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Abstract. We introduce a typed functional programming language LPL (acro-
nym for Light linear Programming Language) in which all valid programs run
in polynomial time, and which is complete for polynomial time functions. LPL
is based on lambda-calculus, with constructors for algebraic data-types, pattern
matching and recursive definitions, and thus allows for a natural programming
style. The validity of LPL programs is checked through typing and a syntactic
criterion on recursive definitions. The higher order type system is designed from
the ideas of Light linear logic: stratification, to control recursive calls, and weak
exponential connectives §, !, to control duplication of arguments.

1 Introduction

Implicit computational complexity (ICC). This line of research aims at character-
izing complexity classes not by external measuring conditions on a machine model,
but instead by investigating restrictions on programming languages or calculi which
imply a complexity bound. So for instance characterizing the class PTIME in such a
framework means that all the programs of the framework considered can be evaluated
in polynomial time (soundness), and that conversely all polynomial time functions can
be represented by a program of the framework (extensional completeness).

The initial motivation was to provide new characterizations of complexity classes of
functions to bring some insight on their nature [1,2,3,4]. In a second step, e.g. [5,6],
the issue was raised of using these techniques to design some ways of statically ver-
ifying the complexity of concrete programs. Some efforts in this direction have been
done also following other approaches, e.g. [7,8,9]. For this point of view it is quite con-
venient to consider a general programming language or calculus, and to state the ICC
condition as a criterion on programs, which can be checked statically, and which en-
sures on the validated programs a time or space complexity bound. In this respect the
previous extensional completeness is of limited interest, and one is interested in design-
ing criteria which are intensionally expressive, that is to say which validate as many
interesting programs as possible. Note that for a Turing-complete language the class
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of PTIME programs is non recursively enumerable, and so an intensionally complete
criterion would not be decidable. Actually we think that three aspects should be taken
into consideration for discussing intensional expressivity:

1. what are the algorithmic schemes that can be validated by the criterion,
2. what are the features of the programming language: e.g. higher-order functional

language, polymorphism, exceptions handling . . .
3. how effective is the criterion: what is the complexity of the corresponding decision

problem.

Results and methodology. The main contribution of the present work is the definition
of LPL (acronym for Light linear Programming Language), a typed functional pro-
gramming language inspired by Light linear logic satisfying an ICC criterion ensuring
a PTIME bound. LPL improves with respect to previous PTIME linear logic inspired
languages in aspects 1 and 2 above, since it combines the advantages of a user-friendly
and expressive language and of modular programming. The distinguishing feature of
LPL is the combination of

– higher-order types by means of a typed λ-calculus,
– pattern-matching and recursive definitions by means of a LetRec construction,
– a syntactic restriction avoiding intrinsically exponential recursive definitions and a

light type system ensuring duplication control,

in such a way that all valid typed programs run in polynomial time, and all polynomial
time functions can be programmed by valid typed programs.

A difficulty in dealing with λ-calculus and recursion is that we can easily combine
apparently harmless terms to obtain exponential time programs like the following one

λx.x(λy. mul 2 y)1

where mul is the usual recursive definition for multiplication. Such a term is apparently
harmless, but for each Church numeral n = λs.λz.snz this program returns the (stan-
dard) numeral 2n. In order to prevent this kind of programs, to achieve polynomial time
soundness, a strict control over both the numbers of recursive calls and beta-reduction
steps is needed. Moreover, the extension to higher order in the context of polynomial
time bounded computations is not trivial. Consider the classical foldr higher order
function; its unrestricted use leads to exponential time programs. E.g. let ListOf2 be a
program that given a natural number n returns a list of 2 of length n. Then, the follow-
ing program is exponential in its argument:

λx.foldr mul 1 (ListOf2 x)

For these reasons, besides the syntactic restriction avoiding intrinsically exponential re-
cursive definitions, we impose a strict typing discipline inspired by the ideas of Light
linear logic. In λ-calculus, Light linear logic allows to bound the number of beta-steps,
using weak exponential connectives ! and § in order to control duplication of arguments
and term stratification in order to control the size. The syntactic restriction of function
definitions limits the number of recursive steps for one function call. But this is not
enough since function calls appear at run time and the size of values can increase dur-
ing the computation. Our type system addresses these issues, and a key point for that
is the typing rule for recursive definition. In particular, a function of type N � N can
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increase the size of its input by at most a constant, while a function of type N � §N
can increase it by a (fixed) polynomial bound. For a recursive definition of the shape
f t = M{f t′}, the typing rule ensures that the context M does not increase the size
too much, and it types the function f accordingly. In this way the type system allows
to bound both the number of beta-steps and the size of values, and together with the
syntactic restriction this results in a PTIME bound on execution.

The typing restrictions on higher order functions are not too severe. Indeed, we can
write in a natural way some interesting programs using higher order functions without
exponential blow up. For instance consider again the foldr function, we can type a
term representing one of its classical uses as

λx.foldr add 0 x

About the methodology we use, we stress that we do not aim at proving the properties
of LPL by encoding it into Light linear logic. Instead, we take inspiration from it and we
adapt the abstract structure of its PTIME soundness proof to our new setting. Moreover,
our guideline is to follow a gradual approach: we propose here a strict criterion, that has
the advantage of handling naturally higher-order. We hope that once this step has been
established we might study how the criterion can be relaxed in various ways.

Indeed, the choice of using a combined criterion, i.e. a first condition ensuring ter-
mination, and a second one dealing with controlling the size, will be an advantage for
future works. In particular, by relaxing either one of the two conditions one can explore
generalizations, as well as different criteria to characterize other complexity classes.
Finally we think that the ICC criterion we give can be effectively checked since this is
the case for λ-calculus [10], but we leave the development of this point for future work.

Related works. Higher-order calculi: linear logic and linear type systems. Linear logic
[11] was introduced to control in proof theory the operations of duplication and erasing,
thanks to specific modalities !, ?. Through the proofs-as-programscorrespondence it pro-
vided a way to analyze typed λ-calculus. The idea of designing alternative weak versions
of the modalities implying a PTIME bound on normalization was proposed in [12] and
led to Light Linear Logic (LLL) in [4] and Soft Linear Logic (SLL) in [13]. Starting from
the principles underlying these logics different PTIME term languages have been pro-
posed [14,15]. In a second step [16] type systems as criteria for λ-calculus were designed
out of these logics, like DLAL [17] and STA [18]. This approach completely fits in the
proofs-as-programs paradigm, thereby offering some advantages from the programming
language point of view (point 2 above): it encompasses higher-order and polymorphism.
The drawback is that data are represented in λ-calculus and so one is handling encodings
of data-types analogous to Church integers. Moreover the kinds of algorithms one can
represent is very limited (point 1). However testing the criterion can be done efficiently
(point 3) thanks to some polynomial time type inference algorithms [10,19].

