
Realizability Models for a Linear Dependent PCF

Aloı̈s Brunela, Marco Gaboardib

aLIPN - UMR CNRS 7030 - Université Paris 13, Villetaneuse, France
bSchool of Computing - University of Dundee, Scotland

Abstract

Recently, Dal Lago and Gaboardi have proposed a type system, named d`PCF as
a framework for implicit computational complexity. d`PCF is a non-standard type
system for PCF programs which is relatively complete with respect to quantita-
tive properties thanks to the use of linear types inspired by Bounded linear logic
and dependent types à la Dependent ML. In this work, we adapt the framework
of quantitative realizability and obtain a model for d`PCF. The quantitative real-
izability model aims at a better understanding of d`PCF type decorations and at
giving an abstract semantic proof of intensional soundness.

Keywords: Implicit Computational Complexity, Realizability model,

1. Introduction

Implicit computational complexity and resource consumption - The main
goal of implicit computational complexity is to provide new characterizations of
complexity classes that are abstract with respect to complexity measures and the
underlying concrete models of computation. Besides, the tools developed in this
area are useful to understand and analyze the resource consumption of programs.

Within this perspective, we can identify two approaches that have been proved
fruitful so far.

(i) Within the first approach one identifies some a priori restriction on the shape
of programs, in the form of a syntactic criterion or typing relation, that en-
sures programs respecting the restriction to be in a given complexity class
C.

(ii) Within the second approach one identifies some a posteriori criteria, in the
form of a static program analysis, that ensures programs passing the criteria
to be in a given complexity class C.

Preprint submitted to Elsevier May 5, 2014

The two approaches have their pros and cons. On the one hand, by following
the first approach one aims at designing languages that characterize complexity
classes. The positive aspect of this approach is that it is compositional and the
generated constraints are usually easy to check [4, 22, 15, 3]; these constraints
however cut off many interesting programs and so this approach gives systems
suffering from poor intensional expressivity [15].

For the second approach, once one fixes the programming language (usually a
first order language), one does not impose a priori restrictions on the shape of pro-
grams that can be considered. The restriction are checked on the specific programs
by static analysis methods. This means that usually these methods give character-
izations of complexity classes with a better intensional expressivity even if they
too cut some interesting programs [19, 23, 25]. However, the analyses used in this
setting are usually non-compositional and involve more complex verifications [1].

Relative completeness and d`PCF - Recently, Dal Lago and Gaboardi in [8, 9]
proposed a type system, named d`PCF, for a call-by-name version of PCF that
combines the two approaches and pushes these ideas to the limit. d`PCF can
be considered as a non-standard type system that unifies type inference and pro-
gram analysis. This type system explores ideas combining linear types inspired by
Bounded linear logic (BLL) [13, 10] with dependent types à la Dependent ML [28].
That is, the types contain index terms—first-order terms drawn from a specific sig-
nature and whose meaning is given by means of an equational rewriting system—
that are useful to reduce the problem of resource consumption of PCF terms to the
problem of satisfying a set of inequalities. In order to achieve this goal, typing
judgements in d`PCF enrich PCF typing by means of additional information. An
example of typing judgment in d`PCF is the following:

φ; Φ; Γ $E
I t : ra ă Js ¨ σ (NatrK,Hs

In d`PCF, Φ is a set of inequalities over index terms which represent the side con-
ditions under which the typing judgment is derivable, E is the equational theory
giving meaning to index terms. The index term I describes the weight associated
with the derivation of the typing judgment. The weight can be seen as an abstrac-
tion of the complexity of the program. The notation ra ă Js ¨ σ is used instead of
the more standard BLL notation !aăJσ and K,H are index terms used to add some
information to the base type Nat ensuring that the result of the computation is in
the interval given by K and H. Finally, φ contains the free variables of all the index
terms appearing in the typing judgement.

The main property of d`PCF is relative completeness. This means that for
every terminating PCF program there is a decoration in d`PCF giving information
about its complexity. So, the type system is able to analyze all the (terminating)

2

PCF terms with no a priori nor a posteriori restriction. The price to pay is that
the typability is no longer decidable. More concretely, d`PCF reduces typability
to constraint satisfiability for constraints that are not in general decidable. This
suggests that d`PCF should not be considered a type system but instead it should
be considered a general framework useful to study resource consumption and to
compare different type systems for implicit computational complexity.

Besides being relative complete, d`PCF is also intensionally sound. Anticipat-
ing on the next section, we can formulate intensional soundness as follows.

Theorem 1 (Intensional soundness).
Let $I t : NatrJ,Ks and suppose that t evaluates to the value m in n steps. Then,
n ď |t| ¨ pJIK` 1q and JJK ď m ď JKK.

The theorem above relates typing judgments, and in particular index terms,
with both the intensional and the extensional semantics of the program. That is,
given a program t of PCF typable in d`PCF with weight I and type NatrJ,Ks, the
weight I gives a bound on the number n of evaluation steps while the index terms
J and K give a bound on the value m computed by t. The intensional soundness
has been proved in [8, 9] by considering typed configurations of a call-by-name
Krivine machine. More precisely, the proof in [8, 9] proceeds by assigning to
every machine configuration C a weight I (corresponding to the weight of the type
derivation of the configuration) and by showing that a reduction step transform a
configuration C with weight I in a configuration D with weight J such that JIK ě
JJK. The intensional soundness then follows by noticing that substitution steps
ensure moreover that JIK ą JJK, and that configuration sizes provide a bound for
the number of reduction steps between two substitutions.

Quantitative realizability models - Realizability, firstly introduced by Kleene,
has been studied in different forms. In a series of recent works, Dal Lago and
Hofmann have shown how to adapt Realizability to build quantitative models for
subsystems of linear logic with restricted complexity. The models they propose
contain a natural notion of resource (in the form of elements drawn from a resource
monoid) that can be exploited to obtain semantic proofs of complexity soundness
for these logics. Their models also permit to obtain a better understanding of the
resource usage in different logics. Starting from Dal Lago and Hofmann results, the
first author in [7] has extended the quantitative approach to Krivine’s Realizability,
a version of realizability introduced by Krivine that aims at extending the proofs-
as-programs correspondence to classical logic and set theory. He has also shown
how the quantitative aspects relates to the notion of forcing from set theory.

Contributions - In this work, we adapt the framework of quantitative realizability
to d`PCF. In particular, we follow the approach developed by Brunel in [7] and we

3

design a quantitative realizability model based on Krivine’s Realizability.
In order to deal with the generality of d`PCF typing judgments, we need to de-

fine the realizability interpretation |σ|Eρ of a type σ as parametrized over an equa-
tional program E and an assignment ρ of index term variables to natural numbers.
In this way, we can internalize the generality of the type system in the model.

The interpretation we define is sound with respect to d`PCF typing judgments.
Moreover, we show two forms of completeness of our class of quantitative models
with respect to d`PCF : external completeness and internal completeness. External
completeness corresponds to a bounded-time termination property of realizers. In-
ternal completeness gives quantitative information about the computed values and
gives a concrete bound on the termination of realizers. Thanks to both external
and internal completeness we give an abstract proof of d`PCF’s intensional sound-
ness. Besides, using the relative completeness of d`PCF we also prove that the
type system and the realizability model carry exactly the same information when
a universal equational program is considered. This last result represents a form of
full abstraction and ensures that our model can be used in full generality to reason
about d`PCF programs.

The motivations for our study are twofold. On the one hand, we aim at better
understanding the role of d`PCF type decorations and the quantitative realizability
model is the most natural candidate. On the other hand what we aim to obtain is a
framework allowing us to extend by means of quantitative information some recent
results obtained in the framework of complexity preserving certification [17].

Our study draws the attention on two roles played by index terms. First, the
interpretation of modal types of the shape ra ă Js¨σ closely resembles the standard
interpretation of universal quantifiers in realizability models. This emphasizes the
quantifier nature, on a bounded domain, of modal types with respect to index term
variables. Second, in the soundness proof, the index term corresponding to the
weight of a typing derivation can be used as a measure that is useful in proving the
soundness of the fixpoint rule. This suggests that the weight plays a role similar to
techniques like semantics approximants and step-indexing.

