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Abstract. Research on deductive verification of probabilistic programs
has considered expectation-based logics, where pre- and post-conditions
are real-valued functions on states, and assertion-based logics, where
pre- and post-conditions are boolean predicates on state distributions.
Both approaches have developed over nearly four decades, but they have
different standings today. Expectation-based systems have managed to
formalize many sophisticated case studies, while assertion-based systems
today have more limited expressivity and have targeted simpler examples.
We present Ellora, a sound and relatively complete assertion-based
program logic, and demonstrate its expressivity by verifying several
classical examples of randomized algorithms using an implementation
in the EasyCrypt proof assistant. Ellora features new proof rules for
loops and adversarial code, and supports richer assertions than existing
program logics. We also show that Ellora allows convenient reasoning
about complex probabilistic concepts by developing a new program logic
for probabilistic independence and distribution law, and then smoothly
embedding it into Ellora. Our work demonstrates that the assertion-
based approach is not fundamentally limited and suggests that some
notions are potentially easier to reason about in assertion-based systems.

1 Introduction

The most mature systems for deductive verification of randomized algorithms
are expectation-based techniques; seminal examples include PPDL [25] and
pGCL [31]. These approaches reason about expectations, functions E from states
to real numbers,7 propagating them backwards through a program until they
are transformed into a mathematical function of the input. Expectation-based
systems are both theoretically elegant (see, e.g., [21,13,32,20]) and practically
useful; implementations have verified numerous randomized algorithms (see, e.g.
[16,18]). However, properties involving multiple probabilities or expected values
can be cumbersome to verify—each expectation must be analyzed separately.
7 Treating a program as a function from input states s to output distributions µ(s),
the expected value of E on µ(s) is an expectation.



An alternative approach envisioned by [34] is to work with predicates over
distributions. A direct comparison between the two approaches is difficult, as they
are quite different. In broad strokes, assertion-based systems can verify richer
properties in one shot and have specifications that are arguably more intuitive,
especially for reasoning about loops, while expectation-based approaches can
transform expectations mechanically and can reason about non-determinism.
However, the comparison is not very meaningful for an even simpler reason:
existing assertion-based systems such as [7,15,35] are not as well developed as
their expectation-based counterparts (see § 9 for a more detailed comparison).

Restrictive assertions. Existing probabilistic program logics do not support
reasoning about expected values, only probabilities. As a result, many prop-
erties about average-case behavior are not even expressible.

Inconvenient reasoning for loops. The Hoare logic rule for deterministic
loops does not directly generalize to probabilistic programs. Existing assertion-
based systems either forbid loops, or impose complex semantic side conditions
to control which assertions can be used as loop invariants. Such side conditions
are restrictive and often difficult to establish.

Limited support for external or adversarial code. A distinctive strength
of expectation-based techniques is reasoning about programs that combine
probabilities and non-determinism. In contrast, Morgan and McIver [27] argue
that assertion-based techniques cannot support compositional reasoning for
such a combination. For many applications, including cryptography, we would
still like to reason about a commonly-encountered special case: programs
using external or adversarial code. Many security properties in cryptography
boil down to analyzing such programs, but existing program logics do not
support adversarial code.

Few concrete implementations. There are by now several independent imple-
mentations of expectation-based techniques, capable of verifying interesting
probabilistic programs. In contrast, there are only scattered implementations
of probabilistic program logics.

These limitations raise two points. Compared to expectation-based approaches:

1. Can assertion-based approaches achieve similar expressivity?
2. Are there situations where assertion-based approaches are more suitable?

In this paper, we give positive evidence for both of these points.8 Towards
the first point, we give a new assertion-based logic Ellora for probabilistic
programs, overcoming limitations in existing probabilistic program logics. Ellora
supports a rich set of assertions that can express concepts like expected values
and probabilistic independence, and novel proof rules for verifying loops and
adversarial code. We prove that Ellora is sound and relatively complete.

8 Note that we do not give mathematically precise formulations of these points; as
we are interested in the practical verification of probabilistic programs, a purely
theoretical answer would not address our concerns.



Towards the second point, we evaluate Ellora in two ways. First, we define a
new logic for proving probabilistic independence and distribution law properties—
which are difficult to capture with expectation-based approaches—and then
embed it into Ellora. This sub-logic is more narrowly focused than Ellora,
but supports more concise reasoning for the target assertions. Our embedding
demonstrates that the assertion-based approach can be flexibly integrated with
intuitive, special-purpose reasoning principles. To further support this claim, we
also provide an embedding of the Union Bound logic, a program logic for reasoning
about accuracy bounds [4]. Then, we develop a full-featured implementation of
Ellora in the EasyCrypt theorem prover and exercise the logic by mechanically
verifying a series of complex randomized algorithms. This demonstrates that the
assertion-based approach can indeed be practically viable.

Abstract logic. To ease the presentation, we present Ellora in two stages.
First, we consider an abstract version of the logic where assertions are general
predicates over distributions, with no compact syntax. Our abstract logic makes
two contributions: reasoning for loops, and for adversarial code.

Reasoning about loops. Proving a property of a probabilistic loop typically
requires analyzing its termination behavior and establishing a loop invariant.
Moreover, the class of loop invariants that can be soundly used depends on the
termination behavior. We identify three classes of assertions that can be used for
reasoning about probabilistic loops, and provide a proof rule for each one:

– arbitrary assertions for certainly terminating loops, i.e. loops that terminate
in a finite amount of iterations;

– topologically closed assertions for almost surely terminating loops, i.e. loops
terminating with probability 1;

– downwards closed assertions for arbitrary loops.

Our definition of topologically closed assertion is reminiscent of [34]; the stronger
notion of downwards closed assertion appears to be new.

Besides broadening the class of loops that can be analyzed, our rules often
enable simpler proofs. For instance, if the loop is certainly terminating, then
there is no need to prove semantic side-conditions. Likewise, there is no need to
consider the termination behavior of the loop when the invariant is downwards
and topologically closed. For example, in many applications in cryptography,
the target property is that a “bad” event has low probability: Pr [E] ≤ k. In our
framework this assertion is downwards and topologically closed, so it can be a
loop invariant regardless of the termination behavior.

Reasoning about adversaries. Existing assertion-based logics cannot reason about
probabilistic programs with adversarial code. Adversaries are special probabilistic
procedures consisting of an interface listing the concrete procedures that an
adversary can call (oracles), along with restrictions like how many calls an
adversary may make. Adversaries are useful in cryptography, where security
notions are described using experiments in which adversaries interact with a



challenger, and in game theory and mechanism design, where adversaries represent
strategic agents. Adversaries can also model inputs to online algorithms.

We provide proof rules for reasoning about adversary calls. Our rules are
significantly more general than previously considered rules for reasoning about
adversaries. For instance, the rule for adversary used by [4] is restricted to
adversaries that cannot make oracle calls.

Metatheory. We show soundness and relative completeness of the core abstract
logic, with mechanized proofs in the Coq proof assistant.

Concrete logic. While the abstract logic is conceptually clean, it is not so
convenient for practical formal verification—the assertions are too general and
the rules involve semantic side-conditions. To address these issues, we flesh out
a concrete version of Ellora. Assertions are described by a formal grammar
modeling a two-level assertion language. The first level contains state predicates—
deterministic assertions about a single memory—while the second layer includes
probabilistic assertions constructed from probabilities and expected values over
discrete distributions. While the concrete assertions are theoretically less ex-
pressive than their counterparts in the abstract logic, they can already encode
common properties and notions from existing proofs, like probabilities, expected
values, distribution laws and probabilistic independence. Our assertions can
express theorems from probability theory, enabling sophisticated reasoning about
probabilistic concepts.