In [20] the authors propose a language for PTIME extending to higher-order the char-
acterizations based on ramification [1,2]. The language is a ramified variant of Gödel’s
system T where higher-order arguments cannot be duplicated, which is quite a strong
restriction. Moreover, the system T style does not make it as easy to program in this
system as one would like. Another characterization of PTIME by means of a restriction
of System T in a linear setting has been studied in [21,22].
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In [5], Hofmann proposed a typed λ-calculus with recursor (essentially a variant of
system T), LFPL, overcoming the problems of ramification, which allows to represent
non-size-increasing programs and enjoys a PTIME bound. This improves on point 1 by
allowing to represent more algorithms and by featuring higher-order types. However,
the restriction on higher-order arguments similar to the one in [20] and the system T
programming style make it quite far from ordinary functional languages.

First-order calculi and interpretations. Starting from works on ramification [1,2], Mar-
ion and collaborators have generalized them progressively by first replacing primitive
recursion by termination orderings [23], and then ramification by notions of quasi-
interpretation [6,24,25] and sup-interpretation [26,27] on a first-order functional lan-
guage with recursion and pattern-matching. These latter notions are semantic, inspired
from polynomial interpretations, and essentially statically provide a bound on the size
of the values computed during the evaluation. If a program admits both a termination or-
dering and a quasi-interpretation or sup-interpretation of a certain shape, then it admits
a complexity bound. The main benefit of this method is that more algorithms are vali-
dated (point 1) than in the ramification-based frameworks. An advantage of our present
contribution however is that it handles higher-order and that type checking is easier than
checking of quasi-interpretations .

Outline. We introduce in Section 2 the language LPL, its type system and the syntac-
tic criterion required on programs, and then provide some programming examples. In
Section 3 we define an extended language, eLPL, where a stratification is explicit in the
term syntax, and which is meant for translating and executing LPL typed programs. We
then show that all PTIME functions can be computed in LPL (Section 4). Finally, Sec-
tion 5 establishes our main result, that all LPL programs can be executed in polynomial
time w.r.t. the size of the input.

2 LPL

We introduce the language LPL, an extension of λ-calculus with constructors for alge-
braic data types, pattern matching and recursive function definitions. In order to limit
the computational complexity of programs we need to impose some restrictions. To
achieve polynomial time properties two key ingredients are used: a syntactic criterion
and a type system.

The syntactic criterion imposes restrictions to recursive schemes in order to avoid the
ones which are intrinsically exponential. The type system allows through a stratification
over terms to avoid the dangerous nesting of recursive definition.

2.1 The Syntax

Let the denumerable sets Var, PVar, Cst and Fct be respectively a set of variables,
a set of pattern variables, a set of constructors and a set of function symbols. Each
constructor c ∈ Cst and each function symbol F ∈ Fct has an arity n ≥ 0: the number
of arguments that it expects. In particular a constructor c of arity 0 is a base constant.

The program syntax is given in Table 1 where x ∈ Var, X ∈ PVar, c ∈ Cst and F ∈
Fct. Among function symbols we distinguish a subset of symbols which we will call
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Table 1. LPL term language definition

p ::= M | LetRec dF in p program definition
v ::= c v1 · · · vn value definition
t ::= X | c t1 . . . tn pattern definition
dF ::= F t1 . . . tn = N | dF, dF function definition

M, N ::= x | c M1 . . . Mn | X | F M1 . . . Mn | λx.M | MM term definition

basic functions and denote as F, G, ... We use the symbol κ to denote either a variable
or a pattern variable. Observe that values and patterns are subsets of terms.

The size |M| of a term M is the number of symbols occurring in it. The size of pat-
terns and programs are defined similarly. We denote by no(κ, M) the number of occur-
rences of κ in M. Let s ∈ Cst ∪ Fct be a symbol of arity n, then we will often write
s(M1, . . . , Mn) or s(

−→
M ) instead of s M1 . . . Mn.

The set Cst includes the usual constructors s of arity one and the base constant 0
for natural numbers, the constructor : of arity two and the base constant nil for lists of
natural numbers, node of arity three and the base constant ε for binary trees with node
natural numbers.

A function definition dF for the function symbol F of arity n is a sequence of defini-
tion cases of the shape F(t1, · · · , tn) = N where F is applied to patterns t1, . . . , tn,
the free variables of N are a subset of the free variables of t1, . . . , tn (thus pattern vari-
ables), and N is normal for the reduction (which will be given in Def. 4). Besides in a
definition case:
1. if F is a basic function G, then N does not contain any function symbol,
2. if F is not a basic function, then (i) N does not contain any basic function symbol,

and (ii) every occurrence of F in N appears in subterms of the form F(t11, . . . , t
1
n),

. . . , F(tk1, . . . , t
k
n); these subterms are called the recursive calls of F in N.

Patterns are linear in the sense that a pattern variable X cannot appear several times in a
given pattern. Moreover we assume that patterns t1, . . . , tn in the l.h.s. of a definition
case have distinct sets of pattern variables. The notion of sub-term is adapted to patterns:
we denote by t′ ≺ t the fact that t′ is a strict sub-pattern of t. As usual � is the reflexive
closure of ≺. Patterns t and t′ such that t � t′ and t′ � t are incomparable.

A program is a term M without free pattern variables preceded by a sequence of func-
tion definitions dF1 , . . . , dFn defining all the function symbols occurring in M. We ask that
every function definition dFi uses only the function symbols F1, . . . , Fi. We write a pro-
gram of the shape LetRec dF1 in · · · LetRec dFn in M simply as LetRec dF1 , . . . , dFn
in M. As usual we consider programs up to renaming of bound variables.

A substitution σ is a mapping replacing variables by terms. This is used to define the
notion of matching which is essential for the reduction mechanism of our language.

Let t be a pattern. We say the term M matches t if and only if there exists a substitution
σ such that M = σ(t). Analogously, given a definition case F(t1, . . . , tn) = N, the term
M matches it if and only if there exists a substitution σ such that M = F(σ(

−→
t )).

We say a sequence d1, . . . , dn of function definition cases for the function symbol
F of arity n is exhaustive if for every sequence of values V1, . . . , Vn such that F(

−→
V ) is

typable, there exists a unique 1 ≤ i ≤ n such that F(
−→
V ) matches the l.h.s. of di.

A program p is well defined if and only if all the function definitions in it are exhaustive.
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2.2 Syntactic Criterion

As we have already stressed, the first ingredient to ensure the intended complexity prop-
erties for LPL programs is a syntactic criterion.

Consider a definition case F(t1, . . . , tn) = M. We say t is recursive if it contains some
recursive calls F(t11, . . . , t

1
n), . . . , F(t

m
1, . . . , t

m
n) (m ≥ 1) in M, and base otherwise. Note

that basic functions by definition only have base definition cases. We now need the
following notion of safe definition cases.

Definition 1 (Safe definition case). Let F(t1, . . . , tn) = M be a definition case. It is
safe if for every recursive call F(t11, . . . , t

1
n), . . . , F(t

m
1, . . . , t

m
n) of F in M, we have:

(i) ∀k, ∀i : tk
i � ti, (ii) ∀k, ∃j : tk

j ≺ tj , (iii) ∀j, ∀k �= l, tk
j � tl

j and tl
j � tk

j .

Note that this condition is trivially satisfied by base definition cases, and thus by basic
functions. The syntactic criterion for LPL program can now be defined:

Definition 2 (Syntactic Criterion). An LPL program M satisfies the syntactic criterion
if and only if every definition case in it is safe.