Outline - In Section 2 and Section 3, we recall respectively the system d`PCF
and its main properties. In Section 4, we introduce our quantitative realizability
model and we show that it is sound with respect to d`PCF. In Section 5, we use the
model defined in the previous section to give a semantic proof of d`PCF’s inten-
sional soundness; moreover we show that when a universal equational program is
considered, realizability and typing coincide. Finally, in Section 6, we recast some
related works and conclude.

4

2. d`PCF

The type system d`PCF is a refinement of the type system for PCF by means
of index terms whose semantics, in turn, is defined by an equational program over
a signature Σ.

Formally, a signature Σ is a pair pS, αq where S is a finite set of function
symbols and α : S Ñ N assigns an arity to every function symbol. Index terms on
a given signature Σ “ pS, αq are generated by the following grammar:

I, J,K ::“ a | fpI1, . . . , Iαpfqq |
ÿ

aăI

J |
I,J
ï

a

K

where f P S and a is a variable drawn from a set V of index variables. We assume
the symbols 0, 1 (with arity 0) and `, ´ (with arity 2) are always part of Σ. An
index term in the form

ř

aăI J is a bounded sum, while one in the form
ÏI,J

a K is
a forest cardinality. .

Index terms are meant to denote natural numbers, possibly depending on the
(unknown) values of variables. Variables can be instantiated with other index
terms, e.g. ItJ{au. So, index terms can also act as first order functions. The
meaning of the function symbols from Σ is induced by an equational program E .
Formally, an equational program E over a signature Σ is a set of equations in the
form t “ s where both t and s are terms built from variables and the symbols in Σ.
We are interested in equational programs guaranteeing that, whenever symbols in
Σ are interpreted as partial functions over N and 0, 1, ` and ´ are interpreted in
the usual way, the semantics of any function symbol f can be uniquely determined
from E . This can be guaranteed by, for example, taking E as an Herbrand-Gödel
scheme or as an orthogonal constructor term rewriting system.

A bounded sum
ř

aăI J is an index term whose value is simply the sum of all
possible values of J with a taking the values from 0 up to I, excluded.

Forest cardinalities will be used to describe function call trees. Informally,
ÏI,J

a K is an index term denoting the number of nodes in a forest composed of
J trees described using K. All the nodes in the forest are (uniquely) identified
by natural numbers. These are obtained by consecutively visiting each tree in pre-
order, starting from I. The term K has the role of describing the number of children
of each forest node n by properly instantiating the variable a, e.g the number of
children of the node 0 is Kt0{au. Formally, the meaning of a forest cardinality is
defined by the following two equations:

I,0
ï

a

K “ 0
I,J`1
ï

a

K “

˜

I,J
ï

a

K

¸

` 1`

¨

˝

I`1`
ÏI,J
a K,KtI`

ÏI,J
a K{au

ï

a

K

˛

‚

5

and it represents the number (i.e. the cardinality) of nodes in the forest described
by K.

The expression JIKEρ denotes the meaning of I, defined by induction along the
lines of the previous discussion, where ρ : V Ñ N is an assignment and E is an
equational program giving meaning to the function symbols in I. Since E does not
necessarily interpret such symbols as total functions, and moreover, the value of
a forest cardinality can be undefined, JIKEρ can be undefined itself. A constraint is
an inequality in the form I ď J. A constraint is true in an assignment ρ if JIKEρ
and JJKEρ are both defined and the first one is smaller or equal than the second one.
Now, for a subset φ of V , and for a set Φ of constraints involving variables in φ,
the expression φ; Φ |ùE I ď J denotes the fact that the truth of I ď J semantically
follows from the truth of the constraints in Φ. The expression φ; Φ |ùE I “ I
indicates that (the semantics of) I is defined for the relevant values of the variables
in φ under the constraints in Φ; this is usually written as φ; Φ |ùE I ó. Finally,
we say that ρ satisfies φ; Φ and we note ρ |ùE φ; Φ if φ Ď dompρq and for each
I ď J P Φ, we have JIKEρ ď JJKEρ .

From now on, all the definitions will be parametric on an equational program
E over a signature Σ. For the sake of simplicity, we will often avoid to mention E
explicitly. Terms are generated by the following grammar:

t, u, v ::“ x | n | sptq | pptq | λx.t | tu | ifz t then u else v | fix x.t

where n ranges over natural numbers and x ranges over a set of variables. The
structure of terms should be familiar to the reader acquainted with PCF. A weak-
head reduction relation Ñ on terms can be easily defined. A term t is said to be a
program if it can be given the PCF type Nat in the empty context. A notion of size
|t| for a term t will be useful in the sequel. This can be defined as follows:

|x| “ 1; |λx.t| “ |t| ` 1;

|n| “ 1; |tu| “ |t| ` |u| ` 1;

|sptq| “ |t| ` 2; | ifz t then u else v| “ |t| ` |u| ` |v| ` 1;

|pptq| “ |t| ` 2; |fix x.t| “ |t| ` 1.

Notice that for technical reasons size is defined in a slightly nonstandard way:
every integer constant has size 1.

Lemma 1. If t is a term and u is a subterm of t, then |u| ď |t|.

The language presented so far is the same as PCF. What distinguish d`PCF
from PCF is its type system. Basic and modal types are defined as follows:

σ, τ, γ ::“ NatrI, Js | A(σ basic types

A,B ::“ ra ă Is ¨ σ modal types

6

φ; Φ |ùE K ď I
φ; Φ |ùE J ď H

φ; Φ $E NatrI, Js Ď NatrK,Hs
pNat.lq

φ; Φ $E B Ď A
φ; Φ $E σ Ď τ

φ; Φ $E A(σ Ď B (τ
p(.lq

φ, a; Φ, a ă J $E σ Ď τ
φ; Φ |ùE J ď I

φ; Φ $E ra ă Is ¨ σ Ď ra ă Js ¨ τ
pr´s ¨ .lq

Figure 1: The subtyping relation

where I, J range over index terms and a ranges over index variables. We will write
the symbol ς when we want to talk about types without distinguishing between
basic and modal types. NatrIs is syntactic sugar for NatrI, Is. We will use the
convention that ra ă Is ¨´ has precedence over (, e.g. ra ă Is ¨σ (τ stands for
pra ă Is ¨ σq(τ .

In the typing rules, modal types need to be manipulated in an algebraic way.
For this reason, two operations on modal types need to be introduced. The first one
is a binary operation Z on modal types. Suppose that A “ ra ă Is ¨ σta{cu and
that B “ rb ă Js ¨ σtI` b{cu. In other words, A consists of the first I instances of
σ, i.e. σt0{cu, . . . , σtI ´ 1{cu while B consists of the next J instances of σ, i.e.
σtI` 0{cu, . . . , σtI` J´ 1{cu. Their sum AZB is naturally defined as a modal
type consisting of the first I ` J instances of σ, i.e. rc ă I` Js ¨ σ. An operation
of bounded sum on modal types can be defined by generalizing the idea above:
suppose that

A “ rb ă Js ¨ σt
ÿ

dăa

Jtd{au ` b{cu.

Then its bounded sum
ř

aăIA is rc ă
ř

aăI Js ¨ σ.
Central to d`PCF is the notion of subtyping. An inequality relation Ď between

(basic and modal) types can be defined using the formal system in Figure 1. This
relation corresponds to lifting index inequalities to the type level. The equality
φ; Φ $ σ – τ holds when both φ; Φ $ σ Ď τ and φ; Φ $ τ Ď σ can be derived
from the rules in Figure 1.

