
A Soft Type Assignment System for λ-Calculus

Marco Gaboardi and Simona Ronchi Della Rocca

Dipartimento di Informatica
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Abstract. Soft Linear Logic (SLL) is a subsystem of second-order lin-
ear logic with restricted rules for exponentials, which is correct and
complete for PTIME. We design a type assignment system for the λ-
calculus (STA), which assigns to λ-terms as types (a proper subset of)
SLL formulas, in such a way that typable terms inherit the good com-
plexity properties of the logical system. Namely STA enjoys subject re-
duction and normalization, and it is correct and complete for PTIME and
FPTIME.

1 Introduction

The light logics, Light Linear Logic (LLL) [1] and Soft Linear Logic (SLL)
[2], were both introduced as logical counterpart of the polynomial complex-
ity. Namely proofs of both logics normalize in a polynomial number of cut-
elimination steps, if their depth is fixed, and moreover they are complete for
FPTIME and PTIME respectively. So they can be used for the design of pro-
gramming languages with an intrinsically polynomial computational bound. This
can be done in a straightforward way by a complete decoration of the logical
proofs, but for both these logics, since the presence of modalities, the resulting
languages have a very complex syntactical structure, and they cannot be rea-
sonably proposed for programming (an example of complete decoration of SLL
is in [3]). A different approach is to fix as starting points:

1. The use of λ-calculus as an abstract paradigm of programming languages.
2. The use of types to characterize program properties.

In this line, the aim becomes the design of a type assignment system for λ-
calculus, where types are formulae of a light logic, in such a way that the logical
properties are inherited by the well typed terms. Then types can be used for
checking, beside the usual notion of correctness, also the property of having
polynomial complexity. A type assignment for λ-calculus correct and complete
with respect to polynomial time computations has been designed by Baillot and
Terui [4], using as types formulae of Light Affine Logic (LAL), a simplified ver-
sion of LLL defined in [5,6]. The aim of this paper is to design a type assignment
system for λ-calculus, enjoying the same properties, but using as types formulae
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of SLL. The motivation for doing it is twofold. The design of λ-calculi with im-
plicit complexity properties is a very new research line, and so exploring different
approaches is necessary in order to compare them. In particular, SLL formulas
look simpler than LAL ones, since they have just one modality while LAL has
two modalities, and this could in principle give rise to a system easier to deal
with. Moreover, SLL has been proved to be complete just for PTIME, while we
want a type assignment system complete for FPTIME: so we want to explore at
the same time if it is possible, when switching from formulae to types, to prove
this further property.

We start from the original version of second order SLL with the only connec-
tives � and ! and the quantifier ∀, given in sequent calculus style. The principal
problem in designing the desired type assignment system is that, in general, in
a modal logic setting, the good properties of proofs are not easily inherited by
λ-terms. In particular, there is a mismatch between β-reduction in the λ-calculus
and cut-elimination in logical systems, which makes it difficult both getting the
subject reduction property and inheriting the complexity properties from the
logic, as discussed in [4]. To solve this problem we exploit the fact that, in the
decorated sequent calculus, there is a redundancy of proofs, in the sense that the
same λ-term can arise from different proofs. So we propose a restricted system,
called Soft Type Assignment (STA), where the set of derivations corresponds to
a proper subset of proofs in the affine version of SLL. Types are a subset of SLL
formulae, where, in the same spirit of [4], the modality ! is not allowed in the
right hand of an arrow, and the application of some rules (in particular the cut
rule) is restricted to linear types. STA enjoys subject reduction, and the set of
typable terms characterizes PTIME. Moreover we prove that the language of ty-
pable terms is complete both for PTIME and FPTIME. The completeness we are
speaking about is a functional completeness, in the sense that we prove (through
a simulation of polynomial time Turing Machines) that all polynomial functions
can be computed by terms typable in STA. The algorithmic expressivity of the
language has been not studied here.

This paper is a first step: we are actually working on a natural deduction
version of STA, and on the type inference problem. The type inference problem
for STA seems undecidable, but we think it is possible to build decidable re-
strictions that do not lose the complexity completeness. Moreover a comparison
with respect to DLAL, the type assignment system in [4], is in order. The two
systems have incomparable typability power, in the sense that there exist terms
typable in STA but not in DLAL and vice versa. STA has an easier treatment
of contexts, and no notion of discharged assumptions. This, together with the
fact that types in STA have just one modality, can help in designing a simpler
natural deduction and a more efficient type inference algorithm.

The paper is organized as follows. In Section 2 SLL is introduced and a discus-
sion is made about the problem of subject reduction. In Section 3 STA is defined,
and the proof of subject reduction is given. Section 4 contains the results about
the complexity bound: polynomial bound is proved in Subsection 4.1, and the
completeness for both PTIME and FPTIME is proved in Subsection 4.2.
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2 Soft Linear Logic and λ-Calculus

In [7] a decoration of SLL by terms of λ-calculus has been presented, as technical
tool for studying the expressive power of the system. The decoration is presented
in Table 1, where Γ#Δ denotes the fact that the domain of contexts Γ and Δ
are disjoint sets of variables. In such system, which we call SLLλ, we have the
failure of subject reduction. Let us give a detailed analysis of the problem. In a
decorated sequent calculus system, β-reduction is the counterpart, in terms, of
the cut rule of the logic. The cut rule in Table 1 can be split into three different
rules, according to the shape of U , of the contexts and of the derivation:

