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Abstract
Linearity is a multi-faceted and ubiquitous notion in the analysis
and the development of programming language concepts. We study
linearity in a denotational perspective by picking out programs that
correspond to linear functions between coherence spaces.

We introduce a language, named S�PCF�, that increases the
higher-order expressivity of a linear core of PCF by means of
new operators related to exception handling and parallel evaluation.
S�PCF� allows us to program all the finite elements of the model
and, consequently, it entails a full abstraction result that makes the
reasoning on the equivalence between programs simpler.

Denotational linearity provides also crucial information for the
operational evaluation of programs. We formalize two evaluation
machineries for the language. The first one is an abstract and
concise operational semantics designed with the aim of explaining
the new operators, and is based on an infinite-branching search of
the evaluation space. The second one is more concrete and it prunes
such a space, by exploiting the linear assumptions. This can also be
regarded as a base for an implementation.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics, Syntax;
D.3.3 [Programming Languages]: Language Constructs and
Features—Control structures; F.3.2 [Logics and meanings of pro-
grams]: Semantics of programming languages—Denotational se-
mantics, Operational semantics

General Terms Languages, Theory, Design

Keywords PCF, Linear Logic, Denotational Semantics, Opera-
tional Semantics

1. Introduction
Linearity is a key tool in order to support a conscious use of re-
sources in programming languages. A non-exhaustive list of its
uses includes garbage collection, memory management and alias-
ing control, description of digital circuits, process channels and
messages management, languages for quantum computations, etc.
A survey of several variants of linear type systems proposed in lit-
erature is [34]. This broad spectrum of applications highlights the
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fact that linearity is a multifaceted abstract concept which can be
considered in different perspectives. For instance, notions of syn-
tactical linearity can be considered when variables are used once
(in suitable senses), e.g. [4, 21]. On the other hand, if redexes can-
not be discarded or duplicated during reduction [21] then a kind of
operational linearity is achieved. This is related to the notion of
simple term [24] in λ-calculus which suggests a kind of linearity
on reductions, unrelated from a specific strategy.

Although some ideas that can be tracked to linearity have been
implicitly used in programming languages for many years, the in-
troduction of linear logic [19] is a redoubtable milestone in this
setting. Linear logic arises from a sharp semantic analysis of stable
domains where stable functions have been decomposed into linear
functions and exponential domain constructors. Such a decomposi-
tion is patently reflected in the syntax of linear logic. Moreover, it
suggests a new approach to linearity: denotational linearity. In a
programming perspective, denotational linearity says that programs
(i.e., closed terms) should correspond via a suitable interpretation
to linear function on some specific domains, e.g. the linear mod-
els introduced in [13, 14, 19, 22]. By tackling this correspondence
minutely some important contributions to the theory of program-
ming can be obtained. If the considered domain includes all the
computable functions (usually, they do it), then the analysis pro-
vides Turing-complete languages with weak syntactic linear con-
straints on variables, and new linear operators that, in a higher-type
computability perspective [25, 27] increase the expressivity of lin-
ear languages.

To advance in this research line, we aim to pick out all and
only (recursive) linear functions in a linear model built as the full
subcategory of coherence spaces and linear functions [19] identi-
fied by the type structure of numerals and arrows. The language
S�PCF proposed in [30] is correct for this linear model, so it is
denotationally linear. Moreover, it grasps a limited completeness,
namely S�PCF is sufficient to assure the definability of all the to-
kens (“prime elements” in domain terms) of the linear model. From
this follows a restricted full abstraction result for terms without free
stable variables (i.e. variables used for recursion). A more general
result was erroneously claimed in [30, Corollary 3]; see Section 3
for more details.

In this paper we propose S�PCF� a language extending S�PCF
by the operator �et-�or. This operator provides a linear counterpart
of the gor operator introduced in [29], and increases the non-
deterministic expressiveness of the language. Indeed, this extension
allows us to gain a finite definability result [15], i.e. the definability
of all the finite cliques of the considered linear model. In fact, a
crucial role in the proof of our finite definability result is played
not only by the �et-�or operator but also by the S�PCF operator
which?. In [30], the which? operator has been proposed as an



example of interesting higher-order linear operator providing run-
time information, in order to give a flavor of our research line.
However, it was not necessary for the token-definability and the
limited full abstraction results. Here, we show how to use which?
(together with the new �et-�or operator) in order to reach the finite
definability.

By using the finite definability, we prove that S�PCF� is fully
abstract with respect to the considered linear model. That is, the
operational equivalence coincides with the denotational equiva-
lence. This result allows us to reason on programs in a composi-
tional way. This is important because even if the operational equiv-
alence is defined for closed ground contexts, since it relies on the
operational formal machine evaluating programs, sometimes one
wants just to replace a subterm with another one and preserve the
equivalence. So, we need to consider also open sub-terms that form
our programs. In our case, tackling the equivalence also when terms
contain open variables is particularly challenging due to the pres-
ence of stable variables, used for recursion. Besides, we prove the
coincidence of three different definitions of operational equivalence
that make simpler the reasoning on the equivalence between pro-
grams by permitting to consider only contexts of a restricted shape.
Moreover, the proof of this result uses non-trivial syntactical and
denotational arguments that are to our knowledge new and of wider
interest.

We remark that S�PCF� is neither syntactically linear nor oper-
ationally linear in a tight sense, albeit its finitary fragment (the set
of programs which does not involve recursion) enjoys some syntac-
tical and operational forms of linearity. For instance, it is syntac-
tically linear for slices, and when only slices are considered it can
be evaluated without duplicating redexes. Besides, we conclude the
paper by giving an operational semantics inducing an efficient eval-
uation of S�PCF� terms. This operational semantics traces out and
records linear information to drastically prune the infinite branch-
ing search tree of the evaluation of S�PCF�.

Outline In Section 2 we introduce in an informal way the contri-
butions that will be technically presented in the rest of the paper.
In Section 3 we introduce the background needed to understand the
technical results of this paper. In Section 4 we show that S�PCF
lacks the full abstraction. In Section 5 we introduce the language
S�PCF� and we give some programming examples. In Section 6 we
prove the finite definability and the full abstraction for S�PCF�. In
Section 7 we show the coincidence of the three operational equiv-
alence introduced. In Section 8 we give an abstract machine for
S�PCF� that traces the linear use of terms and it provides the base
for an efficient implementation of our language.

2. Contributions: An Informal Account
In this paper, we propose an extension of the language S�PCF in-
troduced in [30]. S�PCF is a PCF-like language enriched with the
which? operator, that is correct for the considered linear model.
In particular, linearity is obtained by means of some constraints
on clever variable management. S�PCF is based on three kinds of
variables: ground xι and stable variables �

σ�τ , that can be weak-
ened and contracted, and linear ones fσ�τ that cannot. Ground and
linear variables can be λ-abstracted, stable variables cannot. Stable
variables can be bound by a dedicated binder (the µ-abstraction)
and they are used to define recursive functions. In S�PCF, an argu-
ment N supplied to λx.M is evaluated by using a call-by-value policy
in case x is ground, a call-by-name policy otherwise. More details
can be found in Section 3.2.

The denotational insights

The basic components of the model are tokens. A token is a tuple
of natural numbers that complies with the structure of types. For

instance
((ι � ι) � ι) � (ι � ι) � ι
(((((0 , 1) , 2) , (3 , 4) , 5)))

The second row of the formula above describes a token belonging
to the coherence space corresponding to the type written in the first
row (clearly, ι is the type of natural numbers while � is the linear
arrow). S�PCF is able to define all the tokens which belong to
coherence spaces corresponding to the types [30]. For instance, the
following term defines the token written above:

λf.λg.�if
“`

f
`
λx.�if (x

.
= 0) 1 Ω

´ .
= 2

´
and (g 3

.
= 4)

”
5 Ω .

To program a token means to verify that each input coincides with
the one described by the token, in the example there are two input
(i.e. ((0, 1), 2) and (3, 4)).

The elements of the linear model as usual in coherence spaces
are cliques, i.e. sets of coherent tokens. The coherence relation
ensures that cliques describes only traces of functions (where the
trace is an economic way to describe the graph of a function). In
particular, coherence establishes when two tokens can coexists in
the trace of a function. Consider a simple clique of a linear function:8<

:
((((0, 0) , ((5, 7) , 0) , 0)))
((((2, 0) , ((3, 9) , 1) , 1)))
((((2, 1) , ((3, 9) , 1) , 2)))

9=
;

Above three tokens have two input arguments, respectively of type
ι � ι and (ι � ι) � ι. Coherence ensures that, for each
pair of tokens, there exists an input argument allowing to decide
what is the unique token being (eventually) involved in the com-
putation. For instance, by applying the first argument to 2 we can
distinguish between the second and the third token, in fact the sub-
tokens (2, 0) and (2, 1) are incoherent indeed they cannot coexist
in the same function. Likewise, by applying the second argument
to λxι.�if (x

.
= 5) 7 (�if (x

.
= 3) 9 Ω ) , we can distinguish the

first token from both the second and the third. Indeed ((3, 9), 1)
and ((5, 7), 0) are incoherent and they cannot coexist in the same
function.

These properties are important in order to program linear func-
tions, however, linearity gives no information about how to locate
such observations. In particular, when higher-order types are con-
sidered this becomes quite tricky, and parallelism is necessary.

Is S�PCF able to program (at least) all the finite cliques?

Anticipating, we say immediately that the answer is negative:
S�PCF allows us to program some finite cliques but not all of them.
The extension we propose in this paper however fills this gap. That
is, S�PCF� permits one to program all the finite cliques.

Let us now go in more details. S�PCF is Turing-complete. This
means that it is able to program all the first order (computable)
cliques. For instance denoting with ∗ the multiplication between
numerals, the following term

µ�.λx.�if (x
.
= 0) 1 (x ∗ (�(pxι)))

defines the clique {(n, factorial(n)) | n ∈ N}. So at the first
order, S�PCF is able to program not only all the finite cliques
but all the computable infinite ones. When higher-order functions
are considered, however, the situation becomes more difficult. For
instance, if we want to define the following clique

(((((0, 3) , 0) , 1)))
(((((1, 4) , 0) , 2)))

ff

we cannot discriminate the two given tokens just by looking at the
result of the evaluation of the argument applied to the term N =
λx.�if (x

.
= 0) 3 (�if (x

.
= 1) 4 Ω ) , because it corresponds to

0 for both tokens. In order to discriminate them, we need to grasp



some intensional aspect of the above evaluation, more specifically,
we need to identify the value passed to N (i.e. 0 in the first token
and 1 in the second). Information like this can be retrieved by
an appropriate use of the which? operator, introduced in [30].
The which? operator corresponds to a primitive form of exception
handling: it allows to obtain besides the result of an evaluation also
the information on what has been used during that evaluation. More
examples are in Section 5.1.

