
Upper Bounds on Stream I/O Using Semantic

Interpretations

Marco Gaboardi1 and Romain Péchoux2,�

1 Dipartimento di Informatica, Università di Torino
gaboardi@di.unito.it

2 Computer Science Department, Trinity College, Dublin
pechouxr@tcd.ie

Abstract. This paper extends for the first time semantic interpretation
tools to infinite data in order to ensure Input/Output upper bounds on
first order Haskell like programs on streams. By I/O upper bounds, we
mean temporal relations between the number of reads performed on the
input stream elements and the number of output elements produced. We
study several I/O upper bounds properties that are of both theoretical
and practical interest in order to avoid memory overflows.

1 Introduction

Interpretations are a well-established verification tool for proving properties of
first order functional programs, term rewriting systems and imperative programs.

In the mid-seventies, Manna and Ness [1] and Lankford [2] introduced polyno-
mial interpretations as a tool to prove the termination of term rewriting systems.
The introduction of abstract interpretations [3] has strongly influenced the de-
velopment of program verification and static analysis techniques. From their
introduction, interpretations have been studied with hundreds of variations.

One variation of interest is the notion of quasi-interpretation [4]. It consists in
a polynomial interpretation with relaxed constraints (large inequalities, functions
over real numbers). Consequently, it no longer applies to termination problems
(since well-foundedness is lost) but it allows us to study program complexity in an
elegant way. Indeed, the quasi-interpretation of a first order functional program
provides an upper bound on the size of the output values in the input size.

The theory of quasi-interpretations has led by now to many theoretical devel-
opments [4], for example, characterizations of the classes of functions computable
in polynomial time and polynomial space. Moreover, the decidability of finding a
quasi-interpretation of a given program has been shown for some restricted class
of polynomials [5,6]. This suggests that quasi-interpretations can be interestingly
exploited also in practical developments.

Quasi-interpretations have been generalized to sup-interpretations which are
intensionally more powerful [7], i.e. sup-interpretations capture the complexity
� The financial support of Science Foundation Ireland and COMPLICE project, ANR

BLANC, is gratefully acknowledged.

E. Grädel and R. Kahle (Eds.): CSL 2009, LNCS 5771, pp. 271–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

272 M. Gaboardi and R. Péchoux

of strictly more programs than quasi-interpretations do. This notion has led to
a characterization of the NCk complexity classes [8] which is a complementary
approach to characterizations using function algebra presented in [9].

A new theoretical issue is whether interpretations can be used in order to infer
resource properties on programs computing over infinite data. Here we approach
this problem by considering lazy programs over stream data. Size upper bounds
on stream data are meaningless. However, other interesting measures can be
considered, e.g. size of stream elements and length of finite parts of streams.
Here we consider some I/O properties with regard to such kind of measures. In
particular, we would like to be able to obtain relations between the input reads
and the output writes of a given program, where a read (or write) corresponds
to the computation of a stream element in a function argument (resp. a stream
element of the result). In this paper we identify three stream I/O upper bounds
properties and we study criteria using interpretations in order to ensure them.

The first criterion, named Length Based I/O Upper Bound (LBUB), en-
sures that the number of output writes (the output length) is bounded by some
function in the number of input reads. This criterion is respected by programs
that need to read a finite amount of the input in order to produce a bounded
amount of the output. The second criterion, named Size Based I/O Upper Bound
(SBUB), ensures that the number of output writes is bounded by some function
in the input reads size. It extends the previous criterion to programs where the
output writes not only depend on the input structure but also on the input
values. Finally, the last criterion, named Synchrony Upper Bound (SUB), en-
sures upper bounds on the output writes size depending on the input reads size
in a synchronous framework, i.e. when the stream functions write exactly one
element for one read performed.

The above criteria are interesting since they ensure upper bound properties
corresponding to synchrony and asynchrony relations between program I/O.
Moreover, besides the particular criteria studied, this work shows that seman-
tic interpretation can be fruitfully exploited in studying programs dealing with
infinite data types. Furthermore, we carry out the treatment of stream prop-
erties in a purely operational way. This shows that semantic interpretation are
suitable for the usual equational reasoning on functional programs. From these
conclusions we aim our work to be a new methodology in the study of stream
functional languages properties.

Related works. Most of the works about stream properties considered stream
definability and productivity, a notion dating back to [10]. Several techniques
have been developed in order to ensure productivity, e.g syntactical [10,11,12],
data-flows analysis [13,14], type-based [15,16,17,18]. Some of these techniques
can be adapted to prove different properties of programs working on streams,
e.g. in [17], the authors give different hints on how to use sized types to prove
some kind of buffering properties. Unfortunately an extensive treatment using
these techniques to prove other properties of programs working on streams is
lacking.

