
Type Inference for a Polynomial Lambda

Calculus�

Marco Gaboardi and Simona Ronchi Della Rocca

Dipartimento di Informatica
Università degli Studi di Torino

Corso Svizzera 185, 10149 Torino, Italy
{gaboardi,ronchi}@di.unito.it

Abstract. We study the type inference problem for the Soft Type As-
signment system (STA) for λ-calculus introduced in [1], which is correct
and complete for polynomial time computations. In particular we design
an algorithm which, given in input a λ-term, provides all the constraints
that need to be satisfied in order to type it. For the propositional frag-
ment of STA, the satisfiability of the constraints is decidable. We con-
jecture that, for the whole system, the type inference is undecidable, but
our algorithm can be used for checking the typability of some particular
terms.

1 Introduction

In [1], we have introduced a type assignment system for λ-calculus, named STA
(Soft Type Assignment), inspired by the Soft Linear Logic of Lafont [2], which
characterizes the polynomial time computations, in the sense that a well typed
term can be reduced to normal form in a number of β-reduction steps which
is polynomial in its size, and moreover all polynomial time functions can be
represented by well typed terms, through an appropriate coding. In this paper we
approach the problem of type inference in STA. In the simple types setting, type
inference is decidable, and it corresponds to the property of having a principal
typing, i.e., a typing for a term from which all (and only) the types derivable
for the term itself can be built, through a substitution. STA has both modal
and second order types, so the type inference is more difficult to be studied in
this setting. We approach the problem in two steps, first for the propositional
fragment and then for the full system. In both cases we need the notion of type
scheme, which is an abstract representation of a set of types. Namely types can
be obtained from type schemes through an operation of substitution. A notion
of type scheme, for reasoning about type inference, was introduced first in [3]
in the setting of intersection types, and it has been used, in different forms, for
second order type inference [4], and for modal type inference [5]. We prove that,
in propositional case, the type inference for STA is decidable. We introduce an
algorithm which, given a term M, generates a triple Π(M) = 〈Ψ,U,H〉, where U is a

� Paper partially supported by MIUR-Cofin’07 CONCERTO Project.

S. Berardi, F. Damiani, and U. de’Liguoro (Eds.): TYPES 2008, LNCS 5497, pp. 136–152, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Type Inference for a Polynomial Lambda Calculus 137

type scheme, Ψ is a context assigning type schemes to the free variables of M, and
H = 〈P , C〉 is a pair of constraint sets. The constraint set P is a unification set of
type schemes while C is a set of (in)equalities between exponentials. Informally
P represents the conditions on the terms functionality, while C represents the
conditions on the modalities. A pair of constraint sets is satisfied if the unification
in P succeeds and moreover there is a substitution replacing exponentials by
natural numbers in C, in such a way that the (in)equalities become true. The
algorithm is correct and complete, in the sense that M can be typed only in case
the sets of constraints can be satisfied, and moreover all the typings for M can be
built from Ψ and U through substitutions satisfying them. Since the satisfiability
of the constraints is decidable in polynomial time, the type inference is decidable
in polynomial time too.

Then we extend our study to second order types. We define an algorithm show-
ing all the conditions that must be satisfied in order to type a term in the system.
Namely, when applied to a term M, the algorithmproduces as output a type scheme,
a type scheme context, and five sets of constraints G,F ,Q,P and C, where, P , C
are as in the propositional case, G is a semi-unification set of type schemes, and F
and Q represent the conditions on the quantified abstracted variables. Also in this
case the algorithm is correct and complete, but we conjecture that the satisfiabil-
ity of the second order constraints is undecidable. We think the proof of Wells of
undecidability of typability in System F adapts also in this case [6]. In any case, the
algorithm is quite useful for checking the typability in particular cases, and in fact
we use it for building two terms, the first one typable in System F but untypable
in STA, and the second one typable in STA and not typable in DLAL [7], which is
an alternative polynomial type assignment inspired by Light Affine Logic [8].

The paper is organized as follows. In Section 2 we introduce the type assign-
ment system STA, and we recall its properties. In Section 3 we present the type
inference algorithm for the propositional fragment and we prove it correct and
complete. Moreover in Section 4 we discuss its complexity. In Section 5 we extend
the analysis to second order types. Finally Section 6 contains a short conclusion.

2 The System STA

In this section we introduce the type assignment system STA, and we show its
properties. STA is presented in a version which is slightly different from the
presentation given in [1]. The difference is only in the management of contexts,
in [1] contexts were sets of type assignments, here instead they are multisets
of type assignments. This version is clearly equivalent to the original one [9],
preserving the complexity properties, but it makes easier the design of the type
inference algorithm.

Definition 1

i) The set T of soft types is defined as follows:

A,B,C ::= α | σ � A | ∀α.A (Linear Types) σ, τ ::= A |!σ

138 M. Gaboardi and S. Ronchi Della Rocca

Table 1. STA in the multiset version

x : A � x : A
(Ax)

A � M : σ

A, x : A � M : σ
(w)

A, (x : τ)(r) � M : σ

A, x :!τ,� M : σ
(m)

A � M : σ � A B � N : σ A ≈ B

A,B � MN : A
(� E)

A � M : ∀α.A
A � M : A[B/α]

(∀E)

A, x : σ � M : A x /∈ dom(A)

A � λx.M : σ � A
(� I)

A � M : A α /∈ FTV(A)

A � M : ∀α.A (∀I) A � M : σ

!A � M :!σ
(sp)

where α, β range over a countable set of type variables. ≡ denotes the syn-
tactical identity between types.

ii) A context A is a finite multiset of type assignments of the shape x : σ, such
that if x : σ1 ∈ A and x : σ2 ∈ A then there exists A ∈ T and n,m ∈ N

such that σ1 ≡ !...!
︸︷︷︸

n

A and σ2 ≡ !...!
︸︷︷︸

m

A. Contexts are ranged over by A,B,C.

When a context is a set we denote it by Γ,Δ.
iii) STA proves statements of the shape A � M : σ where A is a context, M is

a term of λ-calculus, and σ is a type. The rules of the system are given in
Table 1. The term M is typable in STA if there is a context A and a type σ
such that A � M : σ.

