∼ t2 : B | >
Γ |Ψ, t1 = tt, t2 = tt ` u1 : σ1 ∼ u2 : σ2 | φ
Γ |Ψ, t1 6= tt, t2 = tt ` v1 : σ1 ∼ u2 : σ2 | φ
Γ |Ψ, t1 = tt, t2 6= tt ` u1 : σ1 ∼ v2 : σ2 | φ
Γ |Ψ, t1 6= tt, t2 6= tt ` v1 : σ1 ∼ v2 : σ2 | φ

Γ |Ψ ` case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of tt 7→ u2;ff 7→ v2 : σ2 | φ
BBCASE−A

Γ |Ψ ` t1 : B∼ t2 : N | >
Γ |Ψ, t1 = tt, t2 = 0 ` u1 : σ1 ∼ u2 : σ2 | φ
Γ |Ψ, t1 6= tt, t2 = 0 ` v1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ, t1 = tt ` u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2⇒ φ[r2 x2/r2]
Γ |Ψ, t1 6= tt ` v1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2⇒ φ[r2 x2/2]

Γ |Ψ ` case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of 0 7→ u2;S 7→ v2 : σ2 | φ
BNCASE−A

Γ |Ψ ` t1 : B∼ t2 : listτ2 | >
Γ |Ψ, t1 = tt, t2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ, t1 6= tt, t2 = [] ` v1 : σ1 ∼ u2 : τ2→ listτ2 → σ2 | φ
Γ |Ψ, t1 = tt ` u1 : σ1 ∼ v2 : τ2→ listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2⇒ φ[r2 h2 l2/r2]
Γ |Ψ, t1 6= tt ` v1 : σ1 ∼ v2 : τ2→ listτ2 → σ2 | ∀h2l2.t2 = h2 :: l2⇒ φ[r2 h2 l2/r2]

Γ |Ψ ` case t1 of tt 7→ u1;ff 7→ v1 : σ1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ
BLCASE−A

Γ |Ψ ` t1 : N∼ t2 : N | >
Γ |Ψ, t1 = 0, t2 = 0 ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ, t2 = 0 ` v1 : N→ σ1 ∼ u2 : σ2 | ∀x1.t1 = Sx1⇒ φ[r1 x1/r1]
Γ |Ψ, t1 = 0 ` u1 : σ1 ∼ v2 : N→ σ2 | ∀x2.t2 = Sx2⇒ φ[r2 x2/r2]

Γ |Ψ ` v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.t1 = Sx1⇒ t2 = Sx2⇒ φ[r1 x1/r1][r2 x2/r2]
Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2;S 7→ v2 : σ2 | φ

NNCASE−A

Γ |Ψ ` t1 : listτ1 ∼ t2 : listτ2 | >
Γ |Ψ, t1 = [], t2 = [] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ, t2 = [] ` v1 : τ1→ listτ1 → σ1 ∼ u2 : σ2 | ∀h1l1.t1 = h1 :: l1⇒ φ[r1 h1 l1/r1]
Γ |Ψ, t1 = [] ` u1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |

∀h2.t2 = h2 :: l2⇒ φ[r2 h2 l2/r2]
Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |

∀h1h2l1l2.t1 = h1 :: l1⇒ t2 = h2 :: l2⇒ φ[r1 h1 l1/r1][r2 h2 l2/r2]
Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ

LLCASE−A

Fig. E 6. Asynchronous case rules (selected)

ZU064-05-FPR main 16 August 2020 22:41

90 A. Aguirre et al.

Γ |Ψ ` t1 : N∼ t2 : N | φ′∧r1 = 0⇔ r2 = 0
Γ |Ψ,φ′[0/r1][0/r2] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : N→ σ1 ∼ v2 : N→ σ2 | ∀x1x2.φ
′[Sx1/r1][Sx2/r2]⇒ φ[r1 x1/r1][r2 x2/r2]

Γ |Ψ ` case t1 of 0 7→ u1;S 7→ v1 : σ1 ∼ case t2 of 0 7→ u2;S 7→ v2 : σ2 | φ
NATCASE∗

Γ |Ψ ` t1 : listτ1 ∼ t2 : listτ2 | φ′∧r1 = []⇔ r2 = []
Γ |Ψ,φ′[[]/r1][[]/r2] ` u1 : σ1 ∼ u2 : σ2 | φ

Γ |Ψ ` v1 : τ1→ listτ1 → σ1 ∼ v2 : τ2→ listτ2 → σ2 |
∀h1h2l1l2.φ

′[h1 :: l1/r1][h2 :: l2/r2]⇒ φ[r1 h1 l1/r1][r2 h2 l2/r2]
Γ |Ψ ` case t1 of [] 7→ u1;_ :: _ 7→ v1 : σ1 ∼ case t2 of [] 7→ u2;_ :: _ 7→ v2 : σ2 | φ

LISTCASE∗

Fig. E 7. Alternative case rules

Def (f1,x1,e1) Def (f2,x2,e2) x1,f1 6∈ FV (e2) x2,f2 6∈ FV (e1)
Γ,x1 : I1,x2 : I2,f1 : I1→ σ,f2 : I2→ σ2 |Ψ,φ′,

∀m1m2.(|m1|, |m2|)< (|x1|, |x2|)⇒ φ′[m1/x1][m2/x2]⇒ φ[m1/x1][m2/x2][f1 m1/r1][f2 m2/r2] `
e1 : σ1 ∼ e2 : σ2 | φ

Γ |Ψ ` letrec f1 x1 = e1 : I1→ σ2 ∼ letrec f2 x2 = e2 : I2→ σ2 | ∀x1x2.φ
′⇒ φ[r1 x1/r1][r2 x2/r2]

LETREC

Def (f1,x1,e1) x1,f1 6∈ FV (e2)
Γ,x1 : I1,f1 : I1→ σ |Ψ,φ′,

∀m1.|m1|< |x1| ⇒ φ′[m1/x1]⇒ φ[m1/x1][m2/x2][f1 m1/r1][t2/r2] ` e1 : σ1 ∼ t2 : σ2 | φ

Γ |Ψ ` letrec f1 x1 = e1 : I1→ σ2 ∼ t2 : σ2 | ∀x1.φ
′⇒ φ[r1 x1/r1]

LETREC−L

where I1, I2 ∈ {N, listτ}

Fig. E 8. Recursion rules

	Introduction
	(A variant of) PCF
	Introductory example
	Higher-Order Logic
	Unary Higher-Order Logic
	Relational Higher-Order Logic
	Proof Rules
	Discussion
	Meta-theory

	Embeddings
	Refinement Types
	Relational Refinement Types
	Dependency Core Calculus
	Relational Cost

	Examples
	First Example: Factorial
	Second Example: Take and Map
	Third example: Selection sort
	Fourth Example: Insertion Sort

	Implementation

	Extensions
	Conclusion
	References
	Semantics
	Semantics of HOL
	Semantics of UHOL
	Semantics of RHOL

	Additional rules
	HOL
	RHOL

	Proofs
	Proof of Theorem 6
	Proof of Lemma 10
	Proof of Theorem 11
	Proof of Theorem 12
	Proof of Theorem 14
	Proof of Lemma 16
	Proof of Theorem 17
	Proof of Theorem 18
	Proof of Theorem 19

	Examples
	Factorial
	List reversal
	Proof of Theorem 23
	Proof of Theorem 24
	Proof of Theorem 26

	Full RHOL rules

