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Abstract
Establishing quantitative bounds on the execution cost of programs
is essential in many areas of computer science such as complexity
analysis, compiler optimizations, security and privacy. Techniques
based on program analysis, type systems and abstract interpretation
are well-studied, but methods for analyzing how the execution costs
of two programs compare to each other have not received attention.
Naively combining the worst and best case execution costs of the two
programs does not work well in many cases because such analysis
forgets the similarities between the programs or the inputs.

In this work, we propose a relational cost analysis technique that
is capable of establishing precise bounds on the difference in the ex-
ecution cost of two programs by making use of relational properties
of programs and inputs. We develop RelCost, a refinement type and
effect system for a higher-order functional language with recursion
and subtyping. The key novelty of our technique is the combina-
tion of relational refinements with two modes of typing—relational
typing for reasoning about similar computations/inputs and unary
typing for reasoning about unrelated computations/inputs. This com-
bination allows us to analyze the execution cost difference of two
programs more precisely than a naive non-relational approach.

We prove our type system sound using a semantic model based
on step-indexed unary and binary logical relations accounting
for non-relational and relational reasoning principles with their
respective costs. We demonstrate the precision and generality of our
technique through examples.

Categories and Subject Descriptors F.3.1 [Logics and meanings
of programs]: Specifying and verifying and reasoning about pro-
grams; F.3.2 [Logics and meanings of programs]: Semantics of
programming languages

General Terms Verification

Keywords Relational reasoning, complexity analysis, type and
effect systems

1. Introduction
Statically analyzing the amount of resources needed to run a program
is an active field of research that has many applications in security,
privacy, embedded and real-time systems, and compiler optimiza-
tions. Formal techniques for performing such static execution-cost
analysis usually focus on worst-case bounds and build on extensions
of classical techniques for statically reasoning about functional prop-
erties of programs. For instance, CostIt [17], d`PCF [20, 21], and
Resource Aware ML [28, 30] are based on expressive type systems
that rely on refinement or dependent types; Costa [2], the method
developed by Sinn et al. [44], and KoAt [11] use techniques from
term rewriting and abstract interpretation; other approaches [5, 15]
are based on program logics such as Hoare or separation logic.

Many recent innovations for reasoning about properties of pro-
grams are based on relational or differential reasoning [9, 25, 31, 47].
The focus of these approaches is on proving relationships between
two executions as opposed to properties of a single execution. De-
pending on the specific application considered, the two programs
or their inputs may coincide. For 2-safety properties [19, 45], the
executions are of the same program, but the initial states need not
be equal. For translation validation and (some notions of) program
equivalence [6, 13, 32, 34, 48], the programs are different, but the
initial states are the same. For more general notions of program
equivalence, including representation independence, the two pro-
grams and the initial states are different.

In this paper, we focus on the problem of relational cost analysis:
the problem of statically analyzing the difference in the execution
costs of two similar programs or of two runs of the same program
with two different inputs. Relational cost analysis has applications
in many different settings: in resource-aware compiler verification,
where we want to prove that optimized code runs at least as fast as
the original code; in side-channel analysis, where we want to prove
that resource consumption does not leak any confidential informa-
tion; in approximate computation, where we want to prove that an
approximate algorithm achieves the desired level of efficiency.

The motivation behind studying relational cost analysis as a
separate problem is that, often, naive non-relational cost analysis
is intractable or imprecise where relational cost analysis becomes
tractable or precise. For example, consider a developer updating a
distributed cloud application which uses almost all available hard-
ware resources such as memory on a single machine. Since every
patch to the application potentially increases memory requirements,
she has to ensure that the updated application does not run out of
memory. One solution would be to derive a global memory bound
for the updated application. However, this may be difficult, impre-



cise or even impossible in many situations. On the other hand, a
formal relational analysis might be able to show that the updated
application does not use more memory than the original one. Such
an analysis could be local—if, e.g., changes have been made to
the body of only one loop—and may match the intuitive soundness
reasoning in the mind of the developer.

Concretely, we present RelCost, the first type theory for rea-
soning about the difference in the execution cost of two programs.
RelCost is a refinement type and effect system for higher-order func-
tional programs that provides two typing judgments: one relational
and the other non-relational. The non-relational typing judgment
`tk e : A can be read as asserting that the expression e is of (re-
finement) type A and has execution cost which is lower and upper
bounded by the non-negative real numbers k and t, respectively. The
relational typing judgment ` e1 	 e2 . t : τ can be read as: e1 and
e2 are two expressions of relational (refinement) type τ , expressing
their relation, and the difference of executions costs of e1 and e2 is
upper bounded by t, a positive or negative real number. The non-
relational typing allows us to reason about individual executions of
programs, whereas the relational typing allows us to reason instead
about the executions of two programs.

The key insight of our work is that a relational indexed refinement
type system with effects can model exactly the intuition that we
have when reasoning about how changes in program structure
or inputs affect the difference of costs. Relational typing strives
to relate two structurally similar programs as much as possible,
performing synchronous steps on both sides, and only switches to
the asynchronous mode, i.e., the comparison of best- and worst-case
execution costs independently, whenever two programs structurally
diverge. This enables our analysis to provide more precise bounds
than computing the best- and worst-case execution cost difference.

The main technical innovation of our work is a semantic model
based on step-indexed unary and binary logical relations accounting
for the soundness of relational and non-relational reasoning about
cost, respectively. The design of the type system closely reflects this
semantic model: the typing judgment ` e1 	 e2 . t : τ provides
an abstraction to reason about the binary relation, while the typing
judgment `tk e : A provides an abstraction to reason about the unary
relation. The step-indexes and the two modes of reasoning create an
interesting interaction in the semantic model, explained in detail in
Section 4.

Summarizing, we make the following contributions:

• We develop a type theory for relational execution cost analysis
that combines relational and non-relational reasoning to provide
precise bounds on execution cost differences of programs. The
type system combines ingredients from lightweight dependent
types, co-monadic reasoning and effect systems.
• We develop an abstract semantic model combining step-indexed

binary and unary logical relations for relational and non-
relational reasoning about cost. We prove our type system
sound relative to this abstract model.
• We demonstrate the applicability of our analysis by typing a set

of example programs ranging over optimizations, security and
algorithmic analysis.

We start with an informal, example-driven overview of RelCost
in Section 2. Sections 3 and 4 present the type system and semantic
model, respectively. Section 5 discusses possible extensions to
RelCost. Omitted typing rules and proofs of theorems are included
in an appendix available from the authors’ homepages.

2. RelCost by Examples
In this section, we first present some of the features of RelCost’s type
system and then demonstrate our relational cost analysis through
examples.

Relational cost analysis, concretely Suppose we have two pro-
grams e1 and e2 that execute with costs c1 and c2, respectively.
Relational cost analysis establishes an upper bound on the differ-
ence in the executions costs of e1 and e2, that is c1 − c2. We refer
to this cost as the relative cost of e1 with respect to e2. In general,
the cost could refer to the number of evaluation steps, abstract units
of execution time, or to some measure of consumption of another
resource. Moreover, the cost of each program may depend on some
input values that are known only at runtime.

A naive way to statically establish an upper bound on the relative
cost of e1 with respect to e2 would be to first establish an upper
bound on e1’s cost and a lower bound on e2’s cost, i.e., find t, k such
that c1 ≤ t and k ≤ c2. Then, the relative cost of e1 with respect
to e2 is upper bounded by the difference in these upper and lower
bounds, i.e., c1−c2 ≤ t−k. However, such non-relational reasoning
is often approximate and imprecise: it merely makes use of the lower
and upper bounds on e1 and e2’s execution costs in isolation without
taking into account their relations/similarities. For instance, the two
programs could share a lot of code/structure, or they could be run
with similar inputs. The main idea behind RelCost’s relational cost
analysis is to benefit from such similarities as much as possible and
to switch to non-relational reasoning only when necessary.

Example 1 (Conditionals) To see how imprecise the naive
non-relational method is, consider a simple program “if n ≥
0 then f(n) else 1”, with a single input n, where f is a closed
function with equal maximum and minimum execution costs c(n)
that is linear in n. Assuming that conditional evaluation takes 1
unit of cost, the program runs slowest with cost c(n) + 1 when n
is non-negative and it runs fastest with cost 1 when n is negative.
What can we say about the maximum execution cost difference in
the two runs of this program? Although one may naturally answer
that the relative cost is simply bounded by the difference in the
worst- and best-case executions costs of the two runs, i.e. c(n), the
precise answer depends on the values assigned to n in the two runs
of the program. If the two values assigned to n cannot differ in the
two runs, then the two executions follow the same path and the
difference in their execution cost would be 0, not c(n). A relational
analysis can establish this 0 cost by taking into account the fact that
n is the same in the two runs, whereas a non-relational analysis
based on best- and worst-case execution times cannot.

Two-layered typing To enable a more precise relational cost analy-
sis like the one needed in the above example, we designed RelCost’s
type syntax (Figure 3) and typing judgments to be two-layered.
Relational types τ type a pair of values (expressions) relationally,
capturing the similarities between them, whereas unary or non-
relational types A type individual values (expressions) in isolation.
For instance, the unary type int represents integer values whereas,
the relational type intr represents pairs of identical integer values.
In general, any unary type can be made relational by encapsulating
it with the weakest relation U so that the type U A relates two
arbitrary values of type A.