As usual � associates to the right and has precedence on ∀, while ! has prece-
dence on everything else. FTV(σ) denotes the set of free type variables of the
type σ. B[A/α] denotes the capture free substitution of all occurrences of the
type variable α by the linear type A: note that this kind of substitution preserves
the correct syntax of types. ∀α.A shortens ∀α1...αn.A for n ≥ 0. Two contexts
A and B are coherent, denoted A ≈ B, if and only if their multiset union
A,B is a context. Let A = {x1 : σ1, . . . , xn : σn} then dom(A) = {x1, . . . , xn},
!A = {x1 :!σ1, . . . , xn :!σn} and FTV(A) = {α ∈ FTV(σ) | x : σ ∈ A}.
Σ � A � M : σ denotes that there is a derivation Σ proving A � M : σ. |M|
denotes the number of sybols in M.

Hygiene condition. We assume that free and bound type variables have differ-
ent names, and also type variables bounded by different quantifiers are named
differently.

Theorem 2 (Complexity of STA [1])

i) (Soundness) If Π � Γ � M : σ, then M can be evaluated to normal form in
a number of β-reduction steps O(|M|(d(Π)+1)), where d(Π) is the maximum
nesting of rules (sp) in Π.

ii) (Completeness) Every polynomial time function can be encoded by a term
typable in STA.

Type Inference for a Polynomial Lambda Calculus 139

3 Type Inference for the Propositional Fragment

As we said in the introduction, if we restrict ourselves to consider just the propo-
sitional fragment, the type inference is decidable. In this section we will show
the type inference algorithm, which is based on the notion of type scheme and
a unification procedure for type schemes.

Table 2. Unification Algorithm

U(a, a) = 〈∅, ∅〉 (U1)
U(φ,ψ) = 〈P1, C1〉 U(U, V) = 〈P2, C2〉
U(φ � U, ψ � V) = 〈P1 ∪ P2, C1 ∪ C2〉

(U4)

a /∈ FV(U)

U(a, U) = 〈{a = U}, ∅〉 (U2)
U(φ � U, V) = 〈P,C〉

U(φ � U, !pV) = 〈P, C ∪ {p = 0}〉 (U5)

U(a, V) = 〈P, C〉
U(a, !pV) = 〈P, C ∪ {p = 0}〉 (U3)

U(ψ, φ) = 〈P, C〉
U(φ,ψ) = 〈P, C〉 (U6)

U(U, V) = 〈P, C〉
U(!pU, !qV) = 〈P, C ∪ {p = q}〉 (U7)

3.1 Type Schemes, Substitutions and Constraints

Definition 3. Linear type schemes and type schemes are respectively defined
by the grammars

U, V, Z ::= a | φ � U φ, ψ, ξ ::= U |!pU

where the exponential p, q, r belong to a countable set, a, b, c, d belong to a count-
able set of linear scheme variables. T denotes the set of type schemes.

FV(φ) is the set of all linear scheme variables and exponentials occurring in φ.
Two type schemes φ, ψ are disjoint if FV(φ) ∩ FV(ψ) = ∅.

A scheme substitution s is a total function mapping linear scheme variables
to linear types and exponentials to natural numbers. So a scheme substitution
maps type schemes to types. The application of s to a type scheme is defined as

s(a) = A if [a �→ A] ∈ s s(φ � U) = s(φ) � s(U)

s(!pU) = !...!
︸︷︷︸

n

s(U) if [p �→ n] ∈ s

In what follows, s[a1 �→ τ1, . . . , an �→ τn] denotes the scheme substitution defined
as s except on variables a1, . . . , an to which it assigns τ1, . . . τn.

A type scheme can be seen as an abstract representation of the set of types
that can be obtained from it through a scheme substitution. For example, a
represents the set of all linear types, while !p(a � b) represents the set of types
{ !...!
︸︷︷︸

n

(A � B) | A,B are linear types and n ≥ 0}.

Two type schemes φ and ψ can be unified if there is a scheme substitution s
such that s(φ) ≡ s(ψ).

140 M. Gaboardi and S. Ronchi Della Rocca

A type scheme context is a multiset of variable type scheme assignments of the
shape x : φ where x is a variable and φ is a type scheme. Type scheme contexts are
ranged over by Ψ, Φ. dom(Ψ) denotes the set of variables {x | x : φ ∈ Ψ}. Multiset
union of type scheme contexts is denoted by �. The expression Φ = Φ′�Ψ denotes
the fact that Φ = Φ′ � Ψ and dom(Φ′) ∩ dom(Ψ) = ∅. Scheme substitutions are
easily extended to type scheme contexts, i.e. if Ψ = x1 : φ1, . . . , xn : φn then
s(Ψ) = x1 : s(φ1), . . . , xn : s(φn).

A constraints sequence H is a couple 〈P , C〉 of constraints sets. The set of
scheme variable constraints P is a set of constraints of the shape a = U where a
is a linear scheme variable and U is a linear type scheme such that a /∈ FV(U).
The set of exponentials constraints C is a set of linear (in)equations of the shape
p = q, p ≥ q, p ≥ q1 + q2, p > q or p = 0. H1 � H2 denotes the component-wise
union of the constraints sequences H1 and H2. Sometimes we omit the empty
set of a constraints sequence, i.e. H � {p = q} denotes H� 〈∅, {p = q}〉.

A scheme substitution s satisfies H if and only if s(a) ≡ s(U), for every
equation a = U in P , and s(p) op s(q), for every p op q in C.

3.2 Unification Algorithm

In Table 2, we introduce the algorithm U, which allows to unify type schemes
under some assumptions. U proves judgments of the shape

U(φ, ψ) = H

where φ and ψ are two type schemes and H = 〈P , C〉 is a constraint sequence
representing the constraints under which φ and ψ can be unified. Namely P
represents the constraints on the structure of the type schemes, while C the
constraints on the number of modalities.

Note that rule (U6) keeps down the number of rules, nevertheless it can be
cause of non termination (infinite derivations). It is easy (but boring) to give
a different definition of the algorithm without the rule (U6), by making explicit
a symmetric version of all the rules. In what follows we assume to use such
an extended version of the algorithm. Note that some inputs does not admit a
derivation, by rule (U2), in such a cases the unification fails. The following easy
theorem assures a weak form of successful termination which will be useful in
the sequel.