Furthermore, we leverage the concrete syntax to simplify verification.

– We develop an automated procedure for generating pre-conditions of non-
looping commands, inspired by expectation-based systems.

– We give syntactic conditions for the closedness and termination properties
required for soundness of the loop rules.

Implementation and case studies. We implement Ellora on top of Easy-
Crypt, a general-purpose proof assistant for reasoning about probabilistic pro-
grams, and we mechanically verify a diverse collection of examples including
textbook algorithms and a randomized routing procedure. We develop an Easy-
Crypt formalization of probability theory from the ground up, including tools
like concentration bounds (e.g., the Chernoff bound), Markov’s inequality, and
theorems about probabilistic independence.

Embeddings. We propose a simple program logic for proving probabilistic
independence. This logic is designed to reason about independence in a lightweight
way, as is common in paper proofs. We prove that the logic can be embedded
into Ellora, and is therefore sound. Furthermore, we prove an embedding of
the Union Bound logic from [4].

2 Mathematical preliminaries

As is standard, we will model randomized computations using sub-distributions.



Definition 1. A sub-distribution over a set A is defined by a mass function
µ : A → [0, 1] that gives the probability of the unitary events a ∈ A. This
mass function must be s.t.

∑
a∈A µ(a) is well-defined and |µ| 4

=
∑
a∈A µ(a) ≤ 1.

In particular, the support supp(µ)
4
= {a ∈ A | µ(a) 6= 0} is discrete. When

the weight |µ| is equal to 1, we call µ a distribution. We let SDist(A) denote
the set of sub-distributions over A. The probability of an event E(x) w.r.t. a
sub-distribution µ, written Prx∼µ[E(x)], is defined as

∑
x∈A|E(x) µ(x).

Simple examples of sub-distributions include the null sub-distribution 0,
which maps each element of the underlying space to 0; and the Dirac distribution
centered on x, written δx, which maps x to 1 and all other elements to 0. The
following standard construction gives a monadic structure to sub-distributions.

Definition 2. Let µ ∈ SDist(A) and f : A → SDist(B). Then Ea∼µ[f ] ∈
SDist(B) is defined by:

Ea∼µ[f ](b)
4
=
∑
a∈A

µ(a) · f(a)(b).

We use notation reminiscent of expected values, as the definition is quite similar.

We will need two constructions to model branching statements.

Definition 3. Let µ1, µ2 ∈ SDist(A) such that |µ1|+ |µ2| ≤ 1. Then µ1 + µ2 is
the sub-distribution µ such that µ(a) = µ1(a) + µ2(a) for every a ∈ A.

Definition 4. Let E ⊆ A and µ ∈ SDist(A). Then the restriction µ|E of µ to
E is the sub-distribution such that µ|E(a) = µ(a) if a ∈ E and 0 otherwise.

Sub-distributions are partially ordered under the pointwise order.

Definition 5. Let µ1, µ2 ∈ SDist(A). We say µ1 ≤ µ2 if µ1(a) ≤ µ2(a) for
every a ∈ A, and we say µ1 = µ2 if µ1(a) = µ2(a) for every a ∈ A.

We use the following lemma when reasoning about the semantics of loops.

Lemma 1. If µ1 ≤ µ2 and |µ1| = 1, then µ1 = µ2 and |µ2| = 1.

Sub-distributions are stable under pointwise-limits.

Definition 6. A sequence (µn)n∈N ∈ SDist(A) sub-distributions converges if
for every a ∈ A, the sequence (µn(a))n∈N of real numbers converges. The limit
sub-distribution is defined as:

µ∞(a)
4
= lim
n→∞

µn(a).

for every a ∈ A. We write limn→∞ µn for µ∞.

Lemma 2. Let (µn)n∈N be a convergent sequence of sub-distributions. Then for
any event E(x), we have:

∀n ∈ N. Pr
x∼µ∞

[E(x)] = lim
n→∞

Pr
x∼µn

[E(x)].



Any bounded increasing real sequence has a limit; the same is true of sub-
distributions.

Lemma 3. Let (µn)n∈N ∈ SDist(A) an increasing sequence of sub-distributions.
Then, this sequence is converges to µ∞ and furthermore µn ≤ µ∞ for every n ∈ N.
In particular, for any event E, we have Prx∼µn [E] ≤ Prx∼µ∞ [E] for every n ∈ N.

3 Programs and assertions

Now, we introduce our core programming language and its denotational semantics.

Programs. We base our development on pWhile, a strongly-typed imperative
language with deterministic assignments, probabilistic assignments, conditionals,
loops, and an abort statement which halts the computation with no result.
Probabilistic assignments x $← g assign a value sampled from a distribution g to
a program variable x. The syntax of statements is defined by the grammar:

s ::= skip | abort | x← e | x $← g | s; s
| if e then s else s | while e do s | x← I(e) | x← A(e)

where x, e, and g range over typed variables in X , expressions in E and distribution
expressions in D respectively. The set E of well-typed expressions is defined
inductively from X and a set F of function symbols, while the set D of well-typed
distribution expressions is defined by combining a set of distribution symbols S
with expressions in E . Programs may call a set I of internal procedures as well as a
set A of external procedures. We assume that we have code for internal procedures
but not for external procedures—we only know indirect information, like which
internal procedures they may call. Borrowing a convention from cryptography,
we call internal procedures oracles and external procedures adversaries.

Semantics. The denotational semantics of programs is adapted from the seminal
work of [24] and interprets programs as sub-distribution transformers. We first
define states as type-preserving mappings from variables to values; we write
State for the set of states and SDist(State) for the set of probabilistic states.
For each procedure name f ∈ I ∪ A, we assume a set XL

f ⊆ X of local variables.
s.t. XL

f are pairwise disjoint. The other variables X \
⋃
f XL

f are global variables.
To define the interpretation of expressions and distribution expressions, we let

JeKm denote the interpretation of expression e with respect to state m, and JeKµ
denote the interpretation of expression e with respect to an initial sub-distribution
µ over states defined by the clause: JeKµ

4
= Em∼µ[JeKm]. Likewise, we define the

semantics of commands in two stages: first interpreted in a single input memory,
then interpreted in an input sub-distribution over memories.

Definition 7. The semantics of commands are given in Fig. 1.

– The semantics JsKm of a statement s in initial state m is a sub-distribution
over states.



JskipKm = δm

JabortKm = 0

Jx← eKm = δm[x:=JeKm]

Jx $← gKm = Ev∼JgKm [δm[x:=v]]

Js1; s2Km = Eξ∼Js1Km [Js2Kξ]
Jif e then s1 else s2Km = if JeKm then Js1Km else Js2Km

Jwhile e do sKm = lim
n→∞

J(if e then s)n; if e then abortKm

Jx← I(e)Km = Jfarg ← e; fbody;x← fresKm
Jx← A(e)Km = Jaarg ← e; abody;x← aresKm

JsKµ = Em∼µ[JsKm]

Fig. 1. Denotational semantics of programs

– The (lifted) semantics JsKµ of a statement s in initial sub-distribution µ over
states is a sub-distribution over states.

We briefly comment on loops. The semantics of a loop while edo c is defined
as the limit of its lower approximations, where the n-th lower approximation
of Jwhile e do cKµ is J(if e then s)n; if e then abortKµ, where if e then s is
shorthand for if ethenselseskip and cn is the n-fold composition c; · · · ; c. Since
the sequence is increasing, the limit is well-defined by Lemma 3. In contrast,
the n-th approximation of Jwhile e do cKµ defined by J(if e then s)nKµ may not
converge, since they are not necessarily increasing. However, in the special case
where the output distribution has weight 1, the n-th lower approximations and
the n-th approximations have the same limit.