We now state some definitions and properties that will be useful in the sequel.

Definition 3 (Matching argument). Let F(t1, . . . , tn) = M be a definition case. Every
position of index j such that tj is not a pattern variable X is a matching position.

The set R(F) is the set of all positions j for which there exists a definition case of F
where j is in matching position. The matching arguments of a function symbol F are the
arguments in a matching position of R(F).

Note that in Definition 1 the condition (ii) asks that for every recursive call there ex-
ists at least one recurrence argument. Every such recurrence argument is a matching
argument. Moreover conditions (iii) and (ii) imply that in safe definition cases making
recursion over integer or list there is at most one recursive call. This to avoid exponen-
tial functions like the following: exp(s X) = (exp X)+ (exp X). Nevertheless, we have
functions with more recursive calls over trees, for example:

Tadd (node X Y Z) (node X′ Y′ Z′) = node (X + X′) (Tadd Y Y′) (Tadd Z Z′).
Safe definition cases have the following remarkable property.

Lemma 1. Let F(t1, . . . , tn) = M be a safe definition case and let the recursive calls
of F in M be F(t11, .., t1n), . . . , F(tm1, .., tmn). Then

∑n
i=1 |ti| >

∑m
k=1(

∑n
i=1 |tk

i |).

2.3 Reduction

The computational mechanism of LPL will be the reduction relation obtained by ex-
tending the usual β-reduction with rewriting rules for the LetRec construct.

We denote by M{} a context, that is to say a term with a hole, and by M{N} the result
of substituting the term N for the hole.
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Definition 4. The reduction relation →L is the contextual closure of:

– the relation →β defined as: (λx.M)N →β M[N/x],
– the relation →γ defined for basic functions F by: if ∃i σ(−→ti ) =

−→
N then

LetRec F(t1) = M1, . . . , F(tn) = Mn in M{F(−→N )} →γ

LetRec F(t1) = M1, . . . , F(tn) = Mn in M{σ(Mi)}
– and of the relation →Rec defined as →γ but for non-basic functions.

We write →γFi
(resp. →RecFi

) instead of →γ (resp. →Rec) when we want to stress which
function Fi (resp. Fi) has been triggered. As usual →∗

L denotes the reflexive and transi-
tive closure of →L.

We remark that the syntactic criterion alone implies that a program satisfying it cannot
have an infinite →Rec reduction sequence.

2.4 Type System

The fundamental ingredient to ensure the complexity properties of LPL is the type
system. It allows to derive different kinds of typing judgments. One assigns types to
terms, another one assigns types to programs and the last one assigns types to function
definitions. We start with a set of ground types containing Bn, N, Ln, L, T representing
respectively finite types with n ≥ 1 elements, unary integers (natural numbers), lists
over Bn, lists of unary integers and binary trees with unary integers at the nodes. Ground
types can also be constructed using products D1 × D2 whose elements are of the form
(p d1 d2) where di is an element of Di (i = {1, 2}). The constructor p has type D1 �
D2 � D1 × D2. This set of ground types could easily be extended to all the usual
standard data types. Types are defined by the following grammars:

D ::= Bn | N | Ln | L | T | D × D and A ::= D | A � B | !A � B | §A

The type !A � B is the translation of the intuitionistic implication A ⇒ B in linear
logic. It uses the modality ! to manage typing of non-linear variable in a program. In
particular, !A � B is a type for functions that can use their argument several times,
while A � B (when A is not of the form !A′) is a type of functions that use their
argument at most once. It is worth noting that the modality ! here cannot be nested,
i.e. !!A does not occur in types since ! is used only in combination with �, on its left
hand side. The other modality §A is used in Light linear logic [4] (and in DLAL) to
guarantee a PTIME bound normalization. A possible intuition is that it marks different
levels of computation, like in ramified type systems: a function defined by recursion
over an argument of type D (a data type) will produce a result at higher level, so of type
§A, for some A. A formula A is modal if it is of the form A = §B or !B. We write †
for modalities in {!, §}, and †nA = †(†n−1A), †0A = A.
Now we give types to constructors and functions:

Definition 5. To each constructor or function symbol s, of arity n, a fixed type is asso-
ciated, denoted T (s):

– If s = c or F then T (s) = D1 � · · ·� Dn � Dn+1,
– If s = F a non-basic function then T (F) =!i1§j1A1 � · · ·�!in§jnAn � §jA with:
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i) j ≥ 1 and 0 ≤ ir ≤ 1 for any 1 ≤ r ≤ n,
ii) for 1 ≤ r ≤ n, if r ∈ R(F) then Ar is a ground type D and ir = jr = 0;

otherwise ir + jr ≥ 1.

Where for 1 ≤ i ≤ n + 1, the Di are ground types, and the Ai and A are non-modal.

Example 1. For the ground type N of natural numbers we have: T (0) = N, T (s) =
N � N. For the ground type L of finite lists of natural numbers we have: T (nil) = L,
T (:) = N � L � L. For the ground type T of finite binary trees with natural numbers
as node we have: T (ε) = T, T (node) = N � T � T � T.

We design a declarative type assignment system (Table 2) to favor simplicity rather than
to make type inference easy. So the typing rules will not be syntax-directed but they
could be. Contexts, denoted Γ, Δ, . . . are sets of assignments of the shape x :A or X :A
where A is a type. Note that there are no symbols of function or constructor in contexts.

The type judgments for terms and programs have the shape Γ ; Δ  M :A and Γ ; Δ 
p : A respectively, where Γ and Δ are two distinct contexts, M is a term and p is a
program, while A is a type. The context Γ is called non-linear, while Δ is linear (in
fact affine): the type system will ensure that variables from Δ occur at most once in
the term M or the program p. If Δ is κ1 : A1, . . . , κn : An then §Δ will stand for
κ1 :§A1, . . . , κn :§An.

The type judgments for function definitions have the shape �dF : A, where dF is a
definition of F (possibly not completed yet) and A is a type.

We now explain some rules. In binary rules, like (⇒ E), the contexts of the two
premises have disjoint sets of variables. The typing rules for terms in Table 2.2 are
essentially those of the type system DLAL [17] for λ-calculus but extended to pattern
variables. Note that the linear application (� E) is unrestricted, while in the non-linear

Table 2. LPL Typing rules

� c : T (c) � F : T (F)
1: Constructors and functions

; κ : A � κ : A
(Ax)

Γ1; Δ1 � M : B

Γ1, Γ2; Δ1, Δ2 � M : B
(W )

Γ, κ1 : A, κ2 : A; Δ � M : B

Γ, κ : A; Δ � M[κ/κ1, κ/κ2] : B
(C)

Γ ; Δ, x : A � M : B

Γ ; Δ � λx.M : A � B
(� I)

Γ1; Δ1 � M : A � B Γ2; Δ2 � N : A

Γ1, Γ2; Δ1, Δ2 � MN : B
(� E)

Γ, x : A; Δ � M : B

Γ ; Δ � λx.M :!A � B
(⇒ I)

Γ1; Δ � M :!A � B ; Γ2 � N : A Γ2 ⊆ {κ : C}
Γ1, Γ2; Δ � MN : B

(⇒ E)

; Γ, Δ � M : A

Γ ; §Δ � M : §A
(§I)

Γ1; Δ1 � N : §A Γ2; x : §A, Δ2 � M : B

Γ1, Γ2; Δ1, Δ2,� M[N/x] : B
(§E)

2: Terms

Γ ; Δ � F(
−→
ti ) : B Γ ; Δ � Ni : B �dF : B

�(F(
−→
ti ) = Ni), dF : B

(D)
Γ ; Δ � p : A �dF : B

Γ ; Δ � LetRec dF in p : A
(R)

3: Recursive definitions and programs
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one (⇒ E): the argument N should have at most one free variable κ, which is linear; in
the conclusion, κ then has a non-linear status. This is a key to bound β-reduction steps.