Theorem 4 (U Termination). Let φ, ψ ∈ T be disjoint. Then, there exists H
such that U(φ, ψ) = H.

The algorithm U is correct and complete, as shown in the following.

Theorem 5 (U Correctness). Let φ, ψ ∈ T . If U(φ, ψ) = H then for every
scheme substitution s satisfying H

s(φ) ≡ s(ψ)

Proof. By induction on the derivation of U(φ, ψ) = 〈P , C〉. Note that the existence
of a scheme substitution satisfying the constraints in 〈P , C〉 is decidable. ��

Type Inference for a Polynomial Lambda Calculus 141

Theorem 6 (U Completeness). If s(φ) ≡ s(ψ) then there exists H such that
U(φ, ψ) = H and s satisfies H.

Proof. By induction on the shape of φ and ψ. ��

3.3 The Algorithm

The type inference algorithm defined in Table 3 proves statement of the shape

Π(M) = 〈Ψ,U,H〉

where Ψ is a type scheme context, U is a linear type scheme and H is a constraints
sequence. The type inference algorithm uses the procedure Unify, defined in
Table 4, that is just an extension of the unification algorithm U to type scheme
contexts and type schemes.

It is worth noticing the difference between this algorithm and the type infer-
ence algorithm for simple types. The latter generates a principal typing, which is
a typing for the input term, and for which all and only the typings derivable for
the same term are derivable, through substitutions. If the input term cannot be
typed, then the algorithm fails. In the current setting, our algorithm generates a
sort of an abstract representation of all the typings for the input term M, in the
sense that, if the constraint sequence H can be satisfied by a scheme substitution
s, then s(Ψ) � M : s(U) is a typing for M, and moreover all typings for M can be
built from Π(M) by a scheme substitution satisfying H, plus some applications
of rules dealing with the modality. If the constraints are not satisfiable, then M
cannot be typed.

Table 3. Type Inference Algorithm

Π(x) = let a, p be fresh in 〈{x :!pa}, a, {∅, ∅}〉

Π(λx.M) = let Π(M) = 〈Ψ,U,H〉 in

let Ψ = Ψ ′ � {x :!s1V1, . . . , x :!snVn}in let a, r be fresh in

if n = 0 then 〈Ψ ′, !ra � U,H〉
if n = 1 then 〈Ψ ′, !rV1 � U,H {r ≥ s1}〉
if n > 1 then 〈Ψ ′, !rV1 � U,H {r > s1, . . . , r > sn}〉

Π(MN) = let Π(M) = 〈ΨM, U,HM〉 and Π(N) = 〈ΨN, V,HN〉 be disjoint in

let a, qi, p be fresh in let Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN},

H = Unify(ΨM, Ψ
′
N , U, !

pV � a) in 〈ΨM � Ψ ′
N , a,HM HN H {qi ≥ pi + p}〉

We need to prove that the type inference algorithm is well defined.

Theorem 7 (Π Termination). Let M ∈ Λ. Then there exist Ψ,U and H such
that Π(M) = 〈Ψ,U,H〉.

Proof. By induction on the structure of M, using Theorem 4.

142 M. Gaboardi and S. Ronchi Della Rocca

The use of multisets instead of sets as contexts in STA helps in the design of the
algorithm, maintaining the correcteness of typing. Note that in the definition of
Π, in the abstraction case we can freely take only the type scheme of the first
occurrence (if any) of the variable to be abstracted since all the type schemes
have already been unified. The same holds for the Unify procedure. We can now
finally prove the main theorems of this section.

Theorem 8 (Π Correctness). Let Π(M) = 〈Ψ,U,H〉. Then, for each scheme
substitution s satisfying H,

s(Ψ) � M : s(U)

Proof. By induction on the derivation proving Π(M) = 〈Ψ,U,H〉. We will show
just the most difficult case, when the term is of the shape PN. Consider the case
Π(PN) = 〈Ψ,U,H〉. By definition U is a scheme variable a, Π(P) = 〈ΨP, UP,HP〉,
Π(N) = 〈ΨN, UN,HN〉 and they are all disjoint. Let s be a scheme substitution
satisfying H. Since s clearly satisfies HP and HN then by induction we have both
s(ΨP) � P : s(UP) and s(ΨN) � N : s(UN). By definition U(UP, !pUN � a) = H′

with H′ ⊆ H, so since s satisfies H, by Theorem 5: s(UP) ≡ s(!pUN) � s(a). Let
Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN}. Then clearly s(Ψ) = s(ΨP � Ψ ′

N) = s(ΨP), s(Ψ ′
N).

So, let s(p) = k. Then, the following derivation can be built

s(ΨP) � P : s(!pUN) � s(a)

s(ΨN) � N : s(UN)

!ks(ΨN) � N :!ks(UN)
(sp)k

s(Ψ ′
N) � N :!ks(UN)

(m)∗

s(ΨP), s(Ψ
′
N) � PN : s(a)

(� E)
��

Table 4. Unify procedure

Unify(Φ, Ψ, φ, ψ) = let x1, . . . , xm = dom(Φ) ∩ dom(Ψ), ∀1 ≤ i ≤ m
Φ(xi) = {!s1a1, . . . , !

snan}, Ψ(xi) = {!r1b1, . . . , !
rkbk},

U(φ, ψ) = 〈P0, C0〉, U(a1, b1) = 〈Pi, Ci〉
in〈

m
⋃

j=0

Pj ,
m
⋃

j=0

Cj〉,

Theorem 9 (Π Completeness). Let Π(M) = 〈Ψ,U,H〉. If A � M : σ, then
there exists a scheme substitution s satisfying H such that

Σ � s(Ψ) � M : s(U)

Moreover, the sequent A � M : σ can be obtained from Σ by a (maybe empty)
sequence of applications of the rules (w), (m) and (sp).