Lemma 4. If the sub-distribution Jwhile e do cKµ has weight 1, then the limit
of J(if e then s)nKµ is defined and

lim
n→∞

J(if e then s)n; if e then abortKµ = lim
n→∞

J(if e then s)nKµ.

This follows by Lemma 1, since lower approximations are below approxima-
tions so the limit of their weights (and the weight of their limit) is 1. It will be
useful to identify programs that terminate with probability 1.

Definition 8 (Lossless). A statement s is lossless iff for every sub-distribution
µ, |JsKµ| = |µ|, where |µ| is the total probability of µ. Programs that are not
lossless are called lossy.

Informally, a program is lossless if all probabilistic assignments are carried on
full distributions, rather than sub-distributions, and the program is almost surely



terminating, i.e. infinite traces have probability zero. Note that if we restrict
the language to sample from full distributions, then losslessness coincides with
almost sure termination.

Another important class of loops are loops with a uniform upper bound on
the number of iterations. Formally, we say that a loop while e do s is certainly
terminating if there exists k such that for every sub-distribution µ, we have
|Jwhile e do sKµ| = |J(if e then s)kKµ|. Note that certain termination of a loop
does not entail losslessness—the output distribution of the loop may not have
weight 1, for instance, if the loop samples from a sub-distribution or if the loop
aborts with positive probability.

Semantics of procedure calls and adversaries. The semantics of internal procedure
calls is straightforward. Associated to each procedure name f ∈ I, we assume a
designated input variable farg ∈ XL

f , and a piece of code fbody that executes
the function call, and a result expression fres. A function call x ← I(e) is
then equivalent to farg ← e; fbody;x ← fres. Procedures are subject to well-
formedness criteria: procedures should only use local variables in their scope and
after initializing them, and should not perform recursive calls.

External procedure calls, also known as adversary calls, are a bit more involved.
Each name a ∈ A is parametrized by a set aocl of internal procedures which the
adversary may call, a designated input variable aarg ∈ XL

a , a (unspecified) piece
of code abody that executes the function call, and a result expression ares. We
assume that adversarial code can only access its local variables in XL

a and can
only make calls to procedures in aocl. It is possible to impose more restrictions
on adversaries—say, that they are lossless—but for simplicity here we do not
impose additional assumptions on adversaries.

4 Proof system

In this section we introduce a program logic for proving properties of probabilistic
programs. The logic is abstract—assertions are arbitrary predicates on sub-
distributions—but the meta-theoretic properties are clearest in this setting. Later
in § 5, we will give a concrete version suitable for practical use.

Assertions and closedness conditions. We consider predicates on state distribution.

Definition 9 (Assertions). The set Assn of assertions is defined as P(SDist(State)).
We write η(µ) for µ ∈ η.

Usual set operations are lifted to assertions using their logical counterparts,
e.g., η ∧ η′ 4

= η ∩ η′ and ¬η 4
= η. Our program logic uses a few additional

constructions. Given a predicate φ over states, we define

�φ(µ)
4
= ∀m.m ∈ supp(µ) =⇒ φ(m)



where supp(µ) is the set of all states with non-zero probability under µ. Intuitively,
φ holds deterministically on all states that we may sample from the distribution.
To reason about branching commands, given two assertions η1 and η2, we let

(η1 ⊕ η2)(µ)
4
= ∃µ1, µ2. µ = µ1 + µ2 ∧ η1(µ1) ∧ η2(µ2)

This assertion means that the sub-distribution is the sum of two sub-distributions
such that η1 holds on the first piece and η2 holds on the second piece.

Given an assertion η and an event E ⊆ State, we let

η|E(µ)
4
= η(µ|E)

This assertion holds exactly when η is true on the portion of the sub-distribution
satisfying E. Finally, given an assertion η and a function F from SDist(State)
to SDist(State), we define

η[F ]
4
= λµ. η(F (µ)).

Intuitively, η[F ] is true in a sub-distribution µ exactly when η holds on F (µ).
Now, we can define the closedness properties of assertions. These properties

will be critical to our rules for while loops.

Definition 10 (Closedness properties). A family of assertions (ηn)n∈N∞ is:

– u-closed if for every increasing sequence of sub-distributions (µn)n∈N such
that ηn(µn) for all n ∈ N then η∞(limn→∞ µn);

– t-closed if for every converging sequence of sub-distributions (µn)n∈N such
that ηn(µn) for all n ∈ N then η∞(limn→∞ µn);

– d-closed if it is t-closed and downward closed, that is for every sub-distributions
µ ≤ µ′, η∞(µ′) implies η∞(µ).

When (ηn)n is constant and equal to η, we say that η is u-/t-/d-closed.

Note that t-closedness implies u-closedness, but the converse does not hold.
Moreover, u-closed, t-closed and d-closed assertions are closed under arbitrary
intersections and finite unions, or in logical terms under finite boolean combina-
tions, universal quantification over arbitrary sets and existential quantification
over finite sets.

Finally, we introduce the necessary machinery for the frame rule. The set
mod(s) of modified variables of a statement s consists of all the variables on the
left of a deterministic or probabilistic assignment. In this setting, we say that
an assertion η is separated from a set of variables X, written separated(η,X), if
η(µ1) ⇐⇒ η(µ2) for any distributions µ1, µ2 s.t. |µ1| = |µ2| and µ1|X = µ2|X
where for a set of variables X, the restricted sub-distribution µ|X is

µ|X : m ∈ State|X 7→ Pr
m′∼µ

[m = m′|X ]

where State|X and m|X| restrict State and m to the variables in X.
Intuitively, an assertion is separated from a set of variables X if every two

sub-distributions that agree on the variables outside X either both satisfy the
assertion, or both refute the assertion.



Judgments and proof rules. Judgments are of the form {η} s {η′}, where the
assertions η and η′ are drawn from Assn.

Definition 11. A judgment {η} s {η′} is valid, written |= {η} s {η′}, if η′(JsKµ)
for every interpretation of adversarial procedures and every probabilistic state µ
such that η(µ).

Figure 2 describes the structural and basic rules of the proof system. Valid-
ity of judgments is preserved under standard structural rules, like the rule of
consequence [Conseq]. As usual, the rule of consequence allows to weaken the
post-condition and to strengthen the post-condition; in our system, this rule
serves as the interface between the program logic and mathematical theorems
from probability theory. The [Exists] rule is helpful to deal with existentially
quantified pre-conditions.

The rules for skip, assignments, random samplings and sequences are all
straightforward. The rule for abort requires �⊥ to hold after execution; this
assertion uniquely characterizes the resulting null sub-distribution. The rules for
assignments and random samplings are semantical.

η0 ⇒ η1 {η1} s {η2} η2 ⇒ η3

{η0} s {η3}
[Conseq]

∀x : T. {η} s {η′}
{∃x : T. η} s {η′}

[Exists]

{η} abort {�⊥}
[Abort]

η′
4
= η[Jx← eK]

{η′} x← e {η}
[Assgn]

{η} skip {η}
[Skip]

η′
4
= η[Jx $← gK]

{η′} x $← g {η}
[Sample]

{η0} s1 {η1} {η1} s2 {η2}
{η0} s1; s2 {η2}

[Seq]

{η1 ∧�e} s1 {η′1} {η2 ∧�¬e} s2 {η′2}
{(η1 ∧�e)⊕ (η2 ∧�¬e)} if e then s1 else s2 {η′1 ⊕ η′2}

[Cond]

{η1} s {η′1} {η2} s {η′2}
{η1 ⊕ η2} s {η′1 ⊕ η′2}

[Split]
separated(η,mod(s)) s is lossless

{η} s {η}
[Frame]

{η} farg ← e; fbody {η′[Jx← fresK]}
{η} x← f(e) {η′}

[Call]

Fig. 2. Structural and basic rules
The rule [Cond] for conditionals requires that the post-condition must be

of the form η1 ⊕ η2; this reflects the semantics of conditionals, which splits the
initial probabilistic state depending on the guard runs both branches and adds
the resulting two probabilistic states.

