
A Core Quantitative Coeffect Calculus

Alöıs Brunel1, Marco Gaboardi2, Damiano Mazza1, and Steve Zdancewic3

1 CNRS, UMR 7030, LIPN, Université Paris 13, Sorbonne Paris Cité
2 University of Dundee

3 University of Pennsylvania

Abstract. Linear logic is well known for its resource-awareness, which
hasvinspired the design of several resource management mechanisms in
programming language design. Its resource-awareness arises from the dis-
tinction between linear, single-use data and non-linear, reusable data.
The latter is marked by the so-called exponential modality, which, from
the categorical viewpoint, is a (monoidal) comonad.
Monadic notions of computation are well-established mechanisms used to
express effects in pure functional languages. Less well-established is the
notion of comonadic computation. However, recent works have shown the
usefulness of comonads to structure context dependent computations.
In this work, we present a language `RPCF inspired by a generalized
interpretation of the exponential modality. In `RPCF the exponential
modality carries a label—an element of a semiring R—that provides
additional information on how a program uses its context. This additional
structure is used to express comonadic type analysis.

1 Introduction

Linear Types. The ideas of linear logic [17] have found several applications
in programming languages. The most popular aspect of linear logic is certainly
the distinction it makes between objects that can be used exactly once and ob-
jects that can be used several times—zero or more. This distinction allows type
systems to introduce the concept of usage that can be exploited to reason about
resources in various contexts such as explicit memory management, complex-
ity analysis or process specification. The explicit manipulation of resources is
obtained formally by introducing the so-called exponential modality ! that dis-
tinguishes two kinds of types linear A,B, . . .—for objects that can be used only
once—and non-linear !A, !B, . . .—for objects that can be used several times.

Monads and effects. The use of monads in programming languages, origi-
nally introduced in category theory, was pioneered by Moggi [28] as a way to
structure the semantics of his computational lambda calculus. The use of monads
was further advocated by Wadler [39] and they have since found important appli-
cations in the development of Haskell. A monad T represents a notion of compu-
tation from a value that is obtained by distinguishing value types A,B, . . .—the
types of the language values—from computation types TA, TB, . . .—the types
of computations over values. From a different perspective a monadic type TA
can be seen as a computation that outputs a value of type A and that pro-
duces the effect described by T on its environment—e.g. a change in the state,

input-output operations, etc. Effect systems [35] were developed independently
as a way to use static type analysis to understand how programs influence their
environment. Besides this superficial correspondence, monads and effect systems
are indeed intimately related as shown by Wadler [40].

Comonads and coeffects. A comonad is the categorical dual of a monad.
While monads have grown very popular in the recent years, comonads are still
not well-known and probably less understood. Recent works [37, 38, 32] have pro-
posed to interpret a comonad D as a notion of value in a context that is obtained
by distinguishing value types A,B, . . .—the types of the language values—from
contextual types DA,DB, . . .—the types of values in contexts. From a different
perspective, a comonadic type DA can be seen as a computation that consumes
a value of type A producing the coeffect described by D on its environment. The
coeffect described by D can be seen as a requirement of the program with respect
to the environment—e.g. the availability of a resource, a specific prerequisite on
the input, etc. A general theory of coeffect systems has not yet been established,
but some steps in this direction have been recently proposed [32].

Our contributions. It is not difficult to see a common pattern here. Indeed,
linear types, monads and comonads are all ways to structure computations by
interpreting types in two different ways. The correspondence clearly goes farther:
as we already said, monad and comonad are dual notions; moreover, it is a well-
known fact that the linear logic exponential modality ! has the structure of a
(monoidal) comonad [26]; finally, both the computational λ-calculus and the
linear λ-calculus can be embedded in the adjoint calculus, where their relations
is revealed through an adjunction [6].

Besides these technical similarities, one may wonder if the comonadic struc-
ture of the modality ! can also be used to design general comonadic analyses.

The answer we give in the present work is affirmative. Starting from linear
logic, we derive a core PCF-like comonadic language, named `RPCF, that is
able to express at the same time quantitative reasoning and general comonadic
reasoning. Our proposal follows a simple remark (which will not surprise linear
logic semantics experts): in many concrete models of linear logic several different
interpretations of the ! modality (in terms of abstract resources) are possible. In
the present work, we make explicit in the syntax these different interpretations by
introducing a modality !r indexed by an element r of an abstract structure R—
a structural semiring—that naturally arises from the structural rules of linear
logic. Interestingly, this abstract structure also permits general coeffect analyses
like the ones previously studied by Petricek et al. [32]

A key ingredient of `RPCF is the presence of explicit co-handlers coeff, which
are typed primitives performing an action r ∈ R on the context. For instance,
a first example of a simple co-handler in the context of clocked dataflow pro-
gramming [37, 38, 32], is the primitive next that shifts the clock of the input
signal s one step forward. This operation can be seen as a co-handler requiring
that the context be able to provide signal information one step in the future. To
express this requirement in our framework one can add a co-handler next with
the associated action 1 on the context. In fact, `RPCF is parametrized over the

structure R and the set of co-handlers. Hence, different comonadic analyses may
be performed using different primitives and different structures R.

The focus of our work is on providing a framework for specifying sound type
analyses even in the presence of operations—like co-handlers—that change the
semantics of the language in terms of contextual operations. For this reason, we
instrument the language and the operational semantics—presented in the form
of an abstract machine—with informations about the observable actions of coef-
fects. This is achieved by adding to the language an explicit observation L−M that
mark where to monitor the behavior of a specific part of the program during the
computation. We prove a parametric soundness theorem for the type system with
respect to the information collected by the instrumented operational semantics.
That is, we associate to each term (through its type derivation) a value in R
and we show that this value approximates the information that can be observed
at runtime with the instrumented operational semantics. This result is proved
by defining a general quantitative realizability model, based on biorthogonality
and parametrized over R. Finally, we sketch a denotational semantics for `RPCF
in the form of an interpretation of `RPCF programs in a categorical structure
describing the properties of R.

Summarizing, our contributions are:
– A quantitative comonadic core language inspired by linear logic semantics.

This language is parametrized over an abstract structure R and over a set of
coeffect primitives (co-handlers). By instantiatingR with concrete structures
and by choosing particular sets of co-handlers we are able to perform several
context-dependent analysis.

– A parametrized quantitative realizability technique used to prove the sound-
ness of the different analyses. The realizability is parametrized over R and
the set of coeffect primitives. The soundness is proved with respect to an
abstract machine reduction relation.

– The description of a categorical model, based on Melliès’s work on parametric
comonads [27?], showing the abstract structure needed to interpret our
language. Such a categorical semantics provides a base for a comparison
with usual semantics of linear logic.

2 The `RPCF Language

Syntax: linear constructors and coeffects. The language of `RPCF, de-
fined in Fig. 1.a, is a linearized version of PCF (i.e., with explicit constructors
for the modalities of linear logic) extended with coeffects.

The !-constructor and let bindings are standard in languages designed using
the proofs-as-programs correspondence with linear logic. Here, they are used to
explicitly track the use of the coeffects in expressions. We consider three kinds of
values: numerals n, abstractions λx.e and expressions of the form !e. The latter
are useful to delimit the scope of coeffects.