The which? operator increases the expressivity of the language.
However, there are still some finite cliques that cannot be pro-
grammed in S�PCF. For instance,8<

:
((((0, 0) , (1, 0) , (0, 1) , 0)))
((((0, 1) , (0, 0) , (1, 0) , 1)))
((((1, 0) , (0, 1) , (0, 0) , 2)))

9=
; (1)

The reason is that we cannot identify a priori which is the observa-
tion that should be done. In particular, we are not able to determine
which argument we should observe first and what is the value we
should supply to it. Suppose we want to realize the program defin-
ing the clique in Equation 1, writing a term of the following shape

λf1.λf2.λf3.
“
λx.�if (x

.
= 0) P1

`
�if (x

.
= 1) P2 P3

´ ”
(f10)

This means that we start the observation from the first argument
f1 and we apply 0 to it. This term diverges if we supply as first
argument a term defining (1, 0) and any other term as second and
third argument. However, this behavior can be admitted by the third
token. Something similar happens if we start the observation from
an other argument and/or if we choose to apply 1 instead of 0 to it.
Such a behavior would be not desirable.

To solve this circularity, we need to make available a parallel
operator. This kind of parallelism is well known in stable domains,
where so called Gustave’s functions exists [6, 8]. Following [29],
we could add a gustave-or operator where linearity is carefully
forced. That is, a gustave-or typed as follows:

Γ � M1 : ι Γ � M2 : ι Γ � M3 : ι

Γ �Gor (M1, M2, M3) : ι

with the provision that the basis Γ does not contain linear variables.
This operator can then be equipped by the following semantics:

M1 ⇓ 0 M2 ⇓ n + 1

Gor (M1, M2, M3) ⇓ n

M2 ⇓ 0 M3 ⇓ n + 1

Gor (M1, M2, M3) ⇓ n

M3 ⇓ 0 M1 ⇓ n + 1

Gor (M1, M2, M3) ⇓ n

Adding it to S�PCF however is not sufficient to program the clique
defined in Equation 1 (actually, to extend S�PCF by Gor does not
add any linear function!). We need something enabling a limited
form of contraction on linear variable to permit parallel observa-
tions of the same linear variable on different arguments. One way
to do this is by introducing a further control operator, that can be
described as a let-like operator:

Γ � N : σ � τ � : σ � τ, ∆ � M : ι

Γ, ∆ � let �
σ�τ = N in M : ι

where the variable � can be weakened and contracted, i.e. it does
not respect any occurrence constraint. The operational meaning of
this let-like operator can be described by the following rule:

�P� = {a} ⊆ �N� M[P/�] ⇓ n M[Ω/�] ⇑
let �

σ�τ = N in M ⇓ n

Such an operator appears to have the flavor of the co-dereliction of
Differential Linear Logic [16]. The idea motivating the above rule
is that:

Denotational linearity allow several observations of a
clique, as long as they are performed on the same token.

Following this intuition, the side condition �P� = {a} ⊆ �N� says
that P is interpreted as the unique token of N that can be so observed
several time in evaluating M[P/�]. The third condition M[Ω/�] ⇑
instead is here just to ensure that the token is actually really used.

A clever combination of the two above operators allows to
program the clique described in Equation 1 (such combination will
be detailed in Section 5.1). We remark some drawbacks of let.

1. Its operational rule given above is not effective, due to the
presence of the third condition M[Ω/�] ⇑.

2. It limits the understanding of the program control flow. It can be
checked only at run-time that the same token has been observed.

The first drawback can be solved by designing an ad-hoc opera-
tional semantics, the second one is more problematic since it could
make the understanding of programs really problematic. For these
two reasons, we extend S�PCF by a single operator, combining
together Gor and let. The �et-�or (considering only a linear vari-
able f) is typed as follows:

Γ � N : σ f : σ, ∆ � M1 : ι f : σ, ∆ � M2 : ι f : σ, ∆ � M3 : ι

Γ, ∆ � �et fσ = N in�or M1 M2 M3 : ι

again with the provision that the basis ∆ does not contain linear
variables. Note that now the �et-bounded variable f is linear, albeit
used in three program-branches. The �et-�or evaluation can now
be described using rules as follows:

M1[P/f] ⇓ 0 M2[P/f] ⇓ n + 1 �P� = {a} ⊆ �N�

�et fσ�τ = N in�or M1 M2 M3 ⇓ n

(we give just one rule, the other two are analogous). Thanks to
a generalized �et-�or operator, the resulting language S�PCF�

permits to program all the finite cliques. So, the full abstraction
follows.

The operational Insights

The full abstraction result mentioned above ensures as usual that a
compositional theory of program equivalence can be defined. That
is, program equivalence is a congruence. Concretely, the full ab-
straction is proved with respect to a non-standard notion of contex-
tual equivalence ∼, named fix-point equivalence defined as:

M ∼ N iff C[M[ �Pσ/ ��σ]] ⇓ n ⇐⇒ C[N[ �Pσ/ ��σ]] ⇓ n

where all the P
σi
i are closed terms. This notion of equivalence

makes explicit the fact that for reasoning in a compositional way
about programs we need to permit to substitute general terms to
stable variables, even if such variables are only used for dealing
with recursion. It is exactly to program the Pi that the definability
of all the finite cliques is needed in order to get full abstraction. In-
deed, in [30] a full abstraction result for terms without open stable
variables was proved. Anyway, the definition of fix-point equiva-
lence seems ad-hoc with respect to the usual notion of contextual
equivalence:

M ≈ N iff C[M] ⇓ n ⇐⇒ C[N] ⇓ n

So, it is natural to consider the following question:

Do the relations ∼ and ≈ coincide?

Anticipating, the answer to this question is positive. Although,
proving this result is quite technical. Intuitively, the reason is that
stable variables can only be µ-abstracted. More precisely, suppose
M �∼ N and suppose they have a free stable variable � of type
σ1 � . . . � σk � ι. We have that there is a context C and a
term P such that C[M[P/�]] ⇓ n and C[N[P/�]] �⇓ n. Intuitively, to
prove that also M �≈ N holds, one could think to build a (pseudo)-
context

C
′ = C[(λ�.[ ])P]



such that C′[M] ⇓ n and C′[N] �⇓ n. Unfortunately, this context
cannot be built since the stable variable � cannot be λ-abstracted
but can only µ-abstracted. So, the best that one can hope to get is a
context

C
′′ = C1[µ�.C2[ ]]

acting similarly to C′. We will show in Section 7 how to build a such
context. Here, we propose an example. Suppose that M and N can be
distinguished in the empty context [.], by using P (for simplicity, we
assume �, P typed ι � ι, and �P� = {(n, m)} with n �= 0). So,
we consider a term P′ : ι � ι defining the clique {(0, 0), (n, m)}.
We can define C′′ as

µ�.λy.
““

λxι.�if (x
.
= 0) [.]

`
�if (x

.
= m) m Ω

´”
(P′ y)

”
Therefore, this context can be used to build the terms C′′[N]0
and C′′[M]0. After one recursion step, the terms N[C′′[N]/�] and
M[C′′[M]/�] are obtained. However, in the next recursive step C′′[N]
and C′′[M] will behave exactly as P and so the two terms can be dis-
tinguished. One can doubt that this construction cannot be always
done. However, the properties of the linear model ensure that finite
cliques are never maximal with respect to the set theoretical inclu-
sion. This for instance does not happen in stable models in general.
This means that given a finite clique x one can always find a new
coherent token that can be added to it and that can be used to control
the recursion. The proof just generalizes this example.

Besides the equivalence of programs, linearity provides also
crucial information for the operational evaluation of programs. As
instance, the side condition �P� = {a} ⊆ �N� in the rule of
�et-�or above assumes the existence of such a P, but it does not
give any hints on its search. If we face a concrete implementation
of S�PCF� then this could be a problem. An exhaustive search of
such a token a is intrinsically inefficient. So, it is natural to consider
the following question:

Is there a reasonable way to drive the evaluation of S�PCF�

programs?

The answer to this question as we will show in Section 8 is positive,
and again linearity comes in our help. It ensures two important
properties: first that such a token a exists, and second that it is
unique. From these properties we can devise a finer implementation
of the language. Consider again the rule

M1[P/f] ⇓ 0 M2[P/f] ⇓ n + 1 �P� = {a} ⊆ �N�

�et fσ�τ = N in�or M1 M2 M3 ⇓ n

Instead of evaluating Mi[P/f] one can think to evaluate Mi in an
environment e storing the information about variables. So, we
associate f to the term N. When the term N is used, we record its
observed token a (conveniently encoded by a term P). In particular,
the above �et-�or rule becomes, roughly:

〈M1|e0[f := N]〉 ⇓T 〈0|e1[f := P]〉 〈M2|e1[f := P]〉 ⇓T 〈m|e2〉
〈�et f = N in�or M1 M2 M3|e0〉 ⇓T 〈m|e2〉

Note that the above reasoning relies on an effective tracing of all
evaluated terms. For instance an evaluation of the term (λxι.M)Q is
done using a rule as

〈Q|e0〉 ⇓T 〈m|e1〉 〈M|e1[x := m]〉 ⇓T 〈n|e2〉
〈fQ|e0[f := λxι.Mι]〉 ⇓T 〈n|e2[f :=〈m, n〉]〉

that traces the information of the used token, i.e. it puts 〈m, n〉 into
the environment. A tracing evaluation of S�PCF� programs will
be devised in Section 8. Note that this kind of evaluation can be
considered a kind of linear call-by-need evaluation where only one
evaluation is done and where further observations are used to check
the consistency of the information.

Synopsis

In summary, the key contributions of this paper are:
• The definition of a new linear operator �et-�or (Definition 13)

that permits to establish a bridge between denotational and syn-
tactical linearity through a full abstraction result (Corollary 2).

• A finite definability result (Theorem 6). It gives evidence that
S�PCF� is able to program a broader class of linear programs
than other linear programming languages.

• The coincidence of different operational equivalences (Corollary
5). This makes simpler the reasoning on the equivalence between
linear programs.

• An efficient reduction semantics exploiting linear properties in
order to provide a concrete running evaluation of S�PCF� that
avoids exhaustive evaluation searches, by tracing and recording
explicitly the linear use of subterms.

3. Background
3.1 Coherence Spaces

Coherence spaces are a simple framework for Berry’s stable func-
tions [7], developed by Girard [19]. More details are in [20].

A coherence space X is a pair 〈|X|, ��X〉 where |X| is a set of
tokens called the web of X and ��X is a reflexive and symmetric
relation between tokens of |X| called the coherence relation on X.
The strict incoherence �X is the complementary relation of ��X ;
the incoherence ��X is the union of relations �X and =; the strict
coherence �X is the complementary relation of ��X . A clique x
of X is a subset of |X| containing pairwise coherent tokens. The
set of cliques of X is denoted Cl(X), while the set of finite cliques
is denoted Clfin(X).

The basis of our model is the infinite flat domain. Let N denotes
the space of natural numbers, namely (|N|, ��N) such that |N| =
� and m ��N n if and only if m = n, for all m, n ∈ |N|.
Definition 1. Let X and Y be coherence spaces and f :
Cl(X) −→ Cl(Y ) be a monotone function. Then, f is linear when-
ever ∀x ∈ Cl(X),∀b ∈ f(x) ∃!a ∈ x s.t. b ∈ f({a}).

Linear functions can be represented as cliques.