Γ �l M : U Δ, x : U �l N : V U not modal
Γ, Δ �l N [M/x] : V

(L cut)

Π�!Γ �l M :!U Δ, x :!U �l N : V Π duplicable
!Γ, Δ �l N [M/x] : V

(D cut)

Π�Γ �l M :!U Δ, x :!U �l N : V Π not duplicable
Γ, Δ �l N [M/x] : V

(S cut)

where Π�!Γ �l M :!U is duplicable if it corresponds to a !-box in the respective
proof-net of SLL [2], and L, D, S are short for Linear, Duplication and Sharing.
The problem is that, while (L cut) and (D cut) both correspond to β-reduction,
(S cut) is not necessarily reflected into a β-reduction.
Let us show it by an example. Consider the term M ≡ y((λz.sz)w)((λz.sz)w)
and let Z = U � U � V, S = V �!U . It has the typing y : Z, s : S, w : V �l

y((λz.sz)w)((λz.sz)w) : V as proved by the following (incomplete) derivation:

s : S �l λz.sz : S t : S, w : V �l tw :!U
s : S, w : V �l (λz.sz)w :!U

(cut)
y : Z, r : U, l : U �l yrl : V

y : Z, x :!U �l yxx : V
(m)

y : Z, s : S, w : V �l y((λz.sz)w)((λz.sz)w) : V
(cut)

Table 1. SLLλ

x : U �l x : U
(Id)

Γ �l M : U x : V, Δ �l N : Z Γ#Δ y fresh
Γ, y : U � V, Δ �l N [yM/x] : Z

(� L)

Γ �l M : U Δ, x : U �l N : V Γ#Δ

Γ, Δ �l N [M/x] : V
(cut)

Γ, x : U �l M : V

Γ �l λx.M : U � V
(� R)

Γ �l M : U

!Γ �l M :!U
(sp)

Γ, x0 : U, ..., xn : U �l M : V

Γ, x :!U �l M [x/x0, ..., x/xn] : V
(m)

Γ �l M : U

Γ �l M : ∀α.U
(∀R)

Γ, x : U [V/α] �l M : Z

Γ, x : ∀α.U �l M : Z
(∀L)
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where the cut is clearly a (S cut). It is easy to check that
y((λz.sz)w)((λz.sz)w) →β y(sw)((λz.sz)w) but unfortunately there is no
derivation with conclusion: y : Z, s : S, w : V �l y((sw)((λz.sz)w) : V .

The technical reason is that, in the previous derivation, there is a mismatch
between the term and the derivation: in M there are two copies of (λz.sz)w,
while in the derivation there is just one subderivation with subject (λz.sz)w,
and this subderivation is not duplicable, since in particular S is not modal.
Then the two copies of this subterm cannot be treated in a non uniform way.

The problem is not new, and all the type assignment systems for λ-calculus
derived from Linear Logic need to deal with it. Until now the proposed solutions
follow three different paths, all based on a natural deduction definition of the
type assignment. The first one, proposed in [8], explicitly checks the duplicability
condition before to perform a normalization step. So in the resulting language
(which is a fully typed λ-calculus) the set of redexes is a proper subset of the set
of classical β-redexes. In the light logics setting, in [9], a type assignment for the
λ-calculus, based on EAL, is designed. There the authors use the call-by-value
λ-calculus, where the restricted definition of reduction corresponds exactly
to linear substitution and duplication. In the type assignment for λ-calculus
based on LAL, made in [4], a syntax of types is used, where the modality !
is no more present, and there are two arrows, a linear and an intuitionistic
one, whose elimination reflects the linear and the duplication cut respectively.
The set of types corresponds to a restriction of the set of logical formulas. All
the approaches need a careful control of the context, which technically has
been realized by splitting it in different parts, collecting respectively the linear
and modal assumptions (in case of [9] a further context is needed). Here we
want to explore a different approach. A type derivation for λ-calculus based
on sequent calculus is in some sense redundant, since the same typing can
be proved by a plethora of different derivations, corresponding to different
ways of building the term. A (cut) rule and a (� L) rule both correspond to
a modification of the subject through a substitution. Our key observation is
that a term can always be built using linear substitutions. As example, take
the term before y((λz.sz)w)((λz.sz)w). It can be seen as yxx[(λz.sz)w/x] but
also as yx1x2[(λz.s1z)w1/x1, (λz.s2z)w2/x2][s/s1, s/s2, w/w1, w/w2], where all
substitutions are linear. Then we want to restrict the set of proofs, in such a
way that both sharing and duplication are forbidden, and terms are built by
means of linear substitutions only. Such restriction preserves subject reduction
since duplication is a derived rule. In order to do this, we start from an affine
version of SLL and restrict the formulae, using as types just a subset of the
SLL formulae which are, in some sense, recursively linear. The gain is that the
splitting of the context is no more necessary.