The construction coeff(e) wraps expression e in a coeffect handler coeff. Note
that coeff is a metavariable, ranging over a (finite) set of coeffect handler iden-
tifiers or, more simply, co-handlers. We leave the set of co-handlers unspecified,
as a parameter of `RPCF.

e ::= x | λx.e | e e | let !x = e in e | !e | LeM | coeff(e) | (expressions)
n | s(e) | case e of 0→ e else x+ 1→ e | fix x.e

v ::= λx.e | n | !e (values)

A ::= Nat | !rA | A(A r ∈ R (types)

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r r ∈ R (contexts)

c ::= (e, ρ) (closures)

ρ ::= [] | ρ · [x/c] (environments)

π ::= � | 〈c〉.π | 〈x, e, ρ〉.π | 〈coeff〉.π | 〈s〉.π | 〈e1, x, e2, ρ〉.π (stacks)

C ::= (c, π) (configurations)

Fig. 1. `RPCF (a) grammar (b) typing (c) abstract machine configurations

Finally, the construct L− M is an observation. It has no computational value
but makes our quantitative analysis more flexible. By arbitrarily introducing
observations in expressions, we can track the behavior of specific subterms during
a computation, giving more power to our quantitative soundness result.

Structural semirings. The other main parameter of `RPCF (or, rather, of
its type system) is the following algebraic structure.

Definition 1 (Structural semiring) A structural semiring, denoted in gen-
eral by R, is a tuple (R,+,0, ?,1,�) such that:

– (R,+,0, ?,1) is a unit semiring, that is:

• (R,+,0) is a commutative monoid;
• (R, ?,1) is a monoid;
• multiplication distributes over addition, i.e., for all p, q, r ∈ R:

∗ r ? (p+ q) = r ? p+ r ? q,
∗ (p+ q) ? r = p ? r + q ? r;

• 0 is absorbing for multiplication: p ? 0 = 0 ? p = 0 for all p ∈ R.

– (R,�) is a bounded sup-semilattice, that is:

• � is a partial order on R such that the least upper bound of every two
elements p, q ∈ R exists and is denoted by p ∨ q;

• there is a least and greatest element, the latter being denoted by ∞.

Moreover, the following compatibility conditions hold, for all p, q, r ∈ R:

– 0 is the least element;
– p � q implies p+ r � q + r, r ? p � r ? q and p ? r � q ? r.

Note that the compatibility conditions imply that ∞ is absorbing for addition
and that it is idempotent w.r.t. both operations.

The notion of structural semiring arises naturally from the structural rules
of linear logic, hence the name.4 It is possible to give a categorical generalization
of this structure, which is used for describing the denotational models of `RPCF
(cf. Sect. 4).

The presence of least upper bounds is not strictly necessary; it is useful to
provide a more precise typing of the case construction. Similarly, the existence
of a greatest element is postulated only to ensure that fixpoints may be given at
least a trivial type.

The following are some notable examples of structural semirings:

– the extended natural numbers N := N ∪ {∞} (usual operations and order);
– the tropical semiring T := (N,min,∞,+, 0,≥) (note the reversed ordering);
– the arctic semiring A := (N ∪ {−∞},max,−∞,+, 0,≤);
– the Boolean lattice {0, 1}, as well as any bounded distributive lattice;

– the probability semiring R+
of non-negative real numbers plus infinity, with

the usual operations and order.

Type system. As mentioned above, the type system of `RPCF is parametrized
over a structural semiring R. Elements of R can appear in types (defined in Fig-
ure Fig. 1.b) as decorations of the exponential modality, as well as in discharged
types (of the form [A]r) in typing contexts (also defined in Fig. 1.b). Discharged
types are not themselves types; they can appear only in contexts and they cannot
be nested.

Each co-handler coeff comes with three pieces of information: its source type
Acoeff , its target type Bcoeff and its coeffect rcoeff ∈ R. It also comes with a coeffect
map ϕcoeff , which assigns to every value of type Acoeff a value of type Bcoeff . The
coeffect map will be required to satisfy a semantic soundness property, which we
will give in Sect. 3. We use the term “map” instead of “function” because we
do not want to restrict the kind of transitions (of the abstract machine, to be
introduced below) we can consider. For instance, ϕcoeff may be probabilistic or
non-deterministic. We consider only unary co-handlers; n-ary co-handlers could
be obtained by combining unary co-handlers with the usual tensor product of
linear logic, which we do not include here for brevity.

A typing context Γ is a set of typed variables that are either of the form
x : A (linear variables) or x : [A]r (discharged variables). Discharged variables
are a technical artifact useful to implicitly manage variables in contexts. More
specifically, if we denote by [Γ] a discharged context (a context containing only
discharged variables) we can extend the operation + of the semiring to contexts:

∅+∆ = ∆
(x : [A]p, Γ) + (x : [A]q, ∆) = x : [A]p+q, (Γ +∆)

(x : [A]p, Γ) +∆ = x : [A]p, (Γ +∆) if x /∈ ∆
(x :A,Γ) +∆ = x :A, (Γ +∆) if x /∈ ∆

4 For the acquainted reader: contraction is addition, with weakening being its neutral
element; multiplication comes from crossing the context of a promotion rule, with
dereliction being its unit.

O-I
A <: A

A <: B q � p
O-B

!pA <: !qB

A′ <: A B <: B′

O-L
A(B <: A′(B′

A <: B q � p
O-D

[A]p <: [B]q
O-IC

Γ <: Γ

Γ <: ∆ A <: B
O-C

Γ, x : B <: ∆,x : A

id
x :A ` x : A

Γ, x :A ` e : B
lam

Γ ` λx.e : A(B

Γ ` e : A(B ∆ ` e′ : A
app

Γ +∆ ` e e′ : B

Γ, x :A ` e : B
der

Γ, x : [A]1 ` e : B

[Γ] ` e : B
pr

r ? [Γ] ` !e : !rB

Γ ` e : !rA ∆, x : [A]r ` e′ : B
let

Γ +∆ ` let !x = e in e′ : B

nat
` n : Nat

Γ ` e : Nat
succ

Γ ` s(e) : Nat

[Γ], x : [A]p ` e : A 1 + p ? q � q
fix

q ? [Γ] ` fix x.e : A

Γ ` e : Nat ∆ ` e1 : A ∆, x :Nat ` e2 : A
case

Γ +∆ ` case e of 0→ e1 else x+ 1→ e2 : A

∆ ` e : B Γ <: ∆
sub

Γ,Ξ ` e : B

[Γ] ` e : Acoeff
coeff

rcoeff ? [Γ] ` coeff(e) : Bcoeff

Γ ` e : A
obs

Γ ` LeM : A

Fig. 2. (a) Subtyping rules (b) Typing rules

Note that the addition of contexts is partial: Γ + ∆ is defined only if Γ and
∆ do not share any linear variable declaration. In what follows, the use of this
operation implicitly means that this condition is met. Similarly, the action of
an element r ∈ R on a discharged context [Γ], denoted by r ? [Γ], is defined by
induction on the size of [Γ] as: r ? ∅ = ∅ and r ? (x : [A]p, [Γ]) = x : [A]r?p, r ? [Γ].
We also extend to contexts the partial order of R, by introducing subtyping
between types. A subtyping judgment A <: B can be obtained using the rules
in Fig. 2.a. The subtyping rules are rather standard with the exception of rules
O-B and O-D, which lift the semiring partial order to types; notice that these
rules are contravariant in the elements of the semiring.

