
Linear Dependent Types and Relative Completeness�

Ugo Dal Lago and Marco Gaboardi
Dipartimento di Scienze dell’Informazione & EPI FOCUS

Università di Bologna & INRIA Sophia Antipolis
dallago,gaboardi@cs.unibo.it

Abstract

A system of linear dependent types for the lambda calculus with full higher-order recursion,
called d`PCF, is introduced and proved sound and relatively complete. Completeness holds
in a strong sense: d`PCF is not only able to precisely capture the functional behaviour of
PCF programs (i.e. how the output relates to the input) but also some of their intensional
properties, namely the complexity of evaluating them with Krivine’s Machine. d`PCF is
designed around dependent types and linear logic and is parametrized on the underlying
language of index terms, which can be tuned so as to sacrifice completeness for tractability.

1 Introduction

Type systems are powerful tools in the design of programming languages. While they have been
employed traditionally to guarantee weak properties of programs (e.g. “well-typed programs
cannot go wrong”), it is becoming more and more evident that they can be useful when stronger
properties are needed, such as security [VIS96, SM03], termination [BGR08], monadic temporal
properties [KO09] or resource bounds [JHLH10].

One key advantage of type systems seen as formal methods is their simplicity and their close
relationship with programs — checking whether a program has a type or even inferring the (most
general) type of a program is often decidable. The price to pay is the incompleteness of most
type systems: there are programs satisfying the property at hand which cannot be given a type.
This is in contrast with other formal methods, like program logics [AdBO09] where completeness is
always a desirable feature, although it only holds relatively to an oracle. Graphically, the situation
is similar to the one in Figure 1: type systems can be found in the lower left corner of the diagram,
where both the degree of completeness and the complexity of type checking or type inference are
kept low; program logics, on the other hand, are confined to the upper-right corner, where checking
for derivability is almost always undecidable.

One specific research field in which the just-described scenario manifests itself is implicit com-
putational complexity, in which one aims at defining characterizations of complexity classes by
programming languages and logical systems. Many type systems have been introduced capturing,
for instance, the polynomial time computable functions [Hof99, BT09a, BGM10]. All of them,
under mild assumptions, can be employed as tools to certify programs as asymptotically time ef-
ficient. However, a tiny slice of the polytime programs are generally typable, since the underlying
complexity class FP is only characterized in a purely extensional sense — for every function in
FP there is at least one typable program computing it.

The main contribution of this paper is a type system for the lambda calculus with full recur-
sion, called d`PCF, which is sound and complete. Types of d`PCF are obtained, in the spirit of
DML [XP99, Xi07], by decorating types of ordinary PCF [Plo77, Gun92] with index terms. These
are first-order terms freely generated from variables, function symbols and a few more term con-
structs. They are indicated with metavariables like I, J,K. Type decoration reflects the standard

�This work is partially supported by the INRIA ARC project “ETERNAL”

1

Degree of Completeness

P
ro

p
er

ty
C

o
m

p
le

x
it
y

Type Systems

Program Logics

Figure 1: Type Systems and Program Logics

decomposition of types into linear types (as suggested by linear logic [Gir87]), and is inspired by
recent works on the expressivity of bounded logics [DLH09].

Index terms and linear types permit to describe program properties with a fine granularity.
More precisely, d`PCF enjoys the following two properties:
• Soundness: if t is a program and $K t : NatrI, Js, then t evaluates to a natural number which

lies between I and J and this evaluation takes at most a linear number of steps in K;
• Completeness: if t is typable in PCF and evaluates to a natural number n in m steps, then
$I t : Natrn, ns where I ¤ m.

Completeness of d`PCF holds not only for programs (i.e. terms of ground types) but also for
functions on the natural numbers (see Section 5.3 for further details). Moreover, typing judgments
tell us something about the functional behaviour of programs but also about their non-functional
one, namely the number of steps needed to evaluate the term in Krivine’s Abstract Machine.

As the title of this paper suggests, completeness of d`PCF holds in a relative sense. Indeed,
the behaviour of programs can be precisely captured only in presence of a complete oracle for
the truth of certain assumptions in typing rules. This is exactly what happens in program logics
such as Floyd-Hoare’s logic, where all the sound partial correctness assertions can be derived
provided one is allowed to use all the true sentences of first order arithmetic as axioms [Coo78].
In d`PCF, those assumptions take the form of (in)equalities between index terms, to be verified
when function symbols are interpreted as functions on natural numbers according to an equational
program E . Actually, the whole of d`PCF is parameterized on such an E , but while soundness holds
independently of the specific E , completeness, as is to be expected, holds only if E is sufficiently
powerful to encode all total computable functions (i.e. if E is universal). In other words, d`PCF
can be claimed to be not a type system, but a family of type systems obtained by taking a
specific E as the underlying “logic” of index terms. The simpler E , the easier type checking and
type inference are; the more complex E , the larger the class of captured programs.

The design of d`PCF have been very much influenced by linear logic [Gir87], and in particular
by systems of indexed and bounded linear logic [GSS92, DLH09], which have been recently shown
to subsume other ICC systems as for the class of programs they can capture [DLH09]. One of the
many ways to “read” d`PCF is as a variation on the theme of BLL [GSS92] obtained by generalizing
polynomials to arbitrary functions. The idea of going beyond a restricted, fixed class of bounds
comes from Xi’s work on DML [XP99, Xi07]. Cost recurrences for first order DML programs have
been studied [Gro01]. No similar completeness results for dependent types are known, however.

This is a revised and extended version of a paper with the same title which has appeared in
the proceedings of LICS 2011.

2

2 Types and Program Properties: An Informal Account

Consider the following program:

dbl � fix f.λx. ifz x then x else spspfpppxqqqq.

In a monomorphic, traditionally designed type system like PCF [Plo77, Gun92], the term dbl
receives type NatÑ Nat. As a consequence, dbl computes a function on natural numbers without
“going wrong”: it takes in input a natural number, and produces in output another natural
number (if any). The type Nat Ñ Nat, however, does not give any information about which
specific function on the natural numbers dbl computes. Indeed, in PCF (and in most real-world
programming languages) any program computing a function on natural numbers, being it for
instance the identity function or (a unary version of) the Ackermann function, can be typed by
NatÑ Nat.

Some modern type systems allow one to construct and use types like τ � Natras Ñ Natr2�as,
which tell not only what set or domain (the interpretation of) the term belongs to, but also which
specific element of the domain the term actually denotes. The type τ , for example, could be
attributed only to those programs computing the function n ÞÑ 2 � n. Types of this form can
be constructed in dependent and sized type theories [XP99, BGR08]. The type system d`PCF
introduced in this paper offers this possibility, too. But, as a first contribution, it further allows to
specify imprecise types, like Natr5,8s, which stands for the type of those natural numbers between
5 and 8.

A property of programs which is completely ignored by ordinary type systems is termination,
at least if full recursion is in the underlying language. Typing a term t with NatÑ Nat does not
guarantee that t, when applied to a natural number, terminates. In PCF this is even worse: t
could possibly diverge itself ! Consider, as another example, a slight modification of dbl, namely

omega � fix f.λx. ifz x then x else spspfpxqqq.

It behaves as dbl when fed with 0, but it diverges when it receives a positive natural number as
an argument. But look: omega is not so different from dbl. Indeed, the second can be obtained
from the first by feeding not x but ppxq to f . And any type systems in which dbl and omega are
somehow recognized as being fundamentally different must be able to detect the presence of p in
dbl and deduct termination from it. Indeed, sized types [BGR08] and dependent types [Xi01] are
able to do so.

Going further, we could ask the type system to be able not only to guarantee termination,
but also to somehow evaluate the time or space consumption of programs. For example, we
could be interested in knowing that dbl takes a polynomial number of steps to be evaluated
on any natural number. This cannot be achieved neither using classical type systems nor using
systems of sized types, at least when traditionally formulated. However, some type systems able to
control the complexity of program exist. Good examples are type systems for amortized analysis
[JHLH10, HAH11] or those using ideas from linear logic [BT09a, BGM10]. In those type systems,
typing judgements carry, besides the usual type information, some additional information about
the resource consumption of the underlying program. As an example, dbl could be given a type
as follows

$I dbl : NatÑ Nat

where I is some cost information for dbl. This way, building a type derivation and inferring
resource consumption can be done at the same time.

The type system d`PCF we propose in this paper makes some further steps in this direction.
First of all, it combines some of the ideas presented above with the ones of bounded linear logic.
BLL allows one to explicitly count the number of times functions use their arguments (in rough
notation, !mσ (τ says that the argument of type σ is used m times). This permits to extract
natural cost functions from type derivations. The cost of evaluating a term will be measured by
counting how many times function arguments need to be copied during evaluation. Making this

3

information explicit in types permits to compute the cost step by step during the type derivation
process. By the way, previous works by the first author [DL09] show that this way of attributing a
cost to (proofs seen as) programs is sound and precise as a way to measure their time complexity.
Intuitively, typing judgements in d`PCF can be thought as:

$Jpaq t : !m Natras (NatrIpaqs.

where g and f can be derived while building a type derivation, exploiting the information carried
by the modalities. In fact, the quantitative information in !m allows to statically determine
the number of times any subterm will be copied during evaluation. But this is not sufficient:
analogously to what happens in BLL, d`PCF makes types more parametric. A rough type as
!nσ (τ is replaced by the more parametric type ra ns �σ (τ , which tell us that the argument
will be used n times, and each instance has type σ where, however the variable a is instantiated
with a value less than n. This allows to type each copy of the argument differently but uniformly,
since all instances of σ have the same PCF skeleton. This form of uniform linear dependence is
actually crucial in obtaining the result which makes d`PCF different from similar type systems,
namely completeness.

Finally, as already stressed in the introduction, d`PCF is also parametric in the class of functions
(in the form of an equational program E) that can be used to reason about types and costs. This
permits to tune the type system, as described in Section 6 below.

Anticipating on the next section, we can say that dbl can be typed as follows in d`PCF:

$Ea dbl : rb as � Natras (Natr2� as.

This tells us that the argument will be used a times by dbl, namely a number of times equal to
its value. And that the cost of evaluation will be itself proportional to a.

3 d`PCF

In this section, the language of programs and the type system d`PCF for it will be introduced
formally. Some of their basic properties will be described. The type system d`PCF is based on
the notion of index terms whose semantics, in turn, is defined by an equational program. As a
consequence, all these notions must be properly introduced and are the subject of Section 3.1
below.

3.1 Index Terms and Equational Programs

Syntactically, index terms are built either from function symbols from a given signature or by
applying any of two special term constructs.

Formally, a signature Σ is a pair pS, αq where S is a finite set of function symbols and α : S Ñ N
assigns an arity to every function symbol. Index terms on a given signature Σ � pS, αq are
generated by the following grammar:

I, J,K ::� a | fpI1, . . . , Iαpfqq |
¸
a I

J |
I,Jï
a

K

where f P S and a is a variable drawn from a set V of index variables. We assume the symbols 0,
1 (with arity 0) and �, � (with arity 2) are always part of Σ. An index term in the form

°
a I J

is a bounded sum, while one in the form
ÏI,J

a K is a forest cardinality. For every natural number
n, the index term n is just

1� 1� . . .� 1loooooooomoooooooon
n times

.

Index terms are meant to denote natural numbers, possibly depending on the (unknown) values
of variables. Variables can be instantiated with other index terms, e.g. ItJ{au. So, index terms

4

can also act as first order functions. What is the meaning of the function symbols from Σ? It is
the one induced by an equational program E . Formally, an equational program E over a signature
Σ and a set of variables V is a set of equations in the form t � s where both t and s are in
OpΣ,Vq. We are interested in equational programs guaranteeing that, whenever symbols in Σ are
interpreted as partial functions over N and 0, 1, � and � are interpreted in the usual way, the
semantics of any function symbol f can be uniquely determined from E . This can be guaranteed
by, for example, taking E as an Herbrand-Gödel scheme [Odi89] or as an orthogonal constructor
term rewriting system [BN98]. One may wonder why the definition of index terms is parametric
on Σ and E . As we will see in Section 6, being parametric this way allows us to tune our concrete
type system from a highly undecidable but truly powerful machinery down to a tractable but less
expressive formal system. An example of an equational program over the signature Σ consisting of
two function symbols add and mult of arity two is the following set of rewriting rules (we tacitly
assume succ to be part of Σ and to have its standard meaning):

addp0, bq Ñ b

addpsuccpaq, bq Ñ succpaddpa, bqq

multp0, bq Ñ 0
multpsuccpaq, bq Ñ addpb, multpa, bqq

What about the meaning of bounded sums and forest cardinalities? The first is very intuitive:
the value of

°
a I J is simply the sum of all possible values of J with a taking the values from 0 up

to I, excluded. Forest cardinalities, on the other hand, require some more effort to be described.
Informally,

ÏI,J
a K is an index term denoting the number of nodes in a forest composed of J trees

described using K. All the nodes in the forest are (uniquely) identified by natural numbers. These
are obtained by consecutively visiting each tree in pre-order, starting from I. The term K has
the role of describing the number of children of each forest node n by properly instantiating the
variable a, e.g the number of children of the node 0 is Kt0{au. More formally, the meaning of a
forest cardinality is defined by the following two equations:

I,0ï
a

K � 0 (1)

I,J�1ï
a

K �

�
I,Jï
a

K

�
� 1�

�
�I�1�

ÏI,J
a K,KtI�

ÏI,J
a K{auï

a

K

�

 (2)