Definition 2. Let X and Y be coherence spaces. X � Y is the
coherence space having |X � Y | = |X| × |Y | as web, while
(a, b) ˝X�Y (a′, b′) iff a ¨X a′ implies b ˝Y b′.

The trace of a linear function f : Cl(X) → Cl(Y ) is Tr(f) =
{(a, b) | a ∈ |X|, b ∈ f({a})}. Given t ∈ Cl(X � Y ) and
x ∈ Cl(X), let us define the map F(t) : Cl(X) → Cl(Y ) as

F(t)(x) = {b ∈ |Y | | ∃a ∈ x, (a, b) ∈ t} (2)

Lemma 1. If f : Cl(X) → Cl(Y ) is a linear function then
Tr(f) ∈ Cl(X � Y ). If t ∈ Cl(X � Y ) then F(t) : Cl(X) →
Cl(Y ) is a linear function.

Definition 3 (Linear Model). The Linear Model L is the type
structure generated by the coherence space N and the arrow �.

3.2 The language S�PCF

S�PCF has been introduced in [17, 30] to be the syntactical coun-
terpart of the above mentioned linear model.

Definition 4. The set � of linear types is defined by the grammar:
σ, τ ::= ι | σ � τ , where ι is the only ground type.

For the sake of clearness we introduce three kinds of variables,
in order to remark their different explicit use.

Definition 5. Let Varσ be numerable sets of variables of type σ.
Let SVarσ (σ �= ι) be numerable sets of variables disjoint from



� 0 : ι
(z) � s : ι � ι

(s) � p : ι � ι
(p)

κ
σ � κ : σ

(v)
� which? : ((ι � ι) � ι) � ι

(w)

Γ � M : τ
Γ, xι � M : τ

(gw)
Γ, x1

ι, x2
ι � M : τ

Γ, xι � M[x/x1, x2] : τ
(gc)

Γ, xσ � M : τ

Γ � λxσ.M : σ � τ
(λ)

Γ∩∆=∅ Γ � M : ι ∆ � L : ι ∆ � R : ι
Γ, ∆ � �if M L R : ι

(lif)

Γ � M : τ
Γ, �σ � M : τ

(sw)
Γ, �σ

1 , �σ
2 � M : τ

Γ, �σ � M[�/�1, �2] : τ
(sc)

Γ, �σ � M : σ Γ�� = ∅
Γ � µ�.M : σ

(µ)
Γ∩∆=∅ Γ � M : σ � τ ∆ � N : σ

Γ, ∆ � MN : τ
(ap)

0 ⇓ 0
(0)

M ⇓ n

s M ⇓ s n
(s)

M ⇓ s n

p M ⇓ n
(p)

M ⇓ 0 L ⇓ m

�if M L R ⇓ m
(ifl)

M ⇓ s(n) R ⇓ m

�if M L R ⇓ m
(ifr)

M[N/f]P1 · · · Pi ⇓ v

(λfσ�τ .M)NP1 · · · Pi ⇓ v
(λ�)

M[µ�.M/�]P1 · · · Pi ⇓ v

(µ�.M)P1 · · · Pi ⇓ v
(µ)

N ⇓ m M[m/x]P1 · · · Pi ⇓ v

(λxι.M)NP1 · · · Pi ⇓ v
(λι)

M(λxι.�if(

kz }| {
p . . .p x) k (p0)) ⇓ n

which? M(ι�ι)�ι ⇓ �n, k�
(w)

�0ι�ρ = {0} �sι�ι�ρ = {(n, n + 1) | n ∈ �} �pι�ι�ρ = {(0, 0)} ∪ {(n, n − 1) | n ∈ � ∧ n > 0} �xσ�ρ = {ρ(xσ)}
��σ�ρ = ρ(�σ) �Mσ�τNσ�ρ = F(�M�ρ)�N�ρ �λxσ.Mτ �ρ = {(a0, b) ∈ |�σ � τ�| | b ∈ �M�ρ[xσ := a0]}

�(�if Mι Nι Lι)ι �ρ = {n ∈ � | �Mι�ρ = {0} ∧ �Nι�ρ = {n}} ∪ {n ∈ � | �Mι�ρ = {m + 1} ∧ �Lι�ρ = {n}, m ∈ �}
�(µ�

σ.Mσ)σ�ρ = fix(�x ∈ Cl(�σ�).
S

x′⊆finx�M�ρ[� := x′]) �which?�ρ = {(((n, n), r), �r, n�) | n, r ∈ �}

Table 1. (a) Type system, (b) operational semantics and (c) linear interpretation for S�PCF

Varσ . Variables in Varι are named ground variables. Variables in
�Var =

S
σ,τ∈� Varσ�τ are named linear variables. Variables in

SVar =
S

σ �=ι SVarσ are named stable variables.

Note that there are no stable variables of type ι. Latin letters
xσ, yσ, fσ, . . . denote variables in Varσ . We use types to explic-
itly distinguish between ground, e.g. xι, and linear variables, e.g.
xσ�τ . Moreover, �

σ
0 , �σ

1 , �σ
2 , . . . denote stable variables. Last, κ

is a wild-card for all the variables.
We define terms (Definition 7) as the pre-terms (Definition 6)

that can be typed using the type system in Table 1.a.

Definition 6. Pre-terms are defined by the grammar:

M ::= κ
τ | 0 | s | p | �if M M M | (MM) | (λxσ.M) | µ�.M | which?

We write n for s(· · · (s0) · · · ) where s is applied n-times to 0,
and we denote N = {0, . . . , n, . . .} the set of numerals.

We consider typing judgments of the shape Γ � M : σ where M
is a pre-term, σ is a linear type and Γ is a basis, that is a finite list
of variables in Var, where each variable appears at most once. We
denote Γ�S (resp Γ� ι, Γ��) the restriction of the basis Γ containing
only variables in SVar (resp. in Varι, �Var). We denote Γ, ∆ and
Γ ∩ ∆ the union and the intersection of two basis respectively. We
can now define S�PCF terms.

Definition 7. The terms of S�PCF are the pre-terms typable by
using the type system in Table 1.a.

Sometimes, we write Mσ when, for some Γ, we have Γ � M :
σ. Free variables of any kind (FV), free linear variables (�FV),
free stable variables (SFV), closed and open terms are defined as
expected. We denote P = {Mι ∈ S�PCF | FV(Mι) = ∅} the set of
programs. As usual, M[N/κ] denotes the capture-free substitution
of all free occurrences of κ in M by N.

Lemma 2 (Substitution). Let Mτ , Nσ ∈ S�PCF.
• If �FV(Mτ ) ∩ �FV(Nσ) = ∅ and xσ ∈ �Var then Mτ [Nσ/xσ] ∈

S�PCF.
• If �FV(Nτ ) = ∅ then Mτ [Nσ/�

σ] ∈ S�PCF.
• If �FV(Nτ ) = ∅ then M[N/κ1, . . . , N/κn] ∈ S�PCF.

Pairing (i.e. mapping pair of numerals on one numeral) and
projections function will be used everywhere in the paper. We will
denote with �n, m� the numeral k encoding the ordered pair of n and
m and we write π1(k) for the numeral n and π2(k) for the numeral
m. S�PCF-terms defining them can be found in [30]. We avoided
to explicitly use the product-types in syntax and semantics just for
sake of simplicity, albeit a such extension can be pursued.

Definition 8. The evaluation relation ⇓⊆ P × N is the smallest
relation inductively satisfying the rules of Table 1.b. If there exists
a numeral n such that M ⇓ n then we say that M converges, and we
write M ⇓, otherwise we say that it diverges, and we write M ⇑.

Remark that p is a partial operator, namely p0 diverges. Moreover,
note that as stressed in Section 2, the result of the evaluation of the
operator which? applied to a term M consists of a pair �n, k� where
n is the result of the evaluation of M(λxι.x) while k is the unique
(thanks to linearity) numeral that M gives as argument to λxι.x.

The set of σ-context Ctxσ is defined as:

C[σ] ::= [σ] | κ
τ | 0 | s | p | �if C[σ] C[σ] C[σ]

| which? | (C[σ]C[σ]) | (λxσ.C[σ]) | µ�.C[σ]

C[Nσ] denotes the result obtained by replacing all the occurrences
of [σ] in the context C[σ] by the term Nσ and by allowing the capture
of its free variables.

Definition 9 (Standard Operational Equivalence). Let Mσ, Nσ ∈
S�PCF.
• M �σ N whenever, for all C[σ] s.t. C[M], C[N] ∈ P,

if C[M] ⇓ n then C[N] ⇓ n.
• M ≈σ N if and only if M �σ N and N �σ M.

We are interested in a language for which the linear model L is
fully abstract under a standard interpretation �−�, i.e. ground types
are interpreted on flat posets (see [33]). The standard interpretation
is such that �ι� = N and �σ � τ� = �σ� � �τ�.

An environment ρ ∈ Env is a partial function mapping a
variable xσ in a token a ∈ |�σ�| and a stable variable �

σ in a
finite clique x ∈ Clfin(�σ�). The set of environments is denoted
by Env. Let �a be a sequence of tokens of a coherence space, let



�x be a sequence of non-stable variables of the same length of �a;
ρ[�x := �a] is the environment such that ρ[�x := �a](x′) = ai in case
x′ is the i-th element of �x, otherwise ρ[�x := �a](x′) = ρ(x′). If �x is
a sequence of finite cliques and �� is a sequence of stable variables
of the same length then ρ[�� := �x] is defined likewise.

Definition 10. Let Mσ, Nσ ∈ S�PCF and ρ ∈ Env. The linear
interpretation �Mσ� : Env → Cl(�σ�) is defined in Table 1.c using
F as defined in Equation 2 and fix which is the least fix point
operator.

3.3 Stable Closed Full Abstraction

We recall the main properties of S�PCF [30, 32]. First, the linear
interpretation is adequate and correct.

Theorem 1 ([30]). Let Mι ∈ P and Nσ, Lσ ∈ S�PCF.

Adequacy: Mι ⇓ n ⇐⇒ �Mι� = �n�.
Correctness: �Nσ� = �Lσ� ⇒ N ≈σ L

In S�PCF all the tokens of the linear model L can be defined.
Moreover, as shown in [30], this can be done without using the
which? operator.

Theorem 2 (Token Definability).
If u ∈ |�σ�| then there exists a closed Mσ ∈ S�PCF such that
�M� = {u}.

Token definability permits to define the separating terms used in
the next lemma. This in contrast to what happens in [29, 33] where
a finite definability is needed.

Lemma 3 (Separability). Let σ ∈ �. For all distinct f, g ∈
Cl(�σ�) there exists a closed term Pσ�ι such that F(�P�)(f) �=
F(�P�)(g).

From this follows that full abstraction holds for all the terms that
do not contain free stable variables. We stress that such a result was
erroneously claimed in [30] to be of more generality. Indeed, we
show in the next section that the unrestricted full abstraction fails.