3 The Soft Type Assignment System

In this section we will present a type assignment system, which assigns to λ-
terms a proper subset of SLL formulae, and we will prove that it enjoys subject
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Table 2. Soft Type Assignment system

x : A � x : A
(Id)

Γ � M : τ x : A, Δ � N : σ Γ#Δ y fresh
Γ, y : τ � A, Δ � N [yM/x] : σ

(� L)

Γ, x : σ � M : A

Γ � λx.M : σ � A
(� R)

Γ � M : A Δ, x : A � N : σ Γ#Δ

Γ, Δ � N [M/x] : σ
(cut)

Γ � M : σ
Γ, x : A � M : σ

(w) Γ � M : σ
!Γ � M :!σ

(sp)
Γ, x : A[B/α] � M : σ

Γ, x : ∀α.A � M : σ
(∀L)

Γ, x1 : τ, ..., xn : τ � M : σ

Γ, x :!τ � M [x/x1, ..., x/xn] : σ
(m) Γ � M : A

Γ � M : ∀α.A
(∀R)

reduction. Types correspond in some sense to “recursively linear” formulae and
quantification can be applied only to linear types. The type assignment system
is such that all rules dealing with substitution ((� L) and (cut)) are applicable
only if the type of the replaced variable is linear. So all terms are built through
linear substitutions.

Definition 1. i) The syntax of λ-terms is the usual one. Let α range over a
countable set of type variables. The set T of soft types is defined as follows:

A ::= α | σ � A | ∀α.A (Linear Types)
σ ::= A |!σ

Type variables are ranged over by α, β, linear types by A, B, C, and types by
σ, τ, ζ. ≡ denotes the syntactical equality both for types and terms (modulo
renaming of bound variables).

ii) A context is a set of assumptions of the shape x : σ, where all variables are
different. Contexts are ranged over by Γ, Δ. dom(Γ ) = {x | ∃x : σ ∈ Γ} and
Γ#Δ means dom(Γ ) ∩ dom(Δ) = ∅.

iii) STA proves sequents of the shape Γ � M : σ where Γ is a context, M is a
λ-term, and σ is a soft type. The rules are given in Table 2, where as usual
the rule (∀R) has the side condition that α must not be free in Γ .

iv) Derivations are denoted by Π, Σ, Φ, Ψ, Θ. Π�Γ � M : σ denotes a derivation
Π with conclusion Γ � M : σ. � M : σ is short for ∅ � M : σ.

We will use the following:

Notation. FV (M) denotes the set of free variables of M , no(x, M) the number
of free occurrences of the variable x in M . M{z} (M{zQ}) denotes that z (zQ)
occurs once in M . !nσ is an abbreviation for !...!σ n-times. !0σ ≡ σ. As usual �
associates to the right and has precedence on ∀, while ! has precedence on every-
thing else. σ[A/α] denotes the capture free substitution in σ of all occurrences
of the type variable α by the linear type A: note that this kind of substitution
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preserves the correct syntax of types. σ denotes a sequence of types, and σ[A/α]
denotes the replacement of the i-th type variable in α by the i-th type in A. |σ|
denotes the length of the sequence σ. Γ [A/α] is the context Γ , where all type τ
has been replaced by τ [A/α]. ∀α.A is an abbreviation for ∀α1....∀αn.A, for some
n ≥ 0. Note that each type is of the shape !n∀α.A

Some comments on STA are needed. The (cut) is a linear cut, according to the
classification given in the previous section, and rule (� L) requires that the type
of the replaced variable is linear, so in particular all substitutions in the subject
act on a variable occurring at most once (as we will see in the following lemma).
Moreover both the (Id) rule and (w) rule can introduce only linear types.

Note for example that the term M considered in Section 2. is typable with
typing: y : A � A � B, s :!(A � A), w :!A � y((λz.sz)w)((λz.sz)w) : B

Lemma 2. i) Γ, x : A � M : ν implies no(x, M) ≤ 1.
ii) Γ, x : A � M :!σ implies x �∈ FV (M).

The system enjoys the classical substitution properties.

Lemma 3. i) Γ � M : σ implies Γ [ζ/α] � M : σ[ζ/α].
ii) Γ � M : ∀α.A implies Γ � M : A.

Let Π�Γ, x : τ � M : σ. The notion of chain of x in Π will be used to remember
the successive renaming of the assumptions which give rise to the assumption
x : τ . The notion of s-chain is necessary for dealing with the particular case of
the replacements of a variable by another one in a cut rule.

Definition 4. Let Π�Γ, x : τ � M : σ.

– A chain of x in Π is a sequence of variables inductively defined as follows:
• Let the last applied rule of Π be:

x : A � x : A ,
Γ ′ � P : σ

Γ ′, x : A � P : σ or
Δ � P : τ z : A, Γ � N : σ

x : τ � A, Γ, Δ � N [xP/z] : σ

Then the only chain of x is x itself.
• Let the last applied rule of Π be:

Π ′�Γ ′, x1 : τ, ..., xk : τ � N : σ

Γ ′, x :!τ � N [x/x1, ..., x/xk] : σ
(m)

Then a chain of x in Π is every sequence xc, where c is a chain of xi

in Π ′ for 1 ≤ i ≤ k.
• In every other case there is an assumption with subject x both in the

conclusion of the rule and in one of its premises Σ. Then a chain of x
in Π is every sequence xc, where c is a chain of x in Σ.

– Let c be a chain of x in Π and let xk be the last variable of c. Then xk is
an ancestor of x in Π. na(x, Π) denotes the number of ancestors of x in Π.
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– y is an effective ancestor of x if and only if it is an ancestor of x, and
moreover every variable z in the chain of x ending with y occurs in sequent
where z belongs to the free variable set of the subject of the sequent. ne(x, Π)
denotes the number of effective ancestors of x in Π.