Corresponding to these two layers of types, there are two typing
judgments in RelCost. The unary typing judgment has the form
Ω `tk e : A, where k and t are lower and upper bounds on the execu-
tion cost of e under the unary (non-relational) typing environment Ω.
The relational typing judgment has the form Γ ` e1 	 e2 . t : τ ,
where t is an upper bound on the relative cost of e1 with respect
to e2 under the relational typing environment Γ. Relational typing
aims to benefit from the similarities between the inputs and the



programs, whereas unary typing considers a single program and
a single input in isolation. Unlike unary typing which tracks both
lower and upper bounds, relational typing only tracks upper bounds
on the execution cost difference: the lower bound on the relative cost
of e1 with respect to e2 can be obtained by establishing an upper
bound on the relative cost of e2 with respect to e1 and taking its
negative (c2 − c1 ≤ k ⇒ −k ≤ c1 − c2).

Example 1 (Conditional reconsidered) Coming back to the ex-
ample above, we explain how the relative cost of e = “if n ≥
0 then f(n) else 1” can be established in RelCost. If n is not al-
lowed to differ in the two runs, i.e., it has type intr , then the two
runs of e can be typed relationally with relative cost 0:

n : intr ` e	 e . 0 : intr (1)

The intuition behind this typing is that since the two runs take the
same execution path, it suffices to relationally type the two branches
f(n)	 f(n) and 1	 1 component-wise, i.e. synchronously. Both
of these branches have 0 relative cost and intr result type, so the
two runs of e can be typed as shown above in (1).

In contrast, if the value of n may differ between the two runs, i.e.
n : U int, then these programs can be typed with cost c(n):

n : U int ` e	 e . c(n) : U int (2)

In this case, since the two executions might take different paths,
we lose the relational reasoning. In order to establish an upper bound
on their relative cost, we need to switch to the worst- and best-case
execution cost comparison. In the type system, this is achieved by
using the following switch rule:

|Γ| `t1 e1 : A |Γ| `k2 e2 : A

Γ ` e1 	 e2 . t1 − k2 : U A
switch

where e1 and e2 are two arbitrary programs that are typed indepen-
dently with maximum execution cost t1 and minimum execution
cost k2, respectively. Then the relative cost of e1 with respect to
e2 is upper bounded by t1 − k2. Since the execution costs of e1
and e2 are independent of their relation, we can type them with
a non-relational environment |Γ| obtained from Γ by ignoring the
relations for each type, e.g., |intr| = |U int| = int.

Using this rule, we can type e independently once with maximum
execution cost c(n) + 1 and once with minimum execution cost 1
and obtain the above typing (2). Note that because n is unrelated in
the two runs, any computation that depends on it must be unrelated
as well. Hence, the result type is also unrelated, i.e. U int.

Example 2 (Constant-time comparison) In cryptographic appli-
cations, it is often necessary to prove that a program is constant-time,
i.e., its execution time is independent of secret inputs, to prevent an
attacker from inferring the secret inputs by measuring the execution
time. Using relational cost analysis, we can prove that a program
is constant time without separately proving that its worst- and best-
case execution costs are equal (as would be necessary if we used
non-relational cost analysis). For example, consider the following
constant-time comparison function comp that checks the equality of
two passwords represented as equal-length lists of bits.

fix comp(l1, l2).case l1 of
nil → true
| h1 :: tl1 → case l2 of

nil → false
| h2 :: tl2 → boolAnd (comp (tl1, tl2), eq (h1, h2))

To show that comp is constant-time, we first need a type to
specify how close the input lists l1 and l2 are. Accordingly, we refine
relational list types to the form list[n]α τ , which ascribes a pair of
lists, both of length exactly n and that differ in at most α positions.
Similarly, unary list types are refined with exact length: list[n]A.

Second, we refine the standard function type τ1 → τ2 to the

relational type τ1
diff(t)−−−→ τ2, which carries t, the maximum relative

cost of the bodies of the two functions (given related arguments of
type τ1).

Suppose that the function boolAnd returns the conjunction of
the two boolean values in constant-time; it has type boolAnd :

(U bool× U bool)
diff(0)−−−−→ U bool and that the function eq checks

integer equality in constant-time; it has type eq : (U int ×
U int)

diff(0)−−−−→ U bool.1

We can now show that the function comp is constant-time by

typing it as follows. The annotation on
diff(0)−−−−→ means that the

relative cost of two runs of the function is 0 and, here, the universal
quantification over α, β means that this relative cost holds no matter
how much the lists differ.2

` comp	 comp . 0 : ∀n, α, β::N.
(list[n]α U int× list[n]β U int)

diff(0)−−−−→ U bool

The proof of this judgment proceeds by induction on the input lists
(via a typing rule for fixpoints). The interesting case is when the two
lists have at least one element each. Inductively, we know that the
relative cost of comp tl1 tl2 is 0. Furthermore, we assumed that eq
and boolAnd are constant-time. Therefore, we can easily conclude
that comp is constant-time. This proof of the relative cost of comp
is trivial compared to a proof through a non-relational analysis that
would have to establish best- and worst-case execution costs (taking
into account constant factors carefully) and show that they are equal.

Example 3 (Square-and-multiply) This example demonstrates
how we can combine RelCost’s relational and non-relational rea-
soning principles to obtain precise bounds on the relative cost of
programs. Consider the square-and-multiply algorithm, a fast way
of computing the positive powers of a number based on the obser-
vation that xm = x · (x2)

m−1
2 when m is odd, and xm = (x2)

m
2

when m is even. The following function, sam, implements this idea,
assuming thatm is stored in binary form in a list l of 0s and 1s, with
the least significant bit at the head.

fix sam(x).λl.case l of
nil → contra
| b :: bs → case bs of

nil → if x = 0 then 1 else x
| :: → let r= sam x bs in

if b = 0 then r2 else x · r2

Assume that multiplication (as in x · r2) has a fixed cost t. Consider
two executions of sam on the same base (x : intr) and two exponents
that differ in at most α bit positions (l : list[n]α (U int)). What is
the maximum relative cost of one run with respect to the other?
Intuitively, the relative cost is in O(α · t) since the two runs may
enter the two different branches of the if in at most α recursive calls
and, the difference in the cost of the two branches is exactly one
multiplication (r2 vs x · r2). Hence, sam can be given the following
type for a suitable linear function P .

` sam	 sam . 0 : intr
diff(0)−−−−→ ∀n > 0, α::N.

list[n]α U int
diff(P (α·t))−−−−−−−→ U int.

We explain how sam’s type is derived in RelCost, focusing on the
branch of the case analysis that recursively calls sam. From l’s type,

1 The function boolAnd can be defined and typed in our language, but we
assume eq to be a primitive function.
2 The expression-level introduction and elimination forms for universal
and existential quantifiers such as those over n, α, β are omitted from all
examples for better readability.



we know that at most α bits differ in the two runs. However, we
do not know whether b is among these α bits. Accordingly, our
case analysis rule for lists, rule r-caseL in Figure 5, requires two
sub-cases for the cons branch: either the head b differs in the two
runs or it does not. In the first case, we assume that b may have
different values in the two runs and bs : list[n− 1]α−1 (U int). The
total cost P (α · t) suffices for the recursive call’s cost P ((α− 1) · t)
as well as t, the relative cost of the two branches of the expression
(if b = 0 then r2 else x · r2), which is established through unary
analysis of the expression and the rule switch. In the second
case, we assume that b has the same value in the two runs and
bs : list[n − 1]α (U int). In this case, the two runs can differ only
in the recursive call, which has an (inductive) cost of P (α · t).
Technically, the assumption that b has the same value in the two runs
is represented using the relational type constructor � τ , which is
the diagonal sub-relation of τ , i.e., the subset of τ containing equal
values in the left and right components. Here, b : � (U int) in the
second sub-case.

Note that the relative cost of sam obtained by taking the differ-
ence of worst- and best-case costs would be linear in n, not in α.
Thus, direct relational analysis makes the reasoning more precise.

Example 4 (Two-dimensional count) This example demonstrates
that RelCost’s relational analysis can establish that one program
is faster than another when a unary analysis cannot. Consider the
following function 2Dcount that counts the number of rows of a
matrix M (represented as a list of lists in row-major form) that both
contain a key x and satisfy a predicate p. The function takes as
argument another function find that returns 1 when a given row l
contains x, else returns 0.

fix 2Dcount(find).λx.λM.caseM of
nil → 0
| l :: M ′ → let r = 2Dcount find x M ′ in

if p l then r + (find x l) else r

Consider the following two different implementations of find.

fix find1(x).λl.case l of
nil → 0
| h :: tl → if h = x then 1 else find1 x tl

fix find2(x).λl.case l of
nil → 0
| h :: tl → if (find2 x tl) = 1 then 1

else if (h = x) then 1 else 0

The function find1 scans the row l from head to tail and returns
1 when an element matches x, whereas the function find2 recurs
to the end of l and scans it from tail to head, looking for a match.
For simplicity, assume that applications cost a unit and all other
operations cost nothing. We can establish that on input lists of
length n, the unary cost of find1 lies in the interval [1, 3n] and
that of find2 lies in the interval [3n, 4n]. Hence, find1 is never
slower than find2 and, so, the relative cost of (2Dcount find1)
with respect to (2Dcount find2) is upper-bounded by 0 (assuming
that the same matrix M is given to the two expressions, i.e., M has
type list[m]0 (list[n]0 int) for some m and n). In RelCost, this cost
can be established in three steps. First, we type 2Dcount.