Theorem 3 (Stable Closed Completeness). Let Mσ, Nσ ∈ S�PCF
and SFV(Mσ) = SFV(Nσ) = ∅. Then:

M ≈σ N ⇒ �M� = �N�

Proof. Let us prove the contrapositive. Let us assume �M�ρ �= �N�ρ,
for an environment ρ. By Separability Lemma 3, there exists a
closed Pσ�ι such that F(�P�ρ)(�M�ρ) = n1 �= F(�P�)(�N�ρ).
Moreover, by Token Definability Theorem 2 we can build a context
C[ι] such that �P M�ρ = �C[P M]�∅ and �P N�ρ = �C[P N]�∅ where ∅
is the empty environment. So, by adequacy we have (C[P M]) ⇓ n1
and (C[P N]) �⇓ n1. So M �≈σ N.

Note that, in the above proof the Token Definability Theorem 2
allows us to build the context C[ι] only because we have assumed
that the two terms have no stable variables. In the next section, we
prove that in order to relax this constraint the language must to be
extended.

Corollary 1 (Stable Closed Full Abstraction). Let Mσ, Nσ ∈
S�PCF and SFV(Mσ) = SFV(Nσ) = ∅. Then:

M ≈σ N ⇐⇒ �M� = �N�

4. Lack of Full abstraction
S�PCF does not enjoy the unrestricted full abstraction. In this sec-
tion, we show that the Corollary 1 cannot be extended to terms hav-
ing free occurrences of stable variables, since they are interpreted
in finite cliques. We prove that S�PCF is not able to define all fi-
nite cliques of the model by presenting a linear function that is not

definable in S�PCF, since it is not strongly stable [12]. We use this
function to define two terms having free occurrences of stable vari-
ables which are operationally equivalent, albeit they are interpreted
into two different linear functions.

4.1 Token enumeration

First, we introduce some abbreviations that are useful in or-
der to simplify the rest of the paper. We use (M and N) to
abbreviate (�if M (�if N 0 1 ) 1 ). The equivalence among nu-
merals, denoted

.
= used in infix notation, is encoded as

µ�
ι�ι�ι.λxι.λyι.�if x (�if y 0 1)

`
�if y 1 (�(px)(py))

´
.

Moreover, we define a family of diverging terms by induction on
types, Ωι = p0 and, if σ0 = µ1 � ... � µm � ι for some m ∈ �

then Ωσ0�...�σn�ι is

λxσ0
0 . . . xσn

n .�if(Ωτ
x

σ1
1 . . . xσn

n )(x0Ω
µ1 . . . Ωµm)(x0Ω

µ1 . . . Ωµm)

Clearly, Ωσ1�...σn�ιMσ1
1 . . . Mσn

n ⇑ for each M
σ1
1 , . . . , Mσn

n .
We can define an encoding �−� : |�σ�| → � from tokens of the

coherence space �σ� to natural numbers as:
• �n� = n if σ = ι;
• �(a1, a2)� = ��a1�, �a2�� if σ = τ1 � τ2.
It provides an enumeration of the tokens of our model. Remark that
the Theorem 2 implies that there is a family of terms Sglσ

n : σ
(short for singleton) being an enumeration of terms that can be
interpreted on (single) tokens. Concretely, we define Sglσ

n : σ by
mutual induction with terms Chk(σ)

n : σ � ι that checks whether a
token is included in the operational behavior of a term typed σ.

Definition 11. The terms Sglσ
n : σ and Chk(σ)

n : σ � ι are defined
by mutual induction on σ.
If σ = ι, Sglι

n = n and Chk
(ι)
n = λyι.�if (n

.
= y) 0 Ωι .

If σ = σ1 � σ2, let σ2 = τ1 � . . . � τk � ι for some k,
without loss of generality, then Sglσ

n is

λfσ1λgτ1
1 . . . λgτk

k .�if (Chk
(σ1)

π1(n)
f)(Sglσ2

π2(n)
g1 . . . gk)(Ω

σ2g1 . . . gk)

and Chk
(σ)
n is λfσ.�if (Chk

(σ2)

π2(n)
(f Sgl

(σ1)

π1(n)
)) 0 Ωι .

In Chk
(σ)
n we use (σ) as a short for σ � ι. As an instance,

if n = �n1, n2� then the term Sglι�ι
n is operationally equivalent

to the term λxι.�if (x
.
= n1) n2 Ωι , while the term Chk

(ι�ι)
n is

operationally equivalent to the term λfι�ι�if (f n1
.
= n2) 0 Ωι .

Lemma 4. Let us fix a type σ. If a ∈ |�σ�| and n = �a�, then:

1. �Sgl
(σ)
n �ρ = {a}, for all ρ;

2. if �Chk
(σ)
n N�ρ = �0�ρ then a ∈ �N�ρ, for all ρ.

4.2 Fix-point operational equivalence

In order to simplify the reasoning about programs, we introduce a
non-standard notion of operational equivalence.

Definition 12. Let assume Mσ, Nσ be terms of S�PCF, such that
SFV(M), SFV(N) ⊆ {�

σ1
1 , . . . , �

σn
n }.

• M �σ N whenever, for all Pσ1
1 , . . . Pσn

n , for all C[σ] s.t.
C[M[P1/�1, . . . , Pn/�n]], C[N[P1/�1, . . . , Pn/�n]] ∈ P if
C[M[P1/�1, . . . , Pn/�n]]⇓ n ⇒ C[N[P1/�1, . . . , Pn/�n]]⇓ n.

• M ∼σ N if and only if M �σ N and N �σ M

It is easy to verify that �σ is a preorder and ∼σ is an equiva-
lence. Note that the comparison between the fix-point operational
equivalence and the standard one is not immediate. Indeed, proving
that the two coincide corresponds to prove that ∼σ is also a con-
gruence. For instance, let us assume that both Mι, Nι contain just
one free variable �

σ . If M �∼σ N then it is not easy to build contexts
C[σ] and µ�.C′[σ] (depending from the common substitution to �)
such that C[µ�.C′[M]] ⇓ and C[µ�.C′[N]] �⇓, i.e. M �≈σ N.



The standard interpretation is correct with respect to the fix-
point operational equivalence too.

Proposition 1. Let Mσ, Nσ ∈ S�PCF. �M� = �N� ⇒ M ∼σ N.

For clarity, we anticipate that the fix-point equivalence coincide
with the standard contextual equivalence (see Section 7).

4.3 Full Abstraction Counterexample

We use the second-order gustave-or operator G2or: (ι � ι) �
(ι � ι) � (ι � ι) � ι, introduced in [30], and equipped with
the following evaluation.

P00 ⇓ 0 P11 ⇓ 0 P20 ⇓ 1

G2or
L
P0P1P2 ⇓ 0

(G0)
P00 ⇓ 1 P10 ⇓ 0 P21 ⇓ 0

G2or
L
P0P1P2 ⇓ 1

(G1)

P01 ⇓ 0 P10 ⇓ 1 P20 ⇓ 0

G2or
L
P0P1P2 ⇓ 2

(G2)
P01 ⇓ 1 P11 ⇓ 1 P21 ⇓ 1

G2or
L
P0P1P2 ⇓ 3

(G3)

The operator G2or, non-deterministically provides inputs to its three
branches and it looks for their outputs (ex-ante, it is not possible
to choose inputs). As soon as the evaluation terminates by using
a rule, the other rules cannot terminate anywise, i.e. ex-post the
evaluation determines a unique rule which converges. The operator
G2or is the operational counterpart of the following clique

g =

8><
>:

((((0, 0) , (1, 0) , (0, 1) , 0)))
((((0, 1) , (0, 0) , (1, 0) , 1)))
((((1, 0) , (0, 1) , (0, 0) , 2)))
((((1, 1) , (1, 1) , (1, 1) , 3)))

9>=
>; (3)

The following result has been proved in [30].

Theorem 4. G2or is not S�PCF-definable

Based on the statement above, we can build the desired counter-
example. Here we make use of fix-point operational equivalence.
Let M = �Ωι�ιΩι�ιΩι�ι and

N = �if

0
BB@

�(Sglι�ι
�0,0�)(Sgl

ι�ι
�1,0�)(Sgl

ι�ι
�0,1�)

.
= 0 and

�(Sglι�ι
�0,1�)(Sgl

ι�ι
�0,0�)(Sgl

ι�ι
�1,0�)

.
= 1 and

�(Sglι�ι
�1,0�)(Sgl

ι�ι
�0,1�)(Sgl

ι�ι
�0,0�)

.
= 2 and

�(Sglι�ι
�1,1�)(Sgl

ι�ι
�1,1�)(Sgl

ι�ι
�1,1�)

.
= 3

1
CCA 7 Ωι

be S�PCF terms such that �
(ι�ι)�(ι�ι)�(ι�ι)�ι � M, N : ι. It

is easy to see that �M�ρ �= �N�ρ, by taking ρ(�) = g as defined
in Equation 3. Instead, M ∼ι N since to separate the two terms a
term behaving like G2or is necessary. However, such a term is not
definable in S�PCF as shown by Theorem 4.

5. The extended language
To recover the problem presented in the previous section, S�PCF�

extends the S�PCF language by means of a new �et-�or operator.

Definition 13. The S�PCF� pre-terms are defined by extending the
grammar of pre-terms as follows:

M ::= · · · | �et fσ1�τ1
1 = M, . . . , fσk�τk

k = M in�or M M M

The terms of S�PCF� are the pre-terms typable by using the type
system in Table 1.a extended by the rules in Table 2.a.

The �et-�or generalizes the behavior of the G2or operator pre-
sented in the previous section by forcing a linear evaluation. It is
worth noticing that the contexts of the terms Mi in the (�et-�or)
rule are managed in an additive way, contracting common (ground,
linear and stable) variables. However, note that a �et-�or binds all
the linear variables in its three branches. So, a form of syntactic
linearity (by slice [19]) for linear variables is preserved.

Definition 14. A slice of a term M is a new term where:

• each subterm �if P M0 M1 of M is replaced by, either (λzι.M0)P
or (λzι.M1)P where z is a fresh variable;

• each subterm �et f1 = N1, . . . , fk = Nk in�or M1 M2 M3 is
replaced by, (λf1 . . . fk.Mi)N1 . . . Nk where 1 ≤ i ≤ 3.

Morally, a slice of a term chooses one branch of each �if and
one branch of �et-�or. Indeed, a slice contains neither �if nor
�et-�or. It is easy to verify that each linear variable fσ�τ occurs
in a slice of a term M at most once. This says that S�PCF� is syntac-
tically linear by slices. However, as expected, a term containing n
�if and m �et-�or has 2n3m slices which can eventually coincide.

In order to deal with the �et-�or operator without violating
the semantic linearity we need a careful evaluation of terms, this
is described using the terms Sglσ

n and Chk
(σ)
n introduced in the

previous section.

Definition 15. The evaluation relation ⇓⊆ P × N for S�PCF�

programs is the smallest relation satisfying the rules in Table 1.b
extended by the rules in Table 2.b.