Proof. By induction on the derivation Π proving A � M : σ. We will show just
the case where Π ends as

Σ′ � A � N : σ � A Θ′ � B � P : σ A ≈ B

A,B � NP : A
(� E)

Type Inference for a Polynomial Lambda Calculus 143

Let Π(NP) = 〈Ψ,U,H〉. Then, there are disjoint Π(N) = 〈ΨN, UN,HN〉, Π(P) =
〈ΨP, UP,HP〉. By induction, there are scheme substitutions sN and sP satisfying
respectively HN and HP, such that Σ′′ � sN(ΨN) � N : sN(UN) and Θ′′ � sP(ΨP) �
P : sP(UP) and Σ′ and Θ′ can be obtained respectively from Σ′′ and Θ′′ by some
applications of the rules (w), (m) and/or (sp).

Since HN and HP are disjoint, we can build a scheme substitution s′ satisfying
both, just acting as each one of the previous substitutions on the corresponding
domain. By definition of Π, Ψ = ΨN � Ψ ′

P where, if ΨP = x1 :!p1V1, . . . , xn :!pnVn,
then Ψ ′

P = x1 :!q1V1, . . . , xn :!qnVn for fresh q1, . . . , qn. Moreover, for fresh a
and p, if Unify(ΨN, Ψ ′

P, UN, !pUP � a) = H′ then U ≡ a, and H = HN � HP �
H′ � {qi ≥ pi + p}. Since a and p are fresh, we can choose s′ satisfying also
s′(UN) ≡ σ � A ≡ s′(!pUP � a). Hence in particular by Theorem 6 s′ satisfies
H′. Moreover, since q1, . . . , qn are fresh, it is easy to extend s′ to a scheme
substitution s = s′[q1 �→ s(p1) + s(p), . . . , qn �→ s(pn) + s(p)]. Clearly s satisfies
H. Let s(p) = k. Then we can build the following derivation

Σ′ � s(ΨN) � N : s(UN)

Θ′ � s(ΨP) � P : s(UP)

!ks(ΨP) � P :!ks(UP)
(sp)k

s(ΨN), !
ks(ΨP) � NP : s(∀t.a)

(� E)

and A,B � NP : A can be obtained from it by a sequence of applications of the
rules (w), (m) and (sp). ��

In the following we will give some examples, and in the next section we will
discuss the constraints resolution in them. These example are useful both to
understand the behaviour of the algorithm and to compare the typability power
of STA and other type assignment systems. Namely the first term (2) is typable
in STA and in simple type assignment system, the second term (222) is typable
in the simple type assignment system but untypable in STA, and the third one
(2(yz)) is typable in STA but untypable in the propositional fragment of DLAL.

Example 10

1. Let 2 ≡ λs.λz.s(sz). Then Π(2) = 〈∅, U, 〈P , C〉〉 where

U = !r5a2 � (!r4a1 � b2)
P = {a2 =!q1a1 � b1, a3 =!q2b1 � b2, a2 = a3}
C = {r1 ≥ p1 + q1, r2 = p3, r2 ≥ p2 + q2, r3 ≥ r1 + q2, r4 ≥ r3, r5 > p3}〉

2. A more involved example is related to the term 222. Then, we obtain
Π(222) = 〈∅, U, 〈P , C〉〉 where

U = a′′

P = P0 ∪ P1 ∪ P2 ∪ {a1
2 =!r

2
5a2

2 � (!r
2
4a2

1 � b22), a
′ =!r

1
4a1

1 � b12,

a′ =!p
′′
(!r

0
5a0

2 � (!r
0
4a0

1 � b02)) � a′′ }
C = C0 ∪ C1 ∪ C2 ∪ {p′ = r15}

and P i = {ai2 =!q
i
1ai1 � bi1, a

i
3 =!q

i
2bi1 � bi2, a

i
2 = ai3} while Ci = {ri1 ≥

pi1 + qi1, r
i
2 = pi3, r

i
2 ≥ pi2 + qi2, r

i
3 ≥ ri1 + qi2, r

i
4 ≥ ri3, r

i
5 > pi3}.

144 M. Gaboardi and S. Ronchi Della Rocca

3. Let us consider now the term 2(yz). The application of the algorithm pro-
duces: Π(2(yz)) = 〈{y :!rc, z :!sd}, U, 〈P∗, C∗〉〉, where:

U = f
P∗ = P ∪ {a2 = e, c =!td � e, f =!r4a1 � b2}
C∗ = C ∪ {r5 = t′, r ≥ r′ + t′, s ≥ s′ + t′, s′ ≥ t+ s′′}

where P and C are defined as in point 1 of this example.

4 Constraints Resolution

Let Π(M) = 〈Ψ,U,H〉, where H = 〈P , C〉. The resolution of the constraints in
H is splitted in two phases. The first one is the application of the standard
Robinson resolution [10] to P , so obtaining a new set of constraints, that can be
in its turn splitted in a set P ′ of constraints on schemes, and C′ of constraints on
exponentials. Then the second phase is to find a scheme substitution satisfying
the constraints P ′ and C ∪ C′. Some examples can clarify the procedure.

Example 11

1. Let us continue Example 10.1, i.e., Π(2). Then, the application of the Robin-
son resolution to the set P and C generates P ′ = {a2 =!q1a1 � b1, a1 =
b1, b1 = b2, a2 = a3} and C′ = {q1 = q2} respectively. The substitution

s = s′[a1, b1, b2 �→ α; a2, a3 �→ α � α; p1, p2, p3, q1, q2, r1, r2, r3, r4 �→ 0; r5 �→ 1]

satisfies the constraints P ′, C, C′ for all s′, and generates the typing ∅ � 2 :
!(α � α) � α � α. Hence the term is typable.

2. Let us continue Example 10.2, i.e., Π(222). The application of the Robinson
resolution is boring but easy, applied to P it produces a solvable set of
constraints on type schemes and the final type is defined through the type
scheme equation

a′′ =!q
2
1 (!q

0
1a0

1 � a0
1) � (!q

0
1a0

1 � a0
1).

But Robinson algorithm changes also the set of constraints on exponentials
C into the set C′ = C ∪ {q01 = r04 , q

2
1 = r05 , r

1
4 = p′′, q21 = r24 , q

2
1 = q22 , q

1
1 =

q12 , q
0
1 = q02 , q

1
1 = r25} which can be simplified in C′′ = {r25 > r22 ≥ p2

2, r
1
1 ≥

p1
1 + q11 , p

′ > r12 ≥ p1
2 + q11 , r

1
4 ≥ r13 ≥ r11 + q11 , q

2
1 > r02 , q

2
1 = 0}. This set is

clearly not satisfiable since the last two constraints are contradictory, and so
the term is not typable.