The typing rules for definitions are presented in Table 2.3 and together with those
for function symbols, are the main novelty of the present system. They need some com-
ments. The rule (D) serves to add a definition case to a partial definition dF of F. The
new definition typed is then d′F = (F(−→ti) = Ni), dF. Whereas the rule (R) then serves to
form a new program from a program and a definition of a function.

By a straightforward adaptation of DLAL subject reduction we have:

Theorem 1 (Subject Reduction). Let p be a LPL program such that Γ ; Δ  p : A.
Then, p →∗

L q implies Γ ; Δ  q : A.

2.5 Some Examples

We give here some hints on how to program in LPL. More information about the typing
can be found in Section 3.1. Addition can be defined by a standard definition dA as:

Add (s X) Y = s (Add X Y) , Add 0 Y = Y
the first is a matching arguments, so dA is typable for example by taking Add : N �
§N � §N. Multiplication can be given by a function definition dM as:

Mul (s X) Y = Add Y (Mul X Y) , Mul 0 Y = 0

the first is a matching argument and since Add : N � §N � §N we can type dM using
Mul : N �!N � §§N and by means of rule (§I) and (§E). We have a type coercion
program for every data type, e.g on numerals we have dC as:

Coer (s X) = s (Coer X) , Coer 0 = 0

typable with Coer : N � §N. This can be used in dP to define the usual Map program:

Map Y (X : XS) = (Y (Coer X)) : (Map Y XS) , Map Y nil = nil

typable with Map :!(N � N) � L � §L. Note that we have also a typing for non linear
function argument of Map. Using this we can write a program Map (×2) (1 : 2 : 3 : 4)
that doubles all the elements of (1 : 2 : 3 : 4) as

LetRec dA, dM, dC, dP in Map (λx.Mul x 2) (1 : 2 : 3 : 4)
typable with type §§§L using Map :!(N � §§N) � L � §§§L. Using again the
coercions we have a definition dR for the Foldr program:

Foldr Y Z (X : XS) = Y (Coer X) (Foldr Y Z XS) , Foldr Y Z nil = Z

typable with Foldr :!(N � N � N) � §N � L � §N. Note that we have also a
typing Foldr :!(N � §N � §N) � §§N � L � §§N, we can use it to write the
program Foldr (+) 0 (1 : 2 : 3) that sums the values in the list (1 : 2 : 3). We have

LetRec dA, dC, dR in Foldr (λx.λy.Add x y) 0 (1 : 2 : 3)
typable with type §§N. Finally have also some interesting programs over trees. For
example we have dT defining addition Tadd : T � T � §T as:

Tadd (node X Y Z) (node X′ Y′ Z′) = node (Add X X′) (Tadd Y Y′) (Tadd Z Z′) ,
Tadd ε X = CoerT X , Tadd X ε = CoerT X

where CoerT is a coercion for the T data type (defined analogously to the one for natural
numbers). It should be stressed that even though in LLL one can define a type for binary
trees (as in system F) there is no simple way in this system to program Tadd. Moreover,
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we here can program some more examples that would be awkward to program in LLL.
For example division by 2 on unary integers.

Div (s (s X)) = s (Div X), Div (s 0) = 0 , Div 0 = 0 ,

that gets type N � §N. The problem for typing DIV in LLL is that this kind of recursion
scheme (using the pattern s(s X)) cannot be implemented directly on Church integers,
by using their iteration scheme. Similarly functions that are defined by pattern matching
over two arguments, like for example Tadd above and the minimum function:

Min (s X) (s Y) = s (Min X Y), Min (s X) 0 = 0 , Min 0 (s Y) = 0 ,

that is typable as Min : N � N � §N cannot be programmed naturally in LLL.

3 Translating LPL in eLPL

The proof of the polynomial time complexity bound for light linear logic [4] and light λ-
calculus [14] uses a notion of stratification of the proofs or λ-terms by depths. To adapt
this methodology to LPL we need to make the stratification explicit in the programs. For
that we introduce an intermediate language called eLPL, adapted from light λ-calculus
[14], and where the stratification is managed by new constructions (corresponding to
the modality rules). Note that the user is not expected to program directly in eLPL, but
instead he will write typed LPL programs, which will then be compiled in eLPL. The
polynomial bound on execution will then be proved for a certain strategy of evaluation
of eLPL programs.

The syntax of eLPL is given in Table 3. An eLPL term λx.let x be !y in M[y/x],
where y is fresh, is abbreviated by λ!x.M. Moreover, we write let M be †nx in N to
denote terms as let M be †x1 in (let x1 be †x2 in (. . . (let xn−1 be †xn in N) · · · ).
We will give a translation of type derivations of LPL programs to type derivations of
eLPL programs, which will leave almost unchanged the typing part, and act only on the
term part of LPL programs.

The contexts of typing judgments for eLPL terms and programs can contain a new
kind of type declaration, denoted x : [A]§, where A is a type, which corresponds to
a kind of intermediary status for variables with type §A. In particular, [A]§ does not
belong to the type grammar and these variables cannot be λ-abstracted, the only possi-
bility is to bind them by means of a let. This kind of declarations is made necessary
by the fact that eLPL is handling explicitly stratification. If Δ = x1 : A1, . . . , xn : An

then [Δ]§ is x1 : [A1]§, . . . , xn : [An]§. The typing rules are given in Table 4. Note
that declarations x : [A]§ are introduced by (§ I) rules, and eliminated by (§ E) rules.
Intuitively, a variable x : [A]§ is a kind of special pattern for §x, and only a term of the

Table 3. eLPL term language definition

program definition p ::= M | LetRec dF in p
value definition v ::= c(v1, · · · , vn)
pattern definition t ::= X | c(t1, . . . , tn)
function definition dF ::= F(t1, . . . , tn) = N | dF, dF
term definition M, N ::= x | c | X | F | λx.M | MM | !M | §M | let M be !x in M | let M be §x in M
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Table 4. eLPL type system

constructors and functions rules, (Ax), (W ), (C), (� I), (� E), (D), (R) : as in Table 2

; Γ, Δ � M : A

Γ ; [Δ]§ � §M : §A
(§I)

Γ, x : A; Δ � M : B

Γ ; Δ � λ!x.M :!A � B
(⇒ I)

Γ, κ : A; Δ � M : B x fresh

Γ, κ : A; Δ � let κ be !x in M[x/κ] : B
(l!)