The evaluation rules for �et-�or are patterns for infinite rules,
likewise the rule for which? (see previous sections) and for ∃∃∃ in
[33]. The evaluation of the �et-�or operator is obtained by three
distinct rules that explore pairwisely the �et-�or branches. The
evaluation of a �et-�or can be performed only in the case two be-
tween M1, M2 and M3 evaluate to the values 0 and m + 1 respectively
by using a single tuple (i.e., a token) of the traces in the �et-�or-
argument Ni, for i ≤ k. For instance, the (1lgor) can be applied in
the case M1[N1/f1, . . . , Nk/fk] ⇓ 0 and M2[N1/f1, . . . , Nk/fk] ⇓ sm
and the same single information of each Nj coded on numerals nj

is used in both evaluations. The check of this constraints is the mo-
tivation for introducing the terms Sglσ

n and Chk
(σ)
n above. Albeit

ex-ante we don’t know what is the right pair of �et-�or branches
to evaluate, they are established during the course of the evaluation,
so ex-post only one of the three rules can converge. The interpreta-
tion of the �et-�or operator follows these ideas.

Definition 16. Let Mσ, Nσ ∈ S�PCF� and ρ ∈ Env. The linear
interpretation �Mσ� : Env → Cl(�σ�) is defined by the equations
in Table 1.c extended by the ones for the �et-�or operator in Table
2.c.

It is not difficult to see that the correctness w.r.t. the linear model
(Theorem 1) still holds for S�PCF�.

5.1 S�PCF� program examples

We show how to use the �et-�or operator in order to program in
S�PCF� the operator G2or presented in Section 4. This should so
suggest how to recover the counterexample to full abstraction.

In fact, we show something more. We describe how to program
a family of terms G2or

L
that generalize the behavior of the operator

G2or. The terms G2or
L, are parametrized over an ordered list L of

four numerals k0, k1, k2, k3 representing the output returned in
the case the assumptions of one of the rule (G0), (G1), (G2) or
(G3) respectively, are satisfied. So, in particular G2orL=G2or when
L = {0, 1, 2, 3} is considered. In order to proceed in a modular
way, we introduce also a notation in order to consider restrictions
of G2or

L
which use only a subset of the four rules. Precisely, a •

in the list L is used to denote the operator obtained omitting the
corresponding rules. For instance, G2orL0 where L0 = 0, 2, •, • is
defined as

λfι�ι
1 fι�ι

2 fι�ι
3 .„

λw.�if w
.
= 0

`
�if (f21

.
= 0 and f30

.
= 1) 0 Ωι

´
`
�if w

.
= 1(�if (f20

.
= 0 and f31

.
= 0) 2 Ωι ) Ωι

´
«

(f10)

All the G2or
L

defined by just two rules, i.e. for L containing two oc-
currences of •, can be defined likewise. Thus, G2orL1 with parameter



Γ ∩ ∆ = ∅ ∆�� = fσ1
1 , . . . , fσk

k Γ1 � N1 : σ1 . . . Γk � Nk : σk ∆ � Mi : ι (1≤i≤3)

∆�S, ∆� ι, Γ1, . . . , Γk � �et f1 = N1, . . . , fk = Nk in�or M1 M2 M3 : ι
(�et-�or)

M1[Sgl
σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ 0 M2[Sgl

σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ sm Chk

(σk)
nj Nj ⇓ 0 (j∈{1,...,k})

�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3 ⇓ m

(1lgor)

M2[Sgl
σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ 0 M3[Sgl

σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ sm Chk

(σk)
nj Nj ⇓ 0 (j∈{1,...,k})

�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3 ⇓ m

(2lgor)

M3[Sgl
σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ 0 M1[Sgl

σ1
n1 /f1, . . . , Sgl

σk
nk /fk] ⇓ sm Chk

(σk)
nj Nj ⇓ 0 (j∈{1,...,k})

�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3 ⇓ m

(3lgor)

��et�f = �N in�or M1 M2 M3�ρ =


n ∈ �

˛̨̨
˛∃�a ∈

−−→
�N�ρ

�M3�ρ[�f := �a] = {0}∧
�M1�ρ[�f := �a] = {n + 1}

ff
∪


n ∈ �

˛̨̨
˛∃�a ∈

−−→
�N�ρ

�M1�ρ[�f := �a] = {0}∧
�M2�ρ[�f := �a] = {n + 1}

ff

∪


n ∈ �

˛̨̨
˛∃�a ∈

−−→
�N�ρ

�M2�ρ[�f := �a] = {0}∧
�M3�ρ[�f := �a] = {n + 1}

ff

Table 2. (a) Type system, (b) operational semantics and (c) linear interpretation for the �et-�or operator.

L1 = 1, •, 0, 0 can be defined using the �et-�or operator as

λf1f2f3.�et g1 = f1, g2 = f2, g3 = f3 in�or

(G2or
0,•,1,•

g1g2g3)(G2or
2,•,•,0

g1g2g3)(G2or
•,•,0,1

g1g2g3)

and G2or
L2 with parameter L2 = •, 0, 3, 4 can be defined as

λf1f2f3. �et g1 = f1, g2 = f2, g3 = f3 in�or

(G2or
•,0,4,•

g1g2g3)(G2or
•,1,•,0

g1g2g3)(G2or
•,•,0,5

g1g2g3)

Finally, G2orL3 with parameter L3 = 0, 1, 2, 3 can be defined as

λfι�ι
1 fι�ι

2 fι�ι
3 .�et g1 = f1, g2 = f2, g3 = f3

in�or(G2or
L0 g1g2g3)(G2or

L1 g1g2g3)(G2or
L2 g1g2g3)

For every parameter L, all the G2or
L

can be built analogously. As
expected, the �et-�or operator is fundamental for the above con-
struction.

We give here also a flavor on how to use the which? operator
to define programming constructs useful to collect run-time
information. These programming constructs (called @wh? σ

τ )
are a generalization of the operators introduced in [30, Sec-
tion 3.1] and will be used in the next Section to prove the
Finite Definability Theorem 6. Let us introduce the operators
@wh? σ

τ : (σ � τ) � σ � τ , with the following operational
semantics:

(Mσ�τSgl
(σ)
m )P1 . . . Pk ⇓ n Chk

(σ)
m N ⇓ 0

(@wh? σ
τ Mσ�τ Nσ)P1 . . . Pk ⇓ �n, m�

Observe that (@wh? M N)P1 . . . Pk ⇓ if and only if MNP1 . . . Pk ⇓.
This control operator gives back the result n of the evaluation of
MN P1 . . . Pk together with the numeral m encoding the part of the
trace of N used for the evaluation. This information will be essential
in the proof of the Finite Definability Theorem 6.

@wh? can be programmed in S�PCF� using which?.

Theorem 5. @wh? σ
τ is S�PCF� programmable.

Proof. The proof is by structural induction on σ. The base case is
simple observing that the term
λfι�τλxιλgτ1

1 , . . . , gτk
k . which?(λhι�ι.f(hx)g1 . . . gk)

behaves as @wh? ι
τ , with τ = τ1 � . . . � τk � ι. The

inductive case is a bit more complicated. The idea is to generalize
the behavior of the term above where the variable h acts like an
observer which retrieves the used trace.

6. Finite Definability and Full Abstraction
In this section we prove that the linear model L is fully abstract
with respect to S�PCF�. This result relies on the completeness of
the linear interpretation with respect to the operational semantics
and on the definability of all the finite cliques by means of S�PCF�

terms. In particular, we prove the completeness with respect to
the Fix-Point equivalence. In the next section (Proposition 2 and
Theorem 8) we then prove that the Fix-Point and the Standard
operational equivalences coincide. From this, full abstraction holds
also with respect to the latter.

Finite definability asserts that all finite cliques can be defined
by means of S�PCF� terms. Our proof follows a standard scheme
for proofs of this kind, e.g. [33],[29]. Non trivial uses of @wh? and
�et-�or constructors are needed in the inductive high-order steps.

Definition 17. Let u be a finite clique of a coherence space in L.
A term M defines u if and only if �M� = u. The class of closed
terms having u as interpretation is denoted by �u� 1, hence
�u� = {M | �M� = u}. By abuse of notation, in the following
we denote �x� a term M such that M = �x�.

To prove definability, we use the following auxiliary lemma.

Lemma 5. Let (a0, . . . , an, a), (b0, . . . , bn, b) ∈ |�τ0 � · · · �
τn � ι�|. Then:

1. (a0, . . . , an, a) ˝ (b0, . . . , bn, b) iff ∃k ≤ n: ak ˇ bk.
2. (a0, . . . , an, a) ˚ (b0, . . . , bn, b) iff ∀k ≤ n: ak ¨ bk.

Some measures are needed in the next theorem: the cardinality
of a clique u is denoted ‖u‖; the RK of a type is inductively defined
as: RK(ι) = 1; RK(σ � τ) = RK(σ) + RK(τ).

Theorem 6 (Finite Definability). If u ∈ Clfin(�σ�) then there
exists a closed M ∈ S�PCF� such that M = �u�.

Proof. Let σ = τ1 � · · · � τk � ι for some k ≥ 0. The
proof is by induction on the triple 〈 RK(σ), k, ‖u‖ 〉 ordered in a
lexicographic way.

• Consider RK(σ) = 1, then σ = ι and �σ� = N. Thus, Ωι

and numerals define all possible finite cliques, since Clfin(N) =
{∅} ∪ {{n} / n ∈ |�|}.

1 In general, we use �a1, . . . , ak� as an abbreviation for �{a1, . . . , ak}�.



• Consider RK(σ) = 2, then σ = ι � ι.

- If ‖u‖ = 0 then u = ∅ is defined by Ωι�ι.
- If ‖u‖ ≥ 1, then u = u′ ∪ {(a, b)} for a, b ∈ �. By

induction hypothesis we have �u′�, hence �u� = λz.�if (z
·
=

�a�) �b� (�u′�z) .

• Consider RK(σ) ≥ 3 and k = 1, then σ = τ � ι with
τ = σ1 � · · ·σr � ι.

- If ‖u‖ = 0 then u = ∅ is defined by Ωτ�ι.
- If ‖u‖ = 1, then u = {(a, b)} for a ∈ �τ� and b ∈ �. Suppose

a = (a1, . . . , ar, c) where ai ∈ �σi� and c ∈ � (1 ≤ i ≤ r).
By induction hypothesis we have �a1�, . . . , �ar�, �c� and �b�,
hence: �u� = λf.�if (f�a1� · · · �ar� ·

= �c�) �b� Ωι .
- If ‖u‖ > 1, then u = {(a0, b0), . . . , (am, bm)} for ai ∈ �τ�

and bi ∈ � (0 ≤ i ≤ m). Suppose ai = (ai
1, . . . , a

i
r, c

i)
where ai

j ∈ �σj� and ci ∈ � (1 ≤ j ≤ r). By Lemma 5.1, we
have ah � ak (0 ≤ h �= k ≤ m), so by Lemma 5.2 ah

j �� ak
j

(1 ≤ j ≤ r). Hence, take vj = {ai
j | 1 ≤ i ≤ m}. Moreover,

for sake of simplicity, we write just aij in place of �ai
j�, i.e. the

natural number encoding ai
j .

By induction hypothesis we have �vj�, �ci� for every 0 ≤ i ≤
m, 1 ≤ j ≤ r and 1 ≤ k ≤ s. So, we can define:

�u� = λFτ .
“
λzi.