Equation (1) says that a forest of 0 trees contains no nodes. Equation (2) tells us that a forest of
J� 1 trees contains:
• The nodes in the first J trees;
• plus the nodes in the last tree, which are just one plus the nodes in the immediate subtrees of

the root, considered themselves as a forest.
To better understand forest cardinalities, consider the following forest comprising two trees:

0

1

2

�������
5 6

>>>>>>>

3

�������
4

>>>>>>>
7

_ _ _ _ _ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�_ _ _ _ _ _ _ _ _ _ _ _

8

9

~~~~~~~~
11

@@@@@@@@

10 12

and consider an index term K with a free index variable a such that Ktn{au � 3 for n � 1;
Ktn{au � 2 for n P t2, 8u; Ktn{au � 1 when n P t0, 6, 9, 11u; and Ktn{au � 0 when n P

5



t3, 4, 7, 10, 12u. That is, K describes the number of children of each node. Then
Ï0,2

a K � 13 since
it takes into account the entire forest;

Ï0,1
a K � 8 since it takes into account only the leftmost

tree;
Ï8,1

a K � 5 since it takes into account only the second tree of the forest; finally,
Ï2,3

a K � 6
since it takes into account only the three trees (as a forest) in the dashed rectangle.

One may wonder what is the role of forest cardinalities in the type systems. Actually, they play
a crucial role in the treatment of recursion, where the unfolding of recursion produces a tree-like
structure whose size is just the number of times the (recursively defined) function will be used
globally. Note that the value of a forest cardinality could also be undefined. For instance, this
happens when infinite trees, corresponding to diverging recursive computations, are considered.

The expression JIKEρ denotes the meaning of I, defined by induction along the lines of the
previous discussion, where ρ : V Ñ N is an assignment and E is an equational program giving
meaning to the function symbols in I. Since E does not necessarily interpret such symbols as total
functions, and moreover, the value of a forest cardinality can be undefined, JIKEρ can be undefined
itself. A constraint is an inequality in the form I ¤ J. A constraint is true in an assignment ρ if
JIKEρ and JJKEρ are both defined and the first is smaller or equal to the latter. Now, for a subset φ
of V, and for a set Φ of constraints involving variables in φ, the expression

φ; Φ |ùE I ¤ J (3)

denotes the fact that the truth of I ¤ J semantically follows from the truth of the constraints in
Φ. Similarly, one can define the meaning of expressions like φ; Φ |ùE I � J or φ; Φ |ùE I � J, the
latter standing for the equality of I and J in the sense of Kleene. When both φ and Φ are empty,
such expressions can be written in a much more concise form, e.g. I � J stands for H;H |ùE I � J.
The expression φ; Φ |ùE I � I indicates that (the semantics of) I is defined for the relevant values
of the variables in φ; this is usually written as φ; Φ |ùE I ó.

The following two lemmas are useful, and will be crucial when proving the Substitution Lemma.

Lemma 1
I�J,Kï
a

H �
J,Kï
a

Hta� I{au.

Proof. We use a coinductive argument. By definition:

I�J,0ï
a

H �0;

J,Kï
a

Hta� I{au �0;

I�J,K�1ï
a

H �
I�J,Kï
a

H� 1�
I�J�1�

ÏI�J,K
a H,HtI�J�

ÏI�J,K
a H{auï

a

H;

J,K�1ï
a

Hta� I{au �
J,Kï
a

Hta� I{au � 1�

J�1�
ÏJ,K

a Hta�I{au,HtI�J�
ÏJ,K

a Hta�I{au{auï
a

Hta� I{au.

This concludes the proof. l

Lemma 2
1,Jï
a

I �
¸
b J

0,1ï
a

Ita� 1�
1,bï
a

I{au.

6



Proof. We use a coinductive argument. By definition:

1,0ï
a

I � 0

¸
b 0

0,1ï
a

Ita� 1�
1,bï
a

I{au � 0

1,J�1ï
a

I � K� 1�
K�2,ItK�1{auï

a

I

¸
b J�1

0,1ï
a

Ita� 1�
1,bï
a

I{au � H�
0,1ï
a

Ita� 1�
1,Jï
a

I{au

where K is
Ï1,J

a I and H is
°
b J

Ï0,1
a Ita� 1�

Ï1,b
a I{au. Now, by definition and by Lemma 1

0,1ï
a

Ita� 1�
1,Jï
a

I{au � 1�
1,ItK�1{auï

a

Ita� 1�K{au

� 1�
K�2,ItK�1{auï

a

I.

This concludes the proof. l

Before embarking in the description of the type system, a further remark on the role of index
terms could be useful. Index terms are not meant to be part of programs but of types. As a
consequence, computation will not be carried out on index terms but on proper terms, which are
the subject of Section 3.2 below.

3.2 The Type System

Terms are generated by the following grammar:

t ::�x | n | sptq | pptq | λx.t | tu
| ifz t then u else v | fix x.t

where n ranges over natural numbers and x ranges over a set of variables. A notion of size |t| for
a term t will be useful in the sequel. This can be defined as follows:

|x| � |p| � 1;
|s| � 2;
|n| � n;

|sptq| � |s| � |t| � 1;
|pptq| � |p| � |t| � 1;
|λx.t| � |t| � 1;
|tu| � |t| � |u| � 1;

| ifz t then u else v| � |t| � |u| � |v| � 1;
|fix x.t| � |t| � 1.

Notice that for technical reasons it is convenient to take here the size of s equal to 2. Terms can
be typed with a well-known type system called PCF. Types are those generated by the basic type
Nat and the binary type constructor Ñ. Typing rules are in Figure 2. A notion of weak-head

7



Γ, x : σ $ x : σ
Γ, x : σ $ t : τ

Γ $ λx.t : σ Ñ τ
Γ $ t : σ Ñ τ Γ $ u : σ

Γ $ tu : τ

Γ $ n : Nat
Γ $ t : Nat

Γ $ sptq : Nat
Γ $ t : Nat

Γ $ pptq : Nat

Γ $ t : Nat Γ $ u : σ Γ $ v : σ
Γ $ ifz t then u else v : σ

Γ, x : σ $ t : σ
Γ $ fix x.t : σ

Figure 2: The PCF Type System.

pλx.tquÑ ttu{xu spnq Ñ n� 1 ppn� 1q Ñ n pp0q Ñ 0

ifz 0 then u else v Ñ u ifz n� 1 then u else v Ñ v fix x.tÑ ttfix x.t{xu

tÑ u
sptq Ñ spuq

tÑ u
pptq Ñ ppuq

tÑ v
tuÑ vu

tÑ w
ifz t then u else v Ñ ifz w then u else v

Figure 3: Weak-head Reduction

reduction Ñ can be easily defined: see Figure 3. A term t is said to be a program if it can be
given the PCF type Nat in the empty context.

Almost all the definitions about d`PCF in this and the next sections should be understood as
parametric on an equational program E over a signature Σ. For the sake of simplicity, however,
we will often avoid to explicitly mention E and leave it implicit.

d`PCF can be seen as a refinement of PCF obtained by a linear decoration of its type derivation.
Basic and modal types are defined as follows:

σ, τ ::� NatrI, Js | A ( σ basic types
A,B ::� ra   Is � σ modal types

where I, J range over index terms and a ranges over index variables. NatrIs is syntactic sugar for
NatrI, Is. Modal types need some comments. As a first approximation, they can be thought of
as quantifiers over type variables. So, a type like A � ra   Is � σ acts as a binder for the index
variable a in the basic type σ. Moreover, the condition a   I says that A consists of all the
instances of the basic type σ where the variable a is successively instantiated with the values from
0 to (the value of) I � 1, i.e. σt0{au, . . . , σtI � 1{au . For those readers who are familiar with
linear logic, and in particular with BLL, the modal type ra   Is � σ is a generalization of the BLL
formula !a pσ to arbitrary index terms. As such it can be thought of as representing the type
σt0{aub� � �bσtI�1{au. In analogy to what happens in the standard linear logic decomposition of
the intuitionistic arrow, i.e. !A ( B � Añ B, it is sufficient to restrict to modal types appearing
in negative position, similarly to DLAL [BT09b]. Finally, for those readers with some knowledge
of DML, modal types are in a way similar to DML’s subset sort constructions [Xi07].

We always assume that index terms appearing inside types are defined for all the relevant
values of the variables in φ. This is captured by the judgement φ; Φ $E σ ó, whose rules are in
Figure 4.

In the typing rules, modal types need to be manipulated in an algebraic way. For this reason,
two operations on modal types need to be introduced. The first one is a binary operation Z on
modal types. Suppose that A � ra   Is � µta{cu and that B � rb   Js � µtI� b{cu. In other words,

8



φ; Φ |ùE I ó
φ; Φ |ùE J ó

φ; Φ $E NatrI, Js ó
pNat.tq

φ; Φ $E A ó
φ; Φ $E σ ó

φ; Φ $E A ( σ ó
p( .tq

φ, a; Φ, a   I $E σ ó
φ; Φ |ùE I ó

φ; Φ $E ra   Is � σ ó
pr�s � .tq

Figure 4: Well-defined types

φ; Φ |ùE K ¤ I
φ; Φ |ùE J ¤ H

φ; Φ $E NatrI, Js � NatrK,Hs
pNat.lq

φ; Φ $E B � A
φ; Φ $E σ � τ

φ; Φ $E A ( σ � B ( τ
p( .lq

φ, a; Φ, a   J $E σ � τ
φ; Φ |ùE J ¤ I

φ; Φ $E ra   Is � σ � ra   Js � τ
pr�s � .lq

Figure 5: The subtyping relation

A consists of the first I instances of µ, i.e. µt0{cu, . . . , µtI � 1{cu while B consists of the next J
instances of µ, i.e. µtI�0{cu, . . . , µtI�J�1{cu. Their sum AZB is naturally defined as a modal
type consisting of the first I� J instances of µ, i.e. rc   I� Js � µ. An operation of bounded sum
on modal types can be defined by generalizing the idea above: suppose that

A � rb   Js � σt
¸
d a

Jtd{au � b{cu.

Then its bounded sum
°
a IA is rc  

°
a I Js � σ.

To every type σ corresponds a type p|σ|q of ordinary PCF, namely a type built from the basic
type Nat and the arrow operator Ñ:

p|NatrI, Js|q � Nat;
p|ra   Is � σ ( τ |q � p|σ|q Ñ p|τ |q.

Central to d`PCF is the notion of subtyping. An inequality relation � between (basic and
modal) types can be defined using the formal system in Figure 5. This relation corresponds
to lifting index inequalities at the type level. The equivalence φ; Φ $ σ � τ holds when both
φ; Φ $ σ � τ and φ; Φ $ τ � σ can be derived from the rules in Figure 5.

It is now time to introduce the main object of this paper, namely the type system d`PCF.
Typing judgements of d`PCF are expressions in the form

φ; Φ; Γ $EI t : σ (4)

where Γ is a typing context, that is, a set of term variable assignments of the shape x : A where
each variable x occurs at most once. The expression (4) can be informally read as follows: for
every values of the index variables in φ satisfying Φ, t can be given type σ and cost I once its free
term variables have types as in Γ. In proving this, equations from E can be used.

Typing rules are in Figure 6, where binary and bounded sums are used in their natural gen-
eralization to contexts. A type derivation is nothing more than a tree built according to typing
rules. A precise type derivation is a type derivation such that all premises in the form σ � τ
(respectively, in the form I ¤ J) are required to be in the form σ � τ (respectively, I � J).

First of all, observe that the typing rules are syntax-directed: given a term t, all type derivations
for t end with the same typing rule, namely the one corresponding to the last syntax rule used in
building t. In particular, no explicit subtyping rule exists, but subtyping is applied to the context

9



φ; Φ |ùE J ¥ 0
φ; Φ $E ra   Is � σ � ra   1s � τ

φ; Φ; Γ, x : ra   Is � σ $EJ x : τt0{au
V

φ; Φ; Γ, x : ra   Is � σ $EJ t : τ

φ; Φ; Γ $EJ λx.t : ra   Is � σ ( τ
L

φ; Φ; Γ $EJ t : ra   Is � σ ( τ
φ, a; Φ, a   I; ∆ $EK u : σ
φ; Φ $E Σ � ΓZ

°
a I ∆

φ; Φ; Σ $EJ�
°

a I K�I tu : τ
A

φ; Φ |ùE K ¥ 0
φ; Φ |ùE I ¤ n
φ; Φ |ùE n ¤ J

φ; Φ; Γ $EK n : NatrI, Js
N

φ; Φ $E NatrI� 1, J� 1s � NatrK,Hs
φ; Φ; Γ $EL t : NatrI, Js

φ; Φ; Γ $EL sptq : NatrK,Hs
S

φ; Φ $E NatrI � 1, J � 1s � NatrK,Hs
φ; Φ; Γ $EL t : NatrI, Js

φ; Φ; Γ $EL pptq : NatrK,Hs
P

φ; Φ; Γ $EK t : NatrI, Js
φ; Φ, I ¤ 0; ∆ $EH u : σ
φ; Φ, J ¥ 1; ∆ $EH v : σ
φ; Φ $E Σ � ΓZ∆

φ; Φ; Σ $EK�H ifz t then u else v : σ
F

φ, b; Φ, b   L; Γ, x : ra   Is � σ $EK t : τ
φ; Φ $E τt0{bu � µ

φ, a, b; Φ, a   I, b   L $E τt
Ïb�1,a

b I� b� 1{bu � σ
φ; Φ $E Σ �

°
b L Γ

φ; Φ |ùE
Ï0,1

b I ¤ L,M

φ; Φ; Σ $EM�1�
°

b L K fix x.t : µ
R

Figure 6: Typing rules