` 2Dcount	 2Dcount . 0 :

(U int→ ∀n::N. U (list[n] int)
diff(0)−−−−→ U int)→ intr →

∀m,n::N. list[m]0 (list[n]0 intr)
diff(0)−−−−→ U int

This type means that, given two find functions with relative cost

0 (first
diff(0)−−−−→ in the type above), the relative cost of 2Dcount

with those find functions is 0. This type is easily established by

induction on M ’s outer list. Then, we show that the relative cost of
find1 with respect to find2 is 0, i.e.,

` find1	 find2 . 0 :

U int→ ∀n::N. U (list[n] int)
diff(0)−−−−→ U int

This is done by establishing the best- and worst-case costs of find1
and find2 as outlined above (we omit the technical details). Using
these two types we can immediately prove that for a fixed matrix
M : list[m]0 (list[n]0 int), we have

` (2Dcount find1M)	 (2Dcount find2M) . 0 : U int

Importantly, this relational cost cannot be established using a
naive best- and worst-case analysis. This is because the cost of the
function (2Dcount find1 M) is as high as 3nm+ 7m when the
predicate p is true on all rows of M and the element x does not
appear anywhere, and the cost of (2Dcount find2M) is as low as
4m when the predicate p is false on every row. Clearly, 3nm+ 7m
is more than 4m, so a unary cost analysis cannot establish that
(2Dcount find1M) is always faster than (2Dcount find2M).

Example 5 (Mergesort) Consider the following standard merge-
sort function, msort, that splits a list into two nearly equal-sized
sublists, recursively sorts each sublist and then merges the two
sorted sublists. We are interested in establishing the relative cost
of two runs of msort with two input lists of length n that differ in
at most α positions, i.e., when l : list[n]α (U int). For simplicity,
we count a unit cost for all applications and no cost for the other
operations. A naive non-relational analysis establishes this cost at
O(n · log(n)). This is imprecise and we show here how a precise
cost can be established in RelCost.

fix msort(l).case l of
nil → nil
| h1 :: tl1 → case tl1 of

nil → cons(h1, nil )
| :: → let (z1, z2) = (bsplit l) in

merge (msort z1, msort z2)

The helper function bsplit splits an input list into two nearly equal
lists by alternating the input’s elements to the two outputs. Its code
is unimportant but its relational type is shown below (we omit a
description of bsplit’s type derivation for brevity). The relative
cost of bsplit is 0 because bsplit rearranges the items in the
input list without looking at their values.

bsplit : (∀n, α::N. list[n]α τ
diff(0)−−−−→

∃β::N. (list[
⌈
n
2

⌉
]β τ × list[

⌊
n
2

⌋
]α−β τ))

The function merge takes two sorted lists as input and merges them
to produce a sorted list.

fix merge(x).λy case x of
nil → y
| a :: as → case y of

nil → x
| b :: bs → if a ≤ b then cons(a, merge as y)

else cons(b, merge x bs)

Assuming that the lists input to merge may differ in the two runs,
the two runs might take different branches of a ≤ b, so a relational
analysis of merge does not pay off. Instead, we establish its (unary)
best- and worst-case execution costs. Given input lists of lengths
n and m, merge’s best-case cost is h(min(n,m)) (for a linear
function h), when all the elements in the shorter list are less than
or equal to all elements in the longer list. Its worst-case cost is
h(n + m), when both lists must be traversed completely. This

results in the following type. (
exec(k,t)−−−−−→ means that the function



body’s cost has lower and upper bounds k and t, respectively.)

`00 merge : int→ ∀n,m::N.
(list[n] int × list[m] int)

exec(h(min(n,m)),h(n+m))−−−−−−−−−−−−−−−−−→ list[n+m] int

Next, we turn to msort’s relational analysis. Suppose that the
input list has length n. Since msort divides the input list into two
almost equally-sized lists at each step, its recursive calls form a
balanced binary tree of height H = dlog2(n)e. To calculate the
relative cost of the two runs of msort, we calculate the relative cost
at each level of the recursion tree, counting from the leaves at level
0 up to the root of the tree at level H . The relative cost of bsplit
is 0 everywhere (from its relational type above) and the relative cost
of merge is at most h(n + m) − h(min(n,m)) = h(max(n,m))
(from its unary type above). At tree level i, n and m in the call
to merge are

⌈
2i

2

⌉
and

⌊
2i

2

⌋
, respectively, so the relative cost

of merge at level i is h(
⌈

2i

2

⌉
). Further, the number of nodes at

level i of the recursion tree is at most 2H−i. Since there are at
most α differences between the two lists, at most α applications
to merge can differ in the two runs. Therefore, at level i, the
maximum number of merge applications that may result in non-
zero relative cost is min(α, 2H−i). Therefore, the total relative cost

of merge is Q(n, α) =
H∑
i=0

h(
⌈

2i

2

⌉
) · min(α, 2H−i). Although

Q(n, α) looks complicated in this “open” form, it is easily shown
to be in O(n · (1 + log2(α))), which is asymptotically better than
the bound O(n · log2(n)) than can be established non-relationally.
In fact, for α = 1, the precise bound is only O(n).

Let us examine briefly how the relative cost Q(n, α) can be
established in RelCost. Our aim is to type msort as follows.

msort : � (∀n, α::N. list[n]α U int
diff(Q(n,α))−−−−−−−→ U (list[n] int))

(Note the � outside the type; its significance will be clear soon.)
The most interesting case is when we recursively call msort.
Splitting the input list into two lists z1 : list[

⌈
n
2

⌉
]β (U int) and

z2 : list[
⌊
n
2

⌋
]α−β (U int) incurs no relative cost (from the type of

bsplit). Inductively, we know that the relative costs of the two
recursive calls on z1 and z2 are Q(

⌈
n
2

⌉
, β) and Q(

⌊
n
2

⌋
, α − β),

respectively. Merging the two sorted lists has h(
⌈
n
2

⌉
) relative cost,

as established above. Therefore, to complete the typing, we must
show that the following inequality holds.

h(
⌈n

2

⌉
) +Q(

⌈n
2

⌉
, β) +Q(

⌊n
2

⌋
, α− β) ≤ Q(n, α)

For α > 0, this is an arithmetic tautology. However, for α = 0,
the right side is 0, but the left side is at least h(

⌈
n
2

⌉
). Nevertheless,

notice that when α = 0, the input lists in the two runs do not differ
at all, so the relative cost of msort should be 0 trivially. To reflect
this intuition into RelCost, we add two typing rules. The first typing
rule (called split in Section 3) permits a case analysis on the index
domain, allowing us to type the cases α = 0 and α > 0 separately.
The second typing rule (called nochange in Section 3) allows us to
establish 0 relative cost whenever we relate an expression to itself
and all variables in the environment are in the diagonal relation, i.e.,
their types are labeled � . We apply this rule to the body of msort
in the case α = 0. In the subexpression starting let (z1, z2) = . . .,
there are four free variables: bsplit, msort, merge and l. The
first two variables, bsplit and merge, are closed functions, so
they cannot change across the two runs and, hence, their types can
be (trivially) pre-pended with � . msort is inductively annotated
with � (inductively typing recursive functions with a � annotation
requires a separate typing rule called r-fixNC in Section 3). Finally,
the input list l can be annotated with � because when α = 0, its
type list[n]α τ means that all list elements will be the same in the

Unary types A ::= unit | int | A1 × A2 | A1 + A2

| list[n]A | A1
exec(k,t)−−−−−→ A2

| ∀i
exec(k,t)

:: S.A | ∃i::S.A
| C & A

Relational types τ ::= unitr | intr | τ1 × τ2 | τ1 + τ2

| list[n]α τ | τ1
diff(t)−−−→ τ2

| ∀i
diff(t)

:: S. τ | ∃i::S. τ
| C & τ | U A | � τ

Sorts S ::= N | R

Index terms I, k, ::= i | 0 | ∞ | I + 1 | I1 + I2 |
t, α | I1 − I2 | I1I2 | I1 · I2 | dIe |

| bIc | log2(I) | II21 |
In∑
i=I1

I

| min(I1, I2) | max(I1, I2)

Constraints C ::= I1
.
= I2 | I1<I2 | ¬C

Constraint env. Φ ::= > | C ∧ Φ

Sort env. ∆ ::= ∅ | ∆, i :: S

Unary type env. Ω ::= ∅ | Ω, x : A

Rel. type env. Γ ::= ∅ | Γ, x : τ

Primitive env. Υ ::= ∅ | Υ, ζ : τ1
diff(t)−−−→ τ2 |

Υ, ζ : A1
exec(k,t)−−−−−→ A2

Figure 1. Syntax of types

two runs, so this is a subtype of � list[n]α τ . By the nochange rule,
we immediately derive that the entire subexpression has 0 relative
cost. This completes the proof of msort’s type.

Other examples The appendix contains three additional examples:
selection sort, an instance of approximate computation and loop
unswitching (an optimizing program transformation).

3. The RelCost Type System
In this section, we present the technical ideas behind RelCost. We
first describe RelCost’s type grammar and expression syntax, then
we present the underlying abstract cost semantics and explain the
typing and subtyping rules. The design of the type system reflects
the underlying semantic model, explained in Section 4.