�if (πππr
1(z)

·
= c

0
and πππr−1

1 (πππ2(z))
·
= a

0
1 . . . πππ2(z)

·
= a

0
r) b

0

�if (πππr
1(z)

·
= c

1
and πππr−1

1 (πππ2(z))
·
= a

1
1 . . . πππ2(z)

·
= a

1
r) b

1

...

�if (πππr
1(z)

·
= c

m
and πππr−1

1 (πππ2(z))
·
= a

m
1 . . . πππ2(z)

·
= a

m
r) b

m

) · · ·
”`

@wh? σr
ι (. . . (@wh? σ1

σ2�···σr�ι(F)(�v1�)) . . .)(�vr�)
´

• Consider RK(σ) ≥ 3 and k > 1.

- If ‖u‖ = 0, then u = ∅ is defined by Ωτ1�···�τk�ι.
- If ‖u‖ = 1, then u = {(a1, . . . ak, b)} where ai ∈ �τi�

(1 ≤ i ≤ k) and b ∈ �. Thus,

�u� = λf1 . . . fk.

�if ((Chk(σ1)
a1 f1) and · · · and (Chk(σk)

ak fk)) �b� Ω
ι

- if ‖u‖ = 2 then u = {(a1
1, . . . , a

1
k, b1), (a2

1, . . . , a
2
k, b2)}. We

know that there is i ∈ [1, k] such that a1
i ˇ a2

i . If τi = ι then
a1
1 and a2

i are two different numbers: thus the term defining u
is the following

�u� = λf1. . . . fk.�if (fi
.
= �a1

i �)
“
�if (Chk

(σ1)

a11
f1) and · · ·

and (Chk
(σk)

a1k
fk) �b1� Ω

”“
�if

`
(fi

.
= �a2

i �) and

(Chk
(σ1)

a21
f1) and · · · and ((Chk

(σ1)

a2k
fk)

´
�b2� Ω

”

If τ = ν1 � . . . νl � ι then we have that a1
i =

(e1
1, . . . , e

1
l , c

1) and a2
i = (e2

1, . . . , e
2
l , c

2). Since a1
i ˇ a2

i , we
have that for all j ∈ [1, l] the sets {e1

j , e
2
j} are cliques of lower

rank. Thus by inductive hypothesis we have terms Nj defining

them. Thus the term defining u is the following

�u� = λf1. . . . fk.
“
λxι.�if

“
πππl
1x

.
= c

1
andπππl−1

1 (πππ2x)
.
= e

1
1

and . . .πππ2x
.
= e1

l

”“
�if

`
Chk

(τ1)

a11
f1 and . . .

Chk
(τi−1)

a1
i−1

fi−1 and Chk
(τi+1)

a1
i+1

fi+1 and . . . Chk
(τk)

a1k
fk

´
�b1� Ω

”
“
�if

`
πππl

1x
.
= c2

and πππl−1
1 (πππ2x)

.
= e2

1 and . . .πππ2x
.
= e2

l and

Chk
(τ1)

a21
f1 and . . . Chk

(τi−1)

a2
i−1

fi−1 and

Chk
(τi+1)

a2
i+1

fi+1 and . . . Chk
(τk)

a2k
fk

´
�b2� Ω

”
”“

@wh? νl
ι (. . . (@wh? ν1

ν2�...νl�ι(fi)(N1)) . . .)Nl
”

- If ‖u‖ > 2, then u = {d1, . . . , dm} where dj =
(aj

1, . . . , a
j
k, bj), aj

i ∈ �τi� and bj ∈ � (1 ≤ j ≤ m, 1 ≤ i ≤
k). We denote by dj [b] the token (aj

1, . . . , a
j
k, b). By Lemma

5.1 there exists 1 ≤ h ≤ k such that a1
h � a2

h, so we can build
the following finite cliques:

w1 = {d1[0], d2[b2 + 1] }
w2 = {d1[b1 + 1]} ∪ {dr[0] | 2 < r ≤ m }
w3 = {d2[0]} ∪ {dr[br + 1] | 2 < r ≤ m }

Note that ‖ws‖ < ‖u‖ for s = 1, 2, 3. So, by induction
hypothesis we have �w1�, �w2� and �w3�. Hence:

�u� = λf1 . . . fk. �et g1 = f1, . . . , gk = fk

in�or
`
�w1�g1 · · · gk

´`
�w2�g1 · · · gk

´`
�w3�g1 · · · gk

´
and this concludes the proof.

The definability of finite cliques is the key ingredient to extend
the Stable Closed Completeness Theorem 3 to all the terms of
S�PCF� as follows.

Theorem 7 (Completeness). Let Mσ, Nσ ∈ S�PCF�.

M ∼σ N ⇒ �M� = �N�

Proof. Let Γ � M, N : σ with Γ�S = {�
τ1
1 , . . . , �

τn
n }

and Γ��, Γ� ι = {x1σ1 , . . . , xm
σm}. Assume �M� �= �N�,

then there exists ρ such that �M�ρ �= �N�ρ. By the Sepa-
rability Lemma 3, there exists a closed term Pσ�ι such that
F(�P�)(�M�ρ) �= F(�P�)(�N�ρ). By the Finite Definability The-
orem 6, for all �i in Γ�S there is a term Pi = �ρ(�i)� and
for all xi in Γ��, Γ� ι there is a term Ni = �ρ(xi)�. So, we
can build C = P(λxσ1

1 . . . xσm
m .[·σ]N1 · · · Nm). Without loss of

generality, let us assume F(�P�)(�M�ρ) = {k}. By adequacy
C[M[P1/�1, . . . , Pn/�n]] ⇓ k but C[N[P1/�1, . . . , Pn/�n]] �⇓ k.
This concludes the proof.

By soundness and completeness the full abstraction follows.

Corollary 2 (Full Abstraction). Let Mσ, Nσ ∈ S�PCF�.

M ∼σ N ⇐⇒ �M� = �N�

7. Coincidence of operational equivalences
In this section we prove the coincidence between the standard
operational equivalence (Definition 9) and the fix-point operational
equivalence (Definition 12). Therefore, the full abstraction holds
also for the standard operational equivalence and a compositional
theory of program equivalence can be effectively defined.



The fix-point equivalence coincides with the denotational equiv-
alence by Corollary 2. The proof follows of the next proposition
directly by the correctness of the denotational semantics w.r.t the
standard operational equivalence.

Proposition 2. Let Mσ, Nσ ∈ S�PCF�. M ∼σ N ⇒ M ≈σ N.

The opposite direction is more difficult and it requires a se-
mantic reasoning. First, we prove an auxiliary result claiming that
in a coherence space X ∈ L (i.e in our type structure) different
from N, finite cliques are never maximal w.r.t. set-theoretical in-
clusion (Corollary 3)2. Then, we use this fact, together with Ade-
quacy (Theorem 1) and Finite Definability (Theorem 6) to prove
the result in the ground case (Lemma 8), which implies the general
result (Theorem 8).

The fact that finite cliques in a coherence space X ∈ L different
from N are never maximal w.r.t. set-theoretical inclusion follows
from the next lemmas.

Lemma 6.

1. Let x be a non-empty finite set of tokens in |�σ�| s.t. ∃a ∈ x∀b ∈
x.a ˚ b. Then ∃a′ �∈ x∀b ∈ x.a′ ˇ b.

2. Let x be a non-empty finite set of tokens in |�σ�| (σ �= ι) s.t.
∃a ∈ x∀b ∈ x.a ¨ b. Then ∃a′ �∈ x.∀b ∈ x.a ˝ b.

Corollary 3. Let x ∈ Clfin(�σ�), with σ �= ι. Then there is
a ∈ |�σ�| such that a �∈ x and x ∪ {a} ∈ Cl(�σ�).

Given an environment ρ, a term M, a stable variable �
σ and an

infinite clique x ∈ Cl(�σ�), with a slight abuse of notation in the
sequel we write �M�ρ[� := x] to denote

S
y⊆finx�M�ρ[� := y].

The next auxiliary lemma will be useful in what follows.

Lemma 7. Let Mσ, Nτ ∈ S�PCF� and ρ ∈ Env. If Mσ[N/�
τ ] ∈

S�PCF�, then �Mσ[N/�
τ ]�ρ =

S
x⊆fin�N�ρ�M�ρ[�τ := x]

Now, we show that by using fixpoints it is possible to build
contexts that allow us to discriminate as much as we can do by
using substitutions.

Lemma 8. If Γ � M, N : ι with Γ�� = ∅. M ≈ι N ⇒ M ∼ι N.

Proof. We prove the contrapositive. Let �
σ1
1 , . . . , �

σn
n be such

that SFV(M), SFV(N) ⊆ {�1, . . . , �n}. Let C[·ι] be a context and
�P be closed terms such that C[M[�P/��]] ⇓ n and C[N[�P/��]] �⇓ n. We
prove by induction on n that there is a C′ such that C′[M] ⇓ n′ and
C′[M] �⇓ n′.
Base case. Since n = 0 the two terms have no free occurrence of
stable variables, thus we can take C′ = C.
Inductive case. The fix-point (in)equivalence implies
that there is a context C[.ι] and there are closed terms
P1, . . . , Pn+1, such that C[M[P1/�

σ1
1 , . . . , Pn+1/�

σn+1
n+1 ]] ⇓ k

but C[N[P1/�
σ1
1 , . . . , Pn+1/�

σn+1
n+1 ]] �⇓ k. Thus, by Correctness,

there exists a ρ such that

�M�ρ[�σ1
1 := �P1�ρ, . . . , �

σn+1
n+1 := �Pn+1�ρ] �=

�N�ρ[�σ1
1 := �P1�ρ, . . . , �

σn+1
n+1 := �Pn+1�ρ]

In the following, we define ρ1 = ρ[�σ1
1 := �P1�ρ, . . . , �

σn
n :=

�Pn�ρ]. Let us observe that both �M�ρ1[�
σn+1
n+1 := �Pn+1�ρ] and

�N�ρ1[�
σn+1
n+1 := �Pn+1�ρ] are finite sets (in particular, they have at

most one element and they cannot be both empty). Thus, without
loss of generality, we assume that �M�ρ1[�

σn+1
n+1 := �Pn+1�ρ] =

2 Observe that this fact is not true in the general case of stable functions:
for example in the coherence space !N � N, the finite clique {(∅, 0)} is
maximal.

{k}. So by Lemma 7 there exists x ⊆fin �Pn+1�ρ such that

�M�ρ1[�n+1 := �Pn+1�ρ] = �M�ρ1[�n+1 := x] �=
�N�ρ1[�n+1 := x] ⊆ �N�ρ1[�n+1 := �Pn+1�ρ]

Since stable variables are never of ground type, we can let
σn+1 = τ1 � . . . � τm � ι and m ≥ 1. Let x =
{(a1

1, . . . , a
1
m, h1), . . . , (ap

1, . . . , ap
m, hp)} with p ≥ 0 and ai

1 ∈
|�τ1�|, . . . , ai

m ∈ |�τm�|, hi ∈ � for all i ∈ [1, p]. Furthermore,
by Corollary 3 there is a token (a∗

1, . . . , a
∗
m, h∗) �∈ x such that

x∗ = x∪{(a∗
1, . . . , a

∗
m, h∗)} is still a clique. Observe that it is not

restrictive to assume h∗ �∈ {h1, . . . , hp}, since changing of outputs
preserves the coherence of tokens. By Finite Definability, there is a
term P defining the clique x∗. Now, let us consider the context

D = µ�n+1.λf
τ1
1 . . . fτm

m .
“
λxι.