The next two rules ([Split] and [Frame]) are useful for local reasoning. The
[Split] rule reflects the additivity of the semantics and recombines the pre- and
post-conditions using the ⊕ operator. The [Frame] rule asserts that lossless
statements preserve assertions that are not influenced by modified variables.



The rule [Call] for internal procedures is as expected, replacing the procedure
call f with its definition.

Figure 3 presents the rules for loops. We consider four rules specialized to the
termination behavior. The [While] rule is the most general rule, as it deals with
arbitrary loops. For simplicity, we explain the rule in the special case where the
family of assertions is constant, i.e. we have ηn = η and η′n = η′. Informally, the
η is the loop invariant and η′ is an auxiliary assertion used to prove the invariant.
We require that η is u-closed, since the semantics of a loop defined as the limit of
its lower approximations. Moreover, the first premise ensures that starting from
η, one guarded iteration of the loop establishes η′; the second premise ensures
that restricting to ¬e a probabilistic state µ′ satisfying η′ yields a probabilistic
state µ satisfying η. It is possible to give an alternative formulation where the
second premise is substituted by the logical constraint η′|¬e =⇒ η. As usual, the
post-condition of the loop is the conjunction of the invariant with the negation
of the guard (more precisely in our setting, that the guard has probability 0).

The [While-AST] rule deals with lossless loops. For simplicity, we explain
the rule in the special case where the family of assertions is constant, i.e. we have
ηn = η. In this case, we know that lower approximations and approximations
have the same limit, so we can directly prove an invariant that holds after one
guarded iteration of the loop. On the other hand, we must now require that the
η satisfies the stronger property of t-closedness.

The [While-D] rule handles arbitrary loops with a d-closed invariant; intu-
itively, restricting a sub-distribution that satisfies a downwards closed assertion
η yields a sub-distribution which also satisfies η.

The [While-CT] rule deals with certainly terminating loops. In this case,
there is no requirement on the assertions.

We briefly compare the rules from a verification perspective. If the assertion is
d-closed, then the rule [While-D] is easier to use, since there is no need to prove
any termination requirement. Alternatively, if we can prove certain termination of
the loop, then the rule [While-CT] is the best to use since it does not impose any
condition on assertions. When the loop is lossless, there is no need to introduce
an auxiliary assertion η′, which simplifies the proof goal. Note however that it
might still be beneficial to use the [While] rule, even for lossless loops, because
of the weaker requirement that the invariant is u-closed rather than t-closed.

Finally, Fig. 4 gives the adversary rule for general adversaries. It is highly
similar to the general rule [While-D] for loops since the adversary may make
an arbitrary sequence of calls to the oracles in aocl and may not be lossless.
Intuitively, η plays the role of the invariant: it must be d-closed and it must be
preserved by every oracle call with arbitrary arguments. If this holds, then η
is also preserved by the adversary call. Some framing conditions are required,
similar to the ones of the [Frame] rule: the invariant must not be influenced by
the state writable by the external procedures, which also must be lossless.

It is possible to give other variants of the adversary rule with more general
invariants by restricting the adversary, e.g., requiring losslessness or bounding the



number of calls the external procedure can make to oracles, leading to rules akin
to the almost surely terminating and certainly terminating loop rules, respectively.

uclosed((η′n)n∈N∞)
∀n. {ηn} if e then s {ηn+1} ∀n. {ηn} if e then abort {η′n}

{η0} while e do s {η′∞ ∧�¬e}
[While]

tclosed((ηn)n∈N∞) ∀n. {ηn} if e then s {ηn+1}
∀µ. η0(µ) =⇒ |J(while e do s)Kµ| = 1

{η0} while e do s {η∞ ∧�¬e}
[While-AST]

dclosed((ηn)n∈N∞) ∀n. {ηn} if e then s {ηn+1}
{η0} while e do s {η∞ ∧�¬e}

[While-D]

∀n. {ηn} if e then s {ηn+1}
∀µ. η0(µ) =⇒ J(if e then s)kKµ = J(while e do s)Kµ

{η0} while e do s {ηk ∧�¬e}
[While-CT]

Fig. 3. Rules for loops
∀n ∈ N∞. separated(ηn, {x, s}) dclosed((ηn)n∈N∞)

∀f ∈ aocl, x ∈ XL
a , e ∈ E , n ∈ N. {ηn} x← f(e) {ηn+1}
{η0} x← a(e) {η∞}

[Adv]

Fig. 4. Rules for adversaries

Soundness and Relative Completeness. Our proof system is sound with respect
to the semantics.

Theorem 1 (Soundness). Every judgment {η} s {η′} provable using the rules
of our logic is valid.

Completeness of the logic follows from the next lemma, whose proof makes
an essential use of the [While] rule. In the sequel, we use 1µ to denote the
characteristic function of a probabilistic state µ, an assertion stating that the
current state is equal to µ.

Lemma 5. For every probabilistic state µ, the following judgment is provable
using the rule of the logic:

{1µ} s {1JsKµ}.

Proof. By induction on the structure of s.

– s = abort, s = skip, x← e and s = x $← g are trivial;
– s = s1; s2, we have to prove

{1µ} s1; s2 {1Js2KJs1Kµ
}.

We apply the [Seq] rule with η1 = 1Js1Kµ premises can be directly proved
using the induction hypothesis;



– s = if e then s1 else s2, we have to prove

{1µ} if e then s1 else s2 {(1Js1Kµ|e
⊕ 1Js2Kµ|¬e )

}.

We apply the [Conseq] rule to be able to apply the the [Cond] rule with η1 =
1Js1Kµ|e

and η2 = 1Js2Kµ|¬e
Both premises can be proved by an application of

the [Conseq] rule followed by the application of the induction hypothesis.
– s = while e do s, we have to prove

{1µ} while e do s {1limn→∞ J(if e then s)n;if e then abortKµ}.

We first apply the [While] rule with η′n = 1J(if e then s)nKµ and

ηn = 1J(if e then s)n;if e then abortKµ .

For the first premise we apply the same process as for the conditional case: we
apply the [Conseq] and [Cond] rules and we conclude using the induction
hypothesis (and the [Skip] rule). For the second premise we follow the same
process but we conclude using the [Abort] rule instead of the induction
hypothesis. Finally we conclude since uclosed((ηn)n∈N∞).

The abstract logic is also relatively complete. This property will be less
important for our purposes, but it serves as a basic sanity check.

Theorem 2 (Relative completeness). Every valid judgment is derivable.

Proof. Consider a valid judgment {η} s {η′}. Let µ be a probabilistic state such
that η(µ). By the above proposition, {1µ} s {1JsKµ}. Using the validity of the
judgment and [Conseq], we have {1µ ∧ η(µ)} s {η′}. Using the [Exists] and
[Conseq] rules, we conclude {η} s {η′} as required.

The side-conditions in the loop rules (e.g., uclosed/tclosed/dclosed and the
weight conditions) are difficult to prove, since they are semantic properties. Next,
we present a concrete version of the logic with give easy-to-check, syntactic
sufficient conditions.