As usual, typing judgments are of the form Γ ` e : A, where in our case Γ
may contain both linear and discharged variables. The typing rule are in Fig. 2.b.

The rule der introduces a discharged variable starting from a linear variable.
This rule may be seen as a quantitative analog of the dereliction principle of

x ρ · [x/(e, ρ′)] π →v e ρ′ π
λx.e ρ 〈c〉.π →λ e ρ · [x/c] π
e1 e2 ρ π →@ e1 ρ 〈(e2, ρ)〉.π

let !x = e1 in e2 ρ π →l e1 ρ 〈x, e2, ρ〉.π
!e1 ρ1 〈x, e2, ρ2〉.π →! e2 ρ2 · [x/(e1, ρ1)] π
s(e) ρ π →s e ρ 〈s〉.π
n ρ 〈s〉.π →+ n+ 1 ρ π(case e of 0→ e1

else x+ 1→ e2

)
ρ π →i e ρ 〈e1, x, e2, ρ〉.π

0 ρ1 〈e1, x, e2, ρ2〉.π →z e1 ρ2 π
n+ 1 ρ1 〈e1, x, e2, ρ2〉.π →e e2 ρ2 · [x/(n, ρ1)] π
fix x.e ρ π →f e ρ · [x/(fix x.e, ρ)] π

coeff(e) ρ π →c e ρ 〈coeff〉.π
v ρ 〈coeff〉.π →x ϕcoeff(v) ρ π

LeM ρ π →o e ρ π

Fig. 3. The KR machine.

linear logic: !A (A. A way of reading this rule is: “a variable with coeffect 1
is also linear”. Similarly, the pr rule corresponds to a quantitative version of the
promotion rule of linear logic. Note that this rule is in fact a scheme for rules
parametrized by an element r ∈ R. A way of reading this rule is: “if a co-handler
whose coeffect is r is to operate on an expression e, then r has to act on the
context of e”. The rule sub is at the same time the rule for the subtyping and for
weakening (of the context Ξ); indeed, the system is actually affine, not strictly
linear. The rule let is responsible for removing discharged variables. This can be
seen as an analog (or dual) of the let of the computational λ-calculus. Note
that this rule, as well as all the binary rules, uses the operation + to merge the
contexts of the two premises. This is because the resulting coeffect is the sum of
the coeffects in the two premises.

The rule coeff is the rule for typing co-handler expressions. It is parametrized
on the particular co-handler. We could have chosen to have this rule as deriv-
able from an application of the pr rule—introducing an extra !-operator in the
expression—and an application of an axiom rule introducing the co-handler. We
prefer this formulation so that co-handlers are always applied in expressions—
and we also avoid the use of an extra !-operator.

The additive management of the context ∆ in the two branches of the case
rule is standard for languages inspired by linear logic. Note that the existence
of least upper bounds is useful here for type-inference: it allows to find minimal
discharged types to build the context∆. The last rule deserving some explanation
is fix. This is parametrized by an element q ∈ R that has to satisfy the side
condition 1 + q ? p � q. Note that for every p ∈ R the element ∞ satisfies this
condition. However, in general there may be other elements satisfying it.

The abstract machine. The operational semantics we consider is provided by
an adaptation of the Krivine abstract machine [22]. In particular, we extend (in a
standard way) Krivine’s machine to deal with natural numbers, conditional and
fixpoint. The basic components of the machine (closures, environments, stacks,
configurations) are defined in Fig. 1.c. Stacks are also assigned a weight :

Definition 2 (Weight of a stack) Let π be a stack. Its weight w(π) is the
element of R defined by induction on π as follows:

– w(�) = 1;
– w(〈coeff〉.π′) = w(π′) ? rcoeff ;
– w(κ.π′) = w(π′) in all other cases.

A state of the machine is a pair (C, r), where C is a configuration and r ∈ R.
This latter, called the observable quantity, must be seen as the value of a counter.
It adds a quantitative aspect to the operational semantics of `RPCF.

The transitions of the KR machine are given in Fig. 3. The counter of the
machine is left untouched by all transitions except the o transition: if C =
(LeM, ρ, π) and C ′ = (e, ρ, π), then the state (C, r) evolves to (C ′, r + w(π)). We
write C → C ′ when we do not want to specify the kind of transition.

In general, we are interested in computations of the shape ((e, [], �),0) →∗
((v, ρ, �), r), i.e., computations that evaluate expressions in the empty environ-
ment and the empty stack starting with an observable quantity of 0. In this case,
we can say that r is the observable quantity of the computation. The goal of our
type analysis is to provide by static analysis a bound to this quantity. This is
obtained by a quantitative realizability technique that we present in the next
section.

3 Quantitative Realizability

This section presents the construction of a realizability interpretation suitable
for modeling `RPCF as parameterized by an arbitrary structural semiring R.
However, to soundly handle the fixpoint typing rule, it is necessary to “step
index” the construction. Fortunately, such step indexing can itself be smoothly
added using a structural semiring.

In the rest of the section we fix an arbitrary structural semiring R and
we consider the structural semiring R ⊕ T , where T is the tropical semiring
defined in Sect. 2. The elements of R ⊕ T , which we denote by α, β, γ, are
pairs of the form (p,m) where p ∈ R and m ∈ N. The operations and order
relation on these elements are (abusively) denoted like the operations and order
relation of R: (p,m) + (q, n) = (p + q,min(m,n)) with neutral element (0,∞),
(p,m) ? (q, n) = (p ? q,m+ n) with neutral element (1, 0), and (p,m) � (q, n) iff
p � q and n ≤ m (note the reverse ordering on integers).

The elements of R may be (monotonically) embedded in R ⊕ T through
the additive endomorphism p 7→ (p,∞) and the multiplicative endomorphism
p 7→ (p, 0). In the sequel, we tacitly apply such embeddings to treat elements
of R as elements of R ⊕ T , using the suitable endomorphism according to the
operation of interest. For instance, given a stack π, we write α+w(π) to actually
mean α+ (w(π),∞), and we write w(π) ? α to actually mean (w(π), 0) ? α.

Orthogonality. In what follows, we associate with each transition C → C ′ of
the KR machine a function θ[C → C ′] : R⊕ T → R⊕ T which is the identity
in all cases except:

– when C →f C
′, in which case we set θ[C → C ′](p,m) = (p,m+ 1);

– when C = (LeM, ρ, π) and C →o C
′, in which case we set θ[C → C ′](p,m) =

(p+ w(π),m).