Γ1; Δ1 � N : §A Γ2; x : [A]§, Δ2 � M : B

Γ1, Γ2, Δ1; Δ2,� let N be §x in M : B
(§E)

Γ1; Δ � M : (!A) � B ; Γ2 � N : A Γ2 ⊆ {κ : C}
Γ1, Γ2; Δ � M!N : B

(⇒E)

shape §M will be able to trigger the reduction of the let. Observe that if λx.M is a well
typed eLPL term, then no(x, M) ≤ 1.

Note that all the rules in Table 4, but the rule (l!), are the same rules as in Table 2 but
for the terms being the subjects of each rule and for the distinction between §A and [A]§.
This suggests that we can give a translation on type derivation inducing a translation on
typable terms. From this observation we have the following:

Definition 6. Let M be an LPL term and Π be a type derivation proving Γ ; Δ  M : B.
Then, Π∗ is the type derivation in eLPL proving Γ ; Δ  M∗ : B obtained by:

– substituting to each rule (X) of LPL in Π the corresponding rule (X) in eLPL
and changing accordingly the subject,

– adding at the end: for each variable κ ∈ Γ (resp. x : [A]§ ∈ Δ) an occurrence of
the rule (l!) (resp. (§ E) with a l.h.s. premise of the form ; y : §A  y : §A).

The above translation leaves the contexts Γ and Δ and the type B, the same as in the
source derivation. The translation can be easily extended to function definitions:

Definition 7. Let F(−→ti) = Ni, dF be an LPL function definition and Π be its type
derivation in LPL ending as:

Σ1 : Γ ; Δ � F(
−→
ti ) : B Σ2 : Γ ; Δ � Ni : B Σ3 : �dF : B

�F(
−→
ti ) = Ni, dF : B

(D)

Then, Π∗ is the type derivation in eLPL ending as:

Σ1 : Γ ; Δ � F(
−→
ti ) : B Σ∗

2 : Γ ; Δ � N∗i : B Σ∗
3 : �dF

∗ : B

�F(
−→
ti ) = N∗i , dF

∗ : B
(D)

Note that in the translation we do not translate the left hand-side of a definition case, we
keep it to be exactly the same as in LPL. We can now extend the translation to programs.

Definition 8. Let p = LetRec dF1 , . . . , dFn in M be an LPL program and let Π be a
type derivation in LPL proving Γ ; Δ  LetRec dF1 , . . . , dFn in M : B. Then, Π∗ is
the derivation in eLPL proving Γ ; Δ  LetRec dF1

∗, . . . , dFn
∗ in M∗ : B obtained by

replacing every derivation Σi : �dFi : §B in Π by the derivation Σ∗
i � dFi

∗ : §B and
by replacing the derivation Σ : Γ ; Δ  M : B by the derivation Σ∗ : Γ ; Δ  M∗ : B.

The above translation is not exactly syntax directed; the reason is that we want the
following remarkable property:
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Lemma 2. Let M be an LPL term and Π be a type derivation for it. Then the term M∗

obtained by the derivation Π∗ is such that no(κ, M∗) ≤ 1 for each κ ∈ FV(M∗).

Because of the new let constructions, the reduction rules are extended as follows:

Definition 9. The reduction relation →I is the contextual closure of the relations →Rec,
→γ (as in Def. 4) and of the reductions →β , →!, →§, →com1 ,→com2 and →com3 for
† ∈ {!, §} defined as:

(λx.M)N →β M[N/x], let !N be !x in M →! M[N/x], let §N be §x in M →§ M[N/x],

M(let U be †x in V) →com1 let U be †x in (MV),

(let U be †x in V)M →com2 let U be †x in (VM),

let (let U be †x in V) be †y in W →com3 let U be †x in (let V be †y in W).

As usual →∗
I denotes the reflexive and transitive closure of →I.

We write →com for any one of the three commutation reductions →comi . Note that:

– in →β and →§ at most one occurrence of x is substituted in M (linear substitution),
– the reduction →!, →Rec, →γ are the only ones inducing non-linear substitutions.

In fact, a β-step in LPL corresponds in eLPL to a (linear) β step followed by a ! step.
Now, to reason about the stratification we define the notion of depth.

Definition 10. Let M be an eLPL term and N be an occurrence of a subterm in it. The
depth of N in M, denoted d(N, M) is the number of § or ! symbols encountered in the
syntax tree of M when going from the root of M to the root of N . The degree of an eLPL
term M, denoted by d(M), is the maximal depth of any subterm in it.

E.g. Take M as N!(let y be !x in§(F x)). Then d(N, M) = 0, d(y, M) = 1 and d(x, M) = 2.
In what follows we write N ∈i M to denote the fact that N is a subterm of M at depth i,
i.e. d(N, M) = i. We write ni

o(κ, M) (respectively |M|i, FV(M)i and FO(M)i) to denote
the restriction of no(κ, M) (respectively |M|, FV(M) and FO(M)) at depth i.
Now we can state some important properties of typing on eLPL terms.

Lemma 3 (Variable occurrences). Let Γ ; Δ  M : A. Then:

i) if κ ∈ dom(Δ) then no(κ, M) ≤ 1.
ii) if no(κ, M) > 1 then κ ∈ dom(Γ ) and d(κ, M) = 1.

iii) if κ ∈ dom(Γ ∪ Δ) we have n0
o(κ, M) ≤ 1.

Lemma 4. Let F(t1, . . . , tn) = N and let F(t11, . . . , t
1
n), . . . , F(t

m
1, . . . , t

m
n) be the re-

cursive calls of F in N. Then, d(F(ti
1, . . . , t

i
n), N) = 0.

These properties will be useful when studying the bounds on the reductions in eLPL.
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3.1 Revisiting the Examples

We now come back to the examples of Section 2.5 in order to clarify the way such
programs can be typed by giving the translations in eLPL. The function definitions
dC, dA and dM for the programs Coer : N � §N, Add : N � §N � §N and
Mul : N �!N � §§N respectively, can be translated in eLPL as

Coer (s X) = let (Coer X) be §z in §(sz) , Coer 0 = §0
Add (s X) Y = let (Add X Y) be §z in §(sz) , Add 0 Y = Y
Mul (s X) Y = let Y be !r in let (Mul X !r) be §z in §(Add r z) , Mul 0 Y = §§0

Similarly, the definition dP for Map :!(N � §§N) � L � §§§L can be translated as:

Map Y (X : XS) = let Y be !y in let Map !y XS be §§§z in let Coer X be §x in
§(let y x be §§r in r : z) , Map Y nil = §§§nil

Then the program LetRec dA, dM, dC, dP in Map (λx.Mul x 2) (1 : 2 : 3 : 4) can be
translated in eLPL as LetRec d∗A , d

∗
M , d

∗
C, d

∗
P in Map !(λx.Mul x !2) (1 : 2 : 3 : 4). Anal-

ogously, the definition dR for Foldr :!(N � §N � §N) � §§N � L � §§N can be
translated as:

Foldr Y Z (X : XS) = let Y be !y in let Coer X be §x in let Foldr !y Z XS
be §r in §(yxr) , Foldr Y Z nil = Z

Then the program LetRec dA, dC, dR in Foldr (λx.λy.Add x y) 0 (1 : 2 : 3) can be
translated as LetRec d∗A, d

∗
C , d

∗
R in Foldr !(λx.λy.Add x y) §§0 (1 : 2 : 3).