5 A concrete program logic

To give a more practical version of the logic, we begin by setting a concrete
syntax for assertions

Assertions. We use a two-level assertion language, presented in Fig. 5. A proba-
bilistic assertion η is a formula built from comparison of probabilistic expressions,
using first-order quantifiers and connectives, and the special connective ⊕. A
probabilistic expression p can be a logical variable v, an operator applied to
probabilistic expressions o(p) (constants are 0-ary operators), or the expectation
E[ẽ] of a state expression ẽ. A state expression ẽ is either a program variable



x, the characteristic function 1φ of a state assertion φ, an operator applied to
state expressions o(ẽ), or the expectation Ev∼g[ẽ] of state expression ẽ in a given
distribution g. Finally, a state assertion φ is a first-order formula over program
variables. Note that the set of operators is left unspecified but we assume that
all the expressions in E and D can be encoded by operators.

ẽ ::= x | v | 1φ | Ev∼g[ẽ] | o(ẽ) (S-expr.)
φ ::= ẽ ./ ẽ | FO(φ) (S-assn.)
p ::= v | o(p) | E[ẽ] (P-expr.)
η ::= p ./ p | η ⊕ η | FO(η) (P-assn.)
./ ∈ {=, <,≤} o ∈ Ops (Ops.)

Fig. 5. Assertion syntax

The interpretation of the con-
crete syntax is as expected. The
interpretation of probabilistic as-
sertions is relative to a valuation ρ
which maps logical variables to val-
ues, and is an element of Assn. The
definition of the interpretation is
straightforward; the only interest-
ing case is JE[ẽ]Kρµ which is defined
by Em∼µ[JẽKρm], where JẽKρm is the

interpretation of the state expression ẽ in the memory m and valuation ρ. The
interpretation of state expressions is a mapping from memories to values, which
can be lifted to a mapping from distributions over memories to distributions
over values. The definition of the interpretation is straightforward; the most
interesting case is for expectation JEv∼g[ẽ]Kρm

4
= Ew∼JgKρm [JẽK

ρ[v:=w]
m ]. We present

the full interpretations in the supplemental materials.
Many standard concepts from probability theory have a natural representation

in our syntax. For example:

– the probability that φ holds in some probabilistic state is represented by the
probabilistic expression Pr[φ]

4
= E[1φ];

– probabilistic independence of state expressions ẽ1, . . . , ẽn is modeled by the
probabilistic assertion #{ẽ1, . . . , ẽn}, defined by the clause9

∀v1 . . . vn, Pr[>]n−1 Pr[
∧

i=1...n

ẽi = vi] =
∏

i=1...n

Pr[ẽi = vi];

– the fact that a distribution is proper is modeled by the probabilistic assertion
L 4
= Pr[>] = 1;

– a state expression ẽ distributed according to a law g is modeled by the
probabilistic assertion

ẽ ∼ g 4
= ∀w, Pr[ẽ = w] = E[Ev∼g[1v=w]].

The inner expectation computes the probability that v drawn from g is equal
to a fixed w; the outer expectation weights the inner probability by the
probability of each value of w.

We can easily define � operator from the previous section in our new syntax:
�φ

4
= Pr[¬φ] = 0.

9 The term Pr[>]n−1 is necessary since we work with sub-distributions; for distributions,
Pr[>] = 1 and we recover the usual definition.



Syntactic proof rules. Now that we have a concrete syntax for assertions, we can
give syntactic versions of many of the existing proof rules. Such proof rules are
often easier to use since they avoid reasoning about the semantics of commands
and assertions. We tackle the non-looping rules first, beginning with the following
syntactic rules for assignment and sampling:

{η[x := e]} x← e {η}
[Assgn]

{Pgx(η)} x $← g {η}
[Sample]

The rule for assignment is the usual rule from Hoare logic, replacing the program
variable x by its corresponding expression e in the pre-condition. The replacement
η[x := e] is done recursively on the probabilistic assertion η; for instance for
expectations, it is defined by

E[ẽ][x := e]
4
= E[ẽ[x := e]]

where ẽ[x := e] is the syntactic substitution.
The rule for sampling is a generalization of assignment using a probabilistic

substitution operator Pgx(η), which replaces all occurrences of x in η by a new
integration variable t and records that t is drawn from g; the operator is defined
in Fig. 6.

CCTerm
4
= {L ∧�(ẽ = k ∧ 0 < k ∧ b)} s {L ∧�(ẽ < k)}
|= η ⇒ (∃ẏ. �ẽ ≤ ẏ) ∧�(ẽ = 0⇒ ¬b)

CASTerm
4
= {L ∧�(ẽ = k ∧ 0 < k ≤ K ∧ b)} s {L ∧�(0 ≤ ẽ ≤ K) ∧ Pr[ẽ < k] ≥ ε}
|= η ⇒ �(0 ≤ ẽ ≤ K ∧ ẽ = 0⇒ ¬b)
|= tclosed(η)

Fig. 7. Side-conditions for loop rules

Pgx(v)
4
= v

Pgx (E[ẽ])
4
= E[Et∼g[ẽ[x := t]]]

Pgx(o(η)
4
= o(Pgx(η1), . . . ,Pgx(ηn))

Pgx(η1 ./ η2)
4
= Pgx(η1) ./ Pgx(η2)

for o ∈ Ops, ./∈ {∧,∨,⇒}.

Fig. 6. Syntactic op. P (main cases)

Next, we turn to the loop rule. The side-
conditions from Fig. 3 are purely seman-
tic, while in practice it is more convenient
to use a sufficient condition in the Hoare
logic. We give sufficient conditions for en-
suring certain and almost-sure termination
in Fig. 7; ẽ is an integer-valued expression.
The first side-condition CCTerm shows cer-
tain termination given a strictly decreasing
variant ẽ that is bounded below, similar to

how a decreasing variant shows termination for deterministic programs. The sec-
ond side-condition CASTerm shows almost-sure termination given a probabilistic
variant ẽ, which must be bounded both above and below. While ẽ may increase
with some probability, it must decrease with strictly positive probability. This
condition was previously considered by [14] for probabilistic transition systems
and also used in expectation-based approaches [30,17]. Our framework can also
support more refined conditions (e.g., based on super-martingales [8,28]), but the
condition CASTerm already suffices for most randomized algorithms.



While t-closedness is a semantic condition (cf. Definition 10), there are simple
syntactic conditions to guarantee it. For instance, assertions that carry a non-strict
comparison ./ ∈{≤,≥,=} between two bounded probabilistic expressions are
t-closed; the assertion stating probabilistic independence of a set of expressions
is t-closed.

Precondition calculus. With a concrete syntax for assertions, we are also able
to incorporate syntactic reasoning principles. One classic tool is Morgan and
McIver’s greatest pre-expectation, which we take as inspiration for a pre-condition
calculus for the loop-free fragment of Ellora. Given an assertion η and a
loop-free statement s, we mechanically construct an assertion η∗ that is the
pre-condition of s that implies η as a post-condition. The basic idea is to replace
each expectation expression p inside η by an expression p∗ that has the same
denotation before running s as p after running s. This process yields an assertion
η∗ that, interpreted before running s, is logically equivalent to η interpreted after
running s.