Upper Bounds on Stream I/O Using Semantic Interpretations 273

Outline of the paper. In Section 2, we describe the considered first order
stream language and its lazy semantic. In Section 3 we define the semantic
interpretations and their basic properties. Then, in Section 4, we introduce the
considered properties and criteria to ensure them. Finally, in the last section we
conclude.

2 Preliminaries

2.1 The sHask Language

We consider a first order Haskell-like language, named sHask. Let X , C and F
be disjoint sets denoting respectively the set of variables, the set of constructor
symbols and the set of function symbols. A sHask program is composed of a
set of definitions described by the grammar in Table 1, where c ∈ C, x ∈ X ,
f ∈ F . We use the identifier t to denote a symbol in C ∪ F . Moreover the
notation e, for some identifier e, is a short-hand for the sequence e1, . . . , en.
As usual, application associates to the left, i.e. t e1 · · · en corresponds to the
expression ((t e1) · · ·) en. In the sequel we will use the notation t −→e as a short
for the application t e1 · · · en. The language sHask includes a Case operator to
carry out pattern matching and first order function definitions. All the standard
algebraic data types can be considered. Nevertheless, to be more concrete, in
what follows we will consider as example three standard data types: numerals,
lists and pairs. Analogously to Haskell, we denote by 0 and postfix + 1 the
constructors for numerals, by nil and infix : the constructors for lists and by
(,) the constructor for pairs.

Table 1. sHask syntax

p ::= x | c p1 · · · pn (Patterns)

e ::= x | t e1 · · · en | Case e of p1 → e1, . . . , pm → em (Expressions)

v ::= c e1 · · · en (Values)

d ::= f x1 · · · xn = e (Definitions)

Between the constants in C we distinguish a special error symbol Err of arity
0 which corresponds to pattern matching failure. In particular, Err is treated
as the other constructors, so for example pattern matching is allowed on it. The
set of Values contains the usual lazy values, i.e. expressions with a constructor
as the outermost symbol.

In order to simplify our framework, we will put some syntactical restrictions
on the shape of the considered programs. We restrict our study to outermost
non nested case definitions, this means that no Case appears in the e1, · · · , em

of a definition of the shape f −→x = Case e of p1 → e1, . . . , pm → em and we
suppose that the function arguments and case arguments are the same, i.e. x = e.

274 M. Gaboardi and R. Péchoux

The goal of this restriction is to simplify the considered framework. We claim
that it is not a severe restriction since every program can be easily transformed
in an equivalent one respecting this convention.

Finally, we suppose that all the free variables contained in the expression ei of
a case expression appear in the patterns pi, that no variable occurs twice in pi and
that patterns are non-overlapping. It entails that programs are confluent [19].

Haskell Syntactic Sugar. In the sequel we use the Haskell-like programming
style. An expression of the shape f −→x = Case x of p1 → e1, . . . , pk → ek will
be written as a set of definitions f −→p1 = e1, . . . , f

−→pk = ek. Moreover, we adopt
the standard Haskell convention for the parenthesis, e.g. we use f (x + 1) 0 to
denote ((f(x + 1))0).

2.2 sHask Type System

Similarly to Haskell, we are interested only in well typed expressions. For sim-
plicity, we consider only programs dealing with lists that do not contain other
lists and we assure this property by a typing restriction similar to the one of [18].

Definition 1. The basic and value types are defined by the following grammar:
σ ::= α | Nat | σ × σ (basic types)
A ::= a | σ | A× A | [σ] (value types)

where α is a basic type variable, a is a value type variable, Nat is a constant
type representing natural numbers, × and [] are type constructors. The set of
types contains elements of the shape A1 → (· · · → (An → A)), for every n ≥ 0.

Notice that the above definition can be extended to standard algebraic data
types. In the sequel, we use σ, τ to denote basic types and A, B to denote value
types. As in Haskell, there is restricted polymorphism, i.e. a basic type variable
α and a value type variable a represent every basic type and respectively every
value type. As usual, → associates to the right, i.e. the notation A1 → · · · →
An → A corresponds to the type A1 → (· · · → (An → A)). Moreover, for notational
convenience, we will use −→

A → B as an abbreviation for A1 → · · · → An → B
throughout the paper.

In what follows, we will be particularly interested in studying expressions of
type [σ], for some σ, i.e. the type of finite and infinite lists over σ, in order to
study stream properties. Every function and constructor symbol t of arity n come
equipped with a type A1 → · · · → An → A. Well typed symbols, patterns and
expressions are defined using the type system in Table 2. Note that the symbol
Err can be typed with every value type A in order to get type preservation in
the evaluation mechanism. Moreover, it is worth noting that the type system,
in order to allow only first order function definitions, assigns types to constant
and function symbols, but only value types to expressions.