in every rule. A syntax-directed type system offers a key advantage: it allows one to prove the
statements about type derivations by induction on the structure of terms. This greatly simplifies
the proof of crucial properties like subject reduction.

Typing rules have premises of three different kinds:
• Of course, typing a term requires typing its immediate subterms, so typing judgements can be

rule premises.
• As just mentioned, typing rules allow to subtype the context Γ, so subtyping judgements can

be themselves rule premises.
• The application of typing rules (and also of subtyping rules, see Figure 5) sometimes depends

on the truth of some inequalities between index terms in the model induced by E .
As a consequence, typing rules can only be applied if some relations between index terms are
consequences of the constraints in Φ. These assumptions have a semantic nature, but could of
course be verified by any sound formal system. Completeness (see Section 5), however, only holds
if all true inequalities can be used as assumptions. As a consequence, type inference but also
type (derivation) checking are bound to be problematic from a computational point of view. See
Section 6 for a more thorough discussion on this issue.

As a last remark, note that each rule can be seen as a decoration of a rule of ordinary PCF.
More: for every d`PCF type derivation π of φ; Φ; Γ $EI t : σ there is a structurally identical
derivation in PCF for the same term, i.e. a derivation p|π|q : p|Γ|q $ t : p|σ|q.

3.3 An Example

In this section, we will show how d`PCF can give a sensible type to the example we talked about
in the Introduction, namely

dbl � fix f.λx. ifz x then 0 else spspfpppxqqqq.

10



First of all, let us take a look at a subterm of dbl, namely t � ifz x then 0 else spspfpppxqqqq.
In plain PCF, t receives the type Nat in an environment where x has type Nat and f has type
NatÑ Nat. Presumably, a d`PCF type for t can be obtained by appropriately decorating the type
above. In other words, we are looking for a type derivation with conclusion:

φ; Φ;x : ra   Is � NatrJs, f : rb   Ks � prc   Hs � NatrLs ( NatrMsq $EN t : NatrPs,

But how should we proceed? What we would like, at the end of the day, is being able to describe
how the value of t depends on the value of x, so we could look for a type derivation in this form:

d;H;x : rIs � Natrds, f : rb   Ks � prHs � Natrd� 1s ( Natr2pd� 1qsq $EN t : Natr2ds,

where ra   Is (respectively, rc   Hs) has been abbreviated into rIs (respectively, rHs) because the
bound variable a (respectively, c) does not appear free in the underlying type. But how to give
values to I, K, and H? One could be tempted to define I simply as 2, since there are two occurrences
of x in t. However, in view of the role played by x and f in dbl, I should be rather defined taking
into account the number of times a will be copied along the computation of dbl on any input. A
good guess could be, for example, d� 1. Similarly, H could be d. But how about K? How many
times f is used? If d � 0, then f is not called, while if d ¡ 0, the function is called once. In other
words, a guess for H could be d ¡ 0, where we use the infix notation for the operator ¡ just to
improve readability. Let us now try to build a derivation for

d;H;x : rd� 1s � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E0 t : Natr2ds.

Actually, it has the following shape

π : d;H;x : r1s � Natrds $E
0 x : Natrds

ρ : d; d ¤ 0;x : rds � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 0 : Natr2ds

σ : d; d ¡ 0;x : rds � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 spspfpppxqqqq : Natr2ds

d;H;x : rd� 1s � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 t : Natr2ds

where assignments to types in the form r0s � σ have been omitted from contexts. Now, π and ρ
can be easily built, while σ requires a little effort: it is the type derivation

µ : d; d ¡ 0; f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 f : rds � Natrd� 1s ( Natr2pd� 1qs

ξ : d; d ¡ 0;x : r1s � Natrds $E
0 ppxq : Natrd� 1s

d; d ¡ 0;x : rds � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 fpppxqq : Natr2pd� 1qs

d; d ¡ 0;x : rds � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 spfpppxqqq : Natr2d� 1s

d; d ¡ 0;x : rds � Natrds, f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E
0 spspfpppxqqqq : Natr2ds

where µ and ξ can be easily built. Summing up, t can indeed be given the type we wanted it to
have. As a consequence, we can say that

d;H; f : rd ¡ 0s � prds � Natrd� 1s ( Natr2pd� 1qsq $E0 λx.t : rd� 1s � Natrds ( Natr2ds.

However, we have only solved half of the problem, since the last step (namely typing the fixpoint)
is definitely the most complicated. In particular, the rule R requires an index variable b which
somehow ranges over all recursive calls. A different but related type can be given to λx.t, namely

a, b; b   a�1; f : ra ¡ bs�pra� bs � Natra� b� 1s ( Natr2pa� b� 1qsq $E
0 λx.t : ra� b� 1s�Natra� bs ( Natr2pa�bqs.

By the way, this does not require rebuilding the entire type derivation (see the properties in the
forthcoming Section 3.4). Let us now check whether the judgement above can be the premise of

11



the rule R. Following the notation in the typing rule R we can stipulate that:

I � a ¡ b;
K � 0;
L � a� 1;
σ � ra� bs � Natra� b� 1s ( Natr2pa� b� 1qs;
τ � ra� b� 1s � Natra� bs ( Natr2pa� bqs;
µ � τt0{bu � ra� 1s � Natras ( Natr2as.
Γ � ∆ � H

We can the conclude that, since a   pa ¡ bq implies a � 0:

0,1ï
b

I � a� 1 � J

a, b; a   pa ¡ bq |ù
b�1,aï
b

I � 0

τt
b�1,aï
b

I� b� 1{bu � τtb� 1{bu � σ

and, ultimately, that a;H;H $Ea dbl : µ.

3.4 Properties

This section is mainly concerned with subject reduction. Subject reduction will only be proved for
closed terms, since the language is endowed with a weak notion of reduction and, as a consequence,
reduction cannot happen in the scope of a lambda abstraction. The system d`PCF enjoys some
nice properties that are both necessary intermediate steps towards proving subject reduction and
essential ingredients for proving soundness and relative completeness. These properties permit to
manipulate the judgements being sure that derivability is preserved.

First of all, the constraints Φ in a typing judgement can be made stronger without altering the
rest:

Lemma 3 (Constraint Strenghtening) Let φ; Φ; Γ $I t : σ and φ; Ψ |ùE Φ. Then, φ; Ψ; Γ $I

t : σ.

Proof. It follows easily by definition of φ; Ψ |ùE Φ. l

Note that a sort of strengtening holds also for weights.

Lemma 4 (Weight Monotonicity) Let φ; Φ; Γ $I t : σ and φ; Φ |ùE I ¤ J. Then, φ; Φ; Γ $J

t : σ.

Proof. It follows easily by induction on the derivation proving φ; Φ; Γ $I t : σ. l

Moreover, subtyping can be freely applied both to the context Γ (contravariantly) and to the
type σ (covariantly), leaving the rest of the judgement unchanged:

Lemma 5 (Subtyping) Suppose φ; Φ;x1 : A1, . . . , xn : An $I t : σ and φ; Φ $ Bi � Ai for
1 ¤ i ¤ n and φ; Φ $ σ � τ . Then, φ; Φ;x1 : B1, . . . , xn : Bn $I t : τ .

Proof. By induction on the structure of a derivation Π for

φ; Φ;x1 : A1, . . . , xn : An $I t : σ

Let us examine some interesting cases:

12



• If Π is just
φ; Φ |ù K ¥ 0

φ; Φ $ ra   Is � µ � ra   1s � σ

φ; Φ;x : ra   Is � µ $K x : σt0{au V

then, by assumption we have φ; Φ $ B � ra   Is �µ, so in particular B � ra   Js �γ and φ; Φ $
ra   Js � γ � ra   1s � σ. Moreover, by assumption we have φ; Φ $ σt0{au � τ , so in particular
τ � τt0{au. Hence, we have φ; Φ $ ra   1s�σ � ra   1s�τ . Thus φ; Φ $ ra   Js�γ � ra   1s�τ .
So we can derive

φ; Φ |ùE K ¥ 0
φ; Φ $ ra   Js � γ � ra   1s � τ

φ; Φ;x : ra   Js � γ $K x : τt0{au V

• If Π is
φ; Φ; Γ $K t : ra   Is � σ ( γ
φ, a; Φ, a   I; ∆ $H u : σ

φ; Φ $ x1 : A1, . . . , xn : An � ΓZ
°
a I ∆

φ; Φ;x1 : A1, . . . , xn : An $K�I�
°

a I H tu : γ A

then, by assumption we have φ; Φ |ùE Bi � Ai for 1 ¤ i ¤ n and φ; Φ |ùE γ � τ . So,
by transitivity we have φ; Φ $ x1 : B1, . . . , xn : Bn � Γ Z

°
a I ∆. Moreover, since we

clearly have φ; Φ $ ra   Is � σ ( τ1 � ra   Is � σ ( τ , by induction hypothesis we have
φ; Φ; Γ $K t : ra   Is � σ ( τ . So we can conclude:

φ; Φ; Γ $K t : ra   Is � σ ( τ
φ, a; Φ, a   I; ∆ $H u : σ

φ; Φ $ x1 : B1, . . . , xn : Bn � ΓZ
°
a I ∆

φ; Φ;x1 : B1, . . . , xn : Bn $K�I�
°

a I H tu : τ A

The other cases are similar. l

Weakening holds for term contexts

Lemma 6 (Context Weakening) Let φ; Φ; Γ $I t : σ. Then, φ; Φ; Γ,∆ $I t : σ

Proof. Easy, by induction on the derivation proving φ; Φ; Γ $I t : σ. l

Another useful transformation on type derivations is substitution of an index variable for an index
term:

Lemma 7 (Index Term Substitution respect subtyping) Let φ, a; Φ $ θ � γ and I be an
index term. Then, φ; ΦtI{au $ θtI{au � γtI{au.

Proof. Easy. l

Lemma 8 (Index Term Substitution) Let φ, a; Φ; Γ $I t : σ. Then we have

φ; ΦtJ{au; ΓtJ{au $ItJ{au t : σtJ{au

for every J such that φ,Φ |ùE J ó.

Proof. By induction on the structure of a derivation Π for

φ, a; Γ $K t : σ

Let us examine some cases:

13



• If Π is just
φ; Φ |ùE K ¥ 0

φ; Φ $ rb   Js � σ � rb   1s � τ

φ, a; Φ;x : rb   Js � σ $K x : τt0{bu V

then, by Lemma 7 we have φ; ΦtI{au $ rb   JtI{aus � σtI{au � rb   1s � τtI{au. So, we can
derive

φ; Φ |ùE KtI{au ¥ 0
φ; ΦtI{au $ rb   JtI{aus � σtI{au � rb   1s � τtI{au

φ; ΦtI{au;x : rb   JtI{aus � σtI{au $KtI{au x : τtI{aut0{bu V

since obviously τtI{aut0{bu � τt0{butI{au and rb   JtI{aus � σtI{au � prb   Js � σqtI{au.
• If Π is

φ, a; Φ; Γ, x : rb   Js � σ $K t : τ
φ, a; Φ; Γ $K λx.t : rb   Js � σ ( τ

L

then, by the induction hypothesis we get

φ; ΦtI{au; ΓtI{au, x : rb   JtI{aus � σtI{au $KtI{au t : τtI{au

As a consequence, we can conclude by

φ; ΦtI{au; ΓtI{au, x : rb   JtI{aus � σtI{au $KtI{au t : τtI{au

φ; ΦtI{au; ΓtI{au $KtI{au λx.t : rb   JtI{aus � σtI{au ( τtI{au L

since ra   JtI{aus � σtI{au ( τtI{au � pra   Js � σ ( τqtI{au.
The other cases are similar. l

Index variables can be instantiated:

Lemma 9 (Instantiation) Let φ, a; Φ, a ¤ I $K t : σ. If φ; Φ |ùE J ¤ I, then, φ; ΦtJ{au $KtJ{au

t : σtJ{au.

Proof. By Lemma 8 and Lemma 5. l

Moreover a Generation Lemma will be useful.

Lemma 10 (Generation)
1. Let φ; Φ; Γ $K λx.t : σ, then σ � ra   Is � τ ( µ and φ; Φ; Γ, x : ra   Is � τ $K t : µ.
2. Let φ; Φ; Γ $K 0 : NatrI, Js, then φ; Φ |ùE I � 0.
3. Let φ; Φ; Γ $K n� 1 : NatrI, Js, then φ; Φ |ùE J ¥ 1.

Proof. All the points are immediate by an inspection of the rules. l

We are now ready to embark on a proof of subject reduction. As usual, the first step is a
substitution lemma:

Lemma 11 (Term Substitution) Let φ, a; Φ, a   I;H $J t : σ and φ; Φ;x : ra   Is � σ,∆ $K

u : τ . Then we have φ; Φ; ∆ $H utt{xu : τ with φ; Φ |ùE H ¤ K� I�
°
a I J.

Proof. As usual, this is an induction on the structure of a type derivation for u. All relevant
inductive cases require some manipulation of the type derivation for t. The previous lemmas give
exactly the right degree of “malleability”. Let Π be a derivation for

φ; Φ;x : ra   Is � σ,∆ $K u : τ

Let us examine some interesting cases:

14



• Suppose we have φ, a; Φ, a   I;H $J t : σ and consider Π to be just

φ; Φ |ù K ¥ 0
φ; Φ $ ra   Is � σ � ra   1s � τ

φ; Φ;x : ra   Is � σ,∆ $K x : τt0{au V

Then, by definition, from φ; Φ $ ra   Is � σ � ra   1s � τ it follows that