3. Let us continue Example 10.3, i.e. Π(2(yz)). The application of Robinson
resolution to P∗ gives a set P∗∗ = P ′ ∪ {c =!td � e, a2 = e, f =!r4a1 � b2}
and the set of exponential constraints becomes C∗∗ = C′ ∪ C ∪ {r5 = t′, r ≥
r′ + t′, s ≥ s′ + t′, s′ ≥ t+ s′′}, where P ′and C′ are defined as at point 1 of
this example while C is defined as in Example 10.1. Let s be the substitution
at point 1 of this example; then the substitution:

s∗ = s[c �→ (α � α) � α � α; d �→ α � α; r′, s′, t, s′′ �→ 0; r, s, t′ �→ 1]

Type Inference for a Polynomial Lambda Calculus 145

satisfies the constraints in P∗∗ and C∗∗ and generates the typing:

y :!((α � α) � α � α), z :!(α � α) � 2(yz) : α � α.

Note that the term 2(yz) is not typable in DLAL due to the presence of two
free variables that must be duplicated.

4.1 Type Inference Complexity

It can be shown that our algorithm works in polynomial time. In particular it
is easy to verify that the construction of Π(M) = 〈Ψ,U,H〉 can be done in time
polynomial in |M|.

Let H = 〈P , C〉. The application of Robinson resolution to P , generating P ′

and C′, is polynomial in the number of both the scheme variables and expo-
nentials in P . The solution of the constraints in P ′ can be done through the
standard algorithm working on the dag representation of schemes, and so it is
polynomial in the number of scheme variables in P ′, which coincides with the
number of scheme variables in P .

As far as the exponential resolution task, i.e., the problem of solving the con-
straints in C ∪ C′, is concerned, apparently it seems more difficult, since the
problem of solving integer inequalities is in general NP-complete [11]. Neverthe-
less, following the method shown in [12], we can solve the problem over rational,
which takes time polynomial in the number of exponentials. Clearly the set of
solutions is closed under multiplication by positive integers. Now an integer solu-
tion can be obtained simply multiplying a rational solution by a suitable integer.

It is easy to check that the number of symbols in the constraints generated
by Π is polynomial in |M|. So the type inference problem for the propositional
fragment can be decided in polynomial time in the size of the term.

5 Type Inference for the Full System

5.1 Schemes, Substitutions and Constraints

Definition 12. The grammar of type schemes T , given in Definition 1, is ex-
tended as follows

U, V, Z ::= a | φ � U | [t].a | [t].φ � U (Linear type schemes) φ, ψ ::= U |!pU

where t, u, v belong to a countable set of sequence variables.

The notation [t] does not introduce bound variables. Note that schemes of the
shape [t].[u].U are not allowed. FV(φ) now denotes the set of linear scheme
variables, exponentials and sequence variables occurring in φ. Two type schemes
φ, ψ are disjoint if FV(φ) ∩ FV(ψ) = ∅.

146 M. Gaboardi and S. Ronchi Della Rocca

A scheme substitution s is extended to map sequence variables to sequences
of type variables. Namely the application of s to a type scheme is extended by
the following rule

s([t].U) =
{

s(U) if [t �→ ε] ∈ s
∀α.s(U) if [t �→ α] ∈ s

As in the propositional case, a type scheme is an abstract representation of
all the types that can be obtained from it by a scheme substitution., e.g., the
type scheme [t].([u].b) � a represents the set {∀α.(∀β.A) � B, (∀β.A) �
B, ∀α.A � B | A,B ∈ T}. The notion of type scheme context and its notation
can be straightforwardly adapted from the one for the propositional fragment.

A constraints sequence H is a triple 〈P , C,Q〉 of constraints sets, where P and
C are as in Subsection 3.1, and Q is a set of equations of the shape t = u or
t = ε, where t, u are sequence variables. Q is satisfied by a scheme substitution
s if s(t) = s(u) (s(t) = ε), for every t = u (t = ε) in it.

Table 5. Unification Algorithm

U(a, a) = 〈∅, ∅, ∅〉 (U0)
U(a, b) = 〈{a = b}, ∅, ∅〉 (U1)

a /∈ FV(φ � U)

U(a, φ � U) = 〈{a = φ � U}, ∅, ∅〉 (U2)

U(a, U) = 〈P, C,Q〉
U(a, [t].U) = 〈P, C,Q ∪ {t = ε}〉 (U3)

U(a, V) = 〈P, C,Q〉
U(a, !pV) = 〈P,C ∪ {p = 0},Q〉 (U4)

U(φ, ψ) = 〈P1, C1,Q1〉 U(U, V) = 〈P2, C2,Q2〉
U(φ � U,ψ � V) = 〈P1 ∪ P2, C1 ∪ C2,Q1 ∪ Q2〉

(U5)

U(φ � U, V) = 〈P, C,Q〉
U(φ � U, [t].V) = 〈P, C,Q ∪ {t = ε}〉 (U6)

U(φ � U, V) = 〈P, C,Q〉
U(φ � U, !pV) = 〈P, C ∪ {p = 0},Q〉 (U7)

U(U, V) = 〈P, C,Q〉
U([t].U, [u].V) = 〈P,C,Q ∪ {t = u}〉 (U8)

U([t].U, V) = 〈P, C,Q〉
U([t].U, !pV) = 〈P, C ∪ {p = 0},Q〉 (U9)

U(ψ, φ) = 〈P, C,Q〉
U(φ, ψ) = 〈P, C,Q〉 (U10)

U(U, V) = 〈P,C,Q〉
U(!pU, !qV) = 〈P, C ∪ {p = q},Q〉 (U11)

5.2 Unification Algorithm

In Table 5 we present a unification algorithm U extending the one presented in
the propositional case. U proves judgments of the shape

U(φ, ψ) = 〈P , C,Q〉

where φ and ψ are the two schemes that must be unified and 〈P , C,Q〉 is a
constraint sequence. Since the notation [t] does not introduce bound variables
in type schemes, we can consider it as a first order symbol. Then the unification
problem we are considering is an instance of first order unification. As in the
propositional case we have the following easy results.