Typing judgements of d`PCF are expressions in the form

φ; Φ; Γ $E
I t : σ (1)

where Γ is a typing context. That is, a set of term variable assignments of the
shape x : A where each variable x occurs at most once. The expression (1) can be
informally read as follows: for every values of the index variables in φ satisfying

7

φ; Φ |ùE J ě 0
φ; Φ $E

ra ă Is ¨ σ Ď ra ă 1s ¨ τ

φ; Φ; Γ, x : ra ă Is ¨ σ $E
J x : τt0{au

V
φ; Φ; Γ, x : ra ă Is ¨ σ $E

J t : τ

φ; Φ; Γ $E
J λx.t : ra ă Is ¨ σ (τ

L

φ; Φ; Γ $E
J t : ra ă Is ¨ σ (τ

φ, a; Φ, a ă I; ∆ $
E
K u : σ

φ; Φ $E Σ Ď ΓZ
ř

aăI ∆

φ; Φ; Σ $E
J`

ř

aăI K`I tu : τ
A

φ; Φ; Γ $E
K t : NatrI, Js

φ; Φ, I ď 0; ∆ $
E
H u : σ

φ; Φ, J ě 1; ∆ $
E
H v : σ

φ; Φ $E Σ Ď ΓZ∆

φ; Φ; Σ $E
K`H ifz t then u else v : σ

F

φ; Φ $E NatrI` 1, J` 1s Ď NatrK,Hs
φ; Φ; Γ $E

L t : NatrI, Js

φ; Φ; Γ $E
L sptq : NatrK,Hs

S

φ; Φ $E NatrI ´ 1, J ´ 1s Ď NatrK,Hs
φ; Φ; Γ $E

L t : NatrI, Js

φ; Φ; Γ $E
L pptq : NatrK,Hs

P

φ; Φ |ùE K ě 0
φ; Φ |ùE I ď n
φ; Φ |ùE n ď J

φ; Φ; Γ $E
K n : NatrI, Js

N

φ, b; Φ, b ă L; Γ, x : ra ă Is ¨ σ $E
K t : τ

φ; Φ $E τt0{bu Ď γ

φ, a, b; Φ, a ă I, b ă L $E τt
Ïb`1,a

b I` b` 1{bu Ď σ
φ; Φ $E Σ Ď

ř

băL Γ

φ; Φ |ùE Ï0,1
b I ď L,M

φ; Φ; Σ $E
M´1`

ř

băL K fix x.t : γ
R

Figure 2: Typing rules

Φ, t can be given type σ and cost I once its free term variables have types as
in Γ. In proving this, equations from E can be used. Typing rules are in Figure 2,
where binary and bounded sums are used in their natural generalization to contexts.
A type derivation is nothing more than a tree built according to typing rules. A
precise type derivation is a type derivation such that all premises of the form σ Ď τ
(respectively, in the form I ď J) are required to be in the form σ – τ (respectively,
I “ J). As a last remark, note that each rule can be seen as a decoration of a rule
of ordinary PCF.

Derivations in d`PCF enjoy substitution properties both at the level of terms
and at the level of index terms.

Lemma 2 (Substitution). Let φ, a; Φ, a ă I;H $E
J t : σ and φ; Φ;x : ra ă Is ¨

σ,∆ $E
K u : τ . Then we have φ; Φ; ∆ $E

H utt{xu : τ with φ; Φ |ùE H ď

K` I`
ř

aăI J.

Thanks to the above Substitution Lemma we can prove, as expected, that types
are preserved by reduction. In particular, this holds with respect to a weak reduc-
tion with which d`PCF is equipped [8, 9].

Theorem 2 (Subject Reduction). Let φ; Φ;H $I t : σ and t Ñ u. Then,
φ; Φ;H $J u : σ, where φ; Φ |ù J ď I.

8

Notice that the above theorem says something more than the usual type preser-
vation theorems. Indeed, it says that the weight can change during the reduction
but it also ensures that it cannot increase.

3. Index terms and Krivine’s Machine

The main reason for introducing index terms is to obtain precise information
about the reduction of d`PCF programs by means of the abstract machine KPCF

defined in Figure 3. This is an adaptation of Krivine’s Machine to deal with all the
PCF constructions.

The configurations of the machine KPCF, ranged over by C,D, . . ., are triples
C “ pt, µ, ξq where µ and ξ are two additional constructions: µ is an environment,
that is a partial function from variables to closures; while ξ is a (possibly empty)
stack of contexts. Stacks are ranged over by ξ, θ, A closure, as usual, is a
pair c “ pt, µq where t is a term and µ is an environment. A context is either a
closure, a term s, a term p, or a triple pu, v, µq where u, v are terms and µ is an
environment. In the sequel we will consider configurations that can be typed by
means of PCF types (a precise definition is given in [8, 9]) and we call the set of
such configurations Conf

PCF
.

As usual, the symbol Ñ˚ denotes the reflexive and transitive closure of the
transition relation Ñ. The relation Ñ˚ implements weak-head reduction. Anal-
ogously, the symbol Ñr denotes the relation obtained by considering r steps of
the transition relationÑ. Weak-head normal forms and the normal forms coincide
for programs. So the machine KPCF is a correct and complete device to evalu-
ate programs. For this reason, the notation t ó n can be used as a shorthand for
pt, ε, εq Ñ˚ pn, µ, εq. Moreover, notations like C ón will be used to stress that C
reduces to an irreducible configuration in exactly n steps.

In the sequel we will also need to distinguish variable steps from the others. For
this reason we writeÑv for a reduction step obtained by applying the variable rule
while we writeÑv for a reduction step obtained by applying any other rule except
the variable rule. Finally, if C is a configuration, we use the notation C Ón pv, µ, εq
to denote the fact that C reduces to the value v and uses during the reduction n
variable steps. We define C Ón as Dv, µ such that C Ón pv, µ, εq.

An important property that we inherit from the design of Krivine’s machine is
that in the evaluation of a program we need to record in environments and stacks
only subterms of the initial term. Since we have some additional constructions that
are not considered in the traditional definition of Krivine’s machine, we need to
slightly adapt this property. In particular, the property is valid for all the terms that
are not numerals. This is expressed by the following property.

9

Lemma 3. Let H;H;H $I t : NatrJ,Ks such that pt, ε, εq Ñr D. Then, every
v ‰ n in D is a subterm of t.

Proof. By induction on r. The base case is trivial. For the inductive case, a further
case distinction on the step performed is needed. All the rules just move around
pieces of terms that are either in head position or in the stack or in the environment.
The only rule performing a substitution is the rule for variables, but this takes one
term from the stack and place it in the head position.

The above lemma justifies the following definition of size for KPCF config-
urations. The size of a configuration C “ pt, µ, ξq, denoted |C|, is defined as
|pt, µ, ξq| “ |t| ` |ξ|. The size of a stack ξ, denoted |ξ|, is defined as the sum of the
sizes of its elements where the size of a context is defined as:

|pt, µq| “ |t| |s| “ |p| “ 1 |pu, v, µq| “ |u| ` |v|

The above definition of size is useful to prove the following lemma.

Lemma 4. LetH;H;H $I t : NatrJ,Ks such that pt, ε, εq Ór. If pt, ε, εq ón, then
n ď |t| ¨ pr ` 1q.

Proof. By induction on r, noticing that for each step C 1 Ñv C
2 we have |C2| ă

|C 1| while, by Lemma 3, for each step C 1 Ñv C
2 we have |C2| ď |C 1| ` |t|.

Index terms ensure that typing judgements give precise information about the
complexity of d`PCF terms as stated by the following theorem.

Theorem 3 (Intensional soundness). Let H;H;H $I t : NatrJ,Ks and t ón m.
Then, n ď |t| ¨ pJIK` 1q and JJK ď m ď JKK.

In [8, 9] the above result has been proved operationally. In particular, the idea
of the proof given there is to show that by performing a variable step the weight of a
typing judgement can decrease while every other step leaves the weight unchanged.
This argument, combined with Lemma 4 above, provides a proof of Intensional
Soundness. One of our goals in this work is to replace the above mentioned syn-
tactic argument by means of a semantic argument with the aim of clarifying the
nature of the d`PCF index annotations.

The design of the index term decorations and of the d`PCF type system has
been motivated by the search for a relatively complete type system for complexity
analysis. This property can be proved by considering a universal equational pro-
gram U (i.e. an equational program able to simulate all the equational programs
including itself), see [8, 9] for more details.