φ; Φ, a   1 $ σ � τ (5)

and
φ; Φ |ù 1 ¤ I. (6)

Applying Lemma 9 we have

φ; Φt0{au;H $Jt0{au t : τt0{au

and since Φ does not contain free occurrences of a we obtain:

φ; Φ;H $Jt0{au t : τt0{au

Now, by applying Lemma 6 and Lemma 4 we can conclude

φ; Φ; ∆ $K�I�
°

a¤I J t : τt0{au

since clearly Equation 6 implies

φ; Φ |ù Jt0{au ¤ K� I�
¸
a¤I

J

• Let us consider the case Π ends by an instance of the A rule. In particular, without loss of
generality we can consider a situation as:

φ; Φ; ∆1, x : ra   Ks � γ $L1 v : rb   Js � µ ( τ
φ, b; Φ, b   J; ∆2, x : ra   Hs � γtK� a�

°
d b Htd{bu{au $L2 u : µ

φ; Φ $ Σ, x : ra   Is � σ � ∆1 Z
°
b J ∆2, x : ra   Ks � γ Z ra  

°
b J Hs � γtK� a{au

φ; Φ; Σ, x : ra   Is � σ $L1�J�
°

b J L2 vu : τ A

By assumption we have
φ; Φ, a   I;H $J2 t : σ

and

φ; Φ $ ra   Is � σ � ra   K�
¸
b J

Hs � γ � ra   Ks � γ Z ra  
¸
b J

Hs � γtK� a{au

By definition of subtyping,
φ; Φ, a   K� L $ σ � γ

where L �
°
b J H and

φ; Φ |ùE K� L ¤ I

So, by Lemma 3, we have
φ; Φ, a   K� L;H $J2 t : σ

and by Lemma 5 we have
φ; Φ, a   K� L;H $J2 t : γ

Applying again Lemma 3 we obtain

φ; Φ, a   K;H $J2 t : γ

15



and by induction hypothesis we get

φ; Φ; ∆1 $J3 vtt{xu : rb   Js � µ ( τ

with φ; Φ |ùE J3 ¤ L1 �K�
°
a K J2. Recalling that

φ; Φ, a   K� L;H $J2 t : γ

we observe that

φ, b, c; Φ, a   K� c�
¸
d b

Htd{bu, b   J, c   H |ùE Φ, a   K� L

By Lemma 3 we get

φ, b, c; Φ, a   K� c�
¸
d b

Htd{bu, b   J, c   H;H $J2 t : γ

and by Lemma 5 we obtain

φ; Φ, a   H, b   J;H $J2 t : γtK� a�
¸
d b

Htd{bu{au

then, by the induction hypothesis we get

φ; Φ, b   J; ∆2 $J4 utt{xu : µ

with φ; Φ |ùE J4 ¤ L2 �H�
°
a H J2 And we can conclude as follows:

φ; Φ; ∆1 $J3 vtt{xu : rb   Js � µ ( τ
φ; Φ; ∆2 $J4 utt{xu : µ

φ, a; Φ $ Σ � ∆1 Z
°
b J ∆2

φ; Φ; Σ $J3�J�
°

b J J4 vtt{xuutt{xu : τ A

with

φ; Φ |ùE J3�J�
¸
b J

J4 ¤ pL1�K�
¸
a K

J2q�J�
¸
b J

pL2�H�
¸
a H

J2q ¤ pL1�J�
¸
b J

L2q�I�
¸
a I

J2.

The other cases are similar. l

Theorem 1 (Subject Reduction) Let φ; Φ;H $I t : σ and t Ñ u. Then, φ; Φ;H $J u : σ,
where φ; Φ |ù J ¤ I.

Proof. By induction on the structure of a derivation Π for φ; Φ;H $I t : σ Let us examine the
distinct cases:
• If Π is

φ; Φ;H $J λx.t : ra   Is � σ ( τ
φ; Φ, a   I;H $K u : σ

φ; Φ;H $J�I�
°

a I K pλx.tqu : τ A

By Lemma 10, case 1, we have φ; Φ;x : ra   Is �σ $J t : τ . Then by lemma 11 we can conclude:

φ; Φ;H $L ttu{xu : u

for φ; Φ |ùE L ¤ J� I�
°
a I K.

• If Π is
φ; Φ;H $H 0 : NatrJ,Ks
φ; Φ, J ¤ 0;H $L v1 : τ
φ; Φ,K ¥ 1;H $L v2 : τ

φ; Φ;H $H�L ifz 0 then v1 else v2 : τ F

By Lemma 10, case 2, we have φ; Φ |ùE J ¤ 0. So, by Lemma 3 we can conclude φ; Φ;H $L

v1 : τ .

16



• If Π is
φ; Φ;H $H n� 1 : NatrJ,Ks
φ; Φ, J ¤ 0;H $L v1 : τ
φ; Φ,K ¥ 1;H $L v2 : τ

φ; Φ;H $H�L ifz n� 1 then v1 else v2 : τ F

By Lemma 10, case 3, we have φ; Φ |ùE J ¥ 1. So, by Lemma 3 we have φ; Φ;H $L v2 : τ .
• If Π is

φ; Φ $
Ï0,1

b I ¤ L,P
φ, b; Φ, b   L;x : ra   Is � σ $K t : τ

φ; Φ $ τt0{bu � µ

φ, a, b; Φ, a   I, b   L $ τt
Ïb�1,a

b I� b� 1{bu � σ

φ; Φ;H $P�1�
°

b L K fix x.t : µ R

Since φ; Φ |ùE 0   L, by Lemma 9 we have

φ; Φ;x : ra   It0{bus � σt0{bu $Kt0{bu t : τt0{bu.

Now, by Lemma 2, we can easily obtain that

φ; Φ $
0,1ï
b

I � 1�
¸

c It0{bu

0,1ï
b

Itb� 1�
1,cï
b

I{bu.

With some manipulations of the indices and by defining M to be

0,1ï
b

Itb� 1�
1,cï
b

I{bu

and N to be 1� b�
°
c a M we obtain

φ, a, b; Φ, a   It0{bu, b   Mta{cu;x : rd   ItN{bus � σtd{autN{bu $KtN{bu t : τtN{bu (7)

Moreover, since by Lemma 2 we have for every e:

¸
c e

M �
1,eï
b

I

we can show

0,1ï
b

ItN{bu �
0,1ï
b

It1� b�
¸
c a

M{bu �
0,1ï
b

It1� b�
1,aï
b

I{bu � Mta{cu (8)

By Lemma 9 and thanks to the fact that:

φ, a, b, d; Φ, a   It0{bu, b   Mta{cu, d   ItN{bu $

τtN{butb� 1�
b�1,dï
b

ItN{bu{bu � τtN� 1�
N�1,dï
b

I{bu

we also obtain:

φ, a, b, d; Φ, a   It0{bu, b   Mta{cu, d   ItN{bu $

τtN{butb� 1�
b�1,dï
b

ItN{bu{bu � σtd{autN{bu (9)

17



So, using the equations 7, 8 and 9 as premises in R rule application, we can conclude

φ; Φ, a   It0{bu;H $Mta{cu�1�
°

b Mta{cu KtN{bu fix x.t : τtNt0{bu{bu

But instantiating the last hypothesis of Π, we obtain

φ, a; Φ, a   It0{bu $ τt
1,aï
b

I� 1{bu � σt0{bu

By Lemma 2, we can prove that
1,aï
b

I� 1 � Nt0{bu

and, as a consequence, that

φ; Φ, a   It0{bu;H $Mta{cu�1�
°

b Mta{cu KtN{bu fix x.t : σt0{bu.

By the substitution Lemma 11 we obtain:

φ; Φ;H $H ttfix x.t{xu : τt0{bu

with
φ; Φ $ H ¤ Kt0{bu � It0{bu �

¸
a It0{bu

pMta{cu� 1�
¸

b Mta{cu

KtN{buq

By Lemma 5 we obtain the wanted type and since we have

φ; Φ $ Kt0{bu � It0{bu �
¸

a It0{bu

pMta{cu� 1�
¸

b Mta{cu

KtN{buq

¤
1,It0{buï

b

I�Kt0{bu �
¸

a It0{bu

¸
b Mta{cu

Kt1� b�
¸
c a

M{bu

and

φ; Φ $
1,It0{buï

b

I �
�

Kt0{bu �
¸

a It0{bu

¸
b Mta{cu

Kt1 � b �
¸
c a

M{bu
	
¤ P � 1 �

¸
b L

K

the conclusion follows.
This concludes the proof. l

4 Intensional Soundness

Subject reduction already implies an extensional notion of soundness for programs: if a term t
can be typed with H;H;H $K t : NatrI, Js, then its normal form (if any) is a natural number
between JIK and JJK. However, subject reduction does not tell us whether the evaluation of t
terminates, and in how much time. Has K anything to do with the complexity of evaluating t?
The only information that can be extracted from the Subject Reduction Theorem is that K does
not increase.

In this section, intensional soundness (Theorem 2 below) for the type system d`PCF will be
proved. A Krivine’s Machine KPCF for PCF programs will be first defined in Section 4.1. Given
a program (i.e. a closed term of base type), the machine KPCF either evaluates it to normal form
or diverges. A formal connection between the machine KPCF and the type system d`PCF will be
established by means of a weighted typability notion for machine configurations, introduced in
Section 4.2. This notion is the fundamental ingredient to keep track of the number of machine
steps.

18



Term Environment Stack Term Environment Stack
tu ρ ξ Ñ t ρ pu, ρq � ξ
λx.t ρ c � ξ Ñ t c � ρ ξ
x pt0, ρ0q � � � ptn, ρnq ξ Ñ tx ρx ξ

ifz t then u else v ρ ξ Ñ t ρ pu, v, ρq � ξ
fix x.t ρ ξ Ñ t pfix x.t, ρq � ρ ξ

n ρ s � ξ Ñ n� 1 ρ ξ
n ρ p � ξ Ñ n� 1 ρ ξ
0 ρ pt, u, µq � ξ Ñ t µ ξ

n� 1 ρ pt, u, µq � ξ Ñ u µ ξ
sptq ρ ξ Ñ t ρ s � ξ
pptq ρ ξ Ñ t ρ p � ξ

Figure 7: The KPCF machine transition steps.

4.1 The KPCF Machine

The Krivine’s Machine has been introduced as a natural device to evaluate pure lambda-terms
under a weak-head notion of reduction [Kri07]. Here, the standard Krivine’s Machine is extended
to a machine KPCF which handles not only abstractions and applications, but also constants,
conditionals and fixpoints.

The configurations of the machine KPCF, ranged over by C,D, . . ., are triples C � pt, ρ, ξq where
ρ and ξ are two additional constructions: ρ is an environment, that is a (possibly empty) finite
sequence of closures; while ξ is a (possibly empty) stack of contexts. Stacks are ranged over by
ξ, θ, . . .. A closure, as usual, is a pair c � pt, ρq where t is a term and ρ is an environment. A
context is either a closure, a term s, a term p, or a triple pu, v, ρq where u, v are terms and ρ is an
environment.

The transition steps between configurations of the machine KPCF are given in Figure 7. The
transition rules need some comments. First of all, a näıve management of name variables is used.
A more effective description could be, however, given by using the standard de Bruijn indexes.
Note that the triple pu, v, ρq is used as a context for the conditional construction; moreover, in a
recursion step, a copy of the recursive term is put in a closure on the top of the current environment.
As usual, the symbol Ñ� denotes the reflexive and transitive closure of the transition relation Ñ.
The relation Ñ� implements weak-head reduction. Weak-head normal form and the normal form
coincide for programs. So the machine KPCF is a correct device to evaluate programs. For this
reason, the notation t ó n can be used as a shorthand for pt, ε, εq Ñ� pn, ε, εq. Moreover, notations
like C ón could also be used to stress that C reduces to an irreducible configuration in exactly
n steps. The proof of the formal correctness of the implementation is outside the scope of this
paper, however it should be clear that it could be obtained as a simple extension of the original
one [Kri07].

Intensional soundness will be proved by studying how the weight I of any program t evolves
during the evaluation of t by KPCF. This is possible because every reduction step in t is decomposed
into a number of transitions in KPCF, and this decomposition highlights when, precisely, the weight
changes. The same would be more difficult when performing plain reduction on terms. Proving
intensional soundness this way requires, however, to keep track of the types and weights of all
objects in a machine configuration. In other words, the type system should be somehow generalized
to an assignment system on configurations.

4.2 Types and Weights for Configurations

Assigning types and weights to configurations amounts to somehow keeping track of the nature
of all terms appearing in environments and stacks. This is captured by the following complex,
although natural, definitions:

19



Definition 1 A closure pt, c1 � � � cnq is said to be pφ; Φq-typable with type σ and weight J if

φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn $K t : σ

and each ci is pφ, a; Φ, a   Iiq-typable with type τi and weight Hi (1 ¤ i ¤ n), and

φ; Φ |ù J � K� I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn.

A stack ξ is said to be pφ; Φq-acceptable for σ with weight J and type τ if either:
• ξ � ε, and φ; Φ |ù J � 0, and σ � τ ;
• or ξ � c � θ, σ � ra   Is � γ ( µ, c is pφ, a; Φ, a   Iq-typable with type γ and weight K, θ is
pφ; Φq-acceptable for µ with weight H and type τ and φ; Φ |ù J � H�

°
a I K� I;

• or ξ � s � θ, σ � NatrI,Ls and θ is itself pφ; Φq-acceptable for some NatrK,Hs with weight J
and type τ , where φ; Φ $ NatrI� 1,L� 1s � NatrK,Hs;

• or ξ � p � θ, σ � NatrI,Ls and θ is itself pφ; Φq-acceptable for some NatrK,Hs with weight J
and type τ , where φ; Φ $ NatrI � 1,L � 1s � NatrK,Hs;

• or ξ � pt, u, ρq � θ, σ � NatrI,Ls, pt, ρq is pφ; Φ, I ¤ 0q-typable with type µ and weight K, pu, ρq
is pφ; Φ,L ¥ 1q-typable with type µ and weight K, θ is pφ; Φq-acceptable for µ with weight H
and type τ , and φ; Φ |ù J � K�H.

A configuration pt, ρ, ξq is pφ; Φq-typable with type τ and weight I if the closure pt, ρq is pφ; Φq-
typable with type σ and weight K and the environment ξ is pφ; Φq-acceptable for σ with type τ and
weight J, and φ; Φ |ù I � J�K.

A formal connection between typed terms and typed configurations could be established as
expected, moreover, such connection could be shown to be preserved by reduction. However, the
following lemma will be sufficient in the sequel.

Lemma 12 Let t P P. Then, φ; Φ;H $I t : σ if and only if pt, ε, εq is pφ; Φq-typable with type σ
and weight I.

Proof. It follows immediately from the definition. l

Analogous notions of acceptability and typability can be given for PCF. They can be obtained by
simplifying those for d`PCF:

Definition 2 A closure pt, c1 � � � cnq is typable with type σ if x1 : τ1, . . . , xn : τn $ t : σ, and
each ci is itself typable with type τi (1 ¤ i ¤ n). A stack ξ is acceptable for σ with type τ if