Finally the definition dT for Tadd : T � T � §T can be translated using a coercion
CoerT for the T data type (defined analogously to the one for natural numbers) as:

Tadd (node X Y Z) (node X′ Y′ Z′) = let Add X X′ be §x in let Tadd Y Y′ be §y in
let Tadd Z Z′ be §z in §(node x y z) , Tadd X ε = CoerT X , Tadd ε X = CoerT X

4 PTIME Completeness

The proof that LPL is complete for polynomial time functions is rather standard: we
can simulate any polynomial time (one tape) Turing machine in the language. In LPL
we can represent all the polynomials in N[X ], but here it is sufficient to use:

Lemma 5. For any K, k ∈ N, there exists an integer l and an LPL program of type
N � §l

N representing the polynomial K × x2k

.

We consider a polytime Turing machine M with witness time polynomial P , n states,
and a 3 symbol alphabet (0,1 and blank). We encode the configurations with the type
config= (L3 × L3) × Bn where the first L3 type corresponds to the left part of the
tape, the second one corresponds to the right part, starting from the scanned symbol.

Lemma 6. For any transition function δ, there exists an LPL basic function
conf2conf : config � config representing the corresponding action on config-
urations.

We easily check that conf2conf can be defined by a case analysis, using the pattern-
matching, and does not need recursion; so it is a basic function, hence its type. We will
also use an iterator of type N�!(A�A)� §A� §A with A=config defined by:

Iter (s X) f base = f Iter X f base , Iter 0 f base = base
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Theorem 2 (Ptime Completeness). For any polynomial time function f on {0, 1}�,
there exists an integer j and an LPL program of type L2 � §j

L2, representing f .

Proof. We simulate the machine M computing f . By Lemma 5 we represent in LPL
the polynomial P , with a term t of type N � §m

N, for some m. It is also easy to define
a Length : L2 � §N and a Init : L2 � config which maps a word to the corre-
sponding initial configuration. The simulation is then obtained by iterating conf2conf
for (t (Length w)) steps, starting from the base (Init w), and then extracting the result
by using projection maps. This can be suitably typed, using some coercions on L2. ��

5 Polynomial Time Soundness

We here show that well-typed LPL programs satisfying the syntactic criterion can be
evaluated in polynomial time in the size of the input (with the degree of the polynomial
given by the type derivation). For that we work on the eLPL translated programs. For
simplicity we do not consider basic functions, but the proof can be easily extended to
the whole LPL. From now on we only consider eLPL programs obtained by translation
from well-typed LPL programs satisfying the syntactic criterion.

Similarly to the polynomial soundness proof for LLL, we prove that the evaluation
of eLPL programs can be done in polynomial time using a specific depth-by-depth
stratified strategy. The polynomial bound for this strategy in LLL relies on:

1. reducing a redex at depth i does not affect the size at depth j < i
2. a reduction at depth i strictly decreases the size at depth i
3. a reduction at depth i increases the size at depth j > i at most quadratically
4. the reduction does not increase the degree of a term

Unfortunately for eLPL facts 2, 3 and 4 above do not hold due to the presence of
LetRec, hence some adaptations are needed.

In order to adapt these facts we need to impose a rigid structure on the reductions at a
fixed depth. We consider a notion of standard reduction round at a fixed depth i, denoted
⇒i and a notion of standard reduction step at a fixed depth i denoted �i

RecF
for each

function symbol F of the program. A standard reduction step �i
RecF

is an alternating
maximal sequence of →RecF and →∗

com steps at depth i as represented in Figure 1.(i). It
is maximal in the sense that in the step →∗

com all the possible commutations are done.
Note that, during a standard reduction step the size of the term at depth i might grow as

�→RecF
�→∗

com
� · · · �→RecF

�→∗
com

� �→∗
(β,com)

� �i
RecFn

� �i
RecFn−1

� · · · � �i
RecF1

� →∗
† �

(i) (ii)

Fig. 1. Term size variations at fixed depth i by a standard reduction step and round at same depth.
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depicted in Figure 1.(i), i.e. →∗
com steps leave the size unchanged while →RecF steps can

grow the size at depth i. We introduce some new measures on matching arguments to
show that this growth is polynomial in the size of the initial term i.e. Lemma 20.

A standard reduction round ⇒i is a sequence of maximal reduction steps as repre-
sented in Figure 1.(ii). Every reduction step is maximal in the sense that it reduces all
the possible redexes of the intended kind. Note that, also during a standard reduction
round the size of the term at depth i might grow as depicted in Figure 1.(ii), i.e. →∗

β,com

and →∗
† steps make the size decrease while �i

RecFj
steps can make the size grow as

discussed above. So, by using the bound on a standard reduction step and by the fact
that the number of standard reduction steps depends on the shape of the program, we
adapt fact 2 above by showing that this growth is polynomial in the size of the initial
term, i.e. Theorem 3. Moreover, by similar arguments we adapt fact 3 above by showing
that a standard reduction round at depth i can increase the size at depth j > i at most
polynomially, Lemma 21.

Finally, in order to adapt fact 4 to our framework, we introduce the notion of potential
degree. This is the maximal degree a term can have during the reduction and it can be
statically determinated. We show that a standard reduction, i.e. a sequence of standard
reduction rounds of increasing depth, does not increase the potential degree, Lemma 23.
Summarizing, what we obtain can be reformulated for eLPL as:

1. reducing a redex at depth i does not affect depth j < i
2. a standard reduction round at depth i strictly decreases some measures on matching

arguments and increases the size at depth i at most polynomially
3. a standard reduction round at depth i increases the size at depth j > i at most

polynomially
4. the standard reduction does not increase the potential degree of a term

Now, from these new key facts, the polynomial soundness, Theorem 4, will follow.

5.1 Preliminary Properties

For a given a program p = LetRec dF1 , . . . , dFn in M it is convenient to introduce the
following static constants:

KFi = max{|N|j | Fi(t1, . . . , tn) = N ∈ dFi} and K = max{KFi | 1 ≤ i ≤ n}
We now show some simple properties about eLPL term depths. Recall that eLPL has
been designed in such a way to preserve the good LLL properties. Indeed, the following
lemmas can be directly adapted from the arguments in [14].

Lemma 7. 1. Let λx.M be a well typed term. Then no(x, M) ≤ 1 and d(x, M) = 0.
2. Let let M be†x in N be a well typed term. Then x ∈ FV(N) implies that for each

occurrence xi of x in N, d(xi, N) = 1.
3. Let F(t1, . . . , tn) = N be a typed definition case: if X ∈ FV(ti), then d(X, N) = 0.

Lemma 8. 1. Let M be com-normal at depth i ≥ 0. If M →∗
† M′ at depth i then for

j > i we have |M′|j ≤ |M|j×|M|i and it does not create redexes at depth k ≤ i.
2. At depth i ≥ 0, →β and →† reductions strictly decrease the term size at depth i.