10

Term Environment Stack Term Environment Stack

tu µ ξ Ñ t µ pu, µq ¨ ξ
λx.t µ c ¨ ξ Ñ t c ¨ µ ξ
x pt0, µ0q ¨ ¨ ¨ ¨ ¨ ptn, µnq ξ Ñ tx µx ξ

ifz t then u else v µ ξ Ñ t µ pu, v, µq ¨ ξ
fix x.t µ ξ Ñ t pfix x.t, µq ¨ µ ξ

n µ s ¨ ξ Ñ n ` 1 µ ξ
n µ p ¨ ξ Ñ n ´ 1 µ ξ
0 µ pt, u, νq ¨ ξ Ñ t ν ξ

n ` 1 µ pt, u, νq ¨ ξ Ñ u ν ξ
sptq µ ξ Ñ t µ s ¨ ξ
pptq µ ξ Ñ t µ p ¨ ξ

Figure 3: The KPCF machine transition steps.

Theorem 4 (Relative Completeness for Programs). Let t be a PCF program such
that t ón m. Then, there exist two index terms I and J such that JIKU ď n and
JJKU “ m and such that the term t is typable in d`PCF asH;H;H $U

I t : NatrJs.

Interestingly, this property does not only hold for programs but it also holds for
functions.

Theorem 5 (Relative Completeness for Functions). Suppose that t is a PCF term
such that $ t : Nat Ñ Nat. Moreover, suppose that there are two (total and
computable) functions f, g : N Ñ N such that t n ógpnq fpnq. Then, there exist
three index terms I, J,K with JI` JK ď g and JKK “ f , such that

a;H;H $U
I t : rb ă Js ¨ Natras(NatrKs.

We conclude this section by stating two other properties of d`PCF that we will
tacitly use in the sequel.

Lemma 5 (Subtyping). Suppose φ; Φ;x1 : A1, . . . , xn : An $I t : σ and φ; Φ $

Bi Ď Ai for 1 ď i ď n and φ; Φ $ σ Ď τ . Then, φ; Φ;x1 : B1, . . . , xn : Bn $I

t : τ .

Lemma 6 (Index Term Substitution). Let φ, a; Φ; Γ $I t : σ. Then we have

φ; ΦtJ{au,Ψ; ΓtJ{au $ItJ{au t : σtJ{au

for every J such that φ,Ψ |ùE J ó.

Notice that the type system of d`PCF is syntax-directed, so the two lemmas
above, besides establishing correspondences between the two typing judgments,
establish correspondences between the structure of the two type derivations.

11

4. Quantitative realizability model for d`PCF

The realizability model we present in this section is inspired by Krivine’s real-
izability [20]. As in Krivine’s realizability, we build the model around the Krivine
machine. Hence the machine KPCF presented in the previous section becomes at
the same time the evaluation medium for d`PCF terms and the basis of the realiz-
ability machinery.

To define the interpretation and derive the properties we are interested in, we
first need to extend the machine KPCF. We add to the set of closures a special
closure z, named daimon, well typed for every PCF type and which has no cor-
responding reduction rule in the machine KPCF. Hence, once in head position, the
daimon blocks the computation. It is in a sense the dual of the empty stack1. Even
if z has no computational behavior, it will permit to evaluate under a λ binder.
This is what the following lemma says.

Lemma 7. Let t be a term, µ an environment and m,n P N. If pt, µ,z.εq Óm, then
pt, µ, εq Ón with n ď m.

Proof. Easy by induction on n and inspection of the KPCF machine rules.

We can now start to define the realizability model. The core of biorthogonality-
based models is the notion of orthogonality between closures and stacks. Here, we
pair closures and stacks with index terms. Index terms are used in a similar way to
monoid elements in [11] and [7].

Definition 1.

• A weighted closure is a pair pc, Iq where c is a closure and I is an index term.
The set of weighted closures is denoted by Λ.

• A weighted stack is a pair pξ, Jq where ξ is a stack and J an index term. The
set of weighted stacks is denoted by Π.

Remark 1. 1. The index terms associated with closures and stacks informally
represent a bound on the resources (here, the time) used by these closures
(resp. stacks) when they interact with stacks (resp. closures).

2. Notice that in the previous definition, the index terms are possibly open.

1For the ones familiar with ludics [14], it is worth to stress that we use the diamon z in a slightly
different way. Whereas in ludics the daimon empties the context, here we choose it not to do so. This
is only for convenience and it is not required for the soundness of our model.

12

Krivine style realizability is usually parametric over a subset ‚ of machine’s
configurations that is closed under anti-evaluation: that is, if C P ‚ and C 1 Ñ C,
then C 1 P ‚. Different sets ‚1 and ‚2 represent different notions of compu-
tational correctness. Configurations alone are not sufficient to track quantitative
information. For this reason we extend the definition of ‚ to include also an addi-
tional information represented by a natural number.

Definition 2. A quantitative pole is a set ‚ Ď Conf
PCF

ˆ N such that:

• If n ď m and pC, nq P‚, then pC,mq P‚.

• If C Ñv C
1 and pC 1, nq P‚, then pC, n` 1q P‚.

• If C Ñv C
1 and pC 1, nq P‚, then pC, nq P‚.

Remark 2. As in the standard definition of realizability [20], we require that ‚
is closed under anti-evaluation. In our case a anti-evaluation step can influence
the quantitative information represented by the index term. However, notice that
only the variable reduction stepsÑv makes this parameter bigger. Indeed, we only
want to count variable steps, as this information is sufficient to determine the total
number of steps needed by a configuration to normalize, as stressed by Lemma 4.

In the rest of this section, the definitions are parametric in a quantitative pole.
In the next section, we will fix a particular quantitative pole ‚ in order to derive
the complexity results about typable d`PCF terms.

A choice of quantitative pole induces a notion of orthogonality. In order to
define it, we need to be able to obtain a natural number from an index term. This is
achieved by using the interpretation function J´KEρ . For this reason, the quantitative
notion of orthogonality is naturally parametrized over an equational program E and
an assignment ρ.

Definition 3. A weighted closure pc, Iq is E-ρ-orthogonal to a weighted stack pξ, Jq
iff:

• FVpIq Y FVpJq Ď dompρq

• ppc, ξq, JI` JKEρ q P‚
We use the notation pc, IqKE

ρ pξ, Jq to indicate that pc, Iq and pξ, Jq are E-ρ-orthogonal.

Notice that the notion of E-ρ-orthogonality makes sense only when JI ` JKEρ
is defined. This is the case also for all the other notions that we introduce in the
sequel of this section and the next one.

In what follows, we will assume that the equational program E is given so we
will simply write Kρ for ρ-orthogonality. Substitution behaves well with respect to
ρ-orthogonality.

13

Lemma 8. The following two properties are equivalent:

• pc, IqKρtaÐnupξ, Jq

• pc, Itn{auqKρpξ, Jtn{auq

Proof. It follows easily from the fact that for every index term I such that FVpIq Ď
dompρq Y tau we have JIKρtaÐnu “ JItn{auKρ.

In order to define our quantitative realizability model we need to interpret
types by sets of weighted closures. We then need additional operations for sets
of weighted closures and weighted stacks.

Definition 4. If X is a set of weighted closures, we define its upward closure Xρ

as
X
ρ
“ t pc, Iq | DJ, pc, Jq P X ^ JJKρ ď JIKρ u

Notice that the upward closure operator is monotonic, i.e. X Ď Y implies
X
ρ
Ď Y

ρ and idempotent, i.e. Xρ
“ X

ρρ. As usual, the orthogonality relation
can be extended to sets of weighted closures and weighted stacks.

Definition 5.

• If X is a set of weighted closures, then its ρ-orthogonal set XKρ is defined
as:

XKρ “ tpξ, Jq | @pc, Iq P X, pc, IqKρpξ, Jqu

• If X is a set of weighted stacks, then its ρ-orthogonal set XKρ is defined as:

XKρ “ tpc, Iq | @pξ, Jq P X, pc, IqKρpξ, Jqu

• A set of weighted closures X is a ρ-behavior if XKρKρ “ X .

The extensions of ρ-orthogonality to sets of weighted closures and weighted
stacks enjoy the usual properties of orthogonality. In particular we know that each
set Y , which is the orthogonal of a set X , i.e. Y “ XKρ , is also a ρ-behavior.
Moreover, we have the following important property.