either:
• ξ � ε and σ � τ ;
• or ξ � c � θ, σ � µ ( γ, c is typable with type µ, θ is acceptable for γ with type τ ;
• or ξ � s � θ, σ � Nat and θ is acceptable for Nat with type τ ;
• or ξ � p � θ, σ � Nat and θ is acceptable for Nat with type τ ;
• or ξ � pt, u, ρq � θ, σ � Nat, pt, ρq is typable with type µ, pu, ρq is typable with type µ, θ is

acceptable for µ with type τ .
A configuration pt, ρ, ξq is typable with type τ if the closure pt, ρq is typable with type σ and the
environment ξ is acceptable for σ with type τ .

4.3 Measure Decreasing and Intensional Soundness

An important property of Krivine’s Machine says that during the evaluation of programs only
subterms of the initial program are recorded in the environment. This justifies the notion of size
for configurations, denoted |C|, that will be used in the sequel. This is defined as |pt, ρ, ξq| � |t|�|ξ|.
The size |ξ| of a stack ξ is defined as the sum of sizes of its elements, and |pt, ρq| � |t|, |s| � 2,
|p| � 1, and |pt, u, ρq| � |t| � |u|. Moreover, another consequence of the same property is the
following lemma.

20



Lemma 13 Let t P P and let C � pt, ε, εq. Then, for each D � pu, ρ, ξq such that C Ñ� D and
for each v in ρ and ξ, |v| ¤ |t|.

Proof. Easy, by induction on the length of the reduction C Ñ� D. Infact, a strenghtening of the
statement is needed for induction to work. In particular, not only |v| ¤ |t| for every v in ρ and
ξ, but also for the non-head-subterms of u, where the set of head subterms of any term w can be
defined easily by induction on the structure of w, e.g. the head subterms of w � de are w itself
and the head subterms of d. l

Intensional Soundness (Theorem 2) will express the fact that for a program t P P such that
H;H;H $EI t : NatrJ,Ks, the number JIKEρ is a good estimate of the number of steps needed to
evaluate the program. Moreover, thanks to subject reduction, the numbers JJKEρ and JKKEρ give
an upper and a lower bound, respectively, to the result of such an evaluation. This is proved by
showing that during the reduction a measure, expressed as the combination of the weight and the
size of a configuration, decreases. This requires, in particular, to extend some of the properties
in Section 3.4 from terms to configurations. As an example, substitution holds on configurations,
too:

Lemma 14 If pt, ρq is pφ, a; Φq-typable with type σ and weight H, then it is also pφ; ΦtJ{auq-typable
with type σtJ{au and weight HtJ{au for every J such that φ,Φ |ùE J ó.

Proof. By induction on the definition of pφ; Φq-typability using Lemma 9. l

Moreover, we have:

Lemma 15 Let φ; Φ $ ra   Is�σ � ra   J�Ks�τ and let pt, ρq be pφ, a; Φ, a   Iq-typable with type
σ and weight H . Then, pt, ρq is also pφ, a; Φ, a   Jq-typable with type τ and weight H. Moreover,
pt, ρq is also pφ, a; Φ, a   Kq-typable with type τtJ� a{au and weight HtJ� a{au.

The key step towards intensional soundness is the following:

Lemma 16 (Measure Decreasing) Suppose pt, ε, εq Ñ� D Ñ E and let D be pφ; Φq-typable
with weight I and type σ. Then one of the following holds:
1. E is pφ; Φq-typable with weight J and type σ, φ; Φ |ù I � J but |D| ¡ |E|;
2. E is pφ; Φq-typable with weight J and type σ, φ; Φ |ù I ¡ J and |E|   |D| � |t|;

Proof. The proof is by cases on the reduction D Ñ E. Condition 1 can be shown to apply to all
the cases but the one in which D � px, c1 � � � cn, ξq. In that one, weight decreasing relies on the
side condition in the typing rule for variables, while the bound on the size increasing comes from
Lemma 13. We just present some cases, the others can be obtained analogously:
• Consider the case D � p ifz t1 then u else v, ρ, ξq is pφ; Φq-typable with weight I and type
γ. We want to prove the point 1, that is E � pt, ρ, pu, v, ρq � ξq is pφ; Φq-typable with weight
J and type γ where φ; Φ |ù I � J and |D| ¡ |E|. The latter (i.e. |D| ¡ |E|) is immediate,
so we consider the former. By definition we have for some σ and some J1,K such that I �
J1 �K:
(i) p ifz t1 then u else v, ρq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
Point piq implies that if ρ � c1, . . . , cn we have a situation like the following

φ; Φ;x1 : ra   I11s � µ1, . . . , xn : ra   I1ns � µn $J2 t1 : NatrL1,L2s
φ; Φ,L1 ¤ 0;x1 : ra   I21s � µ1tI11 � a{au, . . . , xn : ra   I2ns � µntI

1
n � a{au $K1 u : σ

φ; Φ,L2 ¥ 1;x1 : ra   I21s � µ1tI11 � a{au, . . . , xn : ra   I2ns � µntI
1
n � a{au $K1 v : σ

φ; Φ $ ra   Iis � τi � ra   I1i s � µi Z ra   I2i s � µitI
1
i � a{au

φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn $J2�H2 ifz t1 then u else v : σ

21



and for every 1 ¤ i ¤ n, ci is itself pφ, a; Φ, a   Iiq-typable with type τi and weight Hi and,
finally,

J1 � J2 �K1 � I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn.

By Lemma 15, we have that every ci for 1 ¤ i ¤ n is also pφ, a; Φ, a   I1i q-typable with type τi
and weight Hi and pφ, a; Φ, a   I2i q-typable with type τitI1i � a{au and weight HitI1i � a{au. So
we have that pt1, ρq is pφ; Φq-typable with type NatrL1,L2s and weight

J3 � K1 � I11 � . . .� I1n �
¸
a I11

H1 � . . .�
¸
a I1n

Hn

Analogously, we have that pu, ρq is pφ; Φ,L1 ¤ 0q-typable with type σ and weight

J4 � K1 � I21 � . . .� I2n �
¸
a I21

H1 � . . .�
¸
a I2n

Hn

Moreover, we have that pu, ρq is pφ; Φ,L2 ¥ 1q-typable with type σ and weight

J4 � K1 � I21 � . . .� I2n �
¸
a I21

H1tI11 � a{au � . . .�
¸
a I2n

HntI1n � a{au

So, by definition we have that pt, u, ρq is pφ; Φq-acceptable for NatrL1,L2s with type γ and
weight

J5 � J2�K1�I11�. . .�I1n�I21�. . .�I2n�
¸
a I11

H1�. . .�
¸
a I1n

Hn�
¸
a I21

H1tI11�a{au�. . .�
¸
a I2n

HntI1n�a{au

and this is clearly equal to J1, so the conclusion I � J1 �K � J5 �K � J follows.
• Consider the case D � pλx.t, ρ, c � ξq is pφ; Φq-typable with weight I and type γ. We want to

prove the point 1, that is E � pt, c � ρ, ξq is pφ; Φq-typable with weight J and type γ where
φ; Φ |ù I � J and |D| ¡ |E|. The latter (i.e. |D| ¡ |E|) is immediate, so we consider the
former. By definition we have for some σ and some J1,K such that I � J1 �K:
(i) pλx.t, ρq is pφ; Φq-typable with type σ and weight J1,
(ii) c � ξ is pφ; Φq-acceptable for type σ with weight K and type γ
By definition and by Generation Lemma 10, the point piq implies σ � ra   Ls � σ1 ( τ and
that if ρ � c1, . . . , cn we have a situation like the following

φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn, x : ra   Ls � σ1 $J2 t : τ
φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn $J2 λx.t : ra   Ls � σ1 ( τ

and for every 1 ¤ i ¤ n, ci is itself pφ, a; Φ, a   Iiq-typable with type τi and weight Hi and,
finally,

J1 � J2 � I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn.

By definition, point piiq implies that c is pφ, a; Φ, a   Lq-typable with type σ1 and weight K1

and, ξ is pφ; Φq-acceptable for type τ and weight H with type γ and K � H �
°
a L K1 � L.

Hence we have:

φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn, x : ra   Ls � σ1 $J2 t : τ

where c is pφ, a; Φ, a   Lq-typable with type σ1 and weight K1, and for every 1 ¤ i ¤ n,
ci is itself pφ, a; Φ, a   Iiq-typable with type τi and weight Hi. This means that pt, c � ρq is
pφ; Φq-typable with type τ and weight K2, where

K2 � J2 � I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn � L�
¸
a L

K1.

Moreover, since ξ is pφ; Φq-acceptable for type τ and weight H, we can conclude that E is
pφ; Φq-typable with weight J � K2 � H. Finally it is immediate to verify that φ; Φ |ùE I � J
and so the conclusion.

22



• Consider the case D � pn, ρ, s � ξq is pφ; Φq-typable with weight I and type γ. We want to
prove the point 1, that is E � pn� 1, ρ, ξq is pφ; Φq-typable with weight J and type γ where
φ; Φ |ù I � J and |D| ¡ |E|.
The latter is easy: |D| � |n| � |s � ξ| � n � 2 � |ξ| ¡ n � 1 � |ξ| � |n� 1| � |ξ| � |E|, so we
consider the former.
By definition we have for NatrH,Ls and some J1,K such that I � J1 �K:
(i) pn, ρq is pφ; Φq-typable with type NatrH,Ls and weight J1,
(ii) s � ξ is pφ; Φq-acceptable for type NatrH,Ls and weight K with type γ
The point piq implies that if ρ � c1, . . . , ck we have a situation like the following

φ; Φ |ù M ¥ 0 φ; Φ |ù H ¤ n φ; Φ |ù n ¤ L
φ; Φ;x1 : ra   I1s � τ1, . . . , xk : ra   Iks � τk $M n : NatrH,Ls

and for every 1 ¤ i ¤ n, ci is itself pφ, a; Φ, a   Iiq-typable with type τi and weight Hi and,
finally,

J1 � M� I1 � . . .� Ik �
¸
a I1

H1 � . . .�
¸
a Ik

Hk.

The point piiq implies that ξ is itself pφ; Φq-acceptable for type NatrH1,L1s and weight K with
type γ where φ; Φ $ NatrH� 1,L� 1s � NatrH1,L1s. So, in particular we have that:

φ; Φ |ù M ¥ 0 φ; Φ |ù H ¤ n φ; Φ |ù n ¤ L
φ; Φ;x1 : ra   I1s � τ1, . . . , xk : ra   Iks � τk $M n� 1 : NatrH1,L1s

and since for every 1 ¤ i ¤ n, ci is itself pφ, a; Φ, a   Iiq-typable with type τi and weight
Hi we have that pn� 1, ρq is pφ; Φq-typable with type NatrH1,L1s and weight J1, and ξ is
pφ; Φq-acceptable for type NatrH1,L1s and weight K with type γ. And so, the conclusion.

• Consider the case D � pfix x.t, ρ, ξq is pφ; Φq-typable with weight I and type γ. We want to
prove the point 1, that is E � pt, pfix x.t, ρq � ρ, ξq is pφ; Φq-typable with weight J and type γ
where φ; Φ |ù I � J and |D| ¡ |E|.
The latter is easy: |D| � |fix x.t| � |ξ| ¡ |t| � |ξ| � |E|, so we consider the former.
By definition we have for some µ and some J1,K such that I � J1 �K:
(i) pfix x.t, ρq is pφ; Φq-typable with type µ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type µ and weight K with type γ
The point piq implies that if ρ � c1, . . . , cn we have a situation like the following

φ, b; Φ, b   L; Γ, x : ra   Ps � σ $EK t : τ
φ; Φ $E τt0{bu � µ

φ, a, b; Φ, a   P, b   L $E τt
Ïb�1,a

b P� b� 1{bu � σ
φ; Φ $E Σ �

°
b L Γ

φ; Φ |ùE
Ï0,1

b P ¤ L,R

φ; Φ; Σ $ER�1�
°

b L K fix x.t : µ
R

with Σ � x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn and for every 1 ¤ i ¤ n, ci is itself pφ, a; Φ, a  
Iiq-typable with type τi and weight Hi and, finally,

J1 � R � 1�
¸
b L

K� I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn

By using manipulations of the indices similar to the one used in the proof of the Subject
Reduction, we can derive:

φ; Φ; Γ1x : ra   Pt0{bus � σt0{bu $EKt0{bu t : µ

for Γ1 such that φ; Φ $ Γ1 � Γt0{bu, and

φ; Φ, a   Pt0{bu; Σ1 $
E
Mta{cu�1�

°
b Mta{cu KtN{bu fix x.t : σt0{bu

23



for M �
Ï0,1

b Ptb � 1 �
Ï0,c

b P{bu and N � 1 � b �
°
c a M and φ; Φ, a   Pt0{bu $ Σ1 �°

b Mta{cu ΓtN{bu. In particular, we can choose Γ1 and Σ1 such that:

φ; Φ $ Σ �
¸

a Pt0{bu

Σ1 � Γ1 �
¸

a Pt0{bu

¸
b Mta{cu

ΓtN{bu � Γt0{bu �
¸
b L

Γ

So we have that pt, pfix x.t, ρq � ρq is pφ; Φq-typable with type µ and weight K2 where

K2 � Kt0{bu � Pt0{bu �
¸

a Pt0{bu

pMta{cu� 1�
¸

b Mta{cu

KtN{buq

� I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn

� R � 1�
¸
b L

K� I1 � . . .� In �
¸
a I1

H1 � . . .�
¸
a In

Hn � J1

Since by point piiq we have also that ξ is pφ; Φq-acceptable for type µ and weight K with type
γ, the conclusion.

• Consider the case D � pxm, ppt0, ρ0q, . . . , ptn, ρnqq, ξq is pφ; Φq-typable with weight I and type
γ. We want to prove the point 2, that is E � ptm, ρm, ξq is pφ; Φq-typable with weight J and
type γ where φ; Φ |ù I ¡ J and |E|   |D| � |t|. The latter (i.e. |E|   |D| � |t|) is immediate by