Definition 3 (Pole) A pole is a family ⊥⊥ = (⊥⊥α)α∈R⊕T of sets of configura-
tions such that:

– Saturation: if C ′ ∈ ⊥⊥α and C → C ′, then C ∈ ⊥⊥θ[C→C′](α);
– Monotonicity: α � β implies ⊥⊥α ⊆ ⊥⊥β;
– Approximation: for all p ∈ R, ⊥⊥(p,0) is the set of all configurations and⋂

n∈N⊥⊥(p,n) = ⊥⊥(p,∞);
– Weakening: for all α and (e, ρ, π) ∈ ⊥⊥α, if y1, . . . , yk do not appear free in
e, then, for all closures c1, . . . , ck, (e, ρ · [y1/c1] · · · [yk/ck], π) ∈ ⊥⊥α.

Definition 4 (Weighted closures and stacks, orthogonality) A weighted
closure (resp. weighted stack) is a pair (c, α) (resp. (π, α)) where c is a closure
(resp. π is a stack) and α ∈ R⊕ T .

Let ((e, ρ), α), (π, β) be a weighted closure and stack, respectively, and let ⊥⊥
be a pole. We define the orthogonality relation w.r.t. ⊥⊥ by

((e, ρ), α) ⊥ (π, β) iff (e, ρ, π) ∈ ⊥⊥w(π)?α+β .

Intuitively, the pole expresses a notion of correctness, and ortogonality means
that the closure (program) and stack (environment) interact correctly. In Sect. 5
we will give explicit examples of poles and clarify this intuition.

The orthogonality relation lifts to sets of weighted closures X and sets of
weighted stacks Y as usual: X⊥ := { (π, β) | ∀(c, α) ∈ X, (c, α) ⊥ (π, β) },
and Y ⊥ := { (c, α) | ∀(π, β) ∈ Y, (c, α) ⊥ (π, β) }. The biorthogonality operator
(.)⊥⊥ on sets of weighted closures is then a closure operator.

Lemma 5 Suppose that X is a set of weighted closures or weighted stacks. Then:
(i) X ⊆ X⊥⊥; (ii) Y ⊆ X implies X⊥ ⊆ Y ⊥; (iii) X⊥⊥⊥ = X⊥.

Moreover, it is easy to see that the properties of the pole are transferred to
biorthogonally-closed sets of weighted closures:

Lemma 6 Let X be a set of weighted closures. Then:

1. if, for all n ∈ N, (c, (p, n)) ∈ X, then (c, (p,∞)) ∈ X⊥⊥;
2. if ((e, ρ), α) ∈ X, α � β and if y1, . . . , yk are variables not appearing free in

e, then ((e, ρ · [y1/c1] · · · [yk/ck]), β) ∈ X⊥⊥ for all closures c1, . . . , ck.

Interpretation. We are now going to assign to each type a set of weighted
closures. We first define in Fig. 4 two operations (and !r, along with the set
Nat (for convenience, we use the same notation as the type).

Definition 7 (Interpretation, realizability, adaptation) Let A be a type.
Its interpretation ‖A‖ is the set of weighted closures defined as follows:

‖Nat‖ := Nat⊥⊥ ‖A(B‖ := (‖A‖(‖B‖)⊥⊥ ‖!rA‖ := (!r‖A‖)⊥⊥

The realizability relation (c, α) A is valid if and only if (c, α) ∈ ‖A‖.
Note that realizability depends on the pole. We say that a pole is adapted if

we have (�, (0,∞)) ∈ ‖A‖⊥ for every type A.

Nat := { ((n, []), (0,∞)) | n ∈ N }
X (Y := { ((λx.e, ρ), α) | ∀(c′, β) ∈ X, ((e, ρ · [x/c′]), α+ β) ∈ Y ⊥⊥ }
r ? X := { (c, (r ? p,m)) | (c, (p,m)) ∈ X }

!rX := { ((!e, ρ), α) | ((e, ρ), α) ∈ r ? X }

Fig. 4. Realizability operations. X and Y are generic sets of weighted closures.

Soundness. We start by introducing the notions needed to state the soundness
theorem. We first need to extend the realizability relation to open terms. Then,
we will define what it means for a typing judgment and a typing rule to be
sound.

Definition 8 (Sound environment) Suppose γ is a sequence γ1, . . . , γn of el-
ements of R⊕T . We say that an environment ρ = [x1/c1] · · · [xn/cn] is γ-sound
with respect to Γ = x1 : A1, . . . , xk : Ak, xk+1 : [Ak+1]rk+1

, . . . , xn : [An]rn , and
we write (ρ,γ) Γ , if (ci, γi) ∈ ‖Ai‖ for 1 ≤ i ≤ k, and (ci, γi) ∈ ri ? (‖Ai‖) for
k + 1 ≤ i ≤ n.

In what follows, if γ is a sequence γ1, . . . , γn of elements of R ⊕ T , we denote
by
∑
γ the element γ1 + . . .+ γn (which is (0,∞) if n = 0).

Definition 9 (Sound judgment and rules) Let p ∈ R. We say that the
judgment Γ ` e : A is p-sound if (ρ,γ) Γ implies ((e, ρ), p+

∑
γ) A.

Consider a typing rule R whose premises are the judgments J1, . . . , Jn and
whose conclusion is the judgment K. Let φ : Rn → R. We say that R is φ-sound
if for all p1, . . . , pn ∈ R such that Ji is pi-sound, then K is φ(p1, . . . , pn)-sound.

Any judgment obtained by composition of sound rules is itself a sound judg-
ment. Hence, to prove soundness of our type system with respect to the realiz-
ability semantics, it will suffice to prove the soundness of each typing rule.

If R is an n-ary rule of our type system, we associate to it a soundness function
of type Rn → R denoted by φ[R]. The definition is given in Fig. 5, where we use
meta-λ-notation. For instance, φ[obs] is the function taking an element p ∈ R
and returning the element p+ 1 of R.

If δ is a typing derivation of conclusion Γ ` e : A, then we may assign to it a
soundness element p[δ] ∈ R, defined by composing the φ[R] for each rule R used
in δ, inductively. Then, we have the following:

Theorem 10 (Soundness) The conclusion of every derivation δ is p[δ]-sound.

The proof of the above result, which we omit here for space reasons, is con-
ditional to the following hypothesis being verified, for every co-handler coeff,
which we call soundness of coeff:

(π, β) ∈ ‖Bcoeff‖⊥ implies (〈coeff〉.πβ) ∈ ‖Acoeff‖⊥.

φ[id] := 0 φ[lam] := λp.p φ[app] := λ(p, q).p+ q
φ[der] := λp.p φ[pr] := λp.r ? p φ[let] := λ(p, q).p+ q
φ[nat] := 0 φ[succ] := λp.p φ[fix] := λp.q ? p
φ[sub] := λp.p φ[coeff] := λp.rcoeff ? p φ[obs] := λp.p+ 1

φ[case] := λ(p, q, r).p+ (q ∨ r)

Fig. 5. Soundness functions of the typing rules of Fig. 2.b. The arity of each function is
the same as that of its associated rule; p, q, r correspond to the first, second and third
premises, respectively (from left to right).