Lemma 9. Let ρ be a substitution and X be a ρ-behavior. If pc, Iq P X and J is an
index term such that FVpJq Ď dompρq and JIKρ ď JJKρ, then pc, Jq P X .

Proof. It follows easily from the definition of ρ-behavior (Definition 5) and by the
definition of quantitative pole (Definition 2).

14

|NatrI, Js|ρ “ t pn̄, 0q | JIKρ ď n ď JJKρ uKρKρ

|A(σ|ρ “ t pc.ξ, I` Jq | pc, Iq P |A|ρ ^ pξ, Jq P |σ|ρ
Kρ uKρ

|ra ă Is.σ|ρ “ t pc,
ÿ

aăI

K` Iq | pc,Kq P
č

năJIKρ

|σ|ρtaÐnu u Y tpz, 0qu
ρ

Figure 4: quantitative realizability Interpretation of d`PCF Types.

Notice that the above Lemma says that behaviors are equal to their upward
closure, i.e. for every ρ-behavior: Xρ

“ X .
Now, we have all the components to define an interpretation of d`PCF basic

and modal types.

Definition 6 (Interpreting Types). Given a type ς and an assignment ρ such that
FVpςq Ď dompρq, the interpretation |ς|ρ of ς in ρ is defined by the rules in Figure
4.

Before moving to the properties of our interpretation it is worth discussing
some of our choices. This is the content of the next two remarks.

Remark 3. Notice that we do not interpret modal types over ρ-behaviors but
nonetheless when ς does not contain any positive occurrence of a modal type, |ς|
is a ρ-behavior. The reason why we don’t interpret modal types as behaviors (for
instance by using a biorthogonality closure) is that it would make more difficult to
prove the soundness in the case of rules that manipulate modal types in the typing
context. This is an issue related to call-by-name, and more can be found about it
in [7].

Remark 4. The interpretation of modal types recalls the usual interpretation of
universal quantifiers in realizability models, which is usually given by an intersec-
tion of behaviors, indexed by the quantification domain. We can in fact decompose
the bounded modality using more primitive connectives: a first-order quantification
and an inequational implication.

The following definition corresponds to the interpretation of a usual first-order
quantification, ranging over the natural numbers. This quantification @a.σ binds
the variable a in the type σ (but it does not bind a in the weighted terms that belong
to this interpretation):

|@a.σ|ρ “
č

nPN
|σ|ρraÐns

15

We can also define a inequational implication a ă I ÞÑ σ, similar to the
equational implication introduced by Miquel in [24]. This implication is computa-
tionally transparent and means a ă I implies σ. It corresponds to the following
interpretation:

|a ă I ÞÑ σ|ρ “

"

|σ|ρ if ρpaq ď JIKρ
Λ otherwise

Given these two connectives, it is possible to decompose the bounded modality as
follows:

|ra ă Is.σ|ρ “ t pc,
ÿ

aăI

K ` Iq | pc,Kq P |@a.pa ă I ÞÑ σq|ρ u

We leave the study of this decomposition for subsequent works.

The interpretation of types has some interesting properties with respect to the
quantitative information. In particular, it inherits some properties of the orthogo-
nality relation.

Lemma 10. Given a type ς and an assignment ρ, if pc,Kq P |ς|ρtaÐnu then
pc,Ktn{auq P |ςtn{au|ρ.

The type system of d`PCF uses the subtyping relation extensively. For this
reason, an important milestone in showing that our realizability definition gives a
model of d`PCF is to show that it is sound with respect to the subtyping relation.
In particular, as already stressed, we are interested in having this correspondence
only when we are able to satisfy the given constraints. This is formally stated by
requiring that the assignment ρ satisfies the constraints in Φ. The soundness with
respect to the subtyping is given by the following theorem.

Theorem 6 (Subtyping soundness). Suppose φ; Φ $ σ Ď τ . Then ρ |ù φ; Φ
implies |σ|ρ Ď |τ |ρ.

Proof. By induction on the derivation with conclusion φ; Φ $ σ Ď τ . The linear
arrow case follows as usual by the ρ-orthogonality properties.

Case
φ; Φ |ù K ď I φ; Φ |ù J ď H

φ; Φ $ NatrI, Js Ď NatrK,Hs

Because we have JKKρ ď JIKρ and JJKρ ď JHKρ, it is immediate that if
JIKρ ď n ď JJKρ, then JKKρ ď n ď JHKρ. By the orthogonality properties,
we have |NatrI, Js|ρ Ď |NatrK,Hs|ρ.

16

Case
φ; Φ $E B Ď A
φ; Φ $E σ Ď τ

φ; Φ $E A(σ Ď B (τ

We know by induction that |B|ρ Ď |A|ρ and |σ|ρ Ď |τ |ρ. Then

|A(σ|ρ “ p|A|ρ.|σ|ρ
K
qK

Ď p|B|ρ.|τ |ρ
K
qK

“ |B (τ |ρ

Case
φ, a; Φ, a ă J $ σ Ď τ φ; Φ |ù J ď I

φ; Φ $ ra ă Is ¨ σ Ď ra ă Js ¨ τ

We want to prove that

t pc,
ÿ

aăI

K` Iq | pc,Kq P
č

năJIKρ

|σ|ρtaÐnu u

Ď t pc,
ÿ

aăJ

K` Jq | pc,Kq P
č

năJJKρ

|τ |ρtaÐnu u
ρ

Then, the conclusion follows by monotonicity and idempotency of the up-
ward closure operator.

Consider pc,Kq P
Ş

năJIKρ |σ|ρtaÐnu. By induction hypothesis we have
|σ|ρtxÐnu Ď |τ |ρtxÐnu for each n ă JJKρ. Moreover, ρ |ù φ; Φ clearly
implies JJKρ ď JIKρ. So, we have pc,Kq P

Ş

năJJKρ |τ |ρtaÐnu. Hence,
pc,

ř

aăJ K ` Jq P |ra ă Js ¨ τ |ρ. Since
ř

aăJ K ` J ď
ř

aăI K ` I, by
monotonicity and idempotency of the upward closure operator we can con-
clude pc,

ř

aăI K` Iq P |ra ă Js ¨ τ |ρ.

Thanks to the soundness of the subtyping relation we can now prove that our
realizability model is sound also with respect to the d`PCF type system.

Theorem 7 (Soundness). Suppose φ; Φ;x1 : A1, . . . , xn : An $
E
K t : σ. Let

ρ |ù φ; Φ and pci, Jiq P |Ai|ρ. Then

pt, rx1 :“ c1, . . . , xn :“ cns,K `
ÿ

1ďiďn

Jiq P |σ|ρ

17

Proof. The proof is by generalized induction on the value of JKKρ with further
induction on the derivation proving φ; Φ;x1 : A1, . . . , xn : An $

E
K t : σ. All the

cases requires some manipulations of the index terms. We show few representative
cases.
Let us consider first the case JKKρ “ 0:

Subcase
φ; Φ $E ra ă Is ¨ σ Ď ra ă 1s ¨ τ

φ; Φ;x1 : A1, . . . , xn : An, x : ra ă Is ¨ σ $E
0 x : τt0{au

For simplicity, suppose n “ 0. Consider pc,Hq P |ra ă Is.σ|ρ. The case c “
z is easy. So, consider the case c ‰ z. By assumption and by Subtyping
soundness Theorem 6, we know that pc,Hq P |ra ă 1s.τ |ρ. This means
that there exists some K such that

ř

aă1 K ` 1 “ Kt0{au ` 1 ď H and
pc,Kq P |τ |ρtaÐ0u. But by Lemma 10, that means pc,Kt0{auq P |τt0{au|ρ.
Hence, by anti-reduction, that means px, rx :“ cs,Kt0{au`1q P |τt0{au|ρ.
But because Kt0{au`1 ď H, we finally obtain px, rx :“ cs,Hq P |τt0{au|ρ.