The computation rules for pre-conditions are defined in Fig. 8. For a probability
assertion η, its pre-condition pc(s, η) corresponds to η where the expectation ex-
pressions of the form E[ẽ] are replaced by their corresponding pre-term, pe(s,E[ẽ]).
Pre-terms correspond loosely to Morgan and McIver’s pre-expectations—we will
make this correspondence more precise in the next section. The main interesting
cases for computing pre-terms are for random sampling and conditionals. For
random sampling the result is Pgx(E[ẽ]), which corresponds to the [Sample] rule.
For conditionals, the expectation expression is split into a part where e is true
and a part where e is not true. We restrict the expectation to a part satisfying e
with the following operator:

E[ẽ]|e
4
= E[ẽ · 1e]

This corresponds to the expected value of ẽ on the portion of the distribution
where e is true. Then, we can build the pre-condition calculus into Ellora.

pe(s1; s2,E[ẽ])
4
= pe(s1, pe(s2,E[ẽ]))

pe(x← e,E[ẽ]) 4
= E[ẽ][x := e]

pe(x $← g,E[ẽ]) 4
= Pgx(E[ẽ])

pe(if e then s1 else s2,E[ẽ])
4
= pe(s1,E[ẽ])|e + pe(s2,E[ẽ])|¬e

pc(s, p1 ./ p2)
4
= pe(s, p1) ./ pe(s, p2)

Fig. 8. Precondition calculus (selected)

Theorem 1. Let s be a non-looping command. Then, the following rule is
derivable in the concrete version of Ellora:

{pc(s, η)} s {η}
[PC]



6 Case studies: Embedding lightweight logics

While Ellora is suitable for general-purpose reasoning about probabilistic pro-
grams, in practice humans typically use more special-purpose proof techniques—
often targeting just a single, specific kind of property, like probabilistic independence—
when proving probabilistic assertions. When these techniques apply, they can be
a convenient and powerful tool.

To capture this intuitive style of reasoning, researchers have considered
lightweight program logics where the assertions and proof rules are tailored to
a specific proof technique. We demonstrate how to integrate these tools in an
assertion-based logic by introducing and embedding a new logic for reasoning
about independence and distribution laws, useful properties when analyzing
randomized algorithms. We crucially rely on the rich assertions in Ellora—it
is not clear how to extend expectation-based approaches to support similar,
lightweight reasoning. Then, we show to embed the union bound logic [4] for
proving accuracy bounds.

6.1 Law and Independence Logic.

We begin by describing the law and independence logic IL, a proof system with
intuitive rules that are easy to apply and amenable to automation. For simplicity,
we only consider programs which sample from the binomial distribution, and
have deterministic control flow—for lack of space, we also omit procedure calls.
Definition 12 (Assertions). IL assertions have the grammar:

ξ := det(e) |#E | e ∼ B(e, p) | > | ⊥ | ξ ∧ ξ

where e ∈ E, E ⊆ E, and p ∈ [0, 1].
The assertion det(e) states that e is deterministic in the current distribution,

i.e., there is at most one element in the support of its interpretation. The
assertion #E states that the expressions in E are independent, as formalized
in the previous section. The assertion e ∼ B(m, p) states that e is distributed
according to a binomial distribution with parameter m (where m can be an
expression) and constant probability p, i.e. the probability that e = k is equal to
the probability that exactly k independent coin flips return heads using a biased
coin that returns heads with probability p.

Assertions can be seen as an instance of a logical abstract domain, where
the order between assertions is given by implication based on a small number of
axioms. Examples of such axioms include independence of singletons, irreflexivity
of independence, anti-monotonicity of independence, an axiom for the sum of
binomial distributions, and rules for deterministic expressions:

#{x} #{x, x} ⇐⇒ det(x) #(E ∪ E′) =⇒ #E

e∼B(m, p)∧e′∼B(m′, p)∧#{e, e′} =⇒ e+e′∼B(m+m′, p)∧
1≤i≤n

det(ei) =⇒ det(f(e1, . . . , en))



Definition 13. Judgments of the logic are of the form {ξ} s {ξ′}, where ξ and
ξ′ are IL-assertions. A judgment is valid if it is derivable from the rules of Fig. 9;
structural rules and rule for sequential composition are similar to those from § 4
and omitted.

The rule [IL-Assgn] for deterministic assignments is as in § 4. The rule
[IL-Sample] for random assignments yields as post-condition that the variable
x and a set of expressions E are independent assuming that E is independent
before the sampling, and moreover that x follows the law of the distribution
that it is sampled from. The rule [IL-Cond] for conditionals requires that the
guard is deterministic, and that each of the branches satisfies the specification;
if the guard is not deterministic, there are simple examples where the rule is
not sound.The rule [IL-While] for loops requires that the loop is certainly
terminating with a deterministic guard. Note that the requirement of certain
termination could be avoided by restricting the structural rules such that a
statement s has deterministic control flow whenever {ξ} s {ξ′} is derivable.

We now turn to the embedding. The embedding of IL assertions into general
assertions is immediate, except for det(e) which is translated as �e ∨�¬e. We
let ξ denote the translation of ξ.

Theorem 2 (Embedding and soundness of IL logic). If {ξ} s {ξ′} is derivable
in the IL logic, then {ξ} s {ξ′} is derivable in (the syntactic variant of) Ellora.
As a consequence, every derivable judgment {ξ} s {ξ′} is valid.

Proof sketch. By induction on the derivation. The interesting cases are condi-
tionals and loops. For conditionals, the soundness follows from the soundness of
the rule:

{η} s1 {η′} {η} s2 {η′} �e ∨�¬e
{η} if e then s1 else s2 {η′}

To prove the soundness of this rule, we proceed by case analysis on �e ∨�¬e.
We treat the case �e; the other case is similar. In this case, η is equivalent to
η1 ∧�e⊕ η2 ∧�¬e, where η1 = η and η2 = ⊥. Let η′1 = η′ and η2 = �⊥; again,
η′1 ⊕ η′2 is logically equivalent to η′. The soundness of the rule thus follows from
the soundness of the [Cond] and [Conseq] rules. For loops, there exists a natural
number n such that while b do s is semantically equivalent to (if b then s)n. By
assumption {ξ} s {ξ} holds, and thus by induction hypothesis {ξ} s {ξ}. We
also have ξ =⇒ det(b), and hence {ξ} if b then s {ξ}. We conclude by using the
[Seq] rule.

To illustrate our system IL, consider the statement s in Fig. 10 which flips a
fair coin N times and counts the number of heads. Using the logic, we can prove
that c ∼ B(N · (N + 1)/2, 1/2) is a valid post-condition for s. We omit the proof
that the loop guard is deterministic, and focus on the distribution of c. We take
the following invariant:

c ∼ B (j(j+ 1)/2, 1/2)



{ξ[x := e]} x← e {ξ}
[IL-Assgn]

{x} ∩ FV(E) ∩ FV(e) = ∅
{#E} x $← B(e, p) {#(E ∪ {x}) ∧ x ∼ B(e, p)}

[IL-Sample]

{ξ} s1
{
ξ′
} {

ξ′
}
s2

{
ξ′′

}
{ξ} s1; s2

{
ξ′′

} [IL-Seq]

{ξ} s1
{
ξ′
}

{ξ} s2
{
ξ′
}

ξ =⇒ det(b)

{ξ} if b then s1 else s2
{
ξ′
} [IL-Cond]

{ξ} s {ξ} ξ =⇒ det(b) CCTerm
{ξ} while b do s {ξ}

[IL-While]

Fig. 9. IL proof rules (selected)

The invariant holds initially, as 0 ∼ B(0, 1/2). For the inductive case, we have to
establish

{c ∼ B (0, 1/2)} s0 {c ∼ B ((j+ 1)(j+ 2)/2, 1/2)}

where s0 represents the loop body, i.e. x $← B (j, 1/2) ; c← c+ x. First, we apply
the rule for sequence taking as intermediate assertion

c ∼ B (j(j+ 1)/2, 1/2) ∧ x ∼ B (j, 1/2) ∧#{x, c}

The first premise follows from the rule for random assignment and structural
rules. The second premise follows from the rule for deterministic assignment and
the rule of consequence, applying axioms about sums of binomial distributions.

proc sum () =
var c:int, x:int;
c ← 0;
for j ← 1 to N do

x $← B(j,1/2);
c ← c + x;

return c

Fig. 10. Sum of bin.