This is the semantic condition on coeffect maps which we mentioned when we
introduced the type system.

In case the pole is adapted, we obtain the following important result:

Corollary 11 If ` e : A via a typing derivation δ, then (e, [], �) ∈ ⊥⊥(p[δ],∞).

Since C ∈ ⊥⊥(p,∞) usually means “the configuration C uses at most p resources”,
we have that, for properties that can be expressed using an adapted pole, typing
derivations of `RPCF imply quantitative bounds on the execution of the typed
expression.

4 Categorical Semantics

Our framework has a rich underlying structure that we describe in categori-
cal terms in this section. The first step is introducing bimonoidal categories
(formerly called ring categories [25]), which are a “categorification” of the no-
tion of semiring. The most synthetic way of defining a bimonoidal category is
saying that it is a one-object category enriched over symmetric monoidal cat-
egories [19]. Spelled out, this means that a bimonoidal category is a structure
(S,+, 0, ?, 1, dl, dr, al, ar) such that (S,+, 0) is a symmetric monoidal category,
(S, ?, 1) is a monoidal category and dl, al, dr, ar are structure maps ensuring
distibutivity and absorption laws. A certain numer of coherence diagrams are
required to commute, of course; the precise definition may be found in [19].

Next, we introduce a notion of parametric comonad, that we take from [27].
In what follows, we will deal with two categories S and A and we shall use x, y
(resp. a, b) as placeholders for the arguments of a functor of domain S (resp. A),
e.g. an endofunctor F of A will be denoted by F (a), whereas we use p, q, r (resp.
A,B) to range over the objects of S (resp. A).

Definition 12 (Positive action) A positive action of a monoidal category
(S, ?, 1) on a category A is a functor � : S ×A −→ A with two natural transfor-
mations δ : (x ? y) � a =⇒ x � (y � a) and ε : 1 � a =⇒ a such that the following

diagrams commute:

(p ? (q ? r)) �A

δ

��

α?�A // ((p ? q) ? r) �A δ // (p ? q) � (r �A)

δ

��
p � ((q ? r) �A)

p�δ
// p � (q � (r �A))

(1 ? p) �A λ?
//

δ

��

p �A (p ? 1) �A
ρ?oo

δ

��
1 � (p �A)

ε
// p �A p � (1 �A)

p�ε
oo

We now generalize Definition 12 to the case of a bimonoidal category acting
on a symmetric monoidal category. This should be seen as a categorification of
the “raising to a power” action: the natural transormations required correspond
to the usual, elementary laws of exponentiation (such as Ap+q = ApAq, A0 = I,
and so on). Although not contained in either [27] or [?], the definition was still
suggested to the authors by Melliès.

Definition 13 (Exponential action) Let (A,⊗, I) be a symmetric monoidal
category, and let (S,+, 0, ?, 1) be a bimonoidal category. An exponential action
of S on A is a positive action (�, δ, ε) of (S, ?, 1) on A together with four natural
transformations c : (x+ y) � a =⇒ x � a⊗ y � a, w : 0 � a =⇒ I, m : x � a⊗ x � b =⇒
x � (a⊗ b), and n : I =⇒ x � I such that

– for every object A of A, the natural transformations cA,wA induced by fixing
the parameter A in c,w make the functor x � A : (S,+, 0) → A symmetric
comonoidal (i.e. oplax monoidal);

– for every object p of S, the natural transformations mp, np induced by fixing
the parameter p in m, n make the endofunctor p �a of A symmetric monoidal.

Furthermore, we require 12 diagrams to commute, which are fairly natural but
cannot be included for space reasons.

Definition 14 (Bounded exponential situation) A bounded exponential
situation consists of the following data:

– a symmetric monoidal closed category (A,⊗, I,();
– a bimonoidal category (S,+, 0, ?, 1) with finite coproducts (not necessarily

expressed by +) and a terminal object, in which 0 is initial;
– an exponential action ! of Sop on A, for which we use the notation !pA (with
p an object of S and A an object of A).

A bounded exponential situation is affine if I is terminal in A.

An affine bounded exponential situation is enough to interpret the typing
rules of `RPCF (Fig. 2). The category S is a “category of bounds”: it is the
generalization of a structural semiring, in which an arrow p → q may be seen
as a proof that p � q. In fact, for the sake of this paper, it does not hurt to
assume that S is just a (preordered) structural semiring, i.e., that the monoidal
structures are strict and that there is at most one arrow in every homset.

It is obvious how to interpret each type constructor of `RPCF as a func-
tor of A. A typing derivation δ of the judgment x1 : B1, . . . , xm : Bm, y1 :
[C1]r1 , . . . , yn : [Cn]rn ` e : A is interpreted by an arrow JδK : JB1K ⊗ · · · ⊗
JBmK⊗ !r1JC1K⊗· · ·⊗ !rnJCnK→ JAK of A, built by induction on the derivation:

– the interpretation of the rules id, lam and app is standard; the only non-
standard feature is the + operation on contexts, which is interpreted by
means of the natural transformation c.

– The rule der corresponds to the natural transformation ε. The rule pr is just
the application of the endofunctor !r(−), plus the natural transformations
δ and m (if the context has more than one variable) or n (if the context is
empty). The let rule is just a composition of morphisms.

– The sub rule is intepreted thanks to the contravariance of the action ! in its
first argument: p � q corresponds to the existence of an arrow f : p → q in
S, from which we have an arrow !f (idA) : !qA → !pA in A, implementing
subtyping. Free weakening is available because I is the terminal object of A.

The intepretation of the type Nat and the PCF-specific constructions (successor,
fixpoint. . .) require a suitable object and morphisms of A, as usual. The inter-
pretation of co-handlers is also dependent on the specific case, and cannot be
defined in general.

Notice that, when S is the one-object category (which is tivially bimonoidal),
then an exponential action is just a comonad (!, δ, ε), which is monoidal thanks
to the natural transformations m and n. In this degenerated case, the conditions
of Definition 13 boil down to asking that the natural transformations δ, ε, c,w are
monoidal; that, for every object A of A, (!A, cA,wA) is a commutative comonoid
in the category of free !-coalgebras of A; and that free coalgebra morphisms (such
as δ) are also comonoid morphisms. This amounts to giving a model of linear
logic in the sense of [4] (and in fact, when R is the trivial semiring, `RPCF is
just multiplicative-exponential intuitionistic affine logic).

5 Examples

Before introducing the examples, it is worth noticing the importance of obser-
vations and coeffects for the evolution of observable quantities in the abstract
machine states. First, note that the state changes only when an observation is
performed. So, depending on where we place the observation we can obtain dif-
ferent quantitative information about our programs. Moreover, note that in the
evaluation of a co-handler-free program the weight of each stack is always 1,
so the state of the machine contains only an additive information of the shape
1 + . . .+ 1, where the number of 1’s depends on the number of observations en-
countered in the evaluation. These two remarks are important for understanding
the kind of analysis our framework can perform. Indeed, the observable quan-
tities in the abstract machine states are ultimately the only quantities that the
type system is able to analyze thanks to the soundness Theorem 10.