Types RelCost’s type syntax is shown in Figure 1. We have
two kinds of types. Unary or non-relational types, denoted A, are
ascribed to single expressions, whereas relational types, denoted
τ , are ascribed to pairs of expressions. Both types contain familiar
type constructors with some refinements. The relational base types
intr and unitr are distinguished from their unary counterparts int
and unit syntactically; for the remaining type constructors such as
sums and products, we rely on the context to make this distinction
clear. Both relational and non-relational list types are indexed with
n, the exact length of the list. Relational list types list[n]α τ are
further refined with α, the maximum number of elements that differ
between the two lists.

Unary function types A1
exec(k,t)−−−−−→ A2 are refined with two

effects k and t, the best- and worst-case costs of the body of
the function, respectively, whereas the relational function types



τ1
diff(t)−−−→ τ2 are refined with a single effect t, an upper bound on

the relative cost of the bodies of the two functions. Additionally,
we could refine relational function types with best- and worst-case
costs of each of the related function bodies but this is not necessary
for any of our examples.

Universally quantified types are also refined with costs—similar
to function types—for the body of the closure. The relational type
C & τ reads “τ and the constraint C is true” (a similar comment
applies to the unary type C & A). Constraints, C, are predicates
over index terms as explained below. They are often useful for
restricting the set of values in the interpretation of a type, e.g., the
type n > 0 & list[n]A specifies non-empty lists.

Relational types are interpreted as sets of pairs of values whereas
unary types are interpreted–as usual–as sets of values (explained in
Section 4). Any unary type can be trivially made relational using
the full (weakest) relation U A (read “unrelated”), that contains
all pairs of values of type A. For instance, the type U int specifies
two arbitrary values of type int. In contrast, for base types like
integers, the relational type intr ascribes only those pairs of integers
where the two components are equal. The relational type τ1 + τ2
represents two values with the same tag: either both inl or both inr.
Pairs of values of a sum type with different tags can be typed at
U (A1 + A2).3

Finally, the stronger type � τ specifies two values of type τ
that are syntactically equal. This is best understood by looking at
sum types. For example, (intr + U int) contains pairs of tagged
values which have the same tag but whose content can differ if
the tag is inr. The stronger type � (intr + U int) forces both
values to be syntactically equal and is, in fact, semantically equal
to (intr + intr). The � annotation is used mainly in typing list
expressions, e.g., in typing related lists of type list[n]α τ , where at
most α elements of the two related lists are allowed to differ whereas
at least n−α elements are assumed to be identical, i.e., of type � τ .
Technically, � τ is a co-monadic type.

Indices Index terms I, k, t, α are a key ingredient of RelCost’s re-
lational cost analysis (shown in Figure 1). They serve two purposes:
(i) as refinements on the typing judgments and function types, they
specify relative or best- and worst-case costs and (ii) as refinements
on the list types, they specify the lengths of lists and the maximum
number of differences. We consider index terms to be sorted. Index
terms over list types are always interpreted over the domain N of
natural numbers, whereas the cost terms are interpreted over the
domain R of real numbers. Most operations over index terms are
overloaded for the sorts N and R and there is a natural subsorting
from N to R. The index term∞ is often used to mean that there is
no guaranteed bound on the (relative) cost. The sorting judgment
∆; Φ ` I :: S assigns sort S to the index term I; its rules are shown
in the appendix.

Expressions and values The syntax of expressions and values is
shown in Figure 2. It includes the standard introduction and elim-
ination forms for RelCost’s types. Integer constants are written n.
Recursive functions are written fix f(x).e. This is also written λx.e
when f doesn’t occur in e. Primitive functions and their application
are denoted ζ and ζ e, respectively. Index variable quantification
and instantiation are denoted Λ. e and e[ ] , respectively. To simplify
programs that case analyze lists, index terms do not appear in ex-
pressions. The elimination form for the constrained type C & τ is
written (clet x as e1 in e2).

Constraints Constraints C represent predicates over index terms.
They may appear in (a) constrained types like C & τ , (b) assump-
tions Φ in typing judgments (explained below), and (c) constraint

3 In the appendix, we generalize U · to the form U (A1, A2) that relates
pairs of arbitrary values of different types A1 and A2.

Expr. e ::= x | n | fix f(x).e | e1 e2 | ζ e | 〈e1, e2〉
| π1(e) | π2(e) | inl e | inr e
| case (e, x.e1, y.e2) | nil | cons(e1, e2)
| ( case e of nil → e1 | h :: tl→ e2)
| Λ. e | e[ ] | pack e | unpack e1 as x in e2
| let x = e1 in e2 | () | clet e1 as x in e2

Values v ::= n | fix f(x).v | 〈v1, v2〉 | inl v | inr | nil
| cons(v1, v2) | Λ. e | pack v | ()

Figure 2. Syntax of terms and values

e ⇓c v Expression e evaluates to value v with cost c

n ⇓0 n
const

e ⇓c v
inl e ⇓c inl v

inl

e ⇓c inl v e1[v/x] ⇓cr vr
case (e, x.e1, y.e2) ⇓c+cr+ccase vr

case-inl

fix f(x).e ⇓0 fix f(x).e
fix

e1 ⇓c1 v1 e2 ⇓c2 v2
cons(e1, e2) ⇓c1+c2 cons(v1, v2)

cons

e1 ⇓c1 fix f(x).e
e2 ⇓c2 v2 e[v2/x, (fix f(x).e)/f ] ⇓cr vr

e1 e2 ⇓c1+c2+cr+capp vr
app

Figure 3. Selected evaluation rules

entailment in subtyping, denoted ∆; Φ |= C, and read “for any
substitution for the index variables in ∆, the constraint assumptions
Φ entail the constraint C”. We do not stipulate syntactic rules for
constraint entailment, but they are assumed to embody the standard
laws of arithmetic.

3.1 Abstract Cost Model
We consider a big-step call-by-value semantics for RelCost. The
evaluation judgment e ⇓c v states that expression e evaluates
to value v with evaluation cost c. The rules are standard and
we only show a few representative cases in Figure 3. The total
evaluation cost of an expression is the sum of the costs of its
subexpressions, plus a distinct symbolic cost for the following
elimination constructs: projections, pattern matches on lists and sum
types, function applications and let-bindings. All other reduction
rules, including the ones for values, are assigned zero additional
cost. We use metavariables like capp to denote such construct-
dependent elimination costs. The advantage of this cost metric is
that it is easy to understand and it captures asymptotic costs for
recursive functions. Our analysis is sound for any values of these
cost metavariables as long as they are all natural numbers and the
cost of application (capp) is at least 1.4 Our effect system could be
extended to more fine-grained metrics, if needed. Alternatively, it
can be easily simplified to more coarse-grained metrics by setting
the values of these meta-variables to zero, as in some examples of
Section 2.

4 This requirement is due to the step-indexing used in our semantic model.



3.2 Typing Judgments
RelCost’s type system contains two typing judgments. The judgment

∆; Φ; Ω `tk e : A

states that execution cost of e is lower bounded by k and upper
bounded by t, and the expression e has the unary type A. The
judgment

∆; Φ; Γ ` e1 	 e2 . t : τ

states that the relative cost of e1 with respect to e2 is upper bounded
by t and the two expressions have the relational type τ . We refer to
e1 as the left and e2 as the right expression. These typing judgments
use two kinds of type environments: Ω is a type environment for the
unary typing judgments, and Γ is a type environment for relational
typing judgments. Beside these, both typing judgments have two
other environments: ∆ for index variables and Φ for assumed
constraints. There is also an additional global environment with
types for primitive functions, but this environment remains the same
across the rules, so we don’t write it explicitly. In the presentation
of the typing rules, we omit premises concerning wellformedness of
types, which clutter the presentation and do not provide any insights.
Complete rules appear in the appendix.

Lower bounds on the relative cost RelCost’s relational typing
judgment can be extended to ∆; Φ; Γ ` k . e1 	 e2 . t : τ , track-
ing a lower bound k and an upper bound t on the relative cost
simultaneously. In addition, function types can be modified to inter-

nalize the lower bounds on the relative cost, as in τ1
diff(k,t)−−−−−→ τ2.

However, doing so is redundant since the following swap rule is
admissible.

∆; Φ; Γ ` k . e1 	 e2 . t : τ

∆; Φ; d(Γ) ` −t . e2 	 e1 . −k : d(τ)
swap

In essence, the rule states that if we can show that the relative cost of
e1 and e2 is lower bounded by k and upper bounded by t, then we
can also show that the relative cost of e2 and e1 is lower bounded
by −t and upper bounded by −k. Semantically, this rule follows
trivially from the fact that k ≤ c1− c2 ≤ t iff−t ≤ c2− c1 ≤ −k.
Note that in the conclusion of the swap rule, the result type and the
environment are also dualized using the type level operation d(.).

For instance, d(τ1
diff(k,t)−−−−−→ τ2) = d(τ1)

diff(−k,−t)−−−−−−−→ d(τ2).
Since this rule is admissible, adding the lower bound to the

relational judgment is redundant: Whenever we are interested in a
lower bound on e1 	 e2, we can instead derive an upper bound on
e2 	 e1 and flip the sign of the bound. Hence, we do not consider
the extended relational judgment with the lower bound any further.