The number of com-reductions in M →∗
com M′ is bounded by (|M|i)2. The number of

(β, †)-reductions in M →∗
β,† M

′ is bounded by |M|i.
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5.2 Bound the Number of Steps at a Fixed Depth

We need to define a measure, denoted SAF
j (M), that will be used to bound the number of

rec-reduction steps at depth j. For that we will first introduce an intermediary notion:

Definition 11 (External constructor size). The external constructor size of a term M
at depth j, denoted ‖M‖j , is the number of constructors of M at depth j which are not in
an argument of a function, of a let or of a variable at depth j.

The external constructor size measure enjoys the following remarkable property.

Lemma 9. Let F(t1, . . . , tn) = N be safe and let the recursive calls of F in N be
F(t11, .., t

1
n), . . . , F(t

m
1, .., t

m
n). Then

∑
r∈R(F) ‖tr‖0 >

∑m
k=1

∑
r∈R(F) ‖tk

r‖0.

Proof. By induction on m by using Lemma 4 and Definition 1. ��

Lemma 10. 1. If Γ ; Δ  M : †A and M is (β, com)-normal at depth 0, then ‖M‖0 = 0.
2. If Γ ; Δ  M : A and M is (β, com)-normal at depth 0 and M →RecF M′ at depth 0,

then ‖M′‖0 = ‖M‖0.

Proof. 1. By induction on M. 2. By induction on M using point 1. ��

Note that the above lemma applies on each typable term. This means that for each
(β, com)-normal term M the measure ‖M‖0 is invariant under RecF function calls.

Definition 12. We call SAF
j (M) the sum of the external constructor sizes of the matching

arguments at depth j of the function F in M. It is inductively defined as:

SAF
0(†M′) = 0 SAF

j+1(†M′) = SAF
j (M

′) SAF
j+1(F(M1, . . . , Mn)) =

∑n
i=1 SAF

j+1(Mi)

SAF
0(F(M1, . . . , Mn)) =

∑n
i=1 SAF

0(Mi) +
∑

r∈R(F) ‖Mr‖0

SAF
j (sM1 · · · Mn) = SAF

j (G(M1, . . . , Mn)) =
∑n

i=1 SAF
j (Mi) if s ∈ {y, c}

SAF
j ((λx.M

′)M1 · · · Mn) = SAF
j (M

′) +
∑n

i=1 SAF
j (Mi)

SAF
j ((let N1 be †x in N2)M1 · · · Mn) = SAF

j (N1) + SAF
j (N2) +

∑n
i=1 SAF

j (Mi)

The following Lemma follows by the above definition.

Lemma 11. We have ‖M‖0 +
∑

{SAG
0(M) | G ∈ M} � |M|0. Moreover for i ≥ 0 we have∑

{SAG
i (M) | G ∈ M} ≤ |M|i.

We remark that the above lemma gives a bound for all the function symbols of the
program, but often we use it to give a bound only for one function symbol : SAF

i (M) �
|M|i. The following key lemma is the reason for which we have introduced SAF

i (M):

Lemma 12. If M is (β, com)-normal and M →RecF M
′ at depth i then SAF

i (M
′) < SAF

i (M).

Proof. Let M = Q{F(σ(t1), . . . , σ(tn))} →RecF Q{σ(N)} = M′. It follows by induction
on the shape of Q{} and on the depth i by using Definition 12 and Lemma 10.2. ��

The above lemma will be useful to show that the number of Rec-reductions is bounded.
Before, we need some properties on Rec-redexes w.r.t. other redexes.



120 P. Baillot, M. Gaboardi, and V. Mogbil

Lemma 13. 1. Reducing a Rec-redex at depth i cannot introduce a β-redex at depth i.
2. Reducing a com-redex at depth i cannot introduce a Rec-redex at depth i.

Proof. 1. By typing constraints and since the r.h.s. of a definition case is normal.
2. Easy, by the shape of the reduct in a com-reduction. ��

Note that from the above lemma follows that if M is β-normal at depth i and M →Rec M′

at depth i then M′ is β-normal at depth i and analogously, if M is RecF-normal at depth i
and M →com M′ at depth i then M′ is RecF-normal at depth i.
In order to show that the number of Rec-reductions is bounded, we now need to consider
the behaviour of Rec-reductions on Rec-redexes of other function symbols.

Lemma 14. Consider p = LetRec dF1 , . . . , dFn in M.

1. A RecFi-reduction in M at depth d can introduce only Fj for j ≤ i function symbols
at a depth less or equal to d + max{d(Nj) | Nj body in a definition case of Fi}.

2. If M is (β, com)-normal, a RecFi-reduction in M at depth d cannot introduce a recFj-
redex for n ≥ j > i at depth d.

Proof. 1. Substitutions are done at depth d of terms with degree at most max d(Nj).
2. Easy, blocked symbols remain blocked by point 1 and Lemma 10.2. ��

From the above lemmas and Lemma 12 we have the following.

Corollary 15 (RecF-reductions bound). Let M be (β, com)-normal at depth i. If
M →k

RecF
M′ at depth i then k ≤ SAF

i (M).

Now we also need to control the term’s size increase during a Rec-reduction step.

Lemma 16 (Size lemma). If M →RecF M
′ at depth i then for all j ≥ i we have |M′|j ≤

|M|j + KF.

Proof. Let M = M1{F(σ(t1), . . . , σ(tn))} →RecF M1{σ(N)} = M′. By definition we
have |M′|j = |M1{}|j + |σ(N)|j−i and |M|j + KF = |M1{}|j + KF + |F(σ(t1),
. . . , σ(tn))|j−i.

What we need to show is that |σ(N)|j−i ≤ KF + |F(σ(t1), . . . , σ(tn))|j−i. We
consider the following two cases: j − i = 0 or j − i > 0. In the case j − i = 0
we have |σ(N)|0 = |N|0 +

∑
X∈0FO(N)(|σ(X)|0 − 1) and |F(σ(t1), . . . , σ(tn))|0 =

1 +
∑n

k=1 |tk|0 +
∑

X∈0FO(
−→
t )(|σ(X)|0 − 1). By definition |N|0 ≤ KF, moreover by

definition FV(N) ⊆ FV(−→t ) and by Lemma 2 every X ∈ FV(−→t ) occurs at most once
in N at depth 0. So we have

∑
X∈0FO(N)(|σ(X)|0 − 1) ≤

∑
X∈0FO(

−→
t )(|σ(X)|0 − 1). So

the conclusion follows for this case. In the case j − i = h > 0 we have the same by
Lemma 2: the pattern variables of −→t occur linearly in N at depth 0. ��

It remains to observe that com-reductions preserve our term measures.

Lemma 17. Let M →com M′ then we have: (i) d(M) = d(M′), (ii) |M′|i = |M|i for each
i ≤ d(M), and (iii) SAF

i (M) = SAF
i (M

′) for every F and every i ≤ d(M).