We show here the details of three examples and then we conclude by com-
menting on other examples. We choose three examples that stress different fea-
tures of our framework: the first example is a classic of linear type systems—
complexity analysis—this is helpful to see that we do not loose anything. The
second example is inspired by Uustalu and Vene [37, 38] and Petricek et al. [32]—
signal processing—this example requires an analysis that is quantitative on ?

but not on +, differing so from the previous one. Finally, the third example uses
an operational semantics that is probabilistic—probability analysis—this shows
that the analysis can be performed even when the underlying semantics changes.

In all cases, we will use one of the structural semirings introduced after
Definition 1 and we will always use the same pole (or, rather, instances of a
pole parametric in the semiring of choice). We first say that a state of the KR
machine (C ′, p′) is l-fixpoint-reachable from another state (C, p), and we write
(C, p)�l (C ′, p′), if (C, p)→∗ (C ′, p′) and l is the number of f-transitions in the
computation. Then, we set

⊥⊥(p,m) := { C | whenever (C,0)�l (C ′, r), l < m implies r � p }.

This pole expresses the following notion of correctness: a configuration is (p,m)-
correct if, when evaluated with the quantity 0 and left evolving for a number
of steps including strictly less than m recursive calls, produces an observable
quantity bounded by p. We leave it as an easy (but instructive) exercise to the
reader to show that the above definition gives a pole, for any structural semiring
R. The fact that it is adapted may be proved by a straightforward induction on
types. Then, we have

Fact 15 If ` e : A with a type derivation δ, then any computation of the form
((e, [], �),0)→∗ (C, r) satisfies r � p[δ].

The above fact, which holds regardless of the chosen semiring, is an immediate
consequence of Corollary 11 (we just spelled out the property (e, [], �) ∈ ⊥⊥(p[δ],∞)

for this particular pole). The exact meaning will depend on the coeffects and on
the semiring.

Complexity analysis. As a warm up we sketch how we can use observations to
express a simple complexity analysis for coeffect-free programs inspired by [18, 9].
We want to analyze the complexity (in terms of time) of the execution of a closed
term on the KR machine. We remark two properties of the machine: first, the
evaluation of a program e in an empty environment and an empty stack requires
environments containing only subterms of e; second, v-transitions are the only
ones5 that increase the overall size of a configuration6. Therefore, if e is a closed,
observation- and co-handler-free term and n is the number of v-transitions in
the computation from (e, [], �) to its normal form, a good estimate of the time
complexity of such a computation is n·size(e). This requires to compute n, which
is precisely the quantity that our type system is able to provide.

First of all, we insert observations around each variable of e, obtaining a term
e′. This does not alter the computational behavior of e but ensures that each
o-transition is followed by an v-transition, so the number of o-transitions of e′,
which are the ones we can account for, bounds the number of v-transitions of e.
Now, we set R := N, with the usual operations and order. We obviously have

5 Here we consider co-handler-free programs so there are no x-transitions.
6 For a suitable notion of configurations size [9].

that ` e : A implies ` e′ : A. Call the latter type derivation δ. Recalling Fact 15,
we have that any computation ((e′, [], �),0) →∗ (C, n) satisfies n ≤ p[δ]. But,
as noted above, n is nothing but the number of o-transitions performed in the
computation, which in turn are no less than the v-transitions in the evaluation
of e, so p[δ] · size(e) is the desired complexity bound.

We observe that our analysis for programs including recursion is very limited:
the presence of fixpoints is likely to yield p[δ] =∞. However, as we will discuss
below, we expect our approach to be adaptable to the use of dependent types as
in [9].

Signal processing. The second example we consider is signal processing. We
take this example from Petricek et al. [32] and show how `RPCF provides a
bound on the number of look-ahead operations each program performs for the
given inputs. This enables optimization of memory allocation and buffering needs
for each input. To make this example interesting, we add to the language a type
Sig representing signals as globally clocked streams of natural numbers. We add
to the grammar of `RPCF terms non-denumerably many constants s, s′, . . ., one
for each stream, and the nullary typing rule ` s : Sig. We denote by n · s the
stream whose head is n and tail s.

We set R := A, the arctic semiring. We consider two co-handlers: read, with
Aread = Sig, Bread = Nat and rread = 0, and next, with Anext = Sig, Bnext = Sig
and rnext = 1. Their semantic maps are defined as follows: ϕread(n · s) = n
and ϕnext(n · s) = s. In other words, read and next return the head and tail
of the stream, respectively. In order to check the semantic condition on ϕread

and ϕnext which ensure soundness, we need to define the realizability interpre-
tation of the type Sig. This is done as for Nat: abusing the notations, we set
Sig := { ((s, []), (0,∞)) | ∀ streams s } and ‖Sig‖ := Sig⊥⊥. Now, to prove the
soundness of ϕread, we need to check that, for all (π, (t,m)) ∈ ‖Nat‖⊥ = Nat⊥,
we have (read.π, (t,m)) ∈ ‖Sig‖⊥ = Sig⊥. This amounts to checking that, for all
((s, []), (0,∞)) ∈ Sig, we have (s, [], read.π) ∈ ⊥⊥(w(read.π)+t,m). But w(read.π) =
rread +w(π) = w(π) (remember that multiplication in A is addition in N), so this
follows by saturation. Similarly, for the soundness of next, let (π, (t,m)) ∈ Sig⊥.
We need to check that (next.π, (t,m)) ∈ Sig⊥, which amounts to verifying that,
for every stack constant s, (s, [], next.π) ∈ ⊥⊥(w(next.π)+t,m). Now, we know by
saturation that (s, [], next.π) ∈ ⊥⊥(w(π)+t,m), but w(next.π) = 1 + w(π), so
⊥⊥(w(π)+t,m) ⊆ ⊥⊥(w(next.π)+t,m) by monotonicity, which allows us to conclude.

We are now in position to apply the Soundness Theorem 10. From ` LsM : Sig
we have ((s, []), (t,∞)) ∈ t?‖Sig‖ for all t ∈ N. Now, suppose that e is a program
(with no observations) with a free variable x, and suppose that x : [Sig]t `
e : A with a typing derivation δ. Theorem 10 gives us that (e, [x/LsM], �) ∈
⊥⊥(max(p[δ],t),∞). By observing the soundness function of Fig. 5, we realize that
if e contains no observation, then p[δ] is necessarily 0, which is equal to −∞ in
A. Therefore, (e, [x/LsM], �) is (t,∞)-correct. So, any computation starting with
((e, [x/LsM], �),−∞) terminates on a state (C, u) such that u ≤ t. By looking at
the transition rules (Fig. 3), we see that u is the maximum (addition in A is max)

of the number of next co-handlers that were present on the stack (multiplication
in A is addition) at each o-transition. But since e contains no observation, o-
transitions are possible only when we access the stack s in the environment, and
it is not hard to see that the number of next co-handlers on the stack is the
number of look-ahead operations performed on s. Therefore, we have

Fact 16 If x : [Sig]t ` e : A, then e uses at most the first t values of the stack
fed to its argument x.