Lemma 13, so we consider the former. By definition we have for some σ and some J1,K such
that I � J1 �K:
(i) pxm, ppt0, ρ0q, . . . , ptn, ρnqqq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
The point piq implies a situation like the following where σ � τt0{au:

φ; Φ |ù J2 ¥ 0
φ; Φ $ ra   Ims � τm � ra   1s � τ

φ; Φ;x1 : ra   I1s � τ1, . . . , xn : ra   Ins � τn,$J2 xm : τt0{au

and for every 1 ¤ i ¤ n, pti, ρiq is itself pφ, a; Φ, a   Iiq-typable with type τi and weight Hi

and, finally,
J1 � J2 � I1 � . . .� In �

¸
a I1

H1 � . . .�
¸
a In

Hn.

So, in particular we have that ptm, ρmq is pφ, a; Φ, a   Imq-typable with type τm and weight
Hm. Since φ; Φ |ùE 1 ¤ Im, from Lemma 9 and since a is not free in Φ we have that ptm, ρmq is
also pφ; Φq-typable with type τt0{au and weight Hmt0{au. From this and point (ii) it follows
that E is pφ; Φq-typable with weight J � Hmt0{au�K. Now, note that by hypothesis we have
φ; Φ |ùE 1 ¤ Im and so in particular we have φ; Φ |ùE Hmt0{au   J1. Thus, the conclusion
φ; Φ |ùE I ¡ J follows.

This concludes the proof. l

It is worth noticing that if Φ is inconsistent, the inequality φ; Φ |ù I ¡ J in Lemma 16, point 2,
does not necessary imply weight decreasing. Indeed, intensional soundness only holds in presence
of a consistent set of constraints:

Theorem 2 (Intensional Soundness) Let H;H;H $I t : NatrJ,Ks and t ón m. Then,

n ¤ |t| � JIK

Proof. By induction on n, making essential use of Lemma 16 and Lemma 13. l

24



5 Relative Completeness

This section is devoted to proving relative completeness for the type system d`PCF. In fact,
two relative completeness theorems will be presented. The first one (Theorem 4) states relative
completeness for programs: for each PCF program t that evaluates to a numeral n there is a type
derivation in d`PCF whose index terms capture both the number of reduction steps and the value
of n. The second one (Theorem 5) states relative completeness for functions: for each PCF term
t : Nat Ñ Nat computing a total function f in time expressed by a function g there exists a
type derivation in d`PCF whose index terms capture both the extensional behaviour f and the
intensional property embedded into g.

Relative completeness does not hold in general. Indeed, it holds only when the underlying equa-
tional program E is universal, i.e. when it is sufficiently expressive to encode all total computable
functions. A universal equational program is introduced in Section 5.1.

Relative completeness for programs will be proved using a weighted form of subject expansion
(Theorem 3) similar to the one holding in intersection type theories. This will be proved in Section
5.2. The proof of relative completeness for functions needs a further step: a uniformization result
(Lemma 23) relying on the properties of the universal model. This is the subject of Section 5.3.

5.1 Universal Equational Program

Since the class of equational programs is clearly recursively enumerable, it can be put in one-to-one
correspondence with natural numbers, using a coding scheme x�y à la Gödel. Such a coding, as
usual, can be used to define a universal equational program U that is able to simulate all equational
programs (including itself).

Let xE , fy be the natural number coding an equational program E and a function symbol f
defined on it. This can be easily computed from (a description of) E and f. A signature ΣU
containing just the symbol empty of arity 0 and the symbols pair and eval of arity 2 is sufficient
to define the universal program U . For each f of arity n, the equational program U satisfies

JevalpxE , fy, pairingnpx1, . . . , xnqqKUρ � Jfpx1, . . . , xnqKEρ

where pairingnpt1, . . . , tnq is defined by induction on n:

pairing0 � empty;
pairingn�1pt1, . . . , tn�1q � pairppairingnpt1, . . . , tnq, tn�1q.

This way, U acts as an interpreter for any equational program.
The universal equational program U enjoys some nice properties which are crucial when proving

subject expansion. The following lemma says, for example, that sums and bounded sums can
always be formed (modulo �) whenever index terms are built and reasoned about using the
universal program:

Lemma 17 1. For every A and B such that p|A|q � p|B|q there are C and D such that φ;H $U

C � A, φ;H $U D � B and C ZD is defined.
2. For every A and I there is B such that φ, a;H $U B � A and

°
a IB is defined.

5.2 Subject Expansion and Programs Relative Completeness

Weighted subject expansion (Theorem 3) says that typing is preserved while weights increase
by at most one along any KPCF expansion step. This is somehow the converse of the Measure
Decreasing Lemma. Weighted subject expansion, however, does not hold in general but only when
the universal equational program U is considered.

In order to prove weighted subject expansion, only typing that carry precise weight information
should be considered. Formally, a configuration D is said to be pφ; Φq-precisely-typable with weight
I and type σ if it is pφ; Φq-typable with weight I and type σ by precise type derivations. The type

25



of a precisely-typable configuration, in other words, carries exact information about the value of
the objects at hand.

Furthermore, only particular typing transformations should be considered, namely those that
leave the weight information unaltered. In order to achieve this, some properties of pφ; Φq-
typability for the KPCF machine should be exploited. As an example, if a closure pt, ρq is pφ; Φq-
typable with type σ and weight I; then it is also pφ; Φq-typable with type τ and weight J for every
τ and J such that φ; Φ $ σ � τ and φ; Φ |ù I � J.

Finally, it is worth noticing that by considering an inconsistent set of constraints Φ, it is possible
to make a closure pt, ρq typable with type σ (in the sense of PCF) to be also pφ; Φq-typable with
type τ and weight I for each τ such that p|τ |q � σ and for each weight I. This says that inconsistent
sets cover a role similar to the ω-rule in intersection type systems.

The following two lemmas will be useful in the sequel:

Lemma 18 Let pt, ρq be pφ, a; Φ, a   Iq-typable with type σ and weight H and pφ, a; Φ, a   Jq-
typable with type σta� I{au and weight Hta� I{au. Then, pt, ρq is also pφ, a; Φ, a   I� Jq-typable
with type σ and weight H.

Proof. By simultaneous induction on the derivations that pt, ρq is typable with type σ and σta�
I{au and weight H and Hta� I{au respectively. Using the universal model properties. l

Lemma 19 Let pt, ρq be pφ, a, b; Φ, a   I, b   Jq-typable with type σt
°
c a Jtc{au�b{cu and weight

Ht
°
c a Jtc{au � b{cu. Then, pt, ρq is also pφ, a; Φ, c  

°
a I Jq-typable with type σ and weight H.

Proof. By induction on the derivations that pt, ρq is typable with type σt
°
c a Jtc{au� b{cu and

weight Ht
°
c a Jtc{au � b{cu. Using the universal model properties. l

It is now time to state weighted subject expansion, since all the necessary ingredients have been
introduced:

Theorem 3 (Weighted Subject Expansion) Let D be pφ; Φq-precisely-typable with weight I
and type σ and let C be typable with type p|σ|q. Then, C Ñ D implies that C is pφ; Φq-precisely-
typable with weight J and type σ where φ; Φ |ù J ¤ I� 1.

Proof. The proof is by cases on the shape of the reduction C Ñ D. We just present some cases,
the others can be obtained analogously.
• Consider the case

C � p0, ρ, pt, u, µq � ξq Ñ pt, µ, ξq � D

By assumption we have that C is typable and that D is pφ; Φq-precisely-typable with weight I
and type γ. So, for some J1,K and σ we have I � J1 �K where:
(i) pt, µq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
Since piq we clearly also have pt, µq is pφ; Φ, 0 ¤ 0q-typable with type σ and weight J1. Moreover,
since Φ, 1 ¤ 0 is an inconsistent set of constraints, and since C is typable, as remarked above,
we also have that pu, µq is pφ; Φ, 1 ¤ 0q-typable with type σ and weight J1. This means in
particular that pt, u, µq � ξ is pφ; Φq-acceptable for type Natr0s and weight J1 �K with type γ.
Now, assume that ρ � pt1, ρ1q � . . . � ptn, ρnq where pti, ρiq is typable with type τi. By Lemma
6 we can build a derivation for

φ; Φ;x1 : ra1   0s � τ1
1 , . . . , xn : ran   0s � τ1

n $0 0 : Natr0s

where each τ1
i is a decoration of τi. Moreover, since for every i the set of constraints Φ, ai   0

is inconsistent, as remarked above, we have that every pti, ρiq is pφ, ai; Φ, ai   0q-typable with
weight 0 and type τ1

i . So, we have that p0, ρq is pφ; Φq-typable with weight 0 and type Natr0s.
Summing up, we obtain that C is pφ; Φq-precisely-typable with weight 0� J1�K � I and type
γ and so the conclusion follows.

26



• Consider the case
C � pλx.t, ρ, c � ξq Ñ pt, c � ρ, ξq � D

By assumption we have that C is typable and that D is pφ; Φq-precisely-typable with weight I
and type γ. So, for some J1,K and σ we have I � J1 �K where:
(i) pt, c � ρq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
By piq we have

φ; Φ;x1 : ra1   I11s � σ
1
1 , . . . , xn : ran   I1ns � σ

1
n $L1 t : σ

and each ci P c � ρ is pφ, a; Φ, a   I1i q-typable with type σ1
i and weight H1

i where:

J1 � L1 � I11 � . . .� I1n �
¸
a1 I11

H1
1 � � � � �

¸
an I1n

H1
n

Without loss of generality we can consider the case where x � x1 and c � c1. So, in particular
we can build a derivation ending as

φ; Φ;x1 : ra1   I11s � σ
1
1 , . . . , xn : ran   I1ns � σ

1
n $L1 t : σ

φ; Φ;x2 : ra2   I12s � σ
1
2 , . . . , xn : ran   I1ns � σ

1
n $L1 λx1.t : ra1   I11s � σ

1
1 ( σ

and we have that pλx1.t, ρq is pφ; Φq-typable with type ra1   I11s � σ
1
1 ( σ and weight J2 where

J2 � L1 � I12 � . . .� I1n �
¸
a2 I12

H1
2 � � � � �

¸
an I1n

H1
n

Since clearly c1 is pφ, a; Φ, a   I11q-typable with type σ1
1 and weight H1

1, by definition we have
that c1 � ξ is pφ; Φq-acceptable for ra1   I11s � σ

1
1 ( σ and weight K� I11 �

°
a I11

H1
1 with type

γ. So we can conclude that D � pλx.t, ρ, c � ξq is pφ; Φq-typable with type γ and weight

J2 �K� I11 �
¸
a I11

H1
1

Since clearly
I � J1 �K � J2 �K� I11 �

¸
a I11

H1
1 � J

we have the conclusion.
• Consider the case

C � pfix x.t, ρ, ξq Ñ pt, pfix x.t, ρq � ρ, ξq � D

By assumption we have that C is typable and that D is pφ; Φq-precisely-typable with weight I
and type γ. So, for some J1,K and σ we have I � J1 �K where:
(i) pt, pfix x.t, ρq � ρq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
By piq we have

φ; Φ;x : ra   I10s � σ
1
0 ,Γ $L1 t : σ

where
Γ � x1 : ra1   I11s � σ

1
1 , . . . , xn : ran   I1ns � σ

1
n

and pfix x.t, ρq is pφ, a; Φ, a   I10q-typable with type σ1
0 and weight H1

0 and each ci P ρ is
pφ; Φ, ai   I1i q-typable with type σ1

i and weight H1
i where:

J1 � L1 � I10 �
¸
a0 I10

H1
0 � I11 � . . .� I1n �

¸
a1 I11

H1
1 � � � � �

¸
an I1n

H1
n

27



By the definition of precise-typability and by the fact that pfix x.t, ρq is pφ, a; Φ, a   I10q-typable
with type σ1

0 and weight H1
0 we have

φ, a; Φ, a   I10; ∆1 $L2 fix x.t : σ1
0

where H1
0 � L2 �M. Moreover, we have P,M1 and τ such that

L2 �
0,1ï
b

P � 1�
¸

b 
Ï0,1

b P

M1

and

φ, a, b; Φ, a   I10, b  
0,1ï
b

P;x : rc   Ps � τt
b�1,cï
b

P� b� 1{bu,∆ $M1 t : τ

with φ; Φ $ σ1
0 � τt0{bu and ∆1 �

°
b 
Ï0,1

b P ∆ � x1 : ra1   I21s �σ
2
1 , . . . , xn : ran   I2ns �σ

2
n and

M � I21 � . . .� I2n �
¸
a1 I21

H2
1 � � � � �

¸
an I2n

H2
n

where each ci P ρ is also pφ, a; Φ, a   I10, ai   I2i q-typable with type σ2