– A s-chain of x in Π is inductively defined analogously to the chain of x in
Π but the (cut) case:

Γ � M : A Σ�Δ, z : A � N : σ

Γ, Δ � N [M/z] : σ
(cut)

If M �≡ x then an s-chain of x in Π is defined as a chain of x in Π, otherwise
an s-chain of x in Π is every sequence zc, where c is a chain of z in Σ.
An s-ancestor is defined analogously to ancestor, but with respect to s-chains.

The following lemma follows easily from the previous definition.

Lemma 5. Let Π�Γ � M : σ. Then ∀x : no(x, M) ≤ ne(x, Π) ≤ na(x, Π).

The notion of effective ancestor will be used in Section 4. The Generation Lemma
connects the shape of a term with its possible typings, and will be useful in the
sequel. Let Π and Π ′ be two derivations in STA, proving the same conclusion:
Π � Π ′ denotes the fact that Π ′ is obtained from Π by commuting some rule
applications, by erasing m rule applications, by inserting n ≤ m applications of
rule (w), for some n, m ≥ 0, and by renaming some variables.

Lemma 6 (Generation Lemma)

1. Γ � λx.M : σ implies σ ≡!i(∀α.τ � A), for some τ , A and i, |α| ≥ 0;
2. Π�Γ � λx.P : σ � A implies Π � Π ′, whose last rule is (� R).
3. Π�Γ, x : ∀α.τ � A � M{xQ} : σ implies that Π is composed by a sub-

derivation Σ, followed by a sequence δ of rules not containing rule (sp), and
the last rule of Σ is:

Γ ′ � Q′ : τ ′ Γ ′′, z : A′ � P{z} : σ′

Γ ′, Γ ′′, t : τ ′ � A′ � P{z}[tQ′/z] : σ′ (� L)

where τ ′ ≡ τ [B/α], A′ ≡ A[B/α], t is the only s-ancestor of x in Π, for
some P, Q′, Γ ′, Γ ′′, B, α, σ′.

4. Π�Γ � M :!σ implies Π � Π ′ where Π ′ is composed by a subderivation,
ending with the rule (sp) proving !Γ ′ � M :!σ, followed by a sequence of rules
(w), (� L), (m),(∀L), (cut), all dealing with variables not occurring in M .

5. Π�!Γ � M :!σ implies Π � Π ′, whose last rule is (sp).
6. Π�Γ � λx.M : ∀α.A implies Π � Π ′ where the last rule of Π ′ is (∀R).

3.1 Subject Reduction

STA enjoys the subject reduction property. The proof is based on the fact that,
while formally the (cut) rule in it is linear, the duplication cut is a derived rule.
To prove this, we need a further lemma.
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Lemma 7. Π�Γ, x :!n∀α.A � M : σ where A �≡ ∀β.B and y is an ancestor of x
in Π imply that y has been introduced with type ∀α′.A[B/α′′], for some α′, α′′

(possible empty) such that α = α′′, α′

Lemma 8. The following rule is derivable in STA:

Π�!nΓ � M :!nB Σ�x :!nB, Δ � N : σ !nΓ#Δ

!nΓ, Δ � N [M/x] : σ
(dup)

Proof. In case n = 0 the proof is obvious, since (dup) coincides with the (cut)
rule. Otherwise let B ≡ ∀α.A. By Lemma 6.5, Π can be transformed into a
derivation Π ′′, which is Π ′�Γ � M : A followed by n applications of rule (sp).
Let the ancestors of x in Σ be x1, ..., xm. By Lemma 7, xj has been introduced
with type ∀α′

j .A[Cj/α′′
j ], for some Cj , α

′
j , α

′′
j (1 ≤ j ≤ m). By Lemma 3, there

are disjoint derivations Π ′
j�Γj � Mj : ∀α′

j .A[Cj/α′′
j ], where Mj and Γj are fresh

copies of M and Γ (1 ≤ j ≤ m). Then, for every xj introduced by an (Id) rule,
replace such rule by Π ′

j . For every xj introduced by a (� L) rule as:

Γ ′ � R : τ [Cj/α′′
j ] Δ′, z : B′[Cj/α′′

j ] � T : σ

Γ ′, xj : (τ � B′)[Cj/α′′
j ], Δ′ � T [xjR/z] : σ

(� L)

where ∀α′
j .A[Cj/α′′

j ] ≡ (τ � B′)[Cj/α′′
j ], |α′

j | = 0, after this insert the rule:

Π ′
j Γ ′, xj : A[Cj/α′′

j ], Δ′ � T [xjR/z] : σ

Γ ′, Δ′, Γj � T [MjR/z] : σ
(cut)

.

For every xj introduced by a (w) rule, just erase the rule. Moreover arrange the
context and the subject in all rules according with these modifications. Then
replace every application of a rule (m), when applied on variables in a chain of x
in Σ, by a sequence of rules (m) applied to the free variables of the corresponding
copy of M . So the resulting derivation Φ proves !nΓ, Δ � N [M/y] : σ. �
Note that the rule (dup) cannot represent a (S cut) since by Lemma 6.4 a
derivation where both the context and the type are modal always corresponds
to a !-box. The above lemma allow us to freely use (dup) rule in what follows.

Theorem 9 (Subject Reduction). If Γ � M : σ and M →β M ′ then Γ �
M ′ : σ

Proof. By induction on the derivation. The only interesting case is when the last
rule is (cut), creating the redex (λy.P )Q reduced in M .

Ψ�Γ � λy.P : A Σ�Δ, x : A � N{xQ} : σ Γ#Δ

Γ, Δ � N{xQ}[λy.P/x] : σ
(cut)

.