�if (x
.
= h∗) [·ι]

�if (x
.
= h1) h1

...

�if (x
.
= hp) hp Ωι

”“
P f1 . . . fm

”
Observe that D[M], D[N] ∈ S�PCF� because we hypothe-
sized that M, N have no free occurrences of linear variables. If
q1 = �a∗

1�, . . . , qm = �a∗
m�, it is not difficult to see that

�D[M] Sgl
(τ1)
q1 . . . Sgl

(τm)
qm �ρ1 = �M�ρ1[�n+1 := �Pn+1�ρ] = {k}

and �D[N] Sgl
(τ1)
q1 . . . Sgl

(τm)
qm �ρ1 ⊆ �N�ρ1[�n+1 := �Pn+1�ρ]

which is either empty or it is a singleton {k′} different from k.
By Lemma 7, adequacy and definition of fix-point equivalence we
have D[M] Sgl(τ1)

q1 . . . Sgl
(τm)
qm �∼ι D[N] Sgl

(τ1)
q1 . . . Sgl

(τm)
qm . Thus,

we can apply inductive hypothesis (since the number of free stable
variables has decreased), to conclude the proof.

The above lemma can be used to prove the general case.

Theorem 8. Let Mσ, Nσ ∈ S�PCF�. M ≈σ N ⇒ M ∼σ N.

Proof. We prove the contrapositive statement. Let �
σ1
1 , . . . , �

σn
n

be such that SFV(M), SFV(N) ⊆ {�1, . . . , �n}. Let C be a con-
text and�P be closed terms such that C[M[�P/��]] ⇓ n and C[N[�P/��]] �⇓
n for some numeral n. In particular, observe that C[M] �∼ι C[N], by
definition of Fix-Point Operational Equivalence. Moreover, by con-
struction C[M] and C[N] have no free occurrence of linear variables.
Thus, by Lemma 8 there is a context D such that D[C[M]] ⇓ m and
D[C[M]] �⇓ m. So, the proof is done.

Corollary 4. The equivalence ∼σ is a congruence.

7.1 Applicative Operational Equivalence

We conclude the section by defining an applicative operational
equivalence obtained by considering only special kinds of contexts
(Applicative Contexts) to test the equality of terms.

Definition 18 (Applicative Operational Equivalence). Let Mσ, Nσ ∈
S�PCF� such that SFV(M), SFV(N) ⊆ {�

σ1
1 , . . . , �

σn
n }.

• M �A
σ N whenever, for all context C of the form (λ�f.[·σ]) P1 . . . Pm

and for all closed terms L1σ1 , . . . , Ln
σ1 , if C[M[�L/��]] ⇓ n then

C[N[�L/��]] ⇓ n

• M ∼A
σ N iff M �A

σ N and N �A
σ M.

Theorem 9. Let Mσ, Nσ ∈ S�PCF�. M ∼A
σ N ⇒ �M� = �N�.

Proof. Just by observing that the context used in the proof of
Theorem 7 is an applicative context.

The applicative equivalence still coincides with the previous
ones, so it provides a convenient tool for reasoning on programs.



Corollary 5 (Equivalences Coincidence). Let Mσ, Nσ ∈ S�PCF�.

M ∼σ N ⇐⇒ M ≈σ N ⇐⇒ M ∼A
σ N

8. A Tracing Evaluation Semantics
The operational semantics of S�PCF� presented in the previous
sections is effective, but quite inefficient. Indeed, the rules for
which? and �et-�or non-deterministically face a potentially infi-
nite number of evaluation branches. Consequently, its bovine im-
plementation should try an exhaustive search of the right branch
among the infinite ones. In this section, we introduce a tracing eval-
uation semantics which is able to drastically prune such infinite-
branching search tree.

Roughly, denotational linearity provides the certainty that each
term is applied to a unique sequence of arguments. That is, only one
token of the corresponding trace is used. So, an efficient evaluation
can be obtained by storing an argument N in an environment e ,
and when the evaluation of N is done, by replacing the term in the
environment by its trace. This way of evaluating programs is a kind
of higher-order call-by-need evaluation where the trace of the term
is stored instead of the value. In order to simplify the evaluation
of the new operators, we record such sequence-information along
the evaluation tree. The idea is “to recursively trace” the arguments
supplied to functions. The so-obtained pruned search-tree is finite-
branching and it induces a clever and more efficient evaluation.

A key role in order to trace all the information is played by the
environment.

Definition 19. An environment e is a function from a finite set of
variables (ground or linear) to either a term (named subject) or a
numeral (named trace).
Let xσ be a variable in the domain of e . If σ = ι then e(x) is
always the trace. If σ is an arrow then either e(x) is a term typed
σ (the subject) or it is the trace typed ι.
We note e[z := M] the new environment e ′ such that e ′(z) = M and
e ′(y) = e(y), for each y �= z. Last, we note e�{x} the restricted
environment obtained by deleting the variable x.

Note that, the environments associate terms to type union, i.e.
a variable could refer either to a term or to a numeral (encoding
the trace). Moreover, in the case of a ground variable we just need
to store a numeral because of the call-by-value policy that makes
subjects and traces coincide.

The use of an environment to manage substitutions and the pres-
ence of a recursion operator raise the issue of clashes between
variable-names. For sake of simplicity, we do not introduce clo-
sures. We overcame clashes by assuming a whole bunch of fresh
variables and by doing the appropriate renaming at run-time in
the reduction rules. Another reason for following that approach is
that fresh variables are anyway necessary to trace the evaluation of
which? arguments.

As expected, the rules of our machine will be driven by states
(i.e. term in environment); they are denoted by 〈M|e〉. Given a state,
the environment contains as usual the subterms to be substituted to
all the free variables and, sometimes, also some additional variables
recording traces. Indeed, during the evaluation, sometimes an op-
erational rule “fetches” an head redex and extends the environment
with a fresh variable associated to a new subject. When arguments
are supplied, the operational rules carefully substitute the subject
by the convenient numeral encoding the trace. In this way, if a vari-
able x contains a trace then, it has recorded the use done during the
evaluation of the subject initially associated to the variable x itself.
For sake of clarity, we explicitly remove not used variables from
environments.

We note 	 the empty environment, so if M is a ground closed
term then we can obtain its evaluation, by supplying the state 〈M| 	〉
to the tracing machine.

Definition 20. The tracing evaluation ⇓T is the effective relation
from states (ground terms in environments) to states (numerals in
environments) defined by the rules of Table 3. If 〈M| 	〉 ⇓T 〈n|e1〉
then we say that M converges, and we write simply M ⇓T, otherwise
we say that it diverges, and we write M ⇑T.

We emphasize that all the states in rules of table 3 are driven by
the head of a ground term. In order to facilitate the comprehension
of the tracing machine we have devised its rules in two parts. The
rules in the higher Part (a) take into account all possible shapes of
the head of terms, except the case of a head variable that is tackled
by the rules in the lower Part (b).

The rules in the higher part are quite easy to understand, so
we comment only the rules involving non-standard operators. The
rule (w) extends the incoming environment e0 by a fresh variable
h associated to the term M that we plan to trace, and evaluates
h applied to the identity I = λx.x (recall that if which?(M)
converges, by rules in the Table 1.c, then MI also converges). The
result of this evaluation gives back a state 〈n|e1〉 where e1 reports
the observed trace of M. From this, the result is built. Likewise,
the three �et-�or rules start by evaluating a branch. If such a
branch converges, the reported traces are used in order to start the
evaluation of the other branch. In this case we supply as subjects
of the involved variables terms having (exactly) the behavior of the
reported trace (recall the Lemma 4). Therefore, a rule converges
only in case the two branches do the same observations on the list
of arguments supplied to a linear variable.

The lower part of Table 3 is a bit more complex. All the rules
fetch head-variables, so the discriminating factor that drives their
behavior is found in the shape of the subject associated in the
environment to the head variable itself. Indeed, it is easy to see that
there is one rule for all possible shape of the “head-subject”. We
remark that �et-�or is not taken into account, since a term having
a �et-�or as head is certainly typed ground and ground terms are
evaluated before to be stored in the environment (because of the
call-by-value policy).

The rule (Hgvar) is easy. (Hvar) considers the case where the
subject associated to the head variable is another variable-name, it
forwards the evaluation by using the subject. (Happ) is a key rule. It
applies in the case the subject associated to the head variable is an
application MN. In this case, it shifts N in the term of the state driving
the rules. Such approach allows us to collect sufficient information
to report the needed traces. The rules (Hs), (Hp) and (Hµ) are quite
simple. Likewise to the rule (w) presented above, the rule (Hw) is
interesting: it uses the information collected by the fresh variable
h to produce the right outcome and the trace of the which? itself
(since it is a subject of the incoming environment). Finally, the rules
(Hλι

ι), (Hλι
� ), (Hλ�

ι ) and (Hλ�
� ) consider the cases arising from

an head variable associated to an abstraction in the environment.
There are four rules depending from two types, i.e. the type of
the body of the abstraction and the type of the abstracted variable;
mnemonically, the rule’s names use as superscript the type of the
variable and as subscript the type of the body. The rules (Hλι

ι)
and (Hλι

� ) need first to evaluate the ground argument in order
to comply the call-by-value policy. All the rules compose the sub-
traces information in the rule-premises to obtain the traces that they
must provide in the rule-conclusion.

We now prove that the trace evaluation machine is correct and
complete with respect to the evaluation semantics presented in
Table 1 and Table 2. It is easy to check by induction that the rules of
Table 3 preserve the following property: if FV(M) = {κ1, . . . , κn}
for some n ≥ 0 then such variables are in the domain of e .