The above properties justify the next definition. We describe the reduction strategy at a
fixed depth that we will use to bound the number of reduction steps of eLPL programs.
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Definition 13 (standard reduction round). Let p = LetRec dF1 , . . . , dFn in M be a
program. Then:

– a standard reduction step at depth i, denoted R �i
RecF

R′, is a sequence of reductions
at depth i of the shape:

R →RecF T →∗
com R1 →RecF T1 →∗

com · · · →RecF Tk →∗
com Rk ≡ R′

such that every Rj is com-normal and Rk is RecF-normal at depth i.
– a standard reduction round at depth i, denoted M ⇒i M′, is the following sequence

of reductions at depth i:
M →∗

(β,com) M0 �i
RecFn

M1 �i
RecFn−1

· · · �i
RecF1

Mn →∗
† M′

such that M0 is (β, com)-normal and M′ is normal at depth i.

When we need to stress the number k of reduction steps in a standard reduction round
we simply write it as M ⇒i

k M′.

In order to show that the relation �i is well defined for every term we need to prove
that all the reductions are finite. First we need the following in order to have its direct
corollary.

Lemma 18. A sequence of reductions →RecF→∗
com at depth i cannot introduce a β-

redex at depth i.

Proof. By typing constraints and by cases on Definition 9. ��

Corollary 19. If M is β-normal at depth i and M →RecF→∗
com M′ at depth i then M′ is

β-normal at depth i.

Now we can prove that the relation �i is well defined.

Lemma 20 (Bound on standard reduction step at depth i). Let M be (β, com)-normal
at depth i. If M �i

RecF
M′ then M′ is (β, com, RecF)-normal at depth i, the number of

reductions is bounded by

2 × (|M|i)3 × (KF + 1)2 and for j ≥ i, |M′|j ≤ |M|j + |M|i × KF.

Proof. By a detailed analysis of the standard reduction step M �i
RecF

M′ and by using
Lemma 12, Lemma 8.2, Lemma 17.ii-iii, Corollary 19, Lemma 16 and Lemma 11. ��

With this bound on standard reduction steps at fixed depth, we now state what we obtain
whenever a standard round is done at fixed depth.

Theorem 3 (Bound on standard round at depth i ). Let p=LetRec dF1 , . . . , dFn in M
be a program. Let M ⇒i

k M′ be a standard reduction round at depth i ≥ 0. Then M′ is
normal at depth i and we have

|M′|i ≤ |M|i × (K + 1)n and k ≤ 3 × (|M|i)3 × (K + 1)3n+2

Proof. By analyzing the standard reduction round M ⇒i
k M′ and by using Lemma 8.1-2,

Lemma 20, Lemma 14.1-2, Lemma 13.2, Lemma 12 and Lemma 17.ii ��
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Now we have a bound on a term size at fixed depth when we apply our strategy at the
same depth. In order to bound the whole program execution we need next to examine
what happens to the sizes at higher depth during the standard reduction round.

Lemma 21 (Size bound at depth greater than i, for a standard reduction round)
Let p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i

k M′ be a standard reduction
round at depth i ≥ 0. Then we have

|M′|i+1 ≤ |M|i+1|M|i × (K + 1)n + (|M|i)2 × (K + 1)2n+1

Proof. By an analysis of the shape of the standard reduction round M ⇒i
k M′ and by

using Lemma 8.1-2, Lemma 20 and Lemma 17. ��

Corollary 22. Let p = LetRec dF1 , . . . , dFn in M be a program. Let M ⇒i M′ be a
standard reduction round at depth i ≥ 0. Then we have |M′| ≤ 2(|M|)2 × (K + 1)2n+1.

5.3 Bound on a Program Normalization

We apply our reduction strategy by standard rounds progressively at depths 0, 1, 2 . . .

Definition 14 (standard reduction). Let p = LetRec dF1 , . . . , dFn in M be a program.
A standard reduction, denoted M � M′, is a sequence of standard reduction rounds of
increasing depths of the shape:

M ⇒0 M0 ⇒1 · · · ⇒d−1 Md−1 ⇒d M′

To stress the number k of total reduction steps we simply write it as M �k M′.

Every standard reduction can be summarized as follows

M →∗
β,com M0

k0
�0

RecFn
M0

k1
�0

RecFn−1
· · · �0

RecF1
M0

kn
→∗

† M0

M0 →∗
β,com M1

0 �1
RecFn

M1
1 �1

RecFn−1
· · · �1

RecF1
M1

n →∗
† M1

...
Mm−1 →∗

β,com Mm
0 �m

RecFn
Mm
1 �m

RecFn−1
· · · �m

RecF1
Mm

n →∗
† Mm

To give an upper bound on standard reductions we need the notion of potential depth.

Definition 15 (Potential Depth). Consider p = LetRec dF1 , . . . , dFn in M and an oc-
currence N of a subterm in M. The potential depth, ptd(N, p), of N in p, is defined as

ptd(N, p) = d(N, M) +
∑n

i=1 maxj{d(Nj
i ) | Fi(t

j
1, .., t

j
n) = Nj

i ∈ dFi}
The potential degree, ptd(p), of p is the maximal potential depth of any subterm in M.

Even if standard reductions can increase the depth of a term, we have the following:

Lemma 23. Let p = LetRec dF1 , .., dFn in M be a program and M⇒0M0⇒1 · · ·⇒mMm

be a standard reduction. Then m < ptd(p).

Proof. By double induction using Lemma 14. ��
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In the previous subsection we gave a bound on the number of program reduction steps
at fixed depth when we apply a standard reduction round. In the previous lemma we
stated that the potential depth is a bound on the possible depths to apply such standard
reduction rounds. So our standard reduction normalizes a given program as follows:

Theorem 4. Let p = LetRec dF1 , . . . , dFn in M be an eLPL translated program satis-
fying the syntactic criterion and d = ptd(p) be its potential degree. Let M �k M′ be a
standard reduction. Then, M′ is normal, and |M′| ∈ O(|M|2d+1

) and k ∈ O(|M|3×2d

).

Proof. Looking at the shape of the standard reduction M �k M′ and by using Theorem
3, Lemma 23, Corollary 22. ��

Corollary 24. If p is is a closed LPL program which satisfies the syntactic criterion
and with type D1 � §i

D2, where i is an integer and D1, D2 are ground types, then p
represents a polynomial time function.

Proof. If v is value of type D1 we consider the translation of (p v) in eLPL, and use the
fact that its potential degree only depends on the type derivation of p. Therefore using
Theorem 4 the evaluation can be done in eLPL a polynomial number of steps, hence in
polynomial time since the cost of each step can be polynomially bounded.

6 Conclusion and Future Developments

In this work we have introduced Light linear Programming Language (LPL), a typed
functional programming language with pattern-matching, recursive definitions and
higher-order types. The main feature of LPL is to give an implicit complexity charac-
terization of PTIME where programming is more natural than in previous proposals. In
order to ensure the PTIME soundness we have given a combined criterion composed of
a syntactic restriction and a type system inspired by the one of Dual Light Affine Logic.

As future developments we consider the following directions:

– Verifying the effectiveness of our criterion and study the exact complexity of its
checking. This study should lead to an efficient type inference procedure.

– Studying different ways of relaxing our criterion in order to improve the intensional
expressiveness of LPL. One interesting direction is to include, in analogy with [5],
recursive definitions of non-size increasing functions with a special status.

– Analyzing the relation between the strategy proposed here to prove the PTIME
soundness and some standard evaluation strategies, e.g. lazy evaluation.
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