Type Inference for a Polynomial Lambda Calculus 147

Theorem 13 (U Termination). Let φ, ψ ∈ T be disjoint. Then, there exist
P , C and Q such that U(φ, ψ) = 〈P , C,Q〉.

Theorem 14 (U Correctness). Let φ, ψ ∈ T . If U(φ, ψ) = H then, for every
substitution s satisfying H

s(φ) ≡ s(ψ)

Proof. By induction on the derivation of U(φ, ψ) = 〈P , C,Q〉 noting that Q con-
tains equalities of the shape t = u or t = ε, hence the existence of a substitution
satisfying this kind of constraints is decidable. ��

We need now to prove that the algorithm U is also complete. The design of the
type inference algorithm will be such that we need just to prove the completeness
for the ≡ relation of types. This agrees with the fact proved in [13] that typing
in System F does not need the explicit use of α-rule.

Theorem 15 (U Completeness). If s(φ) ≡ s(ψ) then there exists H such that
U(φ, ψ) = H and s satisfies H.

Proof. By straighforward induction on the shape of φ and ψ. We will show just
the case when φ ≡ [t].U and ψ ≡ [u].V . Let s(ψ) ≡ s(φ) = ∀α.σ. Then s(U) ≡
s(V), and by induction U(U, V) = H′. By rule U8, U([t].U, [u].V) = 〈H∪{t = u}〉.
So s′ = s[t �→ α, u �→ α] is the desired substitution. ��

Remark. Note that a stronger completeness property holds for U, namely if s(φ)
and s(ψ) are α-equivalent, then there exists H such that U(φ, ψ) = H and there
is a scheme substitution s′ satisfying H such that s′(φ) ≡ s′(ψ), and s′(φ) is
α-equivalent to both s(φ), s(ψ). In fact, if s(φ) and s(ψ) are α-equivalent, it is
always possible to build a substitution s′ such that s′(φ) ≡ s′(ψ), by renaming
the bound variables, and then Theorem 15 can be applied.

Table 6. Type Inference Algorithm

Π(x) = let u, t, a, b, p be fresh in 〈{x :!p[t].a}, [u].b, {([t].a, b)}, [u �→ {[t].a}], {∅, ∅, ∅}〉

Π(λx.M) = let Π(M) = 〈Ψ,U,G,F ,H〉 in

let Ψ = Ψ ′ � {x :!s1V1, . . . , x :!snVn} , I = range(Ψ ′) in let u, t, a, r be fresh in

if n = 0 then 〈Ψ ′, [u].!r([t].a) � U, G,F + [u �→ I],H〉
else if n = 1 then 〈Ψ ′, [u].!rV1 � U,G,F + [u �→ I],H {r ≥ s1, }〉
else if n > 1 then 〈Ψ ′, [u].!rV1 � U,G,F + [u �→ I],H {r > s1, . . . , r > sn}〉

Π(MN) = let Π(M) = 〈ΨM, U,GM,FM,HM〉 and Π(N) = 〈ΨN, V,GN,FN,HN〉 be disjoint in

let u, t, a, b, qi, p be fresh in let Ψ ′
N = {z :!qiVi | ∃z :!piVi ∈ ΨN},

I = range(ΨM � ΨN), H = Unify(ΨM, Ψ
′
N , U, !

pV � [t].a) in

〈ΨM � Ψ ′
N , [u].b,GM ∪ GN ∪ {([t].a, b)},FM + FN + [u �→ I],HM HN H {qi ≥ pi + p}〉

148 M. Gaboardi and S. Ronchi Della Rocca

5.3 The Algorithm

The Type Inference Algorithm follows the same lines of the type inference al-
gorithm for System F designed by Ronchi Della Rocca and Giannini in [4]. In
order to define it, we need to introduce some further notions.

Definition 16. The containment relation ≤ between soft types is the relation
defined as follows ∀α.A ≤ A[B/α], for some B.

Note that σ ≤ τ corresponds to the fact that to a term M of type σ we can assign
also the type τ by some applications of the rule (∀E). The relation ≤ is clearly
decidable. Remembering that α could be an empty sequence, ≤ is obviously
reflexive. Moreover, it is transitive, hence a preorder. Note that ∀α.τ � σ ≤
τ1 � σ1 implies ∀α.τ ≤ τ1 and ∀α.σ ≤ σ1, while in general the converse does
not hold.

A scheme system G is a set of pairs of type schemes. A set of binding con-
straints F is a function from sequence variables to finite sets of schemes.

Definition 17. Let s be a scheme substitution.

– s satisfies a scheme system G = {(U1, V1), . . . , (Un, Vn)} if and only if
s(Ui) ≤ s(Vi), (1 ≤ i ≤ n).

– s satisfies a binding constraints F = {u1 �→ Γ1, . . . , un �→ Γn} if and only if
∀i ≤ n, ∀α ∈ s(ui), ∀U ∈ Γi : α /∈ FV(s(U))

The type inference algorithm defined in Table 6 proves statement of the shape

Π(M) = 〈Ψ,U,G,F ,H〉

where Ψ is a type scheme assignment context, U is a linear type scheme, G is a
scheme system, F is a set of binding constraints and H is a constraints sequence.
The type inference algorithm call the Unify procedure, defined in Table 7, on
contexts and schemes which need to be unified through the unification algorithm.

Theorem 18 (Π Termination). Let M ∈ Λ. Then Π(M) = 〈Ψ,U,G,F ,H〉

Proof. By induction on the structure of M. It is easy to verify that the schemes
which need to be unified by the algorithm are always disjoint, so Theorem 14
applies. ��

Table 7. Unify procedure

Unify(Φ,Ψ, φ, ψ) = let x1, . . . , xm = dom(Φ) ∩ dom(Ψ), ∀1 ≤ i ≤ m
Φ(xi) = {!s1V1, . . . , !

snVn}, Ψ(xi) = {!r1U1, . . . , !
rkUk},

U(φ, ψ) = 〈P0, C0,Q0〉, U(V1, U1) = 〈Pi, Ci,Qi〉
in〈

m
⋃

j=0

Pj ,
m
⋃

j=0

Cj ,
m
⋃

j=0

Qj〉

Finally we can now prove the main theorems of this section.