We hope that the above result gives an idea of the kind of analysis that may
be performed for this application. Other more general results can be obtained
by placing observations on different subterms. Also, here we considered only
terminating computations but for this application one can use a different pole
to allow analysis of non-terminating programs as well.

Probabilistic usage. We now turn to probabilistic setting. Monadic program-
ming languages have been extensively used for describing probabilistic compu-
tations. Here we propose something slightly different. We want to consider the
situation in which accessing certain memory locations is subjected to proba-

bilistic failures. For this application, we set R = R+
, the probability semiring,

and we consider a single co-handler, coflip, with Acoflip = N, Bcoflip = N and
rcoflip = λ ∈ [0, 1]. The coeffect map ϕcoflip is the identity, which is obviously
sound. However, we change the operational semantics: the x-transition of the
KR machine, when coflip is on the stack, is executed with probability λ, whereas
with probability 1 − λ the machine halts because of a failure. When we want
to model the fact that a variable x in a program e represents a failure-prone
memory location, we replace every occurrence of x in e with coflip(x).7

Consider now a closed program e. We define var(e) as the number of v-
transitions in the computation starting from (e, [], �) before a failure occurs or a
normal form is reached. Due to the probabilistic nature of the machine, var(e) is a
random variable with values in N. Our type system allows us to estimate the ex-
pected value of var(e). Indeed, given such a closed program e and a configuration
C, we may define obs(e, C) as the number of o-transitions in the computation
(e, [], �) →∗ C, which is a random variable too. It is not hard to the check that
the observable quantity r ∈ R+ of the computation ((e, [], �), 0)→∗ (C, r) is the
expected value of obs(e, C): every time an o-transition is executed, the quantity
λn is added to the observable quantity, with n being the number of coflip coef-
fects on the stack. This is the probability of success, i.e., the probability that
the evaluation will “survive” in the current environment.

More generally, we define obs(e) as the number of o-transitions in the longest
computation starting from (e, [], �), and we apply the same decoration used in
complexity analysis, i.e., we consider programs obtained by inserting observa-
tions around every variable of a program. In this way, we know that, if e′ is the
decoration of e, var(e) ≤ obs(e′) and therefore, applying Fact 15, we have

7 For simplicity we used a single co-handler, with a single probability of failure, but
of course any number of co-handlers may be used, each with its own probability λ.

Fact 17 Let e be a program (observation-free) and let ` e : A through a typing
derivation δ. Then, p[δ] bounds the expected value of var(e).

Other analyses. We presented three examples that are representative of some
of the reasoning that may be performed in our framework. Other analyses may
be obtained in a similar way. For instance, a liveness analysis like the one of [32]
may be obtained by considering the Boolean lattice. Furthermore, the schedul-
ing analysis of [16], which uses a semiring of affine transformations, is another
application of our framework, independently developed (we discuss this a bit
more in Sect. 6).

More interestingly, also the type system for sensitivity analysis from [34]
and the one for non-interference analysis of the SLam calculus [20] can be seen
as instances of our calculus. Unfortunately, the realizability semantics is not
enough expressive for proving the soundness of these analyses. What we need
is a relational version of our realizability technique, which we leave for future
investigations.

6 Related Work

Indexed notions of monads and comonads. Several works have extended
monads with the aim of reasoning about more general effects: indexed mon-
ads [40], parametrised monads [2], layered monads [13], etc. Similarly, we aim
at providing a theory to reason about general coeffects. Abadi et al. [1] use an
indexed monad as a basis for their core calculus of dependencies. Similar to our
modalities, their indexed monad is useful to capture dependencies between input
and output and so to perform several program analysis. Moreover, they provide a
generalized soundness result using domain theory. Tate [36] proposes the notion
of productor to describe general producer effect systems. Interestingly, his notion
can be specialized to capture all the other extensions of monads referred above.
Tate also mention the notion of consumptor, as dual to productor, and he suggest
as an example of consumptor the non-linear use of resources. Our development
can be seen as a step in the direction of developing a theory of consumptor.
Several effect type systems have been used for program analysis [35, 29]. The
common aspect with our work is the use of indices in types to track information
about the interaction of the program with the environment.

Uustalu and Vene [37, 38] have proposed a general comonadic approach to
programming following the idea of values in context. In particular, they showed
how to formulate several context dependent programming models in terms of
comonadic computations. Extending this approach, the closest work to our own
approach, in the motivations as well as in technical terms is certainly [32, 31].
In these papers, the authors present a coeffect system parametrised over a coef-
fect algebra that has some remarkable similarities with our notion of structural
semiring. The main difference is that while we use two monoids for the different
operations in the semiring—plus some additional structure—they use instead
a semilattice and a monoid. The semilattice operation is idempotent, so they

loose in this way the possibility of being quantitative with respect to this op-
eration. Moreover, they consider “global” comonadic information, i.e., applied
to the whole context, whereas our information is “local”, i.e., on each variable,
as customary in linear logic. The global aspect of their approach forces them to
introduce an additional operation ∧ in their algebra, needed to split the infor-
mation in the case of λ-abstraction, which isolates one variable from the context.
However, this operation has no algebraic requirement and in all of the examples
they consider we are able to simulate it by means of subtyping. Finally, the
most important difference is that they do not provide any soundness result for
the analyses that may be performed using their framework (even though they do
provide a categorical model), while we prove a parametric soundness theorem.

Linear indexed types. The idea of distinguishing between linear, single-use
data and non-linear, reusable data has been one of the reason of the success of
linear logic. Less attention has attracted the idea, already presented by Girard
in [17], of using indexed approximated modalities !n for counting multiple uses
of the same resource. The first real attempt on using this kind of modalities
is Bounded Linear Logic [18], where modalities are indexed by polynomial ex-
pressions. More recently, indexed modalities similar to the ones studied in the
present work have been used in [23, 9] for complexity analysis, in [34, 14] for sen-
sitivity analysis in the context of Differential Privacy, and in [16] for automatic
scheduling analysis.

Interestingly, the authors of the latter work, inspired by their previous
work [15], introduce an abstract type system that is essentially the call-by-name
fragment of our `RPCF. They also present a categorical model, less general than
ours, and prove a coherence theorem for it. However, they do not prove any form
of soundness. Therefore, the present paper and [16] (which will be presented at
the same conference) are in a way complementary: that work provides a further,
highly interesting example of analysis to which our soundness proof applies.

Other indexed modalities, dubbed “subexponentials”, have also been used in
[30] with the aim of increasing the expressiveness of linear logic programming.
However, this use of indexes seems orthogonal to the one studied in the present
paper. Another work that, superficially, seems to be related to ours is [24], where
the authors introduced a class of denotational models of linear logic parametrized
over continuous semirings. However, the connection does not seem to be very
strong, because their technical results are totally different. Indeed, the elements
of their semiring are used as coefficients for terms in the language.