Subcase

φ, b; Φ, b ă L; Γ, x : ra ă Ps ¨ σ $E
K t : τ

φ; Φ $E τt0{bu Ď γ

φ, a, b; Φ, a ă P, b ă L $E τt
Ïb`1,a

b P` b` 1{bu Ď σ
φ; Φ $E Σ Ď

ř

băL Γ

φ; Φ |ùE Ï0,1
b P ď L,R

φ; Φ; Σ $E
R´1`

ř

băL K fix x.t : γ
R

Without loss of generality and by definition of bounded sum we can con-
sider the case where Γ “ y : ra ă Hs ¨ δta`

ř

dăb Htd{au{au and Σ “ y :
ra ă

ř

băL Hs ¨ δ. Consider pc,Nq P |ra ă
ř

băL Hs ¨ δ|ρ. By the interpre-
tation definition and by some manipulation of the index terms, we have that
for every n ă JLKρ:

pc,
ÿ

aăHtn{bu

Mtn{bu `Htn{buq P |ra ă Hs ¨ δta`
ÿ

dăb

Htd{au{au|ρtbÐßnu

for some M such that
ř

băLp
ř

aăH M`Hq – N.

By using some manipulations of the indices, we can derive:

φ; Φ; y : ra ă Ht0{bus ¨ δt0{bu, x : ra ă Pt0{bus ¨ σt0{bu $E
Kt0{bu t : γ

18

Moreover, by assumption we have JR´1`
ř

băL KKρ “ 0 and by definition
of forest cardinality this implies both that JPt0{buKρ “ 0 and JKKρ “ 0.

By definition of interpretation, this implies that we have pfix x.t, ry :“
cs, 0q P |ra ă Pt0{bus ¨ σt0{bu|ρ. So, by induction hypothesis we have

pt, ry :“ c, x :“ pfix x.t, ry :“ csqs,
ÿ

aăHt0{bu

Mt0{bu`Ht0{buq`Kt0{buq P |γ|ρ

and by antireduction we obtain:

pfix x.t, ry :“ cs,
ÿ

aăHt0{bu

Mt0{bu `Ht0{buq `Kt0{buq P |γ|ρ

and by Lemma 9 since clearly

J
ÿ

aăHt0{bu

Mt0{bu `Ht0{buq `Kt0{buKρ ď JN`KKρ

we have
pfix x.t, ry :“ cs,N`Kq P |γ|ρ

That is what we need since by assumption JR ´ 1 `
ř

băL KKρ “ 0 and
JKKρ “ 0.

Let us consider now the case JKKρ “ n` 1:

Subcase
φ; Φ; Γ $J t : ra ă Is ¨ σ (τ
φ, a; Φ, a ă I; ∆ $K u : σ
φ; Φ $ Σ Ď ΓZ

ř

aăI ∆

φ; Φ; Σ $J`
ř

aăI K`I
tu : τ

A

Without loss of generality and by definition of bounded sum we consider the
case where Γ “ x : rb ă Ms¨γ, and ∆ “ x : rb ă Hs¨γtM` b`

ř

dăa Htd{bu{bu
and Σ “ x : rb ă M`

ř

aăI Hs¨γ. Consider pc,Nq P |rb ă M`
ř

aăI Hs ¨ γ|ρ.
By the interpretation definition and by some manipulation of the index terms
we have that pc,

ř

băM L `Mq P |rb ă Ms ¨ γ|ρ and for every n ď JIKρ we
also have

pc,
ÿ

băH

L`Hq P |rb ă Hs ¨ γtM` b`
ÿ

dăa

Htd{bu{bu|ρtaÐßnu

19

for some L such that
ř

băM L`M`
ř

aăIp
ř

băH L`Hq – N.

So, by induction hypothesis we have pt, rx :“ cs, J `
ř

băM L ` Mq P
|ra ă Is ¨ σ (τ |ρ. Also, by induction hypothesis and some transformation
we have pu, rx :“ cs,

ř

aăIpK `
ř

băH L ` Hq ` Iq P |ra ă Is ¨ σ|ρ. So by
anti-reduction we have:

pptu, rx :“ csq, J`
ÿ

băM

L`M` p
ÿ

aăI

pK`
ÿ

băH

L`Hq ` Iqq P |τ |ρ

and since

J`
ÿ

băM

L`M` p
ÿ

aăI

pK`
ÿ

băH

L`Hq ` Iq “ J`
ÿ

aăI

K` I`N

the conclusion follows.

Subcase

φ, b; Φ, b ă L; Γ, x : ra ă Ps ¨ σ $E
K t : τ

φ; Φ $E τt0{bu Ď γ

φ, a, b; Φ, a ă P, b ă L $E τt
Ïb`1,a

b P` b` 1{bu Ď σ
φ; Φ $E Σ Ď

ř

băL Γ

φ; Φ |ùE Ï0,1
b P ď L,R

φ; Φ; Σ $E
R´1`

ř

băL K fix x.t : γ
R

Without loss of generality and by definition of bounded sum we can con-
sider the case where Γ “ y : ra ă Hs ¨ δta`

ř

dăb Htd{au{au and Σ “ y :
ra ă

ř

băL Hs ¨ δ. Consider pc,Nq P |ra ă
ř

băL Hs ¨ δ|ρ. By the interpre-
tation definition and by some manipulation of the index terms we have that
for every n ă JLKρ:

pc,
ÿ

aăHtn{bu

Mtn{bu `Htn{buq P |ra ă Hs ¨ δta`
ÿ

dăb

Htd{au{au|ρtbÐßnu

for some M such that
ř

băLp
ř

aăH M`Hq – N.

By using some manipulations of the indices, we can derive:

φ; Φ; Γ1, x : ra ă Pt0{bus ¨ σt0{bu $E
Kt0{bu t : γ

Without loss of generality we can assume that JPt0{buK ą 0. The case
where JPt0{buK “ 0 is similar to the base case. By further manipulation of
the indices, we also have:

φ; Φ, a ă Pt0{bu; Σ1 $
E
Qta{cu´1`

ř

băQta{cuKtU{bu
fix x.t : σt0{bu

20

for Q “
Ï0,1

b Ptb` 1`
Ï0,c

b P{bu and U “ 1` b`
ř

căa Q and φ; Φ, a ă
Pt0{bu $ Σ1 Ď

ř

băQta{cu ΓtU{bu. In particular, we can choose Γ1 and Σ1

such that:

φ; Φ $ Σ –
ÿ

aăPt0{bu

Σ1`Γ1 Ď
ÿ

aăPt0{bu

ÿ

băQta{cu

ΓtU{bu`Γt0{bu –
ÿ

băL

Γ

Since JPt0{buK ą 0 for every ρ1 “ ρta :“ ku with k ă JPt0{buK we have
that

JQta{cu´ 1`
ÿ

băQta{cu

KtU{buKρ1 ă JR ´ 1`
ÿ

băL

KKρ

So by generalized induction hypothesis we have that

pfix x.t, ry :“ cs, Jq P |γ|ρ1

for

J “ Qta{cu´1`
ÿ

băQta{cu

KtU{bu`
ÿ

băQta{cu

p
ÿ

aăHtU{bu

MtU{bu`HtU{buq

and so

pfix x.t, ry :“ cs,
ÿ

aăPt0{bu

Jq P |ra ă JPt0{buKs ¨ γ|ρ

So, by induction hypothesis we also have

pt, ry :“ c, x :“ pfix x.t, ry :“ csqs,K2q P |γ|ρ

where

K2 “ Kt0{bu ` Pt0{bu`
ÿ

aăPt0{bu

´

Qta{cu´1`
ÿ

băQta{cu

KtU{bu`
ÿ

băQta{cu

`

ÿ

aăHtU{bu

MtU{bu`HtU{bu
˘

¯

`
ÿ

aăHt0{bu

Mt0{bu `Ht0{bu

“ R ´ 1`
ÿ

băL

K`N

So, by antireduction we obtain

pfix x.t, ry :“ cs,K2q P |σ|µq

that is what we need to prove.

21

We conclude this section with a remark about the above proof of soundness.

Remark 5. The Soundness theorem states the correctness of the model with re-
spect to the typing information. Usually, in order to prove this kind of theorems
in the context of PCF one needs some technique to ensure that the interpretation
of the rule for typing fixpoints is well-defined. In denotational models it is com-
mon practice to use the semantics approximants of fixpoints while in syntactic or
term models it is common practice to use techniques like step-indexing [2]. Our
proof does not need these techniques because we can use directly the information
provided by the weight.