Typing principles and design choices Before we explain the
details of RelCost’s type system, we review the general design
principles behind the unary and relational typing rules.

• The total cost of an expression is obtained by summing the costs
of its subexpressions. Moreover, for the unary typing, elimi-
nation constructs mentioned in Section 3.1 incur an additional
cost. For relational typing, since we track the difference in the
execution costs, these costs cancel out in all the rules that relate
two structurally similar programs. For programs with different
structure, e.g., relating an arbitrary expression to an application,
the cost of the extra elimination is subtracted or added depending
on the side on which it occurs.
• In all the synchronous typing rules that relate two structurally

similar expressions, we only allow eliminating truly related ex-
pressions that are not of typeU A. For instance, case-elimination
on unrelated sum types cannot be typed relationally. All such
cases are handled uniformly: If the eliminated expressions are

Ω(x) = A

∆; Φ; Ω `00 x : A
var

∆; Φ; Ω `00 n : int
const

∆; Φ; Ω `00 nil : list[0]A
nil

∆; Φ; Ω `t1k1 e1 : A ∆; Φ; Ω `t2k2 e2 : list[n]A

∆; Φ; Ω `t1+t2k1+k2
cons(e1, e2) : list[n+ 1]A

cons

∆; Φ;x : A1, f : A1
exec(k,t)−−−−−→ A2,Ω `tk e : A2

∆; Φ; Ω `00 fix f(x).e : A1
exec(k,t)−−−−−→ A2

fix

∆; Φ; Ω `t1k1 e1 : A1
exec(k,t)−−−−−→ A2 ∆; Φ; Ω `t2k2 e2 : A1

∆; Φ; Ω `t1+t2+t+capp

k1+k2+k+capp
e1 e2 : A2

app

∆; Φ; Ω `tk e : A1

∆; Φ; Ω `tk inl e : A1 +A2

inl

∆; Φ; Ω `tk e : A1 +A2

∆; Φ;x : A1,Ω `t
′

k′ e1 : A ∆; Φ; y : A2,Ω `t
′

k′ e2 : A

∆; Φ; Ω `t+t
′+ccase

k+k′+ccase
case (e, x.e1, y.e2) : A

case

∆; Φ; Ω `tk e : A

∆; Φ |=A A v A′ ∆; Φ |= k′ ≤ k ∆; Φ |= t ≤ t′

∆; Φ; Ω `t
′

k′ e : A′
vvv exec

Figure 4. Selected unary typing rules

unrelated, i.e., of type U A, we immediately switch to non-
relational typing for the whole expression. Another possibility
would be to duplicate all typing rules for elimination forms that
have unrelated types so that continuations would switch to non-
relational reasoning. This approach is taken in refinement type
systems such as FlowCaml [40] or DuCostIt [18] but we believe
our approach is cleaner (it results in fewer typing rules as well).
• Our index refinements are a form of lightweight dependent types

that enable static reasoning about runtime properties of a pro-
gram. In RelCost, we choose to keep the complexity of depen-
dencies limited in comparison to full dependent types. Richer
dependencies, such as allowing index terms to be different in two
related expressions, would increase the number of programs that
can be relationally analyzed. However, this would also make the
metatheory more difficult. We discuss this further in Section 5.

Important typing rules for the unary and relational typing judg-
ments are shown in Figures 4, 5 and 6. Below, we explain selected
rules for the two judgments separately.

3.3 Unary Typing
The unary typing rules treat lower and upper bounds similarly. We
assume that values evaluate with zero cost. So, variables (rule
var), as well as all introduction forms including functions and
index abstractions incur zero cost. For functions, the minimum
and maximum costs of the body, denoted k and t respectively, are

internalized into the typeA1
exec(k,t)−−−−−→ A2 (rule fix). In the rule app,

these internalized costs k and t are added to the total minimum and
maximum execution costs of the application. The rulevvv exec allows
weakening of the result type as well as the costs: An expression with
minimum execution cost k and maximum execution cost t can be
typed with a lower cost k′ ≤ k and a higher cost t′ ≥ t. As usual,



weakening is needed when typing a case construct whose branches
have different static costs.

3.4 Relational Typing
Relational typing establishes the relative cost of a pair of expressions
and gives the pair a relational type. Relational typing rules can be
divided into two categories: (a) synchronous rules that relate two
structurally similar expressions and (b) asynchronous rules that
relate two expressions with different structures but possibly similar
subcomputations.

Synchronous rules We first explain some of the relational syn-
chronous rules shown in Figure 5. All synchronous rules relate two
structurally similar expressions, e.g., a pair of cons constructs or a
pair of functions. If the two expressions contain subexpressions, the
corresponding subexpressions are related component-wise. The rule
r-var relates a variable to itself with zero relative cost. Similarly,
all other axioms like r-const and r-nil relate an expression to itself.
The rules r-cons1 and r-cons2 type non-empty lists of size n+ 1. If
the tails have the relational type list[n]α τ , then the two cons’ed lists
can be typed at either list[n+ 1]α+1 τ or list[n+ 1]α τ depending
on whether the heads may differ or not. The corresponding elimi-
nation rule caseL has four premises. The first premise establishes
the type list[n]α τ for the pair of lists being eliminated. The second
premise types the nil branches, which are taken only when the two
lists are empty and, hence, the constraint assumption n = 0 is added
in this premise. If the lists are not empty, then there are two cases
corresponding to the two cons rules. In the first case, the heads of
the lists are the same and the tails differ in at most α elements (third
premise). In this case, we assume that the heads have type � τ . In
the second case, the heads of the lists may differ (they have type τ ,
without a � ) and the tails differ in at most α− 1 elements (fourth
premise). The value α− 1 is represented by a fresh variable β that
satisfies the constraint α = β + 1.

Like all other values, recursive functions are relationally typed
with zero cost. The relative cost t of the two related bodies is
internalized into the function type τ1

diff(t)−−−→ τ2 (rule r-fix). In
the rule r-app, this internalized cost is added to the total cost of the
application. The rule r-inl introduces a sum type with tag inl on both
expressions (the rule for tag inr is similar, hence omitted). The case
rule eliminates a sum type and assumes synchronous execution: The
same branch must be taken in the left and right expressions. This is
ensured by the interpretation of the type τ1 + τ2 that only contains
pairs of values with the same tag. If the case analyzed values have
different tags, i.e., they are related at type U (A1 + A2), then the
analysis must switch to unary reasoning via the switch rule that is
explained below.

The rule nochange relates an expression to itself at the (diagonal)
type � τ and assigns a relative cost of 0, if the expression depends
only on variables that are also labeled � . The latter condition
ensures that at runtime, the two expressions being compared are
syntactically equal. Statically, the rule applies when for all variables
x ∈ Γ, the assumed type of x, i.e. Γ(x), is a subtype of the same
type annotated with � , i.e. of �Γ(x). In addition, the rule r-fixNC
allows inductively typing a recursive function with � annotation.
In typing the function’s body, the function itself is assumed to be
�-annotated. This rule cannot be derived using the rules nochange
and r-fix.

Asynchronous rules In addition to the synchronous rules that
require the two related expressions to have the same structure,
we have several asynchronous rules, some of which are shown
in Figure 6. Our appendix shows an example of an optimizing
program transformation–loop unswitching–that heavily relies on
these asynchronous rules.

The most generic asynchronous rule is the switch rule that al-
lows two arbitrary expressions of type A to be related at the weakest
relation with type U A. It switches from relational reasoning on
two expressions to unary reasoning that types the two expressions
independently in an erased environment |Γ|, and takes a difference
of the left expression’s maximum cost and the right expression’s
minimum cost. The type erasure operation |.| is a function from
relational types to unary types that forgets the relational refine-
ments: |list[n]α τ | = list[n] |τ | and |U A| = A. For function types

τ1
diff(t)−−−→ τ2, erasure constructs the weakest non-relational type

|τ1|
exec(0,∞)−−−−−−→ |τ2|, providing no meaningful guarantees on mini-

mum and maximum cost. The definition of |.| extends pointwise to
relational environments: |Γ, x : τ | = |Γ|, x : |τ |.

The remaining asynchronous rules apply when the left expression
is related to a subexpression of the right expression, or vice-versa.
Every asynchronous rule has a corresponding inverse/symmetric
rule. For instance, the rule r-let-e relates let x = e1 in e2 to an
arbitrary expression e by relating e2 to e. The symmetric rule r-e-
let dually relates e to let x = e1 in e2. We explain only the rule
r-let-e here. In the first premise, we type the subexpression e1 non-
relationally with maximum execution cost t1. In the second premise,
we relate the left subexpression e2 to the right expression e with
relative cost t2 under the assumption that the variable x is unrelated
in the two runs (x : U A). Since x occurs only in e2, this is sound.
The total relative cost is the sum of the costs t1 and t2, plus an
additional cost clet for the extra let elimination performed on the
left side. In the rule r-e-case, we relate an arbitrary expression e to a
case construct. In the first premise, we type the guard e′ of the case
construct non-relationally with minimum cost k′. In the second and
third premises, we relate the left expression e to the branches with
relative cost t. The total cost is the difference of the relative costs t
and k′, minus the cost of the case elimination, since it is performed
only on the right side. The rule r-app-e relates e1 e2 to an arbitrary
expression e by non-relationally typing e1 at a unary function type

A
exec(k,t)−−−−−→ A with maximum cost t1, and relationally typing the

argument e2 with e with relative cost t2. The relative cost of e1 e2
with respect to e is the total cost of evaluating e1 to a function,
the cost of evaluating the function’s body, the relative cost of the
argument with respect to e and the cost of a function application.
These four cost components are t1, t, t2 and capp, respectively. (The
restriction in r-app-e that the function’s argument and result have
the same type is eliminated in the appendix.)