As usual, we use :: to denote typing judgments, e.g. 0 :: Nat denotes the fact
that 0 has type Nat. A well typed definition is a function definition where we
can assign the same value type A both to its left-hand and right-hand sides.

Upper Bounds on Stream I/O Using Semantic Interpretations 275

Table 2. sHask type system

x :: A
(Var)

e :: A p1 :: A · · · pm :: A e1 :: A · · · em :: A

Case e of p1 → e1, . . . , pm → em :: A
(Case)

t :: A1 → · · · → An → A
(Tb)

t :: A1 → · · · → An → A e1 :: A1 · · · en :: An

t e1 · · · en :: A
(Ts)

Stream terminology. In this work, we are specifically interested in studying
stream properties. Since both finite lists over σ and streams over σ can be typed
with type [σ], we pay attention to particular classes of function working on [σ],
for some σ. Following the terminology of [14], a function symbol f is called a
stream function if it is a symbol of type f ::

−→
[σ] → −→τ → [σ].

Example 1. Consider the following programs:

merge :: [α] → [α] → [α × α]
merge (x : xs) (y : ys) = (x, y) : (merge xs ys)

nat :: Nat → [Nat]
nat x = x : (nat (x + 1))

merge and nat are two examples of stream functions

2.3 sHask Lazy Operational Semantics

We define a lazy operational semantics for the sHask language. The lazy seman-
tics we give is an adaptation of the one in [20] to our first order Haskell-like

Table 3. sHask lazy operational semantics

c ∈ C
c e1 · · · en ⇓ c e1 · · · en

(val)
e{e1/x1, · · · , en/xn} ⇓ v f x1 · · · xn = e

f e1 · · · en ⇓ v
(fun)

Case e1 of p11 → . . . → Case em of pm
1 → d1 ⇓ v v �= Err

Case e of p1 → d1, . . . , pn → dn ⇓ v
(cb)

Case e1 of p11 → . . . → Case em of pm
1 → d1 ⇓ Err Case e of p2 → d2, . . . , pn → dn ⇓ v

Case e of p1 → d1, . . . , pn → dn ⇓ v
(c)

e ⇓ c e1 · · · en Case e1 of p1 → . . . → Case en of pn → d ⇓ v

Case e of c p1 · · · pn → d ⇓ v
(pm)

e ⇓ v v �= c e1 · · · en

Case e of c p1 · · · pn → d ⇓ Err
(pme)

e′{e/x} ⇓ v

Case e of x → e′ ⇓ v
(pmb)

276 M. Gaboardi and R. Péchoux

language, where we do not consider sharing for simplicity. The semantics is de-
fined by the rules of Table 3.

The computational domain is the set of Values. Values are particular ex-
pressions with a constructor symbol at the outermost position. Note that in
particular Err is a value corresponding to pattern matching errors. As usual in
lazy semantics, the evaluation does not explore the entire expression and stops
once the requested information is found. The intended meaning of the notation
e ⇓ v is that the expression e evaluates to the value v ∈ Values.

Example 2. Consider again the program defined in Example 1. It is easy to verify
that: nat 0 ⇓ 0 : (nat (0 + 1)) and merge (nat 0) nil ⇓ Err.

2.4 Preliminary Notions

We are interested in studying stream properties by operational finitary means,
for this purpose, we introduce some useful programs and notions.

First, we define the usual Haskell take and indexing programs take and !!
which return the first n elements of a list and the n-th element of a list, respec-
tively. As in Haskell, we use infix notation for !!.

take :: Nat → [α] → [α]
take 0 s = nil
take (x + 1) nil = nil
take (x + 1) (y : ys) = y : (take x ys)

!! :: [α] → Nat → α
(x : xs) !! 0 = x
(x : xs) !! (y + 1) = xs !! y

Second, we define a program eval that forces the (possibly diverging) full evalua-
tion of expressions to fully evaluated values, i.e. values with no function symbols.
We define eval for every value type A as:

eval :: A → A
eval (c e1 · · · en) = Ĉ (eval e1) · · · (eval em)

where Ĉ is a program representing the strict version of the primitive construc-
tor c. For example in the case where c is + 1 we can define Ĉ as the program
succ :: Nat → Nat defined by:

succ 0 = 0 + 1
succ (x + 1) = (x + 1) + 1

A set of fully evaluated values of particular interest is the set N = {n | n =
((· · · (0 + 1) · · ·) + 1)
︸ ︷︷ ︸

n times

and n :: Nat} of canonical numerals.

Then, we define a program lg that returns the number of elements in a finite
partial list:

lg :: [α] → Nat
lg nil = 0
lg Err = 0
lg (x : xs) = (lg xs) + 1

Upper Bounds on Stream I/O Using Semantic Interpretations 277

Example 3. In order to illustrate the behaviour of lg consider the expression
((succ 0) : (nil !! 0)). We have eval(lg ((succ 0) : (nil !! 0))) ⇓ 1.