5. Quantitative reducibility candidates and d`PCF properties

In this section, we are interested in using the quantitative realizability model
introduced in the previous section to prove properties about d`PCF. In particular,
we show how it can be used to give a new proof of the d`PCF intensional soundness
theorem. Moreover, when a universal equational program is considered we can also
show a correspondance between our model and the type system.

All along this section we will consider a fixed quantitative pole ‚ defined as
follows:

‚ “ t pC, nq | C Óm ^m ď n u

Checking that ‚ is indeed a quantitative pole is easy since we take into account
exactly the number of variable reduction steps. The choice of this quantitative pole
ensures that we have some additional properties on ρ-behaviors. In particular, the
following lemma shows that each behavior contains the weighted closure pz, 0q.

Lemma 11. For each ρ-behavior X , we have pz, 0q P X .

Proof. If pξ, Iq P XKρ , then it is immediate that pz, ξq Ó0. Hence pz, 0qKρpξ, Iq
since 0 ď JIKρ. So, pz, 0q P XKρKρ “ X .

The quantitative pole ‚ also permits to consider a natural quantitative exten-
sion of the usual notion of reducibility candidates.

Definition 7 (Quantitative reducibility candidates). The set of ρ-quantitative re-
ducibility candidates, denoted by QCRρ is the set of all the ρ-behaviors X such that
X Ď tpε, 0quKρ .

22

Remark 6. Informally, a quantitative reducibility candidate is a set X that only
contains bounded-time closures. Indeed, suppose X is a ρ-behavior and pc, Iq is a
bounded closure such that pc, Iq P X . Then, by definition we have pc, εq Óm with
m ď JIKρ.

The notion of a quantitative reducibility candidate helps us to prove a first form
of completeness for our model. We use the terminology completeness for this first
theorem, since it is similar to the notion of completeness of phase semantics with
respect to linear logic or of Kripke models with respect to intuitionistic logic for
instance, but where termination is considered instead of typability.

Theorem 8 (Completeness). For every ρ and all basic types σ we have |σ|ρ P
QCRρ.

Proof. By induction on the structure of the basic type σ.

Case NatrI, Js. It is easy to check that for each integer n and each environment ν,
pn, ν, 0q P tpε, 0quKρ . Hence by monotonicity of the biorthogonality closure,
we obtain |NatrI, Js|ρ Ď tpε, 0quKρKρKρ “ tpε, 0quKρ .

Case ra ă Isσ (τ . Suppose pc,Kq P |ra ă Isσ (τ |ρ. Then because pz, 0q P
|ra ă Isσ|ρ and because pε, 0q P |τ |ρ (since |τ |ρ P QCRρ by induction hy-
pothesis), we obtain that pc,z.ε, JKKρq P‚.

Using Lemma 7, we obtain pc, ε, JKKρq P‚.

Theorem 8 stated above can be considered as a bounded-time termination prop-
erty of realizers. However, this property alone is not sufficient to prove the inten-
sional soundness result for d`PCF.

Remark 7. Theorem 8 does not hold for all choices of a pole. For instance, if we
choose the pole ‚ “ t pC, nq | C diverges u, for each integer n and k P N, the
configuration pn, ε, kq R‚. This shows that |Natr0, 0s|ρ R QCRρ.

To be able to prove intensional soundness of d`PCF, we first need to prove an
internal completeness result for the type NatrJ,Ks. This result characterizes the
elements of |NatrJ,Ks|ρ. The proof mainly uses the fact that ‚ only contains safe
configurations, and that stacks can discriminate two different natural numbers. It
is very similar to the internal completeness property of ludics [14, 27], hence the
name internal completeness.

Theorem 9 (Internal completeness). Suppose JJKρ ď JKKρ and |ù I ó. If pc, Iq P
|NatrJ,Ks|ρ then pc, εq Óm pn, ν, εq with m ď JIKρ and JJKρ ď n ď JKKρ.

23

Proof. Let Ω be a PCF diverging term. In order to discriminate integers we will
use the following families of stacks indexed by k P N:

ξk “ s ¨ p ¨ p . . . p
looomooon

k times

¨pΩ, 0, εq ¨ ε θk “ p ¨ p . . . p
looomooon

k times

¨p0,Ω, εq ¨ ε

These families of stacks have the following properties:

• @k ď n, pn, ε, ξkq Ñk`1
v pn1 ` 1, ε, pΩ, 0, εq ¨ εq Ñv p0, ε, εq,

• @k ą n, pn, ε, ξkq diverges,

• @k ě n, pn, ε, θkq Ñk
v p0, ε, p0,Ω, εq ¨ εq Ñv p0, ε, εq,

• @k ă n, pn, ε, θkq diverges.

Thanks to these properties we have:

t pξk, 0q | k ď JJKρ u Y t pθk, 0q | JKKρ ď k u

Ď t pn, 0q | JJKρ ď n ď JKKρ uKρ “ |NatrJ,Ks|
Kρ
ρ

Now, suppose pc, Iq P |NatrJ,Ks|ρ. We have pc, Iq P tpξJJKρ , 0q, pθJKKρ , 0qu
Kρ .

But this says that there exists some integer n P N such that pc, εq Óm n (by the
safety property of the configurations in ‚) and by Theorem 8 that m ď JIKρ.
Moreover, it tells us also that JJKρ ď n ď JKKρ otherwise we would have a diverg-
ing computation, hence the result.

The internal completeness result can also be extended to first order functions.

Corollary 1 (Internal completeness for functions). Suppose a;H |ù I ó, a;H |ù

J ó, and a;H |ù K ó. If ppt, εq, Iq P |rb ă Js ¨ Natras (NatrKs|taÐnu then
pt n, ε, εq Óm pk, ν, εq with m ď JI` JKtaÐnu and JKKtaÐnu “ k.

Proof. Let ρ “ taÐ nu. We need to show:

ppt n, εq, I` Jq P |NatrKs|taÐnu (2)

Then, we can conclude by Theorem 9 that pt n, ε, εq Óm pk, ν, εq with m ď JI `
JKtaÐnu and k “ JNatrKsKtaÐnu.

In order to prove 2, we prove first an intermediate lemma:

ppn, εq, Jq P |rb ă Js.Natras|ρ (3)

24

We have immediately that ppn, εq, 0q P |Natras|ρ. Hence for any p P N, we also
have that ppn, εq, 0q P |Natras|ρtbÐpu. Therefore we obtain

ppn, εq,
ÿ

băJ

0

loomoon

“0

`Jq P |rb ă Js.Natras|ρ

Now we prove (2). Let pξ, I1q P |NatrKs|Kρ
taÐnu. We want to show that

ppt n, ε, ξq, JI` J` I1Kρq P‚
But, by (3), we have that:

pn.ξ, J` I1q P |rb ă Js ¨ Natras(NatrKs|
Kρ

taÐnu

Hence, by hypothesis we have

ppt, ε, n.ξq, JI` J` I1Kρq P‚
Which proves (2).

The internal completeness theorem above is the last ingredient we need to
prove the intensional soundness.

Theorem 10 (Intensional soundness). Let H;H;H $I t : NatrJ,Ks. Then, we
have t ón m with n ď |t| ¨ pJIK ` 1q and JJK ď m ď JKK.

Proof. By assumptionH;H;H $I t : NatrJ,Ks. Hence, by Theorem 7

ppt, εq, Iq P JNatrJ,KsK

Moreover, by the fact that t is well typed we have JJK ď JKK and that |ù I ó. So,
by Internal Completeness we have n,m P N such that n ď JIK and JJK ď m ď JKK
and:

pt, ε, εq Ón pm, µ, εq

This and Lemma 4 show then that t ón m and n ď |t| ¨ pJIK ` 1q.

The type system of d`PCF has been designed to be relatively complete with
respect to the evaluation on Krivine’s machine. Relative completeness is obtained
by considering a universal equational program U . Using relative completeness
for programs and for functions respectively, we can show that on programs and
functions realizability and typability are equivalent.