3.5 Subtyping
Subtyping is essential for both unary and relational typing. There
are two subtyping judgments: ∆; Φ |=A A1 v A2 for unary types
and ∆; Φ |= τ1 v τ2 for relational types. Subtyping is constraint-
dependent and the judgments state that A1 (τ1) is a subtype of A2

(τ2) under the index environment ∆ and assumptions Φ. In terms of
subsumption, subtyping means that related values of type τ1 may be
used where related values of type τ2 are expected (similarly for unary
types). Figure 7 shows selected subtyping rules. The rule U allows
lifting subtyping from unary types to relational types at the weakest
relation U . The rule W allows weakening the type τ to U |τ |. The
rules→ exec and→ diff are subtyping rules for unary and relational
function types. Beyond the usual contravariance for arguments and
covariance for results, upper bounds on costs are covariant whereas
lower bounds are contavariant. We have two additional subtyping
rules for function types. The rule→ execdiff allows converting two
unrelated functions—with minimum and maximum execution costs
k and t, respectively—to related functions with execution cost t−k,
but with unrelated arguments and results. The rule→ �diff captures
the idea that syntactically equal functions, when applied to equal
arguments, produce equal results and have relative cost 0.



Γ(x) = τ

∆; Φ; Γ ` x	 x . 0 : τ
r-var

∆; Φ; Γ ` n	 n . 0 : intr
r-const

∆; Φ ` τ wf
∆; Φ; Γ ` nil 	 nil . 0 : list[0]α τ

r-nil

∆; Φ; Γ ` e1 	 e′1 . t1 : τ ∆; Φ; Γ ` e2 	 e′2 . t2 : list[n]α τ

∆; Φ; Γ ` cons(e1, e2)	 cons(e′1, e
′
2) . t1 + t2 : list[n+ 1]α+1 τ

r-cons1

∆; Φ; Γ ` e1 	 e′1 . t1 : � τ ∆; Φ; Γ ` e2 	 e′2 . t2 : list[n]α τ

∆; Φ; Γ ` cons(e1, e2)	 cons(e′1, e
′
2) . t1 + t2 : list[n+ 1]α τ

r-cons2

∆; Φ; Γ ` e	 e′ . t : list[n]α τ
∆; Φ ∧ n = 0; Γ ` e1 	 e′1 . t′ : τ ′ i,∆; Φ ∧ n = i+ 1;h : � τ, tl : list[i]α τ,Γ ` e2 	 e′2 . t′ : τ ′

i, β,∆; Φ ∧ n = i+ 1 ∧ α = β + 1;h : τ, tl : list[i]β τ,Γ ` e2 	 e′2 . t′ : τ ′

∆; Φ; Γ ` case e of nil → e1 | h :: tl→ e2 	 case e′ of nil → e′1 | h :: tl→ e′2 . t+ t′ : τ ′
r-caseL

∆; Φ;x : τ1, f : τ1
diff(t)−−−→ τ2,Γ ` e1 	 e2 . t : τ2

∆; Φ; Γ ` fix f(x).e1 	 fix f(x).e2 . 0 : τ1
diff(t)−−−→ τ2

r-fix

∆; Φ; Γ ` e1 	 e′1 . t1 : τ1
diff(t)−−−→ τ2

∆; Φ; Γ ` e2 	 e′2 . t2 : τ1

∆; Φ; Γ ` e1 e2 	 e′1 e′2 . t1 + t2 + t : τ2
r-app

i :: S,∆; Φ; Γ ` e	 e′ . t : τ i 6∈ FIV(Φ; Γ)

∆; Φ; Γ ` Λ. e	 Λ. e′ . 0 : ∀i
diff(t)

:: S. τ
r-iLam

∆; Φ; Γ ` e	 e′ . t : ∀i
diff(t′)

:: S. τ ∆ ` I : S

∆; Φ; Γ ` e[ ] 	 e′[ ] . t+ t′[I/i] : τ{I/i}
r-iApp

∆; Φ; Γ ` e	 e′ . t : τ1

∆; Φ; Γ ` inl e	 inl e′ . t : τ1 + τ2
r-inl

∆; Φ; Γ ` e	 e′ . t : τ1 + τ2 ∆; Φ;x : τ1,Γ ` e1 	 e′1 . t′ : τ ∆; Φ; y : τ2,Γ ` e2 	 e′2 . t′ : τ

∆; Φ; Γ ` case (e, x.e1, y.e2)	 case (e′, x.e′1, y.e
′
2) . t+ t′ : τ

r-case

∆; Φ; Γ ` e	 e . t : τ
∀x ∈ dom(Γ). ∆; Φ |= Γ(x) v �Γ(x)

∆; Φ; Γ,Γ′ ` e	 e . 0 : � τ
nochange

∆; Φ ∧ C; Γ ` e1 	 e2 . t : τ ∆; Φ ∧ ¬C; Γ ` e1 	 e2 . t : τ

∆; Φ; Γ ` e1 	 e2 . t : τ
r-split

∆; Φ;x : τ1, f : � (τ1
diff(t)−−−→ τ2),Γ ` e	 e . t : τ2 ∀x ∈ dom(Γ). ∆; Φ |= Γ(x) v �Γ(x)

∆; Φ; Γ ` fix f(x).e	 fix f(x).e . 0 : � (τ1
diff(t)−−−→ τ2)

r-fixNC

Figure 5. Selected synchronous typing rules

|Γ| `t1 e1 : A
|Γ| `k2 e2 : A

Γ ` e1 	 e2 . t1 − k2 : U A
switch

∆; Φ; |Γ| `t1k1 e1 : A1 ∆; Φ;x : U A1,Γ ` e2 	 e . t2 : τ2

∆; Φ; Γ ` let x = e1 in e2 	 e . t1 + t2 + clet : τ2
r-let-e

∆; Φ; |Γ| `t1k1 e1 : A1 ∆; Φ;x : U A1,Γ ` e	 e2 . t2 : τ2

∆; Φ; Γ ` e	 let x = e1 in e2 . t2 − k1 − clet : τ2
r-e-let

∆; Φ; |Γ| `k′ e
′ : A1 +A2

∆; Φ;x : U A1,Γ ` e	 e′1 . t : τ
∆; Φ; y : U A2,Γ ` e	 e′2 . t : τ

∆; Φ; Γ ` e	 case (e′, x.e′1, y.e
′
2) . t− k′ − ccase : τ

r-e-case

∆; Φ; |Γ| `t1k1 e1 : A
exec(k,t)−−−−−−→ A

∆; Φ; Γ ` e2 	 e . t2 : U A

∆; Φ; Γ ` e1 e2 	 e . t1 + t+ t2 + capp : U A
r-app-e

Figure 6. Selected asynchronous typing rules

The rule l1 allows the number of elements that differ in a list to
be weakened covariantly. The rule l2 allows two related lists with
zero differences to be retyped as two related lists whose elements are
in the diagonal relation. The rule l � allows two related lists whose
elements are equal to be retyped as two equal lists, represented by
the outer �. We note that the type � τ follows the standard co-

monadic rules: � τ v τ , � (τ1
diff(t)−−−→ τ2) v � τ1

diff(0)−−−−→ � τ2
and � (τ1 × τ2) v � τ1 × � τ2 (the rule for the last subtyping is
not shown here).

4. Metatheory and Soundness
RelCost’s type system has several standard structural properties
like weakening and strengthening of environments. We elide these
properties here. Instead, in this section, we present a logical relations
model for our type and effect system and use it to prove RelCost
sound relative to the abstract cost semantics presented in Section 3.1.

Concretely, we build two cost-annotated models of types: a non-
relational (unary) one for unary types and unary execution and a
relational (binary) one for relational types and relational execution.
Both models are step-indexed to handle recursive functions [1, 4].
The binary model depends on the unary one and a key novelty is
how unary and relational step indices interact. Below, we explain
the models in detail.



∆; Φ |= τ1 v τ2 τ1 is a subtype of τ2

∆; Φ |=A A1 v A2 A1 is a subtype of A2

∆; Φ |=A A1 v A2

∆; Φ |= U A1 v U A2
U

∆; Φ |= τ v U |τ | W

∆; Φ |=A A′1 v A1

∆; Φ |=A A2 v A′2 ∆; Φ |= k′ ≤ k ∆; Φ |= t ≤ t′

∆; Φ |=A A1
exec(k,t)−−−−−→ A2 v A′1

exec(k′,t′)−−−−−−→ A′2

→ exec

∆; Φ |= τ ′1 v τ1 ∆; Φ |= τ2 v τ ′2 ∆; Φ |= t ≤ t′

∆; Φ |= τ1
diff(t)−−−→ τ2 v τ ′1

diff(t′)−−−−→ τ ′2

→ diff

∆; Φ |= U (A1
exec(k,t)−−−−−→ A2) v U A1

diff(t−k)−−−−−→ U A2

→ execdiff

∆; Φ |= � (τ1
diff(t)−−−→ τ2) v � τ1

diff(0)−−−−→ � τ2
→ �diff

∆; Φ |= n
.
= n′ ∆; Φ |= α≤α′ ∆; Φ |= τ v τ ′

∆; Φ |= list[n]α τ v list[n′]α
′
τ ′

l1

∆; Φ |= α
.
= 0

∆; Φ |= list[n]α τ v list[n]α� τ
l2

∆; Φ |= list[n]α� τ v � (list[n]α τ)
l�

∆; Φ |= intr v � intr
int-�

∆; Φ |= � τ v τ T

Figure 7. Selected subtyping rules

4.1 Unary Interpretation of Types
The value interpretation JAKv of unary typesA is inductively defined
in Figure 8. For each A, JAKv is a set, containing pairs (m, v) of
step indices and values. The interpretation is fairly standard, modulo
the cost annotations. The expression interpretation JAKk,tε is shown
below and contains pairs (m, e) of step indices and expressions.