Finally we introduce a notion of size for expressions:

Definition 2 (Size). The size of an expression e is defined as

|e| = 0 if e is a variable or a symbol of arity 0

|e| =
∑

i∈{1,...,n}
|ei| + 1 if e = t e1 · · · en, t ∈ C ∪ F .

Note that for each n ∈ N we have |n| = n. Throughout the paper, F (e) denotes
the componentwise application of F to the sequence e, i.e. F (e1, · · · , en) =
F (e1), . . . , F (en). For example, given a sequence s = s1, · · · , sn, we will use the
notation |s| for |s1|, . . . , |sn|.

3 Interpretations

In this section, we introduce the interpretation terminology. The interpretations
we consider are inspired by the notions of quasi-interpretation [4] and sup-
interpretation [7] and are used as a main tool in order to ensure stream prop-
erties. They basically consist in assignments over non negative real numbers
following the terminology of [21]. Throughout the paper, ≥ and > denote the
natural ordering on real numbers and its restriction.

Definition 3 (Assignment). An assignment of a symbol t ∈ F ∪ C of arity
n is a function �t� : (R+)n → R

+. For each variable x ∈ X , we define �x� = X,
with X a fresh variable ranging over R

+. A program assignment is an assignment
�−� defined for each symbol of the program. An assignment is (weakly) monotonic
if for any symbol t, �t� is an increasing (not necessarily strictly) function with
respect to each variable, that is for every symbol t and all Xi, Yi of R

+ such that
Xi ≥ Yi, we have �t�(. . . , Xi, . . .) ≥ �t�(. . . , Yi, . . .).

Notice that assignments are not defined on the Case construct since we only
apply assignments to expressions without Case.

An assignment �−� can be extended to expressions canonically. Given an ex-
pression t e1 . . . en with m variables, its assignment is a function (R+)m → R

+

defined by:
�t e1 . . . en� = �t�(�e1�, · · · , �en�)

Example 4. The function �−� defined by �merge�(U, V) = U +V , �(,)�(U, V) =
U+V +1 and �:�(X, XS) = X+XS+1 is a monotonic assignment of the program
merge of example 1.

Now we define the notion of additive assignments which guarantees that the size
of a fully evaluated value is bounded by its assignment.

278 M. Gaboardi and R. Péchoux

Definition 4 (Additive assignment). An assignment of a symbol c of arity
n is additive if:

�c�(X1, · · · , Xn) =
∑n

i=1 Xi + αc, with αc ≥ 1 if n > 0,

�c� = 0 otherwise.

The assignment �−� of a program is called additive assignment if each construc-
tor symbol of C has an additive assignment.

Definition 5 (Interpretation). A program admits an interpretation �−� if
�−� is a monotonic assignment such that for each definition of the shape f −→p = e
we have �f −→p � ≥ �e�.

Notice that if �t� is a subterm function (i.e. ∀i ∈ {1, n} �t�(X1, · · · , Xn) ≥
Xi), for every symbol t, then the considered interpretation is called a quasi-
interpretation in the literature (used for inferring upper bounds on values).
Moreover, if �t� is a polynomial over natural numbers and the inequalities are
strict then �−� is called a polynomial interpretation (used for showing program
termination).

Example 5. The assignment of example 4 is an additive interpretation of the
program merge. Indeed, we have:

�merge (x : xs) (y : ys)� = �merge�(�x : xs�, �y : ys�) By canonical extension
=�x : xs� + �y : ys� By definition of �merge�

=�x� + �xs� + �y� + �ys� + 2 By definition of �:�
=�(x, y) :(merge xs ys)� Using the same reasoning

Let → be the rewrite relation induced by giving an orientation from left to right
to the definitions and let →∗ be its transitive and reflexive closure. We start by
showing some properties on monotonic assignments.

Proposition 1. Given a program admitting the interpretation �−�, then for
every closed expression e such that e →∗ d, we have: �e� ≥ �d�

Proof. The proof is by induction on the derivation length [22]. �	
Corollary 1. Given a program admitting the interpretation �−�, then for every
closed expression e such that e ⇓ v, we have: �e� ≥ �v�

Proof. The lazy semantics is just a particular rewrite strategy. �	
Corollary 2. Given a program admitting the interpretation �−�, then for every
closed expression e such that eval e ⇓ v, we have: �e� ≥ �v�

Proof. By induction on the structure of expressions. �	
It is important to relate the size of an expression and its interpretation.