By Lemma 6.1, and by the constraint on the (cut) rule, A ≡ ∀α.τ � B. By
Lemma 6.3, Σ is composed by a subderivation Σ2, followed by a sequence δ of
rules not containing (sp). Σ2 is:

Θ1�Δ′′ � Q′ : τ ′ Θ2�Δ′, z : B′ � N ′{z} : σ′

Δ′, t : τ ′ � B′, Δ′′ � N ′{z}[tQ′/z] : σ′
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where τ ′ = τ [C/α], B′ = B[C/α], t is the only s-ancestor of x, for some
Δ′, Δ′′, N ′, Q′, σ′, C . By Lemma 6.2,6, Ψ � Ψ ′ ending as:

Γ, y : τ � P : B

Γ � λy.P : τ � B
(� R)

Γ � λy.P : ∀α.τ � B
(∀R)∗

hence by Lemma 3.ii), there is a derivation Φ�Γ, y : τ ′ � P : B′, since α are not
free in Γ .

Let τ ′ ≡!nA′ (n ≥ 0) for some A′. By Lemma 6.4,5, Θ1 can be transformed
in a derivation composed by a subderivation Θ4�!nΔ′′′ � Q′ :!nA′, followed by a
sequence δ′ of applications of rules (w), (� L),(m), (∀L), (cut), all dealing with
variables not occurring in Q. So we can apply the derived rule (dup) obtaining:

Θ4 :!nΔ′′′ � Q′ :!nA′ Φ�Γ, y :!nA′ � P : B′

Γ, !nΔ′′′ � P [Q′/y] : B′

Then, by applying δ′ we have Θ3�Γ, Δ′′ � P [Q′/y] : B′. Hence,

Θ3 Θ2

Γ, Δ′, Δ′′ � N ′{z}[P [Q′/y]/z] : σ
(cut)

and by applying δ the desired derivation can be built. �

The proof of subject reduction gives evidence to the fact that β-reduction, while
corresponding to the cut elimination in case the bound variable occurs at most
once, is reflected into a global transformation of the derivation, in case a dupli-
cation of the argument is necessary.

4 Complexity

In this section we will show that STA is correct and complete for polynomial
complexity. Namely, in Subsection 4.1, we will prove that, if a term M can be
typed in STA by a derivation Π , then it reduces to normal form in a number
of β-reduction steps which is bounded by |M |d(Π)+1, where |M | is the number
of symbols of M and d(Π) is the number of nested applications of rule (sp) in
Π . So working with terms typed by derivations of fixed degree assures us to
keep only a polynomial number of computation steps. Then we show that this
polystep result extends to a polytime result. In the Subsection 4.2, we prove
that STA is complete both for PTIME and FPTIME, using a representation of
Turing machine working in polynomial time by λ-terms, typable in STA through
derivations obeying suitable constraints. The key idea is that data can be repre-
sented by terms typable by linear types using derivations of degree 0. Obviously
programs can duplicate their data, so a derivation typing an application of a
program to its data can have degree greater than 0, but this degree depends
only on the program, so it does not affect the complexity measure.
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4.1 Complexity of Reductions in STA

SLL enjoys a polynomial time bound, namely the cut-elimination procedure is
polynomial in the size of the proof. This result holds obviously also for STA.
But we need something more, namely to relate the polynomial bound to the size
of the λ-terms. So we prove this result by defining measures of both terms and
proofs, which are an adaptation of those given by Lafont, but they do not take
into account the subderivations that do not contribute to the term formation
(which we will call “erasing”).

Definition 10.

– The size |M | of a term M is defined as |x| = 1, |λx.M | = |M |+1, |MN | =
|M | + |N | + 1. The size |Π | of a proof Π is the number of rules in Π.

– In the rules (� L) and (cut), the subderivation proving Γ � M : τ and
Γ � M : A respectively is erasing if x /∈ FV (N)(using notation of Table 2).

– The rank of a rule (m), as defined in Table 2, is the number k ≤ n of
variables xi such that xi ∈ FV (M) (1 ≤ i ≤ n ). Let r be the the maximum
rank of a rule (m) in Π, not considering erasing subderivations. The rank
rk(Π) of Π is the maximum between 1 and r.

– The degree d(Π) of Π is the maximum nesting of applications of rule (sp)
in Π, not considering erasing subderivations;

– The weight W(Π, r) of Π with respect to r is defined inductively as follows.
• If the last applied rule is (Id) then W(Π, r) = 1.
• If the last applied rule is (� R) with premise a derivation Σ, then
W(Π, r) = W(Σ, r) + 1.

• If the last applied rule is (sp) with premise a derivation Σ, then W(Π, r) =
rW(Σ, r).

• If the last applied rule is:

Σ�Γ � M : A Φ�x : A, Δ � N : σ

Γ, Δ � N [M/x] : σ
(cut)

then W(Π, r) = W(Σ, r) + W(Φ, r) − 1 if x ∈ FV (N), W(Π, r) = W(Φ, r)
otherwise.

• In every other case W(Π, r) is the sum of the weights of the premises with
respect to r, not counting erasing subderivations.

Lemma 11. Let Π�Γ � M : σ. Then:
1. rk(Π) ≤ |M | ≤ |Π |. 2. W(Π, 1) ≤ |M |. 3. W(Π, r) ≤ rd(Π)W(Π, 1)
4. x :!qA ∈ Γ implies no(x, M) ≤ ne(x, Π) ≤ rk(Π)q.
5. Π � Π ′ implies W(Π ′, r) ≤ W(Π, r).