JAKk,tε =

(m, e)

∣∣∣∣∣∣∣∣∣∣
t < m =⇒

e ⇓c v ∧c ≤ t ∧
(m− c, v) ∈ JAKv

 ∧(
e ⇓c v ∧
c < m

)
=⇒

(
k ≤ c ∧
(m− c, v) ∈ JAKv

)


The interpretation of JAKk,tε has two clauses, one for the sound-
ness of the cost upper-bound t and the other for the soundness of the
lower bound k. The first clause states that if t < m, then e evaluates
to a value with cost c that is no more than t and the resulting value
is in the value interpretation of A at step-index m− c. This clause
implies finite normalization for all expressions that can be typed
with a finite upper cost bound in the type system. The second clause
states that if e evaluates to a value with cost c < m, then k is a lower
bound on c and the resulting value is in the value interpretation with
step-index m− c. The two clauses are dissimilar only because we
want our logical relation to establish expression normalization when

JintKv = {(m, n)}
JA1 × A2Kv = {(m, 〈v1, v2〉) | (m, v1) ∈ JA1Kv ∧

(m, v2) ∈ JA2Kv}
JA1 +A2Kv = {(m, inl v) | (m, v) ∈ JA1Kv} ∪

{(m, inr v) | (m, v) ∈ JA2Kv}
Jlist[0]AKv = {(m, nil )}
Jlist[n+ 1]AKv = {(m, cons(e1, e2)) | (m, e1) ∈ JAKv ∧

(m, e2) ∈ Jlist[n]AKv}
JA1

exec(k,t)−−−−−→A2Kv ={(m,fixf(x).e) | ∀j <m.∀v.(j, v)∈JA1Kv
=⇒ (j, e[v/x, fix f(x).e]) ∈ JA2Kk,tε }

J∀i
exec(k,t)

:: S.AKv = {(m,Λ. e) | ∀I. ` I :: S.

(m, e) ∈ JA{I/i}Kk[I/i],t[I/i]ε }

Figure 8. Unary interpretation of selected types

t is finite. However, this is not essential: We can drop normalization
and write the first clause like the second one.5

As usual, we interpret open expressions under some semantic
environment interpretation δ. We write (m, δ) ∈ GJΩK to mean
that δ maps all variables in the domain of the environment Ω to
appropriately-typed semantic value relations for m steps.

GJ·K = {(m, ∅)}
GJΩ, x : AK = {(m, δ[x 7→ v]) | (m, δ) ∈ GJΩK ∧ (m, v) ∈ JAKv}

We write σ ∈ DJ∆K to mean that σ is a valid (well-sorted)
substitution for the index environment ∆.

We prove the following fundamental theorem for unary typing.
Roughly, the theorem says that the expression e if typed in RelCost
at unary type A, lies in the unary expression interpretation of A for
any value substitution that respects the environment’s types.

Theorem 1 (Fundamental Theorem for Unary Typing)
Assume that ∆; Φ; Ω `tk e : A and σ ∈ DJ∆K and |= σΦ and there
exists Ω′ s.t. FV(e) ⊆ dom(Ω′), Ω′ ⊆ Ω and (m, γ) ∈ GJσΩ′K.
Then, (m, γe) ∈ JσAKσk,σtε .

4.2 Relational Interpretation of Types
The value interpretation LτMv of a relational type τ is defined
in Figure 9. The binary interpretation is a set, containing triples
(m, v1, v2) consisting of a step index m and two related values
v1 and v2. We briefly comment on some salient points about
LτMv . The interpretation of � τ forces the two related values to
be identical. The interpretation of U A contains unrelated pairs of
values (v1, v2) in which the individual values v1 and v2 are in the
unary interpretation JAKv at any step index j, i.e., (j, v1) ∈ JAKv
and (j, v2) ∈ JAKv for any j. Essentially, this means that when we
switch from relational to unary reasoning, we can call out to any
unary step index j. This works because the unary relation does not
refer to the binary relation.

The interpretation of τ1
diff(t)−−−→ τ2 relates a pair of functions that,

given related arguments at j < m steps, return related computations
(in the expression relation LτMtε discussed below) at step-index j.
In addition, the two functions are in the unary interpretation of

5 In both this unary interpretation of expressions, as well as the binary one
described later, step indices m interact with costs like t in formulas like
t < m. This may seem strange. However, this interaction is merely due to
the fact that, here, our costs count reduction steps. If we were to build a
similar model for a different resource, then this interaction would not occur.



L� τMv = {(m, v, v) | (m, v, v) ∈ LτMv}
LU AMv = {(m, v1, v2) | ∀j. (j, v1) ∈ JAKv ∧ (j, v2) ∈ JAKv}
LintrMv = {(m, n, n)}
Lτ1 × τ2Mv = {(m, 〈v1, v2〉, 〈v′1, v′2〉) | (m, v1, v′1) ∈ Lτ1Mv ∧ (m, v2, v

′
2) ∈ Lτ2Mv}

Lτ1 + τ2Mv = {(m, inl v, inl v′) | (m, v, v′) ∈ Lτ1Mv} ∪ {(m, inr v, inr v′) | (m, v, v′) ∈ Lτ2Mv}
Llist[0]α τMv = {(m, nil , nil )}
Llist[n+1]α τMv = {(m, cons(e1, e2), cons(e′1, e′2)) | ((m, e1, e′1) ∈ L� τMv ∧ (m, e2, e

′
2) ∈ Llist[n]α τMv) ∨

((m, e1, e
′
1) ∈ LτMv ∧ (m, e2, e

′
2) ∈ Llist[n]α−1 τMv ∧ α > 0)}

Lτ1
diff(t)−−−→ τ2Mv = {(m, fix f(x).e1, fix f(x).e2) |

(∀j < m. ∀v1, v2. (j, v1, v2) ∈ Lτ1Mv =⇒ (j, e1[v1/x, fix f(x).e1/f ], e2[v2/x, fix f(x).e2/f ]) ∈ Lτ2Mtε) ∧
(∀j. (j, fix f(x).e1) ∈ J|τ1|

exec(0,∞)−−−−−−→ |τ2|Kv ∧ (j, fix f(x).e2) ∈ J|τ1|
exec(0,∞)−−−−−−→ |τ2|Kv)}

Figure 9. Relational interpretation of selected types

|τ1|
exec(0,∞)−−−−−−→ |τ2| for any step-index j. The latter allows any pair

of related functions to be used in a unary context with the weakest
cost bounds, 0 and∞. In essence, we can semantically show that
the relational judgment ∆; Φ; Γ ` e1 	 e2 . t : τ entails the unary
judgment ∆; Φ; |Γ| `∞0 ei : |τ | for i ∈ {1, 2}.

In the relational interpretation of list types, the sizes and number
of differences of lists are taken into account, encoding the rationale
behind the typing rules r-cons1 and r-cons2.

The expression interpretation LτMtε defines when two expressions
are logically related.

LτMtε =

(m, e1, e2)

∣∣∣∣∣∣
(e1 ⇓c1 v1 ∧ e2 ⇓c2 v2 ∧ c1 < m)

=⇒
(
c1 − c2 ≤ t ∧
(m− c1, v1, v2) ∈ LτMv

) 
The definition states that if e1 and e2 evaluate to values in c1

and c2 steps, respectively, and c1 < m, then t is an upper bound
on the relative cost of e1 with respect to e2, i.e., c1 − c2 ≤ t and
the resulting values are related at step-index m− c1. The relational
step-index counts steps of the left expression but it could be set up
to count steps of the right expression or both.

We interpret pairs of open expressions under a related pair of
substitutions, (δ1, δ2). We write (m, δ1, δ2) ∈ GLΓM to mean that
δ1 and δ2 map all the variables in the domain of the environment Γ
to appropriately-typed semantic relational values for m steps.

GL·M ={(m, ∅, ∅)}
GLΓ, x : τM ={(m, δ[x 7→ v1], δ[x 7→ v2]) | (m, δ1, δ2) ∈ GLΓM

∧ (m, v1, v2) ∈ LτMv}
We prove the following fundamental theorem for our relational

typing judgment. An immediate corollary of the theorem is that
relative costs established in the type system are upper bounds on
execution cost differences.

Theorem 2 (Fundamental Theorem for Relational Typing)
Assume that ∆; Φ; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ
and (m, δ1, δ2) ∈ GLσΓM. Then, (m, δ1e1, δ2e2) ∈ LστMσtε .