Lemma 1. Given a program having an interpretation �−� then there is a func-
tion G : R

+ → R
+ such that for each expression e: �e� ≤ G(|e|)

Proof. By induction on the structure of expressions. �	

Upper Bounds on Stream I/O Using Semantic Interpretations 279

4 Bounded I/O Properties and Criteria

In this section, we define distinct stream properties related to time and space
and criteria using interpretations to ensure them. A naive approach would be to
consider a time unit to be either a stream input read (the evaluation of a stream
element in a function argument) or a stream output write (the evaluation of a
stream element of the result). Since most of the interesting programs working on
streams are non-terminating, this approach fails. In fact, we need a more concrete
notion of what time should be. Consequently, by time we mean relations between
input reads and output writes, that is the ability of a program to return a certain
amount of elements in the output stream (that is to perform some number of
writes) when fed with some input stream elements.

4.1 Length Based I/O Upper Bound (LBUB)

We focus on the relations that provide upper bounds on output writes. We here
consider structural relations, that depend on the stream structure but not on the
value of its elements. We point out an interesting property giving bounds on the
number of generated outputs by a function in the length of the inputs. As already
stressed, the complete evaluation of stream expressions does not terminates. So,
in order to deal with streams by finitary means, we ask, inspired by the well
known Bird and Wadler Take Lemma [23], the property to hold on all the finite
fragments of the streams that produce a result.

Definition 6. A stream function f ::
−→
[σ] → −→τ → [σ] has a length based I/O

upper bound if there is a function F : R
+ → R

+ such that for every expression
si :: [σi] and for every expression ei :: τi, we have that:

∀ ni ∈ N, s.t. eval(lg(f (
−−−−−−→
take n s) −→e)) ⇓ m, F (max(|n|, |e|)) ≥ |m|

where (−−−−−−→take n s) is a short for (take n1 s1) · · · (take nm sm).

Let us illustrate the length based I/O upper bound property by an example:

Example 6. The function merge of example 1 has a length based I/O upper
bound. Indeed, consider F (X) = X , given two finite lists s, s′ of size n, n′ such
that n ≤ n′, we know that eval(lg (merge s s′)) evaluates to an expression m
such that m = n. Consequently, given two stream expressions e and e′ such that
eval(take n′ e′) ⇓ s′ and eval(take n e) ⇓ s, we have:

F (max(|n|, |n′|)) = F (max(n, n′)) = n′ ≥ n = |m|

4.2 A Criterion for Length Based I/O Upper Bound

We here give a criterion ensuring that a given stream has a length based I/O
upper bound. For simplicity, in the following sections, we suppose that the con-
sidered programs do not use the programs lg and take.

280 M. Gaboardi and R. Péchoux

Definition 7. A program is LBUB if it admits an interpretation �−� which
satisfies �+1�(X) = X + 1 and which is additive but on the constructor symbol :
where �:� is defined by �:�(X, Y) = Y + 1.

We start by showing some basic properties of LBUB programs.

Lemma 2. Given a LBUB program, for every n :: Nat we have �n� = |n|.

Proof. By an easy induction on canonical numerals. �	

Lemma 3. Given a LBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program lg by �lg�(X) = X.

Proof. We check that the inequalities hold for every equation in the definition
of lg. �	

Lemma 4. Given a LBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program take by �take�(N, L) = N .

Proof. We check that the inequalities hold for every equation in the definition
of take. �	

Theorem 1. If a program is LBUB then each stream function in it has a length
based I/O upper bound.

Proof. Given a LBUB program, if eval(lg (f (
−−−−−−→
take n s) −→e)) ⇓ m then we know

that �lg (f (
−−−−−−→
take n s) −→e)� ≥ �m�, by Corollary 2. By Lemma 3, we obtain

that �f (
−−−−−−→
take n s) −→e � ≥ �m�. By Lemma 4, we know that �f (

−−−−−−→
take n s) −→e � =

�f�(�n� �e�). Applying Lemma 2, we obtain |m| = �m� ≤ �f�(|n|, �e�). Finally,
by Lemma 1, we know that there is a function G : R

+ → R
+ such that |m| ≤

�f�(|n|, G(|e|)). �	

Example 7. The merge program of example 1 admits the following additive inter-
pretation �merge�(X, Y) = max(X, Y), �(,)�(X, Y) = X+Y +1 together with �:
�(X, Y) = Y +1. Consequently, it is LBUB and, defining F (X) = �merge�(X, X)
we know that for any two finite lists s1 and s2 of length m1 and m2, we have
that if eval(lg(merge s1 s2)) ⇓ m then F (max(m1, m2)) ≥ |m| (i.e. we are able
to exhibit a precise upper bound).

4.3 Size Based I/O Upper Bound (SBUB)

The previous criterion guarantees an interesting homogeneous property on stream
data. However, a wide class of stream programs with bounded relations between
input reads and output writes do not enjoy it. The reason is just that some pro-
grams do not only take into account the structure of the input it reads, but also
its value. We here point out a generalization of the LBUB property by considering
an upper bound depending on the size of the stream expressions.