The normalization of proofs is based on the notion of substitution. The following
lemma extends the weight definition to the derived rule (dup) by taking into
account the weight of the involved proofs.

Lemma 12. Let Φ be a derivation ending with the rule (dup), with premises Σ
and Π. Then, if r ≥ rk(Φ), W(Φ, r) ≤ W(Σ, r) + W(Π, r).
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Proof. It suffices to verify how the weights are modified in the proof of Lemma
8, using Lemma 11. We will use exactly the same notations as in the lemma.

The transformation of Π in Π ′′ leaves the weight unchanged. In particular
W(Π, r) = rnW(Π ′, r) and W(Π ′

j , r) = W(Π ′, r).
By Lemma 6.4 and Lemma 6.5 Σ can be transformed in a derivation Σ′

followed by k ≤ n applications of rule (sp) and by a sequence of rules dealing
with variables not occurring in N . In particular W(Σ, r) = rkW(Σ′, r).

Then, for every ancestor xj in Σ the replacement by Π ′
j increases the weight

W(Σ′, r) of at most a quantity W(Π ′, r). By definition of weight we are interested
only in effective ancestors, hence by Lemma 11.4:

W(Φ, r) = rk(W(Σ′, r) + ne(x, Σ′)W(Π ′, r)) ≤ rkW(Σ′, r) + rkrn−kW(Π ′, r)
≤ rkW(Σ′, r) + rnW(Π ′, r) = W(Σ, r) + W(Π, r). �
Now we can show that the weight decreases when a β-reduction is performed.

Lemma 13. Let Π�Γ � M : σ and M →β M ′. There is a derivation Π ′�Γ �
M ′ : σ, with rk(Π) ≥ rk(Π ′), such that if r ≥ rk(Π ′) then W(Π ′, r) < W(Π, r).

Proof. It suffices to verify how the weights are modified in the proof of Theorem
9, using Lemma 11. We will use exactly the same notations as in the theorem.
Note that if a derivation Φ̃ is composed by a derivation Φ̃1, followed either by
the sequence δ or δ′, then either W(Φ̃, r) = W(Φ̃1, r) + c or W(Φ̃, r) = W(Φ̃1, r),
where c is a constant depending only on δ, since δ does not contain rule (sp).
Then looking at the definition of weight and to the theorem we can state the
following (in)equalities:

W(Π ′, r) = W(Θ3, r) + W(Θ2, r) + c − 1 ≤ W(Φ, r) + W(Θ4, r) + W(Θ2, r) + c − 1
= W(Φ, r) + W(Θ1, r) + W(Θ2, r) + c − 1 = W(Φ, r) + W(Σ, r) − 1
< W(Ψ, r) + W(Σ, r) − 1 = W(Π, r). �
Finally the desired results can be obtained.

Theorem 14 (Strong Polystep Soundness). Let Π�Γ � M : σ, and M
β-reduces to M ′ in m steps. Then:

(1) m ≤ |M |d(Π)+1 (2) |M ′| ≤ |M |d(Π)+1

Proof. (1) By repeatedly using Lemma 13 and by Lemma 11.3, since |M | ≥
rk(Π). (2) By repeatedly using Lemma 13 and by Lemma 11.2. �
Theorem 15 (Polytime Soundness). Let Π�Γ � M : σ, then M can be
evaluated to normal form on a Turing Machine in time O(|M |3(d(Π)+1)).

Proof. Clearly, as pointed in [10], a β reduction step N →β N ′ can be simulated
in time O(|N |2) on a Turing Machine. Let M ≡ M0 →β M1 →β · · · →β Mn

be a reduction of M to normal form Mn. By Theorem 14.2 |Mi| ≤ |M |d(Π)+1

for 0 ≤ i ≤ n, hence each step in the reduction takes time O(|M |2(d(Π)+1)).
Furthermore since by Theorem 14.1 n is O(|M |d(Π)+1), the conclusion follows.

�
Clearly Theorem 15 implies that a strong polytime soundness holds, considering
Turing Machine with an oracle for strategies.
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4.2 Polynomial Time Completeness

In order to prove polynomial time completeness of STA we need to encode Turing
Machines (TM) configurations, transitions between configurations and iterators.
We achieve such results considering the usual notion of lambda definability, given
in [11], generalized to different kinds of data. We encode input data in the usual
way, TM configurations and transitions following the lines of [7] and iterators
as usual by Church numerals. We stress that we allow a liberal typing, the only
constraint we impose in order to respect Theorem 14 is that each input data
must be typable through derivations with degree 0.
Some syntactic sugar. To keep notation concise we add some syntac-
tic sugar. Let M ◦ N stand for λz.M(Nz), M1 ◦ M2 ◦ · · · ◦ Mn stand for
λz.M1(M2(· · · (Mnz))). As usual I stands for λx.x, and � I : ∀α.α � α.

Tensor product is definable by second order as σ⊗τ
.= ∀α.(σ � τ � α) � α.

The constructors and destructors for this data type are 〈M, N〉 .= λx.xMN ,
let z be x, y in N

.= z(λx.λy.N). n-ary tensor product can be easily defined
through the binary one and we use σn to denote σ ⊗ · · · ⊗ σ n-times.