i and weight H2

i .
By manipulations of the indices similar (but in the opposite direction) to the ones used in the
proof of Subject Reduction and of the Intensional Soundness, and by using Lemma 17 we have
an index term N such that

0,1ï
b

N � 1�
¸
a I10

0,1ï
b

P

and

φ, b; Φ, b  
0,1ï
b

N;x : ra   Ns � µ1,Σ $L3 t : µ

where:

φ, b; Φ, b � 0 $ µ � σ and φ, b; Φ, b ¡ 0, b  
0,1ï
b

N $ µ � τ

and

φ, b; Φ, b � 0 $ µ1 � σ1
0 and φ, b, a; Φ, a   N, b ¡ 0, b  

0,1ï
b

N $ µ1 � τt
b�1,aï
b

P�b�1{bu

and

φ, b; Φ, b � 0 $ L3 � L1 and φ, b; Φ, b ¡ 0, b  
0,1ï
b

N $ L3 � M1

Analogously we have:

φ, b; Φ, b � 0 $ Σ � Γ and φ, b; Φ, b ¡ 0, b  
0,1ï
b

N $ Σ � ∆

So, by using again the R rule we obtain:

φ; Φ;
¸

b 
Ï0,1

b N

Σ $Ï0,1
b N�1�

°
b 
Ï0,1

b
N

L3
fix x.t : σ

Note in particular that we have:¸
b 
Ï0,1

b N

Σ � ΓZ
¸

b 
Ï0,1

b N�1

∆ � Γ�
¸
a I10

¸
b 
Ï0,1

b P

∆

28



So, suppose ¸
b 
Ï0,1

b N

Σ � x1 : ra1   I11 �
¸
a I10

I21s � σ
3
1 , . . . , xn : ran   I1n �

¸
a I10

I2ns � σ
3
n

where with some manipulations of the indices we have σ3
i � σ1

i and σ3
i tai� I1i �

°
c a I2i {aiu �

σ2
i . Similarly we have H3

i such that H3
i � H1

i and H3
i tai � I1i �

°
c a I2i {aiu � H2

i .
Since as outlined above, we have that ci P ρ is pφ, ai; Φ, ai   I1i q-typable with type σ1

i and weight
H1
i and also that each ci P ρ is pφ, a, ai; Φ, a   I10, ai   I2i q-typable with type σ2

i and weight
H2
i , by Lemma 18 and Lemma 19 we have that each ci P ρ is also pφ, ai; Φ, ai   I1i �

°
a I10

I2i q-
typable with type σ3

i and weight H3
i .

From this follows that pfix x.t, ρq is pφ; Φq-typable with type σ and weight:

� 0,1ï
b

N � 1�
¸

b 
Ï0,1

b N

L3

	
�
�

I11 �
¸
a I10

I21
	
� � � � �

�
I1n �

¸
a I10

I2n
	
�

¸
a1 pI11�

°
a I10

I21q

H3
1 � � � � �

¸
an pI1n�

°
a I10

I2nq

H3
n

Since: ¸
a I1i�

°
a I10

I21

H3
i �

¸
ai I1i

H1
i �

¸
ai 
°

a I10
I2i

H2
i �

¸
ai I1i

H1
i �

¸
a I10

¸
ai I2i

H2
i

what remains to show is that the weight is preserved. This is a consequence of the following:

0,1ï
b

N � 1�
¸

b 
Ï0,1

b N

L3 �
�

1�
¸
a I10

0,1ï
b

P
	
� 1� L1 �

�
L1 �

¸
a I10

¸
b 
Ï0,1

b P

M1

	

� L1 � I10 �
¸
a I10

� 0,1ï
b

P � 1�
¸

b 
Ï0,1

b P

M1

	
� L1 � I10 �

¸
a I10

L2

So, we have that pfix x.t, ρq is also pφ, a; Φq-typable with type σ and weight J1. Since ξ is
pφ; Φq-acceptable for type σ and weight K with type γ, we can conclude that D � pfix x.t, ρ, ξq
is pφ; Φq-typable with type γ and weight I � J1 �K � J and so we have the conclusion.
• Consider the case

C � p ifz t then u else v, ρ, ξq Ñ pt, ρ, pu, v, ρq � ξq � D

By assumption we have that C is typable and that D is pφ; Φq-precisely-typable with weight I
and type γ. So, for some J1,K and σ we have I � J1 �K where:
(i) pt, ρq is pφ; Φq-typable with type σ and weight J1,
(ii) pu, v, ρq � ξ is pφ; Φq-acceptable for type σ and weight K with type γ
So, in particular by piiq and by the definition of precise-typability we have σ � NatrK1,K1s
for some K1 and K � K2 �K3 where pu, ρq is pφ; Φ,K1 ¤ 0q-precisely-typable with type τ and
weight K2, and pv, ρq is pφ; Φ,K1 ¥ 1q-precisely-typable with type τ and weight K2 and ξ is
pφ; Φq-acceptable for type τ and weight K3 with type γ. By piq we have

φ; Φ;x1 : ra1   I11s � σ
1
1 , . . . , xn : ran   I1ns � σ

1
n $L1 t : NatrK1,K1s

and each pti, ρiq P ρ is pφ, a; Φ, a   I1i q-typable with type σ1
i and weight H1

i where:

J1 � L1 � I11 � . . .� I1n �
¸
a1 I11

H1
1 � � � � �

¸
an I1n

H1
n

Analogously, by piiq we have

φ; Φ,K1 ¤ 0;x1 : ra1   I21s � σ
2
1 , . . . , xn : ran   I2ns � σ

2
n $L2 u : τ

29



and each pti, ρiq P ρ is pφ, a; Φ,K1 ¤ 0, a   I2i q-typable with type σ2
i and weight H2

i , where:

K2 � L2 � I21 � . . .� I2n �
¸
a1 I21

H2
1 � � � � �

¸
an I2n

H2
n

Moreover,
φ; Φ,K1 ¥ 1;x1 : ra1   I31s � σ

3
1 , . . . , xn : ran   I3ns � σ

3
n $L3 v : τ

and each pti, ρiq P ρ is pφ, a; Φ, J2 ¤ 0, a   I3i q-typable with type σ3
i and weight H3

i , where:

K2 � L3 � I31 � . . .� I3n �
¸
a1 I21

H3
1 � � � � �

¸
an I3n

H3
n

One between φ; Φ,K1 ¥ 1 and φ; Φ,K1 ¤ 0 is clearly inconsistent. Without loss of generality
suppose the latter, this means that we have

φ; Φ,K1 ¥ 1;x1 : ra1   I21s � σ
2
1 , . . . , xn : ran   I2ns � σ

2
n $L2 v : τ

and each pti, ρiq P ρ is pφ, a; Φ, J2 ¤ 0, a   I2i q-typable with type σ2
i and weight H2

i . Moreover,
since by asssumption p|rai   I1i s �σ

1
i |q � p|rai   I2i s �σ

2
i |q by Lemma 17 we have types rai   I4i s �σ

4
i

and rai   I5i s�σ
5
i with φ;H $ rai   I4i s�σ

4
i � rai   I1i s�σ

1
i and φ;H $ rai   I5i s�σ

5
i � rai   I2i s�σ

2
i

and such that φ $ rai   I4i s � σ
4
i Z rai   I5i s � σ

5
i . So we can build a derivation as

φ; Φ;x1 : ra1   I41s � σ
4
1 , . . . , xn : ran   I4ns � σ

4
n $L1 t : NatrK1,K1s

φ; Φ,K1 ¤ 0;x1 : ra1   I51s � σ
5
1 , . . . , xn : ran   I5ns � σ

5
n $L2 u : τ

φ; Φ,K1 ¥ 1;x1 : ra1   I51s � σ
5
1 , . . . , xn : ran   I5ns � σ

5
n $L2 v : τ

φ; Φ;x1 : ra1   I41 � I51s � σ
4
1 , . . . , xn : ran   I4n � I5ns � σ

4
n $L1�L2 ifz t then u else v : τ

Moreover, by the properties of the subtyping equivalence stressed above, by the properties of
the universal model and by Lemma 18 we have that each pti, ρiq P ρ is pφ, a; Φ, a   I4i � I5i q-
typable with type σ4

i and weight H1
i . So, p ifz t then u else v, ρq is typable with type τ and

weight
J2 � L1 � L2 � I41 � I51 � . . .� I4n � I5n �

¸
I41�I51

H1
1 � � � � �

¸
I4n�I5n

H1
n

So, clearly I � J1 �K2 �K3 � J2 �K3 � J and so the conclusion.
• Consider the case

C � pxm, ppt0, ρ0q, . . . , ptn, ρnqq, ξq Ñ ptm, ρm, ξq � D

By assumption we have that C is typable with type γ and that D is pφ; Φq-typable with weight
I. So, in particular, each pt0, ρ0q is typable with some type µi. Moreover, we have that for
some J1,K and σ we have I � J1 �K and:
(i) ptm, ρmq is pφ; Φq-typable with type σ and weight J1,
(ii) ξ is pφ; Φq-acceptable for type σ and weight K with type γ
Clearly, for a fresh a from piq we have also that ptm, ρmq is pφ, a; Φ, a   1q-typable with type
σ and weight J1. So, for xm we can consider a derivation as:

φ; Φ |ù ra   1s � σ � ra   1s � σ
φ; Φ;x1 : ra1   0s � σ1, . . . , xm : ra   1s � σ, . . . , xn : ran   0s � σn $0 xm : σt0{au � σ

where p|σi|q � µi. Since clearly each Φ, ai   0 is inconsistent, we also have that each pti, ρiq
with 1 ¤ i ¤ n and i � m is pφ, ai; Φ, ai   0q-typable with type σi and weight 0. So, we have
that pxm, ppt0, ρ0q, . . . , ptn, ρnqqq is pφ; Φq-typable with type σ and weight H � 0�1�

°
a 1 J1 �

1� J1. Thus, C is pφ; Φq-typable with weight J � 1� J1�K and type γ and so the conclusion
follows.

l

30



Relative completeness for programs is a direct consequence of weighted subject expansion:

Theorem 4 (Relative Completeness for Programs) Let t be a PCF program such that t ón

m. Then, there exist two index terms I and J such that JIKU ¤ n and JJKU � m and such that the
term t is typable in d`PCF as H;H;H $UI t : NatrJs.

Proof. By induction on n using the Weighted Subject Expansion Theorem and Lemma 12. l

5.3 Uniformization and Relative Completeness for Functions

It is useful to recall that by relative completeness for functions we mean the following: for each
PCF term t computing a total function f in time expressed by a function g there exists a type
derivation in d`PCF whose index terms capture both the extensional functional behaviour f and
the intensional property g. Anticipating on what follows, and using an intuitive notation, this can
be expressed by a typing judgement similar to

a;H;x : Natras $gpaq t : Natrfpaqs.

In order to show this form of relative completeness, a uniformization result for type derivations
needs to be proved.

Suppose that tπunPN is a sufficiently “regular” (i.e. recursively enumerable) family of type
derivations such that any πn is mapped by p| � |q to the same PCF type derivation. Uniformization
tells us that with the hypothesis above, there is a single type derivation π which captures the
whole family tπnunPN. In other words, uniformization is as an extreme form of polymorphism.
Note that, for instance, uniformization does not hold in intersection types, where uniform typing
permits only to define small classes of functions [Lei90, BLPS99, BPS03].

More formally, a family tπnunPN of type derivations is said to be recursively enumerable if there
is a computable function f which, on input n, returns (an encoding of) πn. Similarly, recursively
enumerable families of index terms, types and modal types can be defined.

Before embarking on the proof of uniformization for type derivations, it makes sense to prove
the same result for index terms and types, respectively.

Lemma 20 (Uniformizing Index Terms) Suppose that:
1. tInunPN is recursively enumerable, where for every n P N, In is an index term on a signature

ΣU ;
2. There is a finite set of variables φ � a1, . . . , am such that any variables appearing in any In is

in φ
Then there is a term I on the signature ΣU such that φ;H $U Itn{au � In for every n.

Proof. Consider the function f : Nm�1 Ñ N defined as follows:

px0, x1, . . . , xmq ÞÑ JIx0K
ra1Ðx1,...,anÐxms
Ex0

An algorithm computing f can be defined as follows:
• From x0, compute Ix0 . Again, this can be done effectively.
• Evaluate Ix0 where the variables a1, . . . , an takes values x1, . . . , xn, respectively.

In other words, f is computable. Thus, the existence of a term I like the one required is a
consequence of the universality of the equational program U . l

Lemma 21 (Uniformizing Types and Modal Types) Suppose that tπnunPN is recursively enu-
merable and that:
1. for every n P N, πn : φ; Φn $U σn ó;
2. for every n,m P N, p|σn|q � p|σm|q;
3. every Φn have the form In1 ¤ Jn1 , . . . , I

n
m ¤ Jnm, where m does not depend on n.

Then there is one type σ and one derivation π such that:
1. π : φ, a; Φ $U σ ó;

31



2. Φ � I1 ¤ J1, . . . , Im ¤ Jm
3. for every 1 ¤ p ¤ m, both φ;H $U Iptn{au � Inp and φ;H $U Jptn{au � Jnp .
4. for every n P N, it holds that φ; Φ $U σtn{au � σn.
Moreover, the same statement holds for modal types.

Proof. The proof goes by induction on the structure of the type p|σ0|q and of the modal type
p|A0|q. An essential ingredient in the proof is, of course, Lemma 20. l

Lemma 22 1. If for every n P N it holds that φ; Φtn{au $U Itn{au � Jtn{au, then φ, a; Φ $U

I � J.
2. If for every n P N it holds that φ; Φtn{au $U Itn{au � Jtn{au, then φ, a; Φ $U I � J.
3. If for every n P N it holds that φ; Φ $U σtn{au � τtn{au, then φ, a; Φtn{au $U σ � τ .

Lemma 23 (Uniformizing Type Derivations) Suppose tπnunPN recursively enumerable, and
that:
1. for every n P N, πn : φ; Φn; Γn $UIn

t : σn;
2. for every n P N, Φn � Jn1 ¤ Kn

1 , . . . , J
n
m ¤ Kn

m where m does not depend on n;
3. for every n,m P N, p|Γn|q � p|Γm|q;
4. for every n,m P N, p|σn|q � p|σm|q.
Then there is one type derivation π such that:
1. π : φ, a; Φ; Γ $UI t : σ;
2. Φ � J1 ¤ K1, . . . , Jm ¤ Km where φ;H |ùU Jptn{au � Jnp and φ;H |ùU Kptn{au � Kn

p for
every n P N and for every 1 ¤ p ¤ m.

3. φ;H $U σtn{au � σn for every n P N;
4. φ;H $U Γtn{au � Γn for every n P N;
5. φ;H |ùU Itn{au � In for ever n P N.

Proof. The proof goes by induction on the structure of t. Some interesting cases:
• If t is a variable x, then the type derivations πn all have the following shape:

φ; Φn $U ra   Kns � σn � ra   1s � τn
φ; Φn; Γn, x : ra   Kns � σn $

U
Jn
x : τnt0{au

V

By the hypothesis 2. and by Lemma 20, all the Φn can be made uniform into a single Φ
with the desired properties. Also by Lemma 20, all the Jn can be made uniform into a single
J. The same holds for the Γn, using hypothesis 3 and Lemma 21. Now, observe that all the
ra   Kns � σn have the same PCF skeleton. By Lemma 21, they can be made uniform into a
single modal type ra   Ks � σ. The same for ra   1s � τn. By Lemma 22, we obtain that

φ, b; Φ $E ra   Ks � σ � ra   1s � τ

since φ; Φtn{au |ùU Φn. We can the conclude that

φ, b; Φ $U ra   Ks � σ � ra   1s � τ

φ, b; Φ; Γ, x : ra   Ks � σ $UJ x : τt0{au
V

This concludes the proof. l

Uniformization is the key to prove relative completeness for functions from relative complete-
ness for programs:

Theorem 5 (Relative Completeness for Functions) Suppose that t is a PCF term such that
$ t : Nat Ñ Nat. Moreover, suppose that there are two (total and computable) functions f, g :
N Ñ N such that t n ógpnq fpnq. Then there are terms I, J,K with JI� JK ¤ g and JKK � f , such
that

a;H;H $UI t : rb   Js � Natras ( NatrKs.

32



Proof. A consequence of relative completeness for programs (Theorem 4) and Lemma 23. In-
deed, a type derivation for a;H;H $I t : rb   Js � Natras ( NatrKs can be obtained simply by
uniformizing all type derivations πn for programs in the form tn. In turn, those type derivations
can be built effectively by way of subject expansion. l

6 On the Undecidability of Type Checking

As we have seen in the last two sections, d`PCF is not only sound, but complete: all true typing
judgements involving programs can be derived, and this can be indeed lifted to first-order functions,
as explained in Section 5.3.

There is a price to pay, however. Checking a type derivation for correctness is undecidable in
general, simply because it can rely on semantic assumptions in the form of inequalities between
index terms, or on subtyping judgements, which themselves rely on the properties of the underlying
equational program E . If E is sufficiently involved, e.g. if we work with U , there is no hope to
find a decidable complete type checking procedure. In this sense, d`PCF is a non-standard type
system.

Indeed, d`PCF is not actually a type system, but rather a framework in which various distinct
type systems can be defined. Concrete type systems can be developed along two axis: on the one
hand by concretely instantiating E , on the other by choosing specific and sound formal systems for
the verification of semantic assumptions. This way sound and possibly decideable type systems
can be derived. Even if completeness can only be achieved if E is universal, soundness holds
for every equational program E . Choosing a simple equational program E results in a (probably
incomplete) type system for which the problem of checking the inequalities can be much easier, if
not decidable. And even if E remains universal, assumptions could be checked using techniques
such as abstract interpretation or theorem proving.

By the way, the just described problem is not peculiar to d`PCF. Unsurprisingly, program
logics have the same problem, since the rule

pñ r truP tsu sñ q

tpuP tqu

is part of most relatively complete Hoare-Floyd logics and, of course, the premises p ñ r and
sñ q have to be taken semantically for completeness to hold.

7 d`PCF and Implicit Computational Complexity

One of the original motivations for the studies which lead to the definition of d`PCF came from
Implicit Computational Complexity. There, one aims at giving characterizations of complexity
classes which can often be turned into type systems or static analysis methodologies for the
verification of resource usage of programs. Historically [Hof00, Mar00], what prevented most ICC
techniques to find concrete applications along this line was their poor expressive power: the class
of programs which can be recognized as being efficient by (tools derived from) ICC systems is often
very small and does not include programs corresponding to natural, well-known algorithms. This
is true despite the fact that ICC systems are extensionally complete — they capture complexity
classes seen as classes of functions.

The kind of intensional completeness enjoyed by d`PCF is much stronger: all PCF programs
with a certain complexity can be proved to be so by deriving a typing judgement for them.

Of course, d`PCF is not at all an implicit system: bounds appear everywhere! On the other
hand, d`PCF allows to analyze the time complexity of higher-order functional programs directly,
without translating them into low level programs. In other words, d`PCF can be viewed as an
abstract framework where to experiment new implicit computational complexity techniques.

33



8 Related Work

Other type systems can be proved to satisfy completeness properties similar to the ones enjoyed
by d`PCF.

The first example that comes to mind is the one of intersection types. In intersection type dis-
ciplines, the class of strongly and weakly normalizable lambda terms can be captured [DCGdL98].
Recently, these results have been refined in such a way that the actual complexity of reduction of
the underlying term can be read from its type derivation [dC09, BL11]. What intersection types
lack is the possibility to analyze the behaviour of a functional term in one single type derivation
— all function calls must be typed separately [Lei90, BLPS99, BPS03]. This is in contrast with
Theorem 5 which gives a unique type derivation for every PCF program computing a total function
on the natural numbers.

Another example of type theories which enjoy completeness properties are refinement type
theories [FP91], as shown in [Den98]. Completeness, however, only holds in a logical sense: any
property which is true in all Henkin models can be captured by refinement types. The kind of
completeness we obtain here is clearly more operational: the result of evaluating a program and
the time complexity of the process can both be read off from its type.

As already mentioned in the Introduction, linear logic has been a great source of inspiration
for the authors. Actually, it is not a coincidence that linear logic was a key ingredient in the
development of one of the earliest fully-abstract game models for PCF. Indeed, d`PCF can be seen
as a way to internalize history-free game semantics [AJM00] into a type system. And already BLL
and QBAL, both precursors of d`PCF, have been designed being greatly inspired by the geometry
of interaction. d`PCF is a way to study the extreme consequences of this idea, when bounds are
not only polynomials but arbitrary first-order total functions on natural numbers.

References

[AdBO09] K. R. Apt, F. S. de Boer, and E.-R. Olderog. Verification of Sequential and Concurrent
Programs. T. in Comp. Sci. Springer-Verlag, 2009.

[AJM00] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full abstraction for
PCF. I & C, 163(2):409–470, 2000.

[BGM10] Patrick Baillot, Marco Gaboardi, and Virgile Mogbil. A polytime functional language
from light linear logic. In ESOP, volume 6012 of LNCS, pages 104–124. Springer, 2010.

[BGR08] Gilles Barthe, Benjamin Grégoire, and Colin Riba. Type-based termination with sized
products. In CSL, volume 5213 of LNCS, pages 493–507. Springer, 2008.

[BL11] Alexis Bernadet and Stéphane Lengrand. Complexity of strongly normalising λ-terms
via non-idempotent intersection types. In FOSSACS, volume 6604 of LNCS, pages
88–107. Springer, 2011.

[BLPS99] A. Bucciarelli, S. De Lorenzis, A. Piperno, and I. Salvo. Some computational prop-
erties of intersection types. In LICS, pages 109–118. IEEE Comp. Soc., 1999.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[BPS03] Antonio Bucciarelli, Adolfo Piperno, and Ivano Salvo. Intersection types and lambda-
definability. MSCS, 13(1):15–53, 2003.

[BT09a] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation
in lambda calculus. I & C, 207(1):41–62, 2009.

[BT09b] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation
in lambda calculus. Inf. Comput., 207(1):41–62, 2009.

34



[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM J. on Computing, 7:70–90, 1978.

[dC09] Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and
intersection types. CoRR, abs/0905.4251, 2009.

[DCGdL98] Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Ugo de’ Liguoro. Intersec-
tion Types, Lambda-models and Böhm Trees. In “Theories of Types and Proofs”,
volume 2, pages 45–97. Math. Soc. of Japan, 1998.

[Den98] Ewen Denney. Refinement types for specification. In IFIP-PROCOMET, pages 148–
166, 1998.

[DL09] Ugo Dal Lago. Context semantics, linear logic and computational complexity. ACM
TOCL, 10(4), 2009.

[DLH09] Ugo Dal Lago and Martin Hofmann. Bounded linear logic, revisited. In TLCA,
volume 5608 of LNCS, pages 80–94. Springer, 2009.

[FP91] Tim Freeman and Frank Pfenning. Refinement types for ML. In PLDI, pages 268–277,
1991.

[Gir87] J.-Y. Girard. Linear logic. Theor. Comp. Sci., 50:1–102, 1987.

[Gro01] Bernd Grobauer. Cost recurrences for DML programs. In ICFP, pages 253–264, 2001.

[GSS92] J.Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. Theor. Comp. Sci.,
97(1):1–66, 1992.

[Gun92] Carl A. Gunter. Semantics of Programming Languages: Structures and Techniques.
Found. of Comp. Series. MIT Press, 1992.

[HAH11] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource
Analysis. In ACM POPL, pages 357–370, 2011.

[Hof99] M. Hofmann. Linear types and non-size-increasing polynomial time computation. In
LICS, pages 464–473. IEEE Comp. Soc., 1999.

[Hof00] Martin Hofmann. Programming languages capturing complexity classes. ACM
SIGACT News, 31:31–42, 2000.

[JHLH10] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loid, and Martin Hofmann. Static
Determination of Quantitative Resource Usage for Higher-Order Programs. In ACM
POPL, Madrid, Spain, 2010.

[KO09] Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-
calculus model checking of higher-order recursion schemes. In LICS, pages 179–188.
IEEE Comp. Soc., 2009.

[Kri07] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 20(3):199–207, 2007.

[Lei90] Daniel Leivant. Discrete polymorphism. In ACM LFP, pages 288–297. ACM Press,
1990.

[Mar00] J.-Y. Marion. Complexité implicite des calculs, de la théorie à la pratique. Habilitation
thesis, Université Nancy 2, 2000.

[Odi89] Piergiorgio Odifreddi. Classical Recursion Theory: the Theory of Functions and Sets
of Natural Numbers. Number 125 in Studies in Logic and the Foundations of Mathe-
matics. North-Holland, 1989.

35



[Plo77] Gordon D. Plotkin. LCF considerd as a programming language. Theor. Comp. Sci.,
5:225–255, 1977.

[SM03] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE JSAC, 21(1):5–19, 2003.

[VIS96] Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. A sound type system for
secure flow analysis. JCS, 4(2/3):167–188, 1996.

[Xi01] Hongwei Xi. Dependent types for program termination verification. In LICS, pages
231–246. IEEE Comp. Soc., 2001.

[Xi07] Hongwei Xi. Dependent ml an approach to practical programming with dependent
types. J. of Funct. Progr., 17(2):215–286, 2007.

[XP99] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In
ACM POPL, pages 214–227, 1999.

36