Realizability and logical relations. Realizability and (unary) logical rela-
tions are well-establishe reasoning tools. Step-indexing and biorthogonality (also
referred as “TT closure”) are technical mechanisms that permit to extend the
reasoning to consider languages with potentially infinite computations and to
consider different properties of programs in a uniform way. Several works have
studied step indexing and biorthogonality, see for instance [5, 33]. The extension
of realizability for reasoning about quantitative properties has been pioneered

in [21] and further developed in [10, 11]. The realizability we use is in the spirit
of the quantitative classical realizability proposed by Brunel [7]. Moreover, we
use a combination of quantitative realizability with biorthogonality and step in-
dexing similar to the one of [8] with the difference that here the step-indexing is
used as usual to control recursion. A last work that has some similarities with
ours is [3]. The authors use indexed types, logical relations and parametricity to
achieve invariance under changes of data representation. The invariance allows
them to capture program properties in a spirit similar to ours. In particular, also
their language is parametrized over a choice of basic data types and primitives.

7 Conclusion and Future Work

In our work we focused on showing how indexed linear types, naturally arising
from linear logic semantics, can be used to talk about value in context. This
suggests that linear logic semantics can be a unifying framework for several
program analyses. Several steps however need to be done. A first simple step is
to lift the analysis we have presented here to the standard lambda calculus—this
can be done in a rather standard way by using the usual call-by-name and call-
by-value translation. Moreover, a type inference algorithm parametrized over
constraints in R can be designed in a natural way following D’Antoni et al. [12].
A second and more important step is to broaden the scope of the analysis. Indeed,
the analysis for the fixpoint and pattern matching are too limited in practice.
For this reason we plan to extend our work with polymorphism and a restricted
form of dependent types as in [9, 14]. A point that is worth to stress here is that
the realizability semantics we have presented is already able to accommodate
some of the future presented there. For instance by interpreting basic constants
with non-zero quantities we can accommodate basic indexed types.

Acknowledgments. We are grateful to Emilio Jesús Gallego Arias, Jan Hoffmann,

Paul-André Melliès, Dominic Orchard, and Tarmo Uustalu for fruitful discussions. This

work benefited from partial support of: ANR, under projects Logoi ANR-2010-BLAN-

0213-02 (A. Brunel and D. Mazza) and Coquas ANR-12-JS02-006-01 (D. Mazza);

the European Community’s Seventh Framework Programme FP7/2007-2013 under

grant agreement No. 272487 (M. Gaboardi); DARPA Crash program under Contract

No. FA8650-10-C-7090 (A. Brunel). The views expressed are those of the authors and

do not reflect the official policy or position of the Department of Defense or the U.S.

Government.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke. A core calculus of dependency.
In POPL. ACM, 1999.

[2] R. Atkey. Parameterised notions of computation. JFP, 19(3-4), 2009.
[3] R. Atkey, P. Johann, and A. Kennedy. Abstraction and invariance for algebraically

indexed types. In POPL. ACM, 2013.
[4] N. Benton, G. M. Bierman, J. M. E. Hyland, and V. de Paiva. Term assignment for

intuitionistic linear logic. Technical Report 262, University of Cambridge, 1992.
[5] N. Benton and N. Tabareau. Compiling functional types to relational specifications

for low level imperative code. In TLDI. ACM, 2009.

[6] N. Benton and P. Wadler. Linear logic, monads and the lambda calculus. In LICS.
IEEE, 1996.

[7] A. Brunel. Quantitative classical realizability. Inf. and Comp., 2013. To appear.
[8] A. Brunel and A. Madet. Indexed realizability for bounded-time programming

with references and type fixpoints. In APLAS. Springer, 2012.
[9] U. Dal Lago and M. Gaboardi. Linear dependent types and relative completeness.

In LICS. IEEE, 2011.
[10] U. Dal Lago and M. Hofmann. Bounded linear logic, revisited. In TLCA. 2009.
[11] U. Dal Lago and M. Hofmann. Realizability models and implicit complexity. TCS,

412(20), 2011.
[12] L. D’Antoni, M. Gaboardi, E. J. Gallego Arias, A. Haeberlen, and B. Pierce.

Sensitivity analysis using type-based constraints. In FPCDSL. ACM, 2013.
[13] A. Filinski. Representing layered monads. In POPL. ACM, 1999.
[14] M. Gaboardi, A. Haeberlen, J. Hsu, A. Narayan, and B. C. Pierce. Linear depen-

dent types for differential privacy. In POPL. ACM, 2013.
[15] D. R. Ghica and A. Smith. Geometry of synthesis III: Resource management

through type inference. In POPL. ACM, 2011.
[16] D. R. Ghica and A. Smith. Bounded linear types in a resource semiring. In ESOP.

Springer, 2014.
[17] J.-Y. Girard. Linear logic. TCS, 50(1):1–102, 1987.
[18] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic. TCS, 97(1), 1992.
[19] B. Guillou. Strictification of categories weakly enriched in symmetric monoidal

categories. Theory and Applications of Categories, 24(20):564–579, 2010.
[20] N. Heintze and J. G. Riecke. The SLam calculus: Programming with secrecy and

integrity. In POPL. ACM, 1998.
[21] M. Hofmann and P. J. Scott. Realizability models for BLL-like languages. TCS.,

318(1-2), 2004.
[22] J.-L. Krivine. A call-by-name lambda-calculus machine. HOSC, 20(3), 2007.
[23] U. D. Lago and U. Schöpp. Functional programming in sublinear space. In ESOP.

Springer, 2010.
[24] J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational mod-

els of typed lambda-calculi. In LICS. IEEE, 2013.
[25] M. Laplaza. Coherence for distributivity. Lecture Notes in Math., 281, 1972.
[26] P.-A. Melliès. Categorical semantics of linear logic. Panoramas et Syntheses, 2009.
[27] P.-A. Melliès. Parametric monads and enriched adjunctions. Technical report,

2012. http://www.pps.univ-paris-diderot.fr/ mellies/tensorial-logic/.
[28] E. Moggi. Computational lambda-calculus and monads. In LICS. IEEE, 1989.
[29] F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis.

Springer, 1999.
[30] V. Nigam and D. Miller. Algorithmic specifications in linear logic with subexpo-

nentials. In PPDP. ACM, 2009.
[31] D. Orchard. Programming contextual computations, 2013. Cambridge University.
[32] T. Petricek, D. Orchard, and A. Mycroft. Coeffects: Unified static analysis of

context-dependence. In ICALP, 2013.
[33] A. M. Pitts. Step-indexed biorthogonality: a tutorial example. Dagstuhl, 2010.
[34] J. Reed and B. C. Pierce. Distance makes the types grow stronger: A calculus for

differential privacy. In ICFP. ACM, 2010.
[35] J.-P. Talpin and P. Jouvelot. The type and effect discipline. In LICS. IEEE, 1992.
[36] R. Tate. The sequential semantics of producer effect systems. In POPL, 2013.
[37] T. Uustalu and V. Vene. Signals and comonads. J. UCS, 11(7), 2005.
[38] T. Uustalu and V. Vene. Comonadic notions of computation. ENTCS, 203, 2008.
[39] P. Wadler. The essence of functional programming. In POPL. ACM, 1992.
[40] P. Wadler. The marriage of effects and monads. In ICFP. ACM, 1998.