Note that, since STA is an affine system, tensor product enjoys some proper-
ties of the additive conjunction, as to allow the projectors.
Polynomials To encode natural numbers we will use Church numerals, i.e.
n

.= λs.λz.sn(z). Successor, addition and multiplication are λ-definable in the
usual way: succ

.= λpsz.s(psz), add
.= λpqsz.ps(qsz) and mul

.= λpqs.p(qs).
Note that the above terms are not typable by using the usual type for natural
numbers N .= ∀α.!(α � α) � α � α. For this reason we define indexed types,
one for each i ∈ N: Ni

.= ∀α.!i(α � α) � α � α in particular we have N1 ≡ N.
Clearly for each Church numerals n and for each i > 0 ∈ N it holds � n : Ni.
Using indexed type it is easy to derive the following typing: � succ : Ni � Ni+1,
� add : Ni � Nj � Nmax(i,j)+1, � mul : Nj �!jNi � Ni+j .

Note that Church numerals behave as iterators only on terms typable with
type μ � μ for some linear type μ. For this reason the above terms cannot be
iterated. Nevertheless they can be composed. In fact, if we want to multiply two
natural numbers we can use mul typed as � mul : N �!N � N2 while if we
want to multiply three natural numbers, through the term λxyz.mul(mulxy)z,
the two occurrences of mul in it need to be typed by different types, for example
N �!N � N2 the innermost one and N2 �!!N � N3 the outermost. Such
change of type, in particular on the number of modalities, does not depend on
the values of data.

Lemma 16. Let P be a polynomial in the variable X and deg(P ) its degree.
Then there is a term P λ-defining P typable as x :!deg(P )N � P : N2deg(P )+1.

Proof. Consider P in Horner normal form, i.e., P = a0 + X(a1 + X(· · · (an−1 +
Xan) · · · ). By induction on deg(P ) we show something stronger, i.e., for i > 0, it
is derivable x0 : Ni, x1 :!iNi, . . . , xn :!i(deg(P ∗)−1)Ni � P ∗ : Ni(deg(P ∗))+deg(P ∗)+1
where P ∗ = a0 + X0(a1 + X1(· · · (an−1 + Xnan) · · · ) so conclusion follows using
(m) rule and taking i = 1.
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Base case is trivial, so consider P ∗ = a0 + X0(P ′). By induction hypothesis
x1 : Ni, . . . , xn :!i(deg(P ′)−1)Ni � P ′ : Ni(deg(P ′))+deg(P ′)+1.
Take P ∗ ≡ add(a0, mul(x0, P

′)), clearly we have x0 : Ni, x1 :!iNi, . . . , xn :
!i(deg(P ′)−1)+iNi � P ∗ : Ni(deg(P ′)+1)+deg(P ′)+1+1. Since deg(P ∗) = deg(P ′) + 1:
it follows x0 : Ni, x1 :!iNi, . . . , xn :!i(deg(P ∗)−1)Ni � P ∗ : Ni(deg(P ∗))+deg(P ∗)+1.
Now by taking i = 1 and repeatedly applying (m) rule we conclude x :!deg(P )N �
P ≡ P ∗[x/x1, · · · , x/xn] : N2deg(P )+1 �
Booleans. Let us encode booleans, as usual, by: 0 .= λxy.x, 1 .= λxy.y and
if x then M else N

.= xMN . They can be typed in STA using as type for
booleans: B .= ∀α.α � α � α. In particular it holds � b : B for b ∈ {0,1}.
Moreover assuming Γ � M : σ and Δ � N : σ and Γ#Δ it follows Γ, Δ, x : B �
if x then M else N : σ.

With the help of the conditional we can define all the usual boolean functions
� And : B � B � B, � Or : B � B � B, � Not : B � B. In particular we
have contraction on booleans: � Cnt

.= λb. if b then 〈0,0〉 else 〈1,1〉 : B �
B ⊗ B. The above functions and weakening are useful to prove the following.
Lemma 17. Each boolean total function f : B

n → B
m, where n, m ≥ 1, can be

λ-defined by a term f typable in STA as � f : Bn � Bm.
Strings String of booleans can be encoded by: [ ] .= λcz.z and [b0, b1, . . . , bn] .=
λcz.cb0(· · · (cbnz) · · · ) where bi ∈ {0,1}. Boolean strings are typable in STA
with the indexed type Si

.= ∀α.!i(B � α � α) � (α � α). In particular
for each n, i > 0 ∈ N it holds b0 : B, ..., bn : B � [b0, . . . , bn] : Si. The term
len .= λcs.c(λxy.sy) λ-defines the function returning the length of an input
string and is typable in STA with typing � len : Si � Ni.

Turing Machine. We can λ-define Turing Machine configurations by terms of
the shape λc.〈cbl

0 ◦ · · · ◦ cbl
n, cbr

0 ◦ · · · ◦ cbr
m, Q〉 where cbl

0 ◦ · · · ◦ cbl
n and cbr

0 ◦
· · · ◦ cbr

m represent respectively the left and the right part of the tape, while
Q ≡ 〈b1, · · · , bn〉 is a n-ary tensor product of boolean values representing the
current state. We assume without loss of generality that by convention the left
part of the tape is represented in a reversed order, that the alphabet is composed
of only the two symbols 0 and 1, that the scanned symbol is the first symbol
of the right part and that states are divided in accepting and rejecting. The
indexed type of a Turing Machine configuration in STA is TMi

.= ∀α.!i(B �
α � α) � ((α � α)2⊗Bq). In fact, � λc.〈cbl

0◦· · ·◦cbl
n, cbr

0◦· · ·◦cbr
m, Q〉 : TMi.