Upper Bounds on Stream I/O Using Semantic Interpretations 281

Example 8. Consider the following motivating example:

append :: [α] → [α] → [α]
append (x : xs) ys = x : (append xs ys)
append nil ys = ys

upto :: Nat → [Nat]
upto 0 = nil
upto (x + 1) = (x + 1) : (upto x)

extendupto :: [Nat] → [Nat]
extendupto (x : xs) = append (upto x) (extendupto xs)

The program extendupto has no length based I/O upper bound because for each
number n it reads, it performs n output writes (corresponding to a decreasing
sequence from n to 1).

Now we introduce a new property dealing with size, that allows us to overcome
this problem.

Definition 8. A stream function f ::
−→
[σ] → −→τ → [σ] has a size based I/O upper

bound if there is a function F : R
+ → R

+ such that, for every stream expression
si :: [σi] and for expression ei :: τi, we have that:

∀ ni ∈ N, s.t. eval(lg(f (
−−−−−−→
take n s) −→e)) ⇓ m, F (max(|s|, |e|)) ≥ |m|

where (
−−−−−−→
take n s) is a short for (take n1 s1) · · · (take nm sm).

Example 9. Since the program of example 8, performs n output writes for each
number n it reads, it has a size based I/O upper bound.

Notice that this property informally generalizes the previous one, i.e. a size based
I/O upper bounded program is also length based I/O program, just because size
always bounds the length. But the length based criterion is still relevant for two
reasons, first it is uniform (input reads and output writes are treated in the same
way), second it provides more accurate upper bounds.

4.4 A Criterion for Size Based I/O Upper Bound

We give a criterion ensuring that a stream has a size based I/O upper bound.

Definition 9. A program is SBUB if it admits an additive interpretation �−�
such that �+1�(X) = X + 1 and �:�(X, Y) = X + Y + 1.

Lemma 5. Given a SBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program lg by �lg�(X) = X.

Proof. We check that the inequalities hold for every definition of lg. �	

Lemma 6. Given a SBUB program wrt the interpretation �−�, the interpreta-
tion can be extended to the program take by �take�(N, L) = L.

Proof. We check that the inequalities hold for every definition of take. �	

282 M. Gaboardi and R. Péchoux

Theorem 2. If a program is SBUB then each stream function in it has a size
based I/O upper bound.

Proof. Given a SBUB program, then if eval(lg(f (
−−−−−−→
take n s) −→e)) ⇓ m, for

some stream function f, then �lg(f (
−−−−−−→
take n s) −→e)� ≥ �m�, by Corollary 2. By

Lemma 5, we obtain that �f (
−−−−−−→
take n s) −→e � ≥ �m�. By Lemma 6, we know that

�f (−−−−−−→take n s) −→e � = �f�(�s� �e�). Applying Lemma 2 (which still holds because
the interpretation of +1 remains unchanged), we obtain |m| = �m� ≤ �f�(�s�, �e�).
Finally, by Lemma 1, we know that there is a function G : R

+ → R
+ such that

|m| ≤ �f�(G(|s|), G(|e|)). �	
Example 10. The program extendupto of example 8 admits the following ad-
ditive interpretation �nil� = �0� = 0, �append�(X, Y) = X + Y , �upto�(X) =
�extendupto�(X) = 2 × X2 together with �+1�(X) = X + 1 and �:�(X, Y) =
X + Y + 1. Consequently, it is SBUB and, defining F (X) = �extendupto�(X)
we know that for any finite list s of size n, if eval(lg(extendupto s)) ⇓ m then
F (n) ≥ |m|, i.e. we are able to exhibit a precise upper bound. However notice
that, as already mentioned, the bound is less tight than in previous criterion.
The reason for that is just that size is an upper bound rougher than length.

4.5 Synchrony Upper Bound (SUB)

Sometimes we would like to be more precise about the computational complexity
of the program. In this case a suitable property would be synchrony, i.e. a finite
part of the input let produce a finite part of the output. Clearly not every
stream enjoys this property. Synchrony between stream Input and Output is a
non-trivial question that we have already tackled in the previous subsections by
providing some upper bounds on the length of finite output stream parts. In this
subsection, we consider the problem in a different way: we restrict ourselves to
synchronous streams and we adapt the interpretation methodology in order to
give upper bound on the output writes size with respect to input reads size.
In the sequel it will be useful to have the following program:

lInd :: Nat → [α] → [α]
lInd x xs = (xs !! x) : nil

We start to define the meaning of synchrony between input stream reads and
output stream writes:

Definition 10. A stream function f ::
−→
[σ] → −→τ → [σ] is said to be of type

“Read, Write” if for every expression si :: σi, ei :: τi and for every n ∈ N:

If eval (lInd n (f −→s −→e)) ⇓ v and eval (f (
−−−−−−→
lInd n s) −→e) ⇓ v′ then v = v′

This definition provides a one to one correspondence between input stream reads
and output stream writes, because the stream function needs one input read in
order to generate one output write and conversely, we know that it will not
generate more than one output write (otherwise the two fully evaluated values
cannot be matched).