We briefly comment on several limitations of IL.
First, IL is restricted to programs with deterministic
control flow, but this restriction could be partially re-
laxed by enriching IL with assertions for conditional
independence. Such assertions are already expressible
in the logic of Ellora; adding conditional indepen-
dence would significantly broaden the scope of the IL
proof system and open the possibility to rely on ax-
iomatizations of conditional independence (e.g., based
on graphoids [33]). Second, the logic only supports

sampling from binomial distributions. It is possible to enrich the language of
assertions with clauses c ∼ g where g can model other distributions, like the
uniform distribution or the Laplace distribution. The main design challenge is
finding a core set of useful facts about these distributions. Enriching the logic
and automating the analysis are interesting avenues for further work.



6.2 Embedding the union bound logic

The program logic aHL [4] was recently introduced for estimating accuracy of
randomized computations. One main application of aHL is proving accuracy of
randomized algorithms, both in the offline and online settings—i.e. with adversary
calls. aHL is based on the union bound, a basic tool from probability theory,
and has judgments of the form

|=β {Φ} s {Ψ},

where s is a statement, Φ and Ψ are first-order formulae over program variables,
and β is a probability, i.e. β ∈ [0, 1]. A judgment |=β {Φ} s {Ψ} is valid if for
every memory m such that Φ(m), the probability of ¬Ψ in JsKm is upper bounded
by β, i.e. PrJsKm [¬Ψ ] ≤ β.

Figure 11 presents some key rules of aHL, including a rule for sampling
from the Laplace distribution Lε centered around e. The predicate CCTerm(k)
indicates that the loop terminates in at most k steps on any memory that satisfies
the pre-condition. Moreover, β is a function of ε.

|=β {>} x $← Lε(e) {|x− e| ≤
1

ε
log

1

β
}

[aHL-Sample]

|=β1 {Φ} s1 {Θ} |=β2 {Θ} s2 {Ψ}
|=β1+β2 {Φ} s1; s2 {Ψ}

[aHL-Seq]

|=β {Φ} c {Φ} CCTerm(k)

|=k·β {Φ} while e do c {Φ ∧ ¬e}
[aHL-While]

Fig. 11. aHL proof rules (selected)

aHL has a simple embedding into Ellora.

Theorem 3 (Embedding of aHL). If |=β {Φ} s {Ψ} is derivable in aHL, then

{�Φ} s {E[1¬Ψ ] ≤ β}

is derivable in Ellora.

7 Case studies: Verifying randomized algorithms

In this section, we will demonstrate Ellora on a selection of examples; we
present further examples in the supplemental material. Together, they exhibit
a wide variety of different proof techniques and reasoning principles which are
available in the Ellora’s implementation.



Hypercube routing. We will begin with the hypercube routing algorithm [38,39].
Consider a network topology (the hypercube) where each node is labeled by a
bitstring of length D and two nodes are connected by an edge if and only if the
two corresponding labels differ in exactly one bit position.

In the network, there is initially one packet at each node, and each packet
has a unique destination. The algorithm implements a routing strategy based
on bit fixing : if the current position has bitstring i, and the target node has
bitstring j, we compare the bits in i and j from left to right, moving along the
edge that corrects the first differing bit. Valiant’s algorithm uses randomization
to guarantee that the total number of steps grows logarithmically in the number
of packets. In the first phase, each packet i select an intermediate destination
ρ(i) uniformly at random, and use bit fixing to reach ρ(i). In the second phase,
each packet use bit fixing to go from ρ(i) to the destination j. We will focus on
the first phase since the reasoning for the second phase is nearly identical. We
can model the strategy with the following code, using some syntactic sugar for
the for loops.10

proc route (D T : int) :
var ρ, pos, usedBy : node map;
var nextE : edge;

pos ← Map.init id 2D; ρ ←Map.empty;
for i ← 1 to 2D do ρ[i] $←[1 , 2D ]
for t ← 1 to T do

usedBy ← Map.empty;

for i ← 1 to 2D do
if pos[i ] 6= ρ [i ] then

nextE ← getEdge pos[i] ρ [i ];
if usedBy[nextE] = ⊥ then
// Mark edge used
usedBy[nextE] ← i;
// Move packet
pos[i] ← dest nextE

return (pos, ρ)

We assume that initially, the position of the packet i is at node i (see Map.init).
Then, we initialize the random intermediate destinations ρ. The remaining loop
encodes the evaluation of the routing strategy iterated T time. The variable
usedBy is a map that logs if an edge is already used by a packet, it is empty at the
beginning of each iteration. For each packet, we try to move it across one edge
along the path to its intermediate destination. The function getEdge returns the
next edge to follow, following the bit-fixing scheme. If the packet can progress
(its edge is not used), then its current position is updated and the edge is marked
as used.

We show that if the number of timesteps T is 4D + 1, then all packets reach
their intermediate destination in at most T steps, except with a small probability

10 We recall that the number of node in a hypercube of dimension D is 2D so each node
can be identified by a number in [1, 2D].



2−2D of failure. That is, the number of timesteps grows linearly in D, logarithmic
in the number of packets. This is formalized in our system as:

{T = 4D + 1} route {Pr[∃i . pos[i ] 6= ρ [i ] ] ≤ 2−2D ]}

proc coupon (N : int) :
var int cp[N], t[N ];
var int X ← 0;
for p ← 1 to N do
ct ← 0;

cur $← [1 , N ];
while cp[cur] = 1 do
ct ← ct + 1;

cur $← [1 , N ];
t[p] ← ct;
cp[cur] ← 1;
X ← X + t[p];

return X

Fig. 12. Coupon collector

Modeling infinite processes. Our second ex-
ample is the coupon collector process. The
algorithm draws a uniformly random coupon
(we have N coupon) on each day, terminating
when it has drawn at least one of each kind of
coupon. The code of the algorithm is displayed
in Fig. 12. The code uses the array cp to keep
track of the coupons seen so far; t to keep track
of the number of steps taken before seeing a
new coupon; X to keep track of the total num-
ber of steps. Our goal is to bound the average
number of iterations. This is formalized in our
logic as:

{L} coupon
{
E[X] =

∑
i∈[1,N ]

(
N

N−i+1

)}
.

proc pwInd (N : int) :

var bool X[2N], B[N];
for i ← 1 to N do

B[i] $← Ber(1/2);

for j ← 1 to 2N do
X[j] ← 0;
for k ← 1 to N do
if k ∈ bits(j) then
X[j] ← X[j] ⊕ B[k]

return X

Fig. 13. Pairwise Independence

Limited randomness. Pairwise indepen-
dence says that if we see the result of Xi,
we do not gain information about all other
variables Xk. However, if we see the re-
sult of two variables Xi, Xj , we may gain
information about Xk. There are many
constructions in the algorithms literature
that grow a small number of independent
bits into more pairwise independent bits.
Figure 13 gives one procedure, where ⊕ is
exclusive-or, and bits(j) is the set of posi-
tions set to 1 in the binary expansion of
j. The proof uses the following fact, which
we fully verify: for a uniformly distributed Boolean random variable Y , and a
random variable Z of any type,

Y # Z ⇒ Y ⊕ f(Z) # g(Z) (1)

for any two Boolean functions f, g. Then, note that X[i] =
⊕
{j∈bits(i)} B[j] where

the big XOR operator ranges over the indices j where the bit representation of
i has bit j set. For any two i, k ∈ [1, . . . , 2N] distinct, there is a bit position in
[1, . . . , N] where i and k differ; call this position r and suppose it is set in i but
not in k. By rewriting,

X[i] = B[r]⊕
⊕

{j∈bits(i)\r}

B[j] and X[k] =
⊕

{j∈bits(k)\r}

B[j].