Type Inference for a Polynomial Lambda Calculus 149

Theorem 19 (Π Correctness). Let Π(M) = 〈Ψ,U,G,F ,H〉. Then, for each
substitution s satisfying G, F and H

s(Ψ) � M : s(U)

Proof. By induction on the derivation proving Π(M) = 〈Ψ,U,G,F ,H〉. We will
show just the most difficult case, when the term M is of the shape PN.

Consider the case Π(PN) = 〈Ψ,U,G,F ,H〉. By hypothesis Π(P) =
〈ΨP, UP,GP,FP,HP〉, Π(N) = 〈ΨN, UN,G,FN,HN〉 and U ≡ [u].b. Let s be a substi-
tution satisfying G, F and H. By induction hypothesis since s clearly satisfies GP,
GN, FP, FN, HP and HN, then we have both s(ΨP) � P : s(UP) and s(ΨN) � N : s(UN).

Moreover by definition U(UP, !pUN � [t].a) = H′ with H′ ⊆ H, so since s
satisfies H by Theorem 14: s(UP) ≡ s(!pUN) � s([t].a). Let Ψ ′

N = {z :!qiVi | ∃z :
!piVi ∈ ΨN}. Then clearly s(Ψ) = s(ΨP � Ψ ′

N) = s(ΨP), s(Ψ ′
N). Moreover since by

hypothesis s satisfies G, then in particular s([t].a) ≤ s(b). So, let s(u) = α and
s(p) = k. Then, the conclusion follows by the derivation

s(ΨP) � P : s(!pUN) � s([t].a)

s(ΨN) � N : s(UN)

!ks(ΨN) � N :!ks(UN)
(sp)k

s(Ψ ′
N) � N :!ks(UN)

(m)∗

s(ΨP), s(Ψ
′
N) � PN : s([t].a)

(� E)

s(ΨP), s(Ψ
′
N) � PN : s(b)

(∀E)∗

s(ΨP), s(Ψ
′
N) � PN : ∀α.s(b)

(∀I)∗

Note that we have freely applied the (∀I) rule over variables in α since s satisfies
the binding constraints F . ��

Theorem 20 (Π Completeness). Let Π(M) = 〈Ψ,U,G,F ,H〉. If A � M : σ
then there exists a substitution s satisfying G,F and H such that

Σ � s(Ψ) � M : s(U)

Moreover, the sequent A � M : σ can be obtained from Σ by a (maybe empty)
sequence of applications of the rules (w), (m) and (sp).

Proof. By induction on the derivation Π proving A � M : σ. We consider here
the two most difficult cases. Let Π ends as

Σ � A � N : σ � A Θ � B � P : σ A ≈ B

A,B � NP : A
(� E)

Let Π(NP) = 〈Ψ,U,G,F ,H〉, Π(N) = 〈ΨN, UN,GN,FN,HN〉 and Π(P) =
〈ΨP, UP,GP,FP,HP〉. By definition of Π, Ψ = ΨN � Ψ ′

P where, if ΨP = x1 :
!p1V1, . . . , xn :!pnVn, then Ψ ′

P = x1 :!q1V1, . . . , xn :!qnVn for fresh q1, . . . , qn. More-
over, for fresh u, t, a, b and p, if I = range(Ψ) and Unify(ΨN, Ψ ′

P, UN, !pUP �
[t].a) = H′ then U ≡ [u].b, G = GN ∪GP ∪ {([t].a, b)}, F = FN +FP + [u �→ I] and
H = HN �HP �H′ � {qi ≥ pi + p}.

By induction hypothesis there exists a scheme substitution sN satisfying GN,FN

and HN such that Σ′ � sN(ΨN) � N : sN(UN) and a substitution sP satisfying GP,FP

150 M. Gaboardi and S. Ronchi Della Rocca

and HP such that Θ′ � sP(ΨP) � P : sP(UP) and Σ and Θ can be obtained from
Σ′ and Θ′ by a sequence of applications of the rules (w), (m) and (sp). This
implies that UN and !pUP � [t].a are unifiable from Theorem 15.

Since Π(N) and Π(P) are disjoint we can build a substitution s′ acting as sN
on schemes in Π(N) and as sP on schemes in Π(P). Note that s′(UN) ≡ σ � A ≡
s′(!pUP � [t].a), where t and a are fresh. Hence in particular s′ satisfies H′.

Since u, b, q1, . . . , qn are fresh, it is easy to extend s′ to a substitution s =
s′[b �→ s([t].a), u �→ ε, q1 �→ s(p1) + s(p), . . . , qn �→ s(pn) + s(p)]. Clearly s
satisfies G,F and H. If s(p) = k, then the following derivation can be built

Σ′ � s(ΨN) � N : s(UN)

Θ′ � s(ΨP) � P : s(UP)

!ks(ΨP) � P :!ks(UP)
(sp)k

s(ΨN), !
ks(ΨP) � NP : s([t].a)

(� E)

and A,B � NP : A can be obtained from it by a sequence of applications of the
rules (w), (m) and (sp).

Consider the case where Π ends as

Σ � A � N : ∀α.A
A � N : A[B/α]

(∀E)

Let Π(N) = 〈Ψ,U,G,F ,H〉. By induction hypothesis there is s satisfying G,F
and H such that Θ � s(Ψ) � N : s(U) and Σ is derivable from Θ by applying
a sequence of rule (w), (m) and (sp). So in particular we have s(U) ≡ ∀α.A
and by an inspection of the rules it is easy to verify that U ≡ [u].V for
some V and fresh u. Moreover A ≡ ∀β.C for some C. Hence in particu-
lar s = s′[u �→ αβ] for some substitution s′. Let a1, . . . , an be such that
s′(ai) = Ci[α], where Ci[α] denotes a type Ci, where α occurs free (1 ≤ i ≤ n).
Then s1 = s′[u �→ β, a1 �→ C1[B], . . . , an �→ Cn[B]] and s1 does the intended
work, since the Hygiene Condition. Moreover since u is fresh it is easy to verify
that s1 satisfies G,F and H. ��

5.4 Examples

Example 21

1. It is easy to verify that Π(λx.xx) = 〈∅, U,G,F ,H〉 where

U = [w].!r([t1].a1) � [v].c G = {([t1].a1, b1), ([t2].a2, b2), ([t].a, c)}
F = {u1 �→ {[t1].a1}, u2 �→ {[t2].a2}, v �→ {[t1].a1, [t2].a2}}
H = 〈{b1 =!q([u2].b2) � [t].a, a1 = a2}, {u1 = ε, t1 = t2},

{p1 = p3, p3 ≥ p2 + q, r > p1, r > p3}〉

The substitution s = s′[a1 �→ α, a2 �→ α, b1 �→ (∀β.β) � γ, b2 �→ β, c �→
γ, a �→ γ, t1 �→ α, t2 �→ α, u1 �→ ε, u2 �→ β, v �→ γ, w �→ ε, t �→ ε, p1 �→ 0, p2 �→
0, p3 �→ 0, q �→ 0, r �→ 1] satisfies G, F and H. Hence the term is typable.