Upper Bounds on Stream I/O Using Semantic Interpretations 283

Example 11. The following is an illustration of a “Read, Write” program:

sadd :: [Nat] → [Nat] → [Nat]
sadd (x : xs) (y : ys) = (add x y) : (sadd xs ys)

add :: Nat → Nat → Nat
add (x + 1) (y + 1) = ((add x y) + 1) + 1
add (x + 1) 0 = x + 1
add 0 (y + 1) = y + 1

In this case, we would like to say that for each integer n, the size of the n-th
output stream element is equal to the sum of the two n-th input stream elements.

Definition 11. A “Read, Write” stream function f ::
−→
[σ] → −→τ → [σ] has a

synchrony upper bound if there is a function F : R
+ → R

+ such that for every
expression si :: [σi], ei :: τi and for every n ∈ N:

If eval(si !! n) ⇓ wi and eval((f −→s −→e) !! n) ⇓ v then F (max(|w|, |e|)) ≥ |v|

Another possibility would have been to consider a n to m correspondence be-
tween inputs and outputs. However such correspondences can be studied with
slight changes over the one-one correspondence.

4.6 A Criterion for Synchrony Upper Bound

We begin to put some syntactical restriction on the considered programs so that
each stream function symbol is “Read, Write” with respect to this restriction.

Definition 12. A stream function f ::
−→
[σ] → −→τ → [σ] is synchronously re-

stricted if it can be written (and maybe extended) by definitions of the shape:

f (x1 : xs1) · · · (xn : xsn) −→p = hd : (f xs1 · · · xsn
−→p)

f nil · · · nil −→p = nil

where xs1, . . . , xsn do not appear in the expression hd.

Now we may show the following lemma.

Lemma 7. Every synchronously restricted function is “Read, Write”.

Proof. By induction on numerals. �	
Definition 13. A program is SUB if it is synchronously restricted and admits
an additive interpretation �−� but on : where �:� is defined by �:�(X, Y) = X.

Fully evaluated values, i.e. values v containing only constructor symbols, have
the following remarkable property.

Lemma 8. Given an additive assignment �−�, for each fully evaluated value v:
|v| ≤ �v�.

284 M. Gaboardi and R. Péchoux

Proof. By structural induction on fully evaluated values. �	
Theorem 3. If a program is SUB then each stream function in it admits a
synchrony upper bound.

Proof. By Lemma 7, we can restrict our attention to a “Read, Write” stream
function f ::

−→
[σ] → −→τ → [σ] s.t. ∀n ∈ N, we both have eval ((f −→s −→e) !! n) ⇓ v

and eval(si !! n) ⇓ wi.
We firstly prove that eval (f

−−−−−→
(w : nil) −→e) ⇓ v : nil. By assumption, we have

eval((f −→s −→e) !! n) ⇓ v, so in particular we also have eval (((f −→s −→e) !! n) :
nil) ⇓ v : nil. By definition of “Read, Write” function, eval ((f ((−→s !! n) :
nil) −→e) ⇓ v : nil and since by assumption eval(si !! n) ⇓ wi we can conclude
eval (f

−−−−−→
(w : nil) −→e) ⇓ v : nil. By Corollary 2, we have �f

−−−−−→
(w : nil) −→e � ≥

�v : nil�. By definition of SUB programs, we know that �:�(X, Y) = X and,
consequently, �f�(�w : nil�, �e�) = �f�(�w�, �e�) ≥ �v : nil� = �v�. By Lemma 8,
we have �f�(�w�, �e�) ≥ |v|. Finally, by Lemma 1, there exists a function G :
R

+ → R
+ such that �f�(G(|w|), G(|e|)) ≥ |v|. We conclude by taking F (X) =

�f�(G(X), G(X)). �	
Example 12. The program of example 11 is synchronously restricted (it can be
extended in such a way) and admits the following additive interpretation �0� = 0,
�+1�(X) = X +1, �add�(X, Y) = X +Y , �sadd�(X, Y) = X +Y and �:�(X, Y) =
X . Consequently, the program is SUB and admits a synchrony upper bound.
Moreover, taking F (X) = �sadd�(X, X), we know that if the k-th input reads
evaluate to numbers n and m then F (max(|m|, |n|)) is an upper bound on the k-th
output size.