Since B[j] are all independent, X[i] # X[k] follows from Eq. (1) taking Z to be
the distribution on tuples 〈B[1], . . . , B[N]〉 excluding B[r]. This verifies pairwise
independence:

{L} pwInd(N) {L ∧ ∀i, k ∈ [2N]. i 6= k ⇒ X[i] # X[k]}.

Adversarial programs. Pseudorandom functions (PRF) and pseudorandom per-
mutations (PRP) are two idealized primitives that play a central role in the
design of symmetric-key systems. Although the most natural assumption to make
about a blockcipher is that it behaves as a pseudorandom permutation, most
commonly the security of such a system is analyzed by replacing the blockcipher
with a perfectly random function. The PRP/PRF Switching Lemma [19,6] fills
the gap: given a bound for the security of a blockcipher as a pseudorandom
function, it gives a bound for its security as a pseudorandom permutation.

Lemma 4 (PRP/PRF switching lemma). Let A be an adversary with blackbox
access to an oracle O implementing either a random permutation on {0, 1}l or a
random function from {0, 1}l to {0, 1}l. Then the probability that the adversary
A distinguishes between the two oracles in at most q calls is bounded by

| Pr
PRP

[b ∧ |H| ≤ q]− Pr
PRF

[b ∧ |H| ≤ q]| ≤ q(q − 1)

2l+1
,

where H is a map storing each adversary call and |H| is its size.

Proving this lemma can be done using the Fundamental Lemma of Game-
Playing, and bounding the probability of bad in the program from Fig. 14. We
focus on the latter. Here we apply the [Adv] rule of Ellora with the invariant
∀k,Pr[bad∧|H| ≤ k] ≤ k(k−1)

2l+1 where |H| is the size of the map H, i.e. the number
of adversary call. Intuitively, the invariant says that at each call to the oracle the
probability that bad has been set before and that the number of adversary call is
less than k is bounded by a polynomial in k.

The invariant is d-closed and true before the adversary call, since at that
point Pr[bad] = 0. Then we need to prove that the oracle preserves the invariant,
which can be done easily using the precondition calculus ([PC] rule).

var H: ({0 , 1} l, {0 , 1} l) map;

proc orcl (q:{0 , 1} l):
var a : {0 , 1} l;
if q 6 ∈ H then

a $← {0 , 1} l;
bad ← bad || a ∈ codom(H );
H [q ] ←a;

return H [q ];

proc main():
var b: bool;
bad ← false;
H ← [];
b ← A();
return b;

Fig. 14. PRP/PRF game



8 Implementation and mechanization

We have built a prototype implementation of Ellora within EasyCrypt [5,2],
a theorem prover originally designed for verifying cryptographic protocols. Easy-
Crypt provides a convenient environment for constructing proofs in various
Hoare logics, supporting interactive, tactic-based proofs for manipulating asser-
tions and allowing users to invoke external tools, like SMT-solvers, to discharge
proof obligations. EasyCrypt provides a mature set of libraries for both data
structures (sets, maps, lists, arrays, etc.) and mathematical theorems (algebra,
real analysis, etc.), which we extended with theorems from probability theory.

Example LC FPLC

hypercube 100 1140
coupon 27 184
vertex-cover 30 61
pairwise-indep 30 231
private-sums 22 80
poly-id-test 22 32
random-walk 16 42
dice-sampling 10 64
matrix-prod-test 20 75

Table 1. Benchmarks

We used the implementation for verifying
many examples from the literature, including
all the programs presented in § 7 as well as
some additional examples (such as polynomial
identity test, private running sums, proper-
ties about random walks, etc.). The verified
proofs bear a strong resemblance to the exist-
ing, paper proofs. Independently of this work,
Ellora has been used to formalize the main
theorem about a randomized gossip-based pro-
tocol for distributed systems [23, Theorem 2.1].
Some library developed in the scope of Ellora
are been reversed in the main branch of Easy-

Crypt— this notably includes a general library on probabilistic independence.

A new library for probabilistic independence. In order to support assertions of
the concrete program logic, we enhanced the standard libraries of EasyCrypt,
notably the ones dealing with big operators and sub-distributions. Like all
EasyCrypt libraries, they are written in a foundational style, i.e. they are
defined instead of axiomatized. A large part of our libraries are proved formally
from first principles. However, some results, such as concentration bounds, are
currently declared as axioms.

Our formalization of probabilistic independence deserves special mention. We
formalized two different (but logically equivalent) notions of independence. The
first is in terms of products of probabilities, and is based on heterogenous lists.
Since Ellora (like EasyCrypt) has no support for heterogeneous lists, we
use a smart encoding based on second-order predicates. The second definition
is more abstract, in terms of product and marginal distributions. While the
first definition is easier to use when reasoning about randomized algorithms, the
second definition is more suited for proving mathematical facts. We prove the
two definitions equivalent, and formalize a collection of related theorems.

Mechanized meta-theory. The proofs of soundness and relative completeness
of the abstract logic, without adversary calls, and the syntactical termination
arguments have been mechanized in the Coq proof assistant. The development is
available in supplemental material.



9 Related work

More on Assertion-based techniques. The earliest assertion-based system is due
to Ramshaw [34], who proposes a program logic where assertions can be formulas
involving frequencies, essentially probabilities on sub-distributions. Ramshaw’s
logic allows assertions to be combined with operators like ⊕, similar to our
approach. [15] presents a Hoare-style logic with general assertions on the distribu-
tion, allowing expected values and probabilities. However, his while rule is based
on a semantic condition on the guarded loop body, which is less desirable for
verification because it requires reasoning about the semantics of programs. [7] give
decidability results for a probabilistic Hoare logic without while loops. We are
not aware of any existing system that supports assertions about general expected
values; existing works also restrict to Boolean distributions. [35] formalize a
Hoare logic for probabilistic programs but unlike our work, their assertions are
interpreted on distributions rather than sub-distributions. For conditionals, their
semantics rescales the distribution of states that enter each branch. However,
their assertion language is limited and they impose strong restrictions on loops.

Other approaches. Researchers have proposed many other approaches to verify
probabilistic program. For instance, verification of Markov transition systems goes
back to at least [14,37]; our condition for ensuring almost-sure termination in loops
is directly inspired by their work. Automated methods include model checking
(see e.g., [1,22,26]) and abstract interpretation (see e.g., [29,11]). For analyzing
probabilistic loops, in particular, there are tools for reasoning about running time.
There are also automated systems for synthesizing invariants [10,3]. [8,9] use a
martingale method to compute the expected time of the coupon collector process
for N = 5—fixing N lets them focus on a program where the outer while loop
is fully unrolled. Martingales are also used by [12] for analyzing probabilistic
termination. Finally, there are approaches involving symbolic execution; [36] use
a mix of static and dynamic analysis to check probabilistic programs from the
approximate computing literature.

10 Conclusion and perspective

We introduced an expressive program logic for probabilistic programs, and showed
that assertion-based systems are suited for practical verification of probabilistic
programs. Owing to their richer assertions, we believe that program logics are a
more suitable foundation for specialized reasoning principles than expectation-
based systems. As evidence, we have demonstrated that our program logic can
be smoothly extended with custom reasoning for probabilistic independence
and union bounds. Future work includes proving better accuracy bounds for
differentially private algorithms, and exploring further integration of Ellora
into EasyCrypt.
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