The term Init .= λtc.〈λz.z, λz.t(c0)z, q0〉 λ-defines the function that, taking as
input Q, defining a polynomial Q, gives as output a Turing Machine with tape
of length Q filled by 0’s in the initial state q0 and with the head at the beginning
of the tape. As expected � Init : Ni � TMi. In what follows IDi will denote:

∀α.!i(B � α � α) � ((α � α)2⊗(B � α � α)⊗B⊗(B � α � α)⊗B⊗Bq)

Following [7], the work of showing that Turing Machine transitions are λ-
definable can be decomposed in two steps. Firstly we have a term

Dec .= λsc. let s(F (c)) be l, r, q in let l〈I, λx.I,0〉
be tl, cl, b

l
0 in let r〈I, λx.I,0〉 be tr, cr, b

r
0 in 〈tl, tr, cl, b

l
0, cr, b

r
0, q〉
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where F (c) .= λbz. let z be g, h, i in 〈hi ◦ g, c, b〉. Such a term is typable as
� Dec : TMi � IDi and its behaviour is to decompose a configuration as:

Dec(λc.〈cbl
0 ◦ · · · ◦ cbl

n, cbr
0 ◦ · · · ◦ cbr

m, Q〉) →∗
β

λc.〈cbl
1 ◦ · · · ◦ cbl

n, cbr
1 ◦ · · · ◦ cbr

m, c, bl
0, c, b

r
0, Q〉

Then we can define a term

Com .= λsc. let sc be l, r, cl, bl, cr, br, q in
let δ〈br, q〉 be b′, q′, m in (if m then R else L)b′q′〈l, r, cl, bl, cr〉

where R .= λb′q′s. let s be l, r, cl, bl, cr in 〈crb
′ ◦ clbl ◦ l, r, q′〉 and L .=

λb′q′s. let s be l, r, cl, bl, cr in 〈l, clbl ◦ crb
′ ◦ r, q′〉. Such a term is typable as

� Com : IDi � TMi and depending on the δ transition function, it combines
the symbols returning a configuration as:

Com (λc.〈cbl
1 ◦ · · · ◦ cbl

n, cbr
1 ◦ · · · ◦ cbr

m, c, bl
0, c, b

r
0, Q〉)

→∗
β λc.〈cb′ ◦ cbl

0 ◦ cbl
1 ◦ · · · ◦ cbl

n, cbr
1 ◦ · · · ◦ cbr

m, Q′〉 if δ(br
0, Q) = (b′, Q′, Right)

or
→∗

β λc.〈cbl
1 ◦ · · · ◦ cbl

n, cbl
0 ◦ cb′ ◦ cbr

1 ◦ · · · ◦ cbr
m, Q′〉 if δ(br

0, Q) = (b′, Q′, Left)

Checking the typing and the behavior for Dec and Com is boring but easy.
By combining the above terms we obtain the term Tr .= Com ◦ Dec which

λ-defines a Turing Machine transition and as expected admits the typing � Tr :
TMi � TMi.

Let the open term T(b) be λsc. let sc be l, r, cl, bl, cr, br, q inRbq〈l, r, cl, bl, cr〉
where R is defined as above. Such term is typable as b : B � T(b) : IDi � TMi,
and it is useful to define the term In .= λsm.s(λb.T(b) ◦ Dec)m that, when
supplied by a boolean string and a Turing Machine, writes the input string on the
tape of the Turing Machine. Such a term is typable as � In : S � TMi � TMi.

The term Ext .= λs. let s(λb.λc.c) be l, r, q in f(q) permits to extract the
information that the machine is in an accepting or non-accepting state. Since
Lemma 17 assures the existence of f , it holds � Ext : TMi � B. Now we can
finally show that STA is complete for PTIME.

Theorem 18 (PTIME Completeness). Let a decision problem P be decided
in polynomial time P , where deg(P ) = m, and in polynomial space Q, where
deg(Q) = l, by a Turing Machine M. Then it is λ-definable by a term M typable
in STA as s :!max(l,m,1)+1S � M : B.

Proof. By Lemma 16: sp :!mS � P [lensp/x] : N2m+1 and sq :!lS �
Q[lensq/x] : N2l+1. Furthermore by composition: s : S, q : N2l+1, p : N2m+1 �
Ext(pTr(Ins(Init(q)))) : B so by (cut) and some applications of (m) rule the
conclusion follows. �

Without loss of generality we can assume that a Turing machine stops on
accepting states with the head at the begin of the tape. Hence the term
ExtF

.= λsc. let sc be l, r, q in r extracts the result from the tape. It is easy to
verify that the typing � ExtF : TMi � Si holds. So we can conclude that STA
is also complete for FPTIME.
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Theorem 19 (FPTIME Completeness). Let a function F be computed in
polynomial time P , where deg(P ) = m, and in polynomial space Q, where
deg(Q) = l, by a Turing Machine M. Then it is λ-definable by a term M typable
in STA as !max(l,m,1)+1S � M : S2m+1.

In the work of Lafont [2], in the proof of PTIME completeness of SLL, an im-
portant role is played by the notions of generic and homogeneous proofs, being
respectively proofs without multiplexors (rule (m)) and with multiplexors of a
fixed rank. Lafont uses homogeneous proofs for representing data and generic
proofs for representing programs. We do not use this classification for proving
the completeness of STA.
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