25

Theorem 11 (Coincidence).
Let ρ |ùU φ; Φ. Then,

1. φ; Φ;H $U
I t : NatrJ,Ks ðñ ppt, εq, Iq P |NatrJ,Ks|Uρ .

2. Moreover, if ρ |ùU φ, a; Φ, we have
φ, a; Φ;H $U

I t : rb ă Js ¨ Natras (NatrKs ðñ ppt, εq, Iq P |rb ă Js ¨
Natras(NatrKs|Uρ

Proof. For both the points, the direction ñ follows directly by Theorem 7. The
directionð follows instead by:

• The internal completeness Theorem 9 and by Relative Completeness for pro-
grams (Theorem 4) for the first point.

• The internal completeness for functions (Corollary 1) and Relative Com-
pleteness for functions (Theorem 5).

The above theorem ensures that we can reason about the type system in an
abstract way by using the realizability model.

6. Conclusions and Related works

Realizability techniques are nowadays a standard tool to reason about program
behavior [26, 6, 5, 17]. The gain in using such techniques is an approach to formal
reasoning about programs that abstracts the language properties from the concrete
syntax. An example is the semantic soundness proof we presented here. However,
classical works on program behavior do not consider the quantitative aspects of
programs.

Quantitative realizability models have been studied before in the context of
linear logic. Hofmann and Scott in [16] have studied a realizability model for
Bounded linear logic. This model has then been further revisited by Dal Lago
and Hofmann in [11] and by Brunel in [7]. The main technical difference be-
tween our work and the previous ones is that our model, analogously to d`PCF, is
parametrized on an equational program and on an assignment. In this respect, our
work can be understood not as a unique model but as a set of models that can be
instantiated as needed. Furthermore, ours is also the first quantitative realizability
model that can be used to reason about the full PCF language. It is interesting to
note that the information given by d`PCF types is enough to reason about all the
terminating recursive programs. This permits to avoid the use of extra-techniques
like step-indexing [2] usually employed in this setting. An obvious limitation of

26

our approach is that index terms, differently from step-indexing, cannot be used
to reason about non-terminating programs. Further comparisons of the two ap-
proaches are left for future investigations.

Another motivation for our study is the possibility to internalize the notion of
forcing in classical realizability models as shown by Krivine in [21] and Miquel in
[24]. These works established connections between forcing conditions of logical
principles and program transformations. Starting from these works, Brunel in [7]
has shown that the quantitative part of a quantitative realizability model can be seen
as the result of the internalization of a specific forcing model inside a simple (non-
quantitative) realizability model. Forcing can also be useful in an intuitionistic
framework as shown in [18], where it is used to generalize step-indexing. Since
they also use forcing to account for term fixpoints, it would be interesting to explore
the link between these frameworks. We intend to explore the formal links between
d`PCF and forcing.

Recently, Dal Lago and Petit in [12] have proposed a type system similar to
d`PCF but related to call-by-value rather than call-by-name evaluation. The gram-
mar of types they use is slightly different from the one of d`PCF. So, our model
cannot be applied straightforwardly to their framework. We leave for further re-
search the adaptation of our technique.

[1] Amadio, R., 2005. Synthesis of max-plus quasi-interpretations. Fund. Inform.
65, 29–60.

[2] Appel, A. W., McAllester, D., Sep. 2001. An indexed model of recursive types
for foundational proof-carrying code. ACM Transactions on Programming
Languages and Systems 23 (5), 657–683.

[3] Baillot, P., Terui, K., 2004. Light types for polynomial time computation in
lambda-calculus. In: IEEE LICS. pp. 266–275.

[4] Bellantoni, S., Cook, S., 1992. A new recursion-theoretic characterization of
the polytime functions. Computational Complexity 2 (2), 97–110.

[5] Benton, N., Hur, C.-K., 2009. Biorthogonality, step-indexing and compiler
correctness. In: ICFP ’09. ACM, New York, NY, USA, pp. 97–108.

[6] Birkedal, L., Støvring, K., Thamsborg, J., 2010. Realisability semantics of
parametric polymorphism, general references and recursive types. MSCS
20 (4), 655–703.

[7] Brunel, A., 2012. Quantitative classical realizability. http://arxiv.
org/abs/1201.4307.

27

http://arxiv.org/abs/1201.4307
http://arxiv.org/abs/1201.4307

[8] Dal Lago, U., Gaboardi, M., 2011. Linear dependent types and relative com-
pleteness. In: IEEE LICS ’11. pp. 133–142.

[9] Dal Lago, U., Gaboardi, M., 2012. Linear dependent types and relative com-
pleteness. Logical Methods in Computer Science 8.

[10] Dal Lago, U., Hofmann, M., 2009. Bounded linear logic, revisited. In: TLCA.
Vol. 5608 of LNCS. Springer, pp. 80–94.

[11] Dal Lago, U., Hofmann, M., 2011. Realizability models and implicit com-
plexity. Theoretical Computer Science 412 (20), 2029 – 2047.
URL http://dx.doi.org/10.1016/j.tcs.2010.12.025

[12] Dal Lago, U., Petit, B., 2012. Linear dependent types in a call-by-value sce-
nario. In: PPDP ’12. ACM, New York, NY, USA, pp. 115–126.

[13] Girard, J., Scedrov, A., Scott, P., 1992. Bounded linear logic. TCS 97 (1),
1–66.

[14] Girard, J.-Y., 2001. Locus solum: From the rules of logic to the logic of rules.
Mathematical Structures in Computer Science 11 (03), 301–506.

[15] Hofmann, M., 2000. Programming languages capturing complexity classes.
ACM SIGACT News 31, 31–42.

[16] Hofmann, M., Scott, P. J., 2004. Realizability models for bll-like languages.
TCS 318 (1-2), 121–137.

[17] Jaber, G., Tabareau, N., 2010. Krivine realizability for compiler correctness.
LOLA.
URL http://hal.archives-ouvertes.fr/hal-00475210/

[18] Jaber, G., Tabareau, N., Sozeau, M., Jun. 2012. Extending Type Theory with
Forcing. In: Proceedings of LICS’12.

[19] Kristiansen, L., Jones, N., 2005. The flow of data and the complexity of
algorithms. In: Cie: New Computational Paradigms. Vol. 3526 of LNCS.
Springer, pp. 289–304.
URL http://dx.doi.org/10.1007/11494645_33

[20] Krivine, J.-L., 2009. Realizability in classical logic. Panoramas et synthèses
27, 197–229.
URL http://hal.archives-ouvertes.fr/hal-00154500

28

http://dx.doi.org/10.1016/j.tcs.2010.12.025
http://hal.archives-ouvertes.fr/hal-00475210/
http://dx.doi.org/10.1007/11494645_33
http://hal.archives-ouvertes.fr/hal-00154500

[21] Krivine, J.-L., 2011. Realizability algebras: a program to well order R. LMCS
7 (3).

[22] Leivant, D., Marion, J.-Y., 1993. Lambda calculus characterizations of poly-
time. In: TLCA ’93. Vol. 664 of LNCS. Springer, pp. 274–288.

[23] Marion, J.-Y., Moyen, J.-Y., 2000. Efficient first order functional program
interpreter with time bound certifications. In: LPAR. Vol. 1955. Springer, pp.
25–42.

[24] Miquel, A., 2011. Forcing as a program transformation. In: IEEE LICS. pp.
197–206.

[25] Moyen, J.-Y., Aug. 2009. Resource control graphs. ACM TOCL 10 (4), 29:1–
29:44.

[26] Pitts, A., 2000. Parametric polymorphism and operational equivalence.
MSCS 10, 321–359.

[27] Terui, K., 2011. Computational ludics. Theoretical Computer Science
412 (20), 2048–2071.

[28] Xi, H., 2007. Dependent ML: An approach to practical programming with
dependent types. J. of Funct. Progr. 17 (2), 215–286.

29

	Introduction
	dPCF
	Index terms and Krivine's Machine
	Quantitative realizability model for dPCF
	Quantitative reducibility candidates and dPCF properties
	Conclusions and Related works