〈0|e〉 ⇓T 〈0|e〉
(0)

〈M|e0〉 ⇓T 〈n|e1〉
〈s M|e0〉 ⇓T 〈s n|e1〉

(s)
〈M|e0〉 ⇓T 〈s n|e1〉
〈p M|e0〉 ⇓T 〈n|e1〉

(p)
f′ fresh, 〈M[f′/f]P1 . . . Pk|e0[f′ := N]〉 ⇓T 〈n|e1〉

〈(λfσ�τ .M)NP1 . . . Pk|e0〉 ⇓T 〈n|e1�{f′}〉
(λ�)

〈M|e0〉 ⇓T 〈0|e1〉 〈L|e1〉 ⇓T 〈m|e2〉
〈�if M L R |e0〉 ⇓T 〈m|e2〉

(ifl)
〈M|e0〉 ⇓T 〈sn|e1〉 〈R|e1〉 ⇓T 〈m|e2〉

〈�if M L R |e0〉 ⇓T 〈m|e2〉
(ifr)

〈M[µ�.M/�]P1 . . . Pk|e0〉 ⇓T 〈n|e1〉
〈(µ�.M)P1 . . . Pk|e0〉 ⇓T 〈n|e1〉

(µ)

x′ fresh, 〈N|e0〉 ⇓T 〈n′|e1〉 〈M[x′/x]P1 . . . Pk|e1[x′ := n′]〉 ⇓T 〈n|e2〉
〈(λxι.M)NP1 . . . Pk|e0〉 ⇓T 〈n|e2�{x′}〉

(λι)
h(ι�ι)�ι fresh, 〈hI|e0[h := M]〉 ⇓T 〈n|e1〉 k = π1π1e1(h)

〈which? M(ι�ι)�ι|e0〉 ⇓T 〈�n, k�|e1�{h}〉
(w)

〈M1[f′1/f1, . . . , f′k/fk]|e0[f′1 := N1, . . . , f
′
k := Nk]〉 ⇓T 〈0|e1〉

f′i fresh (1≤i≤k), 〈M2[f′1/f1, . . . , f′k/fk]|e1[f′1 := Sglσ1

e1(f
′
1)

, . . . , f′k := Sglσk

e1(f
′
k)

]〉 ⇓T 〈sm|e2〉

〈�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3|e0〉 ⇓T 〈m|e2�{f′1,...,f′k}〉

(1lgor)

〈M2[f′1/f1, . . . , f′k/fk]|e0[f′1 := N1, . . . , f
′
k := Nk]〉 ⇓T 〈0|e1〉

f′i fresh (1≤i≤k), 〈M3[f′1/f1, . . . , f′k/fk]|e1[f′1 := Sglσ1

e1(f
′
1)

, . . . , f′k := Sglσk

e1(f
′
k)

]〉 ⇓T 〈sm|e2〉

〈�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3|e0〉 ⇓T 〈m|e2�{f′1,...,f′k}〉

(2lgor)

〈M3[f′1/f1, . . . , f′k/fk]|e0[f′1 := N1, . . . , f
′
k := Nk]〉 ⇓T 〈0|e1〉

f′i fresh (1≤i≤k), 〈M1[f′1/f1, . . . , f′k/fk]|e1[f′1 := Sglσ1

e1(f
′
1)

, . . . , f′k := Sglσk

e1(f
′
k)

]〉 ⇓T 〈sm|e2〉

〈�et fσ1
1 = N1, . . . , f

σk
k = Nk in�or M1 M2 M3|e0〉 ⇓T 〈m|e2�{f′1,...,f′k}〉

(3lgor)

e(x) = n

〈xι|e〉 ⇓T 〈n|e〉
(Hgvar)

〈hP1 . . . Pk|e0�{f}〉 ⇓T 〈n|e1〉
〈fP1 . . . Pk|e0[f := h]〉 ⇓T 〈n|e1[f := e1(h)]〉

(Hvar)
h fresh , 〈hNP1 . . . Pk|e0[h := M]�{f}〉 ⇓T 〈n|e1〉

〈fP1 . . . Pk|e0[f := Mσ�τN]〉 ⇓T 〈n|e1[f :=(π2e1(h))]�{h}〉
(Happ)

〈M|e0�{f}〉 ⇓T 〈n|e1〉
〈fι�ιM|e0[f := s]〉 ⇓T 〈sn|e1[f :=�n, sn�]〉

(Hs)
〈M|e0�{f}〉 ⇓T 〈s n|e1〉

〈fι�ι M|e0[f :=p]〉 ⇓T 〈n|e1[f :=�sn, n�]〉
(Hp)

〈fP1 . . . Pk|e0[f := (M[µ�.M/�])]〉 ⇓T 〈n|e1〉
〈fP1 . . . Pk|e0[f := (µ�.M)]〉 ⇓T 〈n|e1〉

(Hµ)
h fresh , 〈hI|e0[h := M]�{f}〉 ⇓T 〈n|e1〉 k = π1π1e1(h)

〈fM|e0[f := which?]〉 ⇓T 〈�n, k�|e1[f :=���k, k�, n�, �n, k��]�{h}〉
(Hw)

z fresh ,

〈P|e0�{f}〉 ⇓T 〈m|e1〉 〈M[z/x]|e1[z := m]〉 ⇓T 〈n|e2〉
〈fP|e0[f := λxι.Mι]〉 ⇓T 〈n|e2[f :=�m, n�]�{z}〉

(Hλι
ι)

h,z fresh ,

〈P1|e0�{f}〉 ⇓T 〈n|e1〉 〈hP2 . . . Pk|e1[z := n, h := M[z/x]]〉 ⇓T 〈n|e2〉
〈fP1 . . . Pk|e0[f := λxι.Mσ�τ ]〉 ⇓T 〈n|e2[f :=�e2(z), e2(h)�]�{z,h}〉

(Hλι
�)

g′ fresh , 〈M[g′/g]|e0[g′ := P]�{f}〉 ⇓T 〈n|e1〉
〈fP|e0[f := λgσ�τ .Mι]〉 ⇓T 〈n|e1[f :=�e1(g′), n�]�{g′}〉

(Hλ�
ι )

h,g′ fresh , 〈hP2 . . . Pk|e1[g′ := P1, h := M[g′/g]]�{f}〉 ⇓T 〈n|e2〉

〈fP1 . . . Pk|e0[f := λgσ�σ′
.Mτ�τ ′

]〉 ⇓T 〈n|e2[f :=�e2(g′), e2(h)�]�{h,g′}〉
(Hλ�

�)

Table 3. Tracing Semantics - Part (a) and Part (b).

Note that e associates to a variable κ a term N that can contain
variables which are also in the domain of e . We show that we can
avoid the use of cyclic environments. Let e0 be an environment
such that dom(e0) = {κ1, . . . , κn}, let 〈M|e〉 be a state, let N
be M[e(κ1)/κ1, . . . , e(κn)/κn]. We define T to be the function
from state to state, defined as follows: T (〈M|e〉) = 〈N|e�{FV(N)}〉.
We plan to transform a state 〈M|e〉 in a closed ground term by
iterating T until the environments becomes (eventually) empty. If
such procedure is terminating then the state is said acyclic.

Lemma 9. The evaluation of acyclic states only uses acyclic states.

Proof. Since we add only fresh variables to the environments and
the environments is always finite.

From now on, we consider only acyclic states. Since 〈M| 	〉 is
trivially acyclic, we can define T∞(〈M|e〉) to be the closed ground
term obtained by iterating T until the environment becomes empty.

Lemma 10. Let τ = σ1 � . . . � σk � γ.
If 〈fτP1 . . . Pk|e0〉 ⇓T 〈n|e1〉 then Chk

(τ)

e1(f)
(e0(f)) ⇓ 0 and

〈Sgle1(f)P1 . . . Pk|e0〉 ⇓T 〈n|e1�{f}〉

Proof. Easy by induction on the tracing reduction rules.

We can prove the trace evaluation machine to be correct and
complete, by using the previous lemmas.

Theorem 10. Let T∞(〈M|e0〉) = P.

Correctness. If 〈M|e0〉 ⇓T 〈n|e1〉 then P ⇓ n.
Completeness. If P ⇓ n then 〈M|e0〉 ⇓T 〈n|e1〉.

Note that the tracing evaluation machine is a concrete improve-
ment with respect to the evaluation machine presented in Table 1
and Table 2, in the sense that it prunes the infinite branching search
trees of the evaluation rules for which? and �et-�or. So, it can be
regarded as a guideline for a reasonable implementation.

Example Let us see the effectiveness of the tracing machine, by
showing the evaluation of the term which?(λfι�ι.s(f3)). In the
following, we denote with e the environment 	[f′ = I].

...
〈3|e〉 ⇓T 〈3|e〉 〈z|e[z = 3]〉 ⇓T 〈3|e[z = 3]〉

(Hgvar)

〈f′3|e〉 ⇓T 〈3| 	[f′ = �3, 3�]〉
(Hλι

ι)

〈s(f′3)|e〉 ⇓T 〈4| 	[f′ = �3, 3�]〉
(s)

〈h I| 	[h = λf.s(f3)]〉 ⇓T 〈3, 	[h = ��3, 3�, 4�]〉
(Hλ�

ι )

〈which?(λfι�ι.s(f3))| 	〉 ⇓T 〈�4, 3�| 	〉
(w)

It can be noted here that the rules (Hλ�
ι ) and (Hλι

ι) are crucial
to trace out the use of terms being substituted to the fresh head
variables h and f′. The rule (Hλ�

ι ) traces the term λf.s(f3)
applied to I. The rule (Hλι

ι) traces the term I applied to 3.

9. Related works
The study of the relations between languages and models is a clas-
sic theme in denotational semantics [15, 28]. The full abstraction
for PCF has led to the development of very sophisticated semantics
techniques (as [2, 23]) and revealed relevant programming prin-
ciples and operational constructions. In particular, several works



have studied how to extend PCF by different operators in order to
achieve full abstraction compared to some classical models. For
example, this approach has been followed by Plotkin [33] for the
continuous Scott model, by Berry and Curien [9] for the sequential
algorithms model, by Abramsky and McCusker [1] for a particu-
lar game model, by Longley [26] for the strongly stable model and
by Paolini [29] for the stable model. Remark that all higher-type
operators introduced in the works above [9, 26, 29, 33] cannot be
directly interpreted in the linear model. This motivates our search
for new operators.

Many linear languages with different goals have been proposed
so far in the literature. Recently, in the studies of syntactical linear-
ity, Alves et al. have proposed several syntactical linear languages
in order to characterize different classes of computable functions
[3–5]. Such languages are syntactically linear but do not have extra
operators that are key ingredients of S�PCF�.

Two PCF-like languages embedding linearity notions have been
proposed in [10, 11]. These languages are not denotationally linear,
in the sense that not all their closed terms are in correspondence
with linear functions of a suitable domain. In particular, they cannot
be interpreted in the linear model considered here. Despite this fact,
the authors of [10, 11] give some interesting results on the relations
between several forms of operational reasoning, in the context of
the linear decomposition. Our results on the coincidence of three
operational equivalences can be viewed as further contributions in
those topics.

10. Conclusions and Future Works
The results presented in this paper are part of a wider project
(started with the works [17, 30]) aiming to extend the expressive
power of linear programming languages. Our aim is to study partic-
ular denotational models embedding a notion of linearity, in order
to extract programming languages that are fully abstract or fully
complete (universal) with respect to the model, and that have new
interesting operational features. Our study is also related to higher-
type computability [25, 27], since the higher-type of new operators
arising from these analysis.

A first interesting direction is to extend the results obtained in
this paper in order to prove the universality of S�PCF� with respect
to the linear model, i.e. to find the language able to define all the
recursive cliques of the model. Another interesting direction is the
study of S�PCF� semantics with respect to other model notions. In
particular, we would pursue the study started in [31] about a model
for S�PCF� based on linear processes. Moreover, we would pursue
the study about categorical models for S�PCF� [18].

Last, we guess that an even more efficient evaluation of S�PCF
is possible. In particular, it would be interesting to study a new
evaluation machine having an optimized memory management.
That is, an evaluation machine that does not need neither fresh
variables nor closures and where the heap will be used only for
trace out sub-programs.
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