5 Conclusion

In this paper, we have applied interpretation methods for the first time to a lazy
functional stream language, obtaining several criteria ensuring bound properties
on the input read and output write elements of a program working on stream
data. This shows that interpretations are a valid tool to well ensure stream func-
tion properties. Many interesting properties should be investigated, in particular
memory leaks and overflows [17,18]. These questions are strongly related to the
notions we have tackled in this paper. For example, consider the following:

odd :: [α] → [α]
odd (x : y : xs) = x : (odd xs)

memleak :: [α] → [α × α]
memleak s = merge (odd s) s

The evaluation of an expression memleak s leads to a memory leak. Indeed,
merge reads one stream element on each of its arguments in order to output one
element and odd needs to read two stream input elements of s in order to output
one element whereas s just makes one output for one input read. Consequently,
there is a factor 2 of asynchrony between the two computations on s. Which
means that merge needs to read sn and s2×n (where si is the i-th element of

Upper Bounds on Stream I/O Using Semantic Interpretations 285

s) in order to compute the n-th output element. From a memory management
perspective, it means that all the elements between sn and s2×n have to be
stored, leading the memory to a leak. We think interpretations could help the
programmer to prevent such ”bad properties” of programs. Moreover, we think
that interpretations can be also exploited in the study of stream definitions, in
particular in the context of stream productivity, but we leave this subject for
further researchs.

References

1. Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Third hawaii
international conference on system science, pp. 789–792 (1970)

2. Lankford, D.: On proving term rewriting systems are noetherien. tech. rep (1979)
3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In: Proceedings
of ACM POPL 1977, pp. 238–252 (1977)

4. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-interpretations, a way to control
resources. TCS (accepted)

5. Amadio, R.: Synthesis of max-plus quasi-interpretations. Fundamenta Informaticae
65(1-2) (2005)

6. Bonfante, G., Marion, J.Y., Moyen, J.Y., Péchoux, R.: Synthesis of quasi-
interpretations. In: LCC 2005, LICS Workshop (2005), http://hal.inria.fr/

7. Marion, J.Y., Péchoux, R.: Sup-interpretations, a semantic method for static anal-
ysis of program resources. In: ACM TOCL 2009 (accepted, 2009),
http://tocl.acm.org/

8. Marion, J.-Y., Péchoux, R.: A Characterization of NCk by First Order Functional
Programs. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS,
vol. 4978, pp. 136–147. Springer, Heidelberg (2008)

9. Bonfante, G., Kahle, R., Marion, J.-Y., Oitavem, I.: Recursion schemata for NCk.
In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 49–63.
Springer, Heidelberg (2008)

10. Dijkstra, E.W.: On the productivity of recursive definitions. EWD749 (1980)
11. Sijtsma, B.: On the productivity of recursive list definitions. ACM TOPLAS 11(4),

633–649 (1989)
12. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)

TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994)
13. Wadge, W.: An extensional treatment of dataflow deadlock. TCS 13, 3–15 (1981)
14. Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productiv-

ity of Stream Definitions. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS,
vol. 4639, pp. 274–287. Springer, Heidelberg (2007)

15. Telford, A., Turner, D.: Ensuring streams flow. In: Johnson, M. (ed.) AMAST 1997.
LNCS, vol. 1349, pp. 509–523. Springer, Heidelberg (1997)

16. Buchholz, W.: A term calculus for (co-) recursive definitions on streamlike data
structures. Annals of Pure and Applied Logic 136(1-2), 75–90 (2005)

17. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: Proceedings of ACM POPL 1996, pp. 410–423 (1996)

http://hal.inria.fr/
http://tocl.acm.org/

286 M. Gaboardi and R. Péchoux

18. Frankau, S., Mycroft, A.: Stream processing hardware from functional language
specifications. In: Proceeding of IEEE HICSS-36 (2003)

19. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM 27(4), 797–821 (1980)

20. Launchbury, J.: A natural semantics for lazy evaluation. In: Proceedings of POPL
1993, pp. 144–154 (1993)

21. Dershowitz, N.: Orderings for term-rewriting systems. TCS 17(3), 279–301 (1982)
22. Marion, J.Y., Péchoux, R.: Characterizations of polynomial complexity classes with

a better intensionality. In: Proceedings ACM PPDP 2008, pp. 79–88 (2008)
23. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice-Hall, En-

glewood Cliffs (1988)

	Upper Bounds on Stream I/O Using Semantic Interpretations
	Introduction
	Preliminaries
	The sHask Language
	sHask Type System
	sHask Lazy Operational Semantics
	Preliminary Notions

	Interpretations
	Bounded I/O Properties and Criteria
	Length Based I/O Upper Bound (LBUB)
	A Criterion for Length Based I/O Upper Bound
	Size Based I/O Upper Bound (SBUB)
	A Criterion for Size Based I/O Upper Bound
	Synchrony Upper Bound (SUB)
	A Criterion for Synchrony Upper Bound

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