Finally, we prove that, semantically, relational typing is a re-
finement of unary typing with the weakest bounds–0 and ∞–on
minimum and maximum costs, respectively. The erasure operation
|.| (explained in Section 3.4) forgets the relational refinements, and
returns a unary (non-relational) type.

Theorem 3 (Fundamental Theorem for Weak Rel. Typing)
Assume that ∆; Φ; Γ ` e1 	 e2 . t : τ and σ ∈ DJ∆K and |= σΦ.
Then for i ∈ {1, 2}, if there exists Γ′i s.t. FV(ei) ⊆ dom(Γ′i),
Γ′i ⊆ Γ and (m, γ) ∈ GJ|σΓ′i|K, then (m, γei) ∈ J|στ |K0,∞ε .

5. Discussion and Future Work
Embedding functional equivalences We designed RelCost to
reason about the execution cost differences of programs relationally.
Although our relational analysis is powerful enough to analyze a
rich set of examples from a variety of domains, there are programs
whose analysis requires more involved reasoning such as the ability
to benefit from functional equivalences or the ability to relationally
reason about index terms. As an example, consider the sieve of
Eratosthenes, a standard algorithm for finding all prime numbers up
to a given integer n. There are several variations of this algorithm,
but the main idea is to start with a list of all natural numbers that are
less than or equal to n and then repeatedly drop all the composites
until all the remaining numbers are the primes. Below, we only show
the top level function erat that takes as input the list l containing
the values [2, 3, . . . , n]. The function drop drops all multiples of its
numerical first argument from its second argument, which is a list
of natural numbers.

fix erat(drop).λl.case l of
nil → nil
| h :: tl → cons(h, erat drop (drop h tl))

Suppose that drop is implemented in two functionally equivalent
ways but the execution costs of these two versions are different. To
establish a precise bound on the relative cost of erat with respect
to these two implementations of drop, we would need to show that
two versions of drop are functionally equivalent. Such reasoning
is not possible in RelCost. This is not an inherent limitation, but
a design choice we made to simplify the type system. We believe
our analysis can be extended to more fine-grained relations, by
building on previous work on relational refinement types [7, 8],
which can be used for capturing the necessary invariants. However,
the more involved the relational invariants, the more difficult it is
for non-experts to use our analysis and perhaps to automate the
type-checking. In this work, we have chosen a lightweight form of
relational reasoning that still yields a powerful analysis.

Possible extensions In RelCost’s relational typing, size and cost
refinements are assumed to be identical for the two related programs.
For the examples we have considered, such an assumption is
sufficient but allowing relational reasoning on index terms could
enable more fine-grained analysis. Another possible extension in
this direction is to allow tracking insertions and deletions in lists.

Size refinements are data structure-specific. We are planning to
investigate a more generic framework in which the programmer can
specify a particular size metric along with each algebraic data type.
For instance, our appendix considers trees to be refined with the



number of nodes but there could be cases where the depth of a tree
is a useful size metric. In the non-relational setting, existing work
by Danner et al. considers such generalizations [22]. In RelCost’s
semantic model, we have anticipated generalization to recursive
types—our step-indexed logical relations are capable of modeling
recursive types—but we have not yet worked out the generalization
to user-defined size or difference metrics.

Our relational cost model can also be adapted to different kinds
of resources. For instance, our model can be modified to track the
span or work of parallel programs. Alternatively, the resource model
can be adapted to track resources other than execution time such as
space or energy usage. We believe that adding state would also be
useful in this regard.

Implementation We are currently implementing an algorithmic
version of RelCost’s type system. The implementation uses bidi-
rectional type-checking á la DML in combination with constraint
solving through an SMT solver. During the first phase of type-
checking, we generate a set of constraints that would have to be
satisfied for the program to be typed. Constraints are passed to an
external SMT solver capable of handling integers and real numbers.

6. Related work
Our work represents a convergence of two main bodies of research:
execution cost/complexity analysis and relational analysis. We first
discuss related work in these two areas and then elaborate on recent
work on cost analysis for incremental computation from which we
borrow some technical ideas.

Static execution cost analysis There are many static techniques
for analyzing the execution cost/complexity of programs ranging
from semantic interpretation [10, 26] to type-based techniques such
as linear dependent types [20, 21], amortized resource analysis [29],
type and effect systems [36, 42], etc. In theory, one can simply
combine best- and worst-case execution cost analysis from one of
these techniques to reason about the relative costs of two programs.
However, such combinations forget the relations between programs
and inputs, leading to imprecision. RelCost distinguishes itself from
prior work in its relational reasoning principles which provide the
ability to establish precise bounds on relative cost by making use of
similarities between inputs and programs. To achieve this, we build
on type and effect systems [36, 42] and extend them to a relational
setting.

Relational properties There is a large body of work on relational
properties of programs. Traditionally, many of the techniques for
relational reasoning have been semantic, but there is an increas-
ing focus on developing practical approaches based on assertion
checking [33], symbolic execution [38], static analysis [31], model
checking [46], program logics [9, 47], and refinement types [7, 8].
Moreover, researchers have developed specialized approaches for
many relational properties, e.g., information flow [3, 35, 40], conti-
nuity [16], determinism [12], differential privacy [24, 41], or quanti-
tative reliability [13, 14]. Other important applications of relational
verification include regression verification [23, 25], semantical dif-
ferences [32, 37] and cross or relative verification [27, 34, 39]. One
advantage of our work over many of these approaches is that we
can freely switch from the relational world to the non-relational
world when program executions diverge. In [43], Sands introduces
improvements, a semantic notion which naturally embeds relational
cost reasoning, and uses them as artefacts for proving equivalence
between functional programs. However, improvements only offer a
qualitative guarantee that one program is faster than another (in all
contexts). In contrast, RelCost can establish quantitative bounds.

Types for incremental complexity analysis Our work is closely
related to the type system CostIt [17] and its successor DuCostIt [18],

which were developed to reason about update costs of incremental
programs. Some aspects of our work, like the type� τ , are based on
DuCostIt, but the two differ significantly in the end-goal (relational
cost analysis vs. incremental update times), the design of the type
system and the semantic model.

DuCostIt aims at establishing upper bounds on the time it takes
to update an incremental program. Hence, its cost model is geared
towards incremental evaluation. Given an initial execution that stores
intermediate results in a trace, a change propagation mechanism
accounts for the cost of incremental update when the input changes.
For cases where an input change causes a change in control flow, the
cost model must also account for from-scratch execution costs of
programs. In comparison, our cost model is somewhat simpler since
we only account for execution costs and not change propagation.
However, to provide precise bounds, we establish both upper and
lower bounds on unary execution in the type system whereas only
upper bounds are needed in DuCostIt. In particular, DuCostIt has
no analogue of the rule switch, which is central to many of our
examples.

A second difference is that DuCostIt’s type system and semantic
model are inherently limited to two runs of the same program with
different inputs. In particular, asynchronous typing rules, which are
often necessary to obtain precision when programs differ structurally
are not present in DuCostIt and the binary relation in DuCostIt
relates “biexpressions”—pairs of expressions that are structurally
identical (but may have different, related substitutions).

Finally, unlike DuCostIt, we syntactically separate unary and
relational types. This has two advantages. First, it simplifies the
rules of the type system considerably. In DuCostIt, every type con-
structor has three elimination rules, one for use in unary reasoning
and two for use in relational reasoning. In contrast, our type system
has only two elimination rules for every type constructor, one for
unary reasoning and the other for binary reasoning. Second, the
separation reflects the unary and relational semantic interpretations
syntactically. In contrast, in DuCostIt, the separation exists only in
the model, with the unpleasant consequence that relational refine-
ments like α in (list[n]α τ) that are meaningless in unary reasoning
must nonetheless be carried through unary typing derivations.

7. Summary
This paper introduces the problem of relational cost analysis–
establishing relative costs of programs, relationally. As a first step
towards solving the problem, we have presented a refinement type
and effect system, RelCost, that can establish precise relational
costs in cases where the use of a unary cost analysis may be far
less compact or infeasible. We have demonstrated the expressivity
and generality of RelCost on several examples from different
domains. Our semantic model combines unary and binary step-
indexed logical relations and comes with strong meta-theoretic
properties. In particular, we show that the relative cost of two
programs estimated by our type system is indeed an upper bound on
the actual relative cost of the programs.
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[18] E. Çiçek, Z. Paraskevopoulou, and D. Garg. A type theory for
incremental computational complexity with control flow changes.
In Proceedings of the 21st International Conference on Functional
Programming, ICFP ’16, 2016.

[19] M. R. Clarkson and F. B. Schneider. Hyperproperties. In Proceedings
of CSF’08, pages 51–65, 2008.

[20] U. Dal Lago and M. Gaboardi. Linear dependent types and relative com-
pleteness. In Proceedings of the 2011 IEEE 26th Annual Symposium
on Logic in Computer Science, LICS ’11, pages 133–142, 2011.

[21] U. Dal lago and B. Petit. The geometry of types. In Proceedings of
the 40th Annual Symposium on Principles of Programming Languages,
POPL ’13, pages 167–178, 2013.

[22] N. Danner, D. R. Licata, and R. Ramyaa. Denotational cost semantics
for functional languages with inductive types. In Proceedings of
the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 140–151, 2015.

[23] D. Felsing, S. Grebing, V. Klebanov, P. Rümmer, and M. Ulbrich. Au-
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