2. It is boring but easy to obtain the constraints in Π((λx.xx)2) =
〈∅, U,G,F , 〈P , C,Q〉〉. Making the substitutions in P and Q we obtain

Type Inference for a Polynomial Lambda Calculus 151

U = [z].d G = {([t2].a2, c), ([tz].az, bz), ([tsz].asz, bsz), ([ts2z].as2z, bs2z),
([ts].as, !psz([uz].bz) � [tsz].asz), ([z1].c, d),
([t1].(!s([ts].as) � ([v].!r([tz].az) � [us2z].bs2z)), b2), (1)
([t1].(!s([ts].as) � ([v].!r([tz].az) � [us2z].bs2z)), !q1 ([u2].b2) � [t2].a2), (2)
([ts].as, !p2([usz].bsz) � [ts2z].as2z) (3)}
F = {u1, u2, z1 �→ {[t1].!s([ts].as) � ([v].!r([tz].az) � [us2z].bs2z)},

uz �→ {[tz].az}, usz, us2z �→ {[tz].az, [ts].as}, v �→ {[ts].as}}
C = {r1 > q1, r ≥ psz + p2, s > p2}

The equation (1) implies that b2 is of the shape

!s1 [w1].b12 � [w2].!s2 [w′
2]b

2
2 � [w3].b32

Moreover it implies that each substitution s satisfying the constraints must
be such that s(s1) = s(s), s(s2) = s(r) while equation (2) implies s(s) =
s(q1). Remembering that G is a semi-unification set, equations (1), (2) and
(3) imply that s(ts) = ε and s(as) =!s(p2)A � B. Substituting this in
equation (2) we have s(s) = s(p2) but this is in contrast with the constraints
in H. Note that this term is typable in System F.

3. Note that the term 2(yz) of Example 10.3 is also typable in the full STA
system and in System F but it is still not typable in DLAL due again to the
presence of the two free variables.

6 Conclusion

We proved that the type inference problem for STA is decidable in polynomial
time in the length of the input term if we restrict ourselves to consider just the
propositional fragment. For the whole system we conjecture that the problem
is undecidable since the presence of the second order quantifier. Nevertheless
we showed an algorithm generating all the constraints that need to be satisfied
in order to type a given term. It would be possible to follow the same method
as in [4] for System F. Namely, for every n ∈ N we can define a bounded type
containment relation ≤nT such that ∀a.A ≤nT C if and only if C ≡ A[B/α] and
the variables in α occur in the syntax tree of A at a depth less or equal to n.

Then, we can define a countable set of type assignment systems STAn which
is a complete stratification of the system STA. For each n ∈ N, the system STAn

is obtained by replacing the (∀E) rule in Table 1 by the following rule:

Γ � M : A A ≤n
T B

Γ � M : B
(n-∀E)

In every STAn the type inference problem is decidable. We leave the checking of
the undecidability of the conjecture and the design of the stratified system for
future investigations.

152 M. Gaboardi and S. Ronchi Della Rocca

References

1. Gaboardi, M., Ronchi Della Rocca, S.: A soft type assignment system for λ-
calculus. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp.
253–267. Springer, Heidelberg (2007)

2. Lafont, Y.: Soft linear logic and polynomial time. Theoretical Computer Sci-
ence 318(1-2), 163–180 (2004)

3. Coppo, M., Dezani-Ciancaglini, M., Venneri, B.: Principal type schemes and
lambda-calculus semantics. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 535–560. Aca-
demic Press, Inc., New York (1980)

4. Giannini, P., Ronchi Della Rocca, S.: A type inference algorithm for a strati-
fied polymorphic type discipline. Information and Computation 109(1/2), 115–173
(1994)

5. Coppola, P., Dal Lago, U., Ronchi Della Rocca, S.: Elementary affine logic and the
call by value lambda calculus. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461,
pp. 131–145. Springer, Heidelberg (2005)

6. Wells, J.B.: Typability and type checking in the second-order λ-calculus are equiv-
alent and undecidable. In: Proceedings of the Ninth Annual IEEE Symposium on
Logic in Computer Science (LICS 1994), pp. 176–185. IEEE Computer Society,
Los Alamitos (1994)

7. Baillot, P., Terui, K.: Light types for polynomial time computation in lambda-
calculus. In: Proceedings of the Nineteenth Annual IEEE Symposium on Logic in
Computer Science (LICS 2004), pp. 266–275. IEEE Computer Society, Los Alami-
tos (2004)

8. Asperti, A.: Light affine logic. In: Proceedings of the Thirteenth Annual IEEE Sym-
posium on Logic in Computer Science (LICS 1998), pp. 300–308. IEEE Computer
Society, Los Alamitos (1998)

9. Gaboardi, M.: Linearity: an Analytic Tool in the study of Complexity and Seman-
tics of Programming Languages. PhD thesis, Università degli Studi di Torino -
Institut National Polytechnique de Lorraine (2007)

10. Robinson, J.A.: Machine-oriented logic based on resolution principle. Journal of
the ACM 12, 23–41 (1965)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

12. Baillot, P., Terui, K.: A feasible algorithm for typing in elementary affine logic. In:
Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 55–70. Springer, Heidelberg
(2005)

13. Kfoury, A.J., Ronchi Della Rocca, S., Tiuryn, J., Urzyczyn, P.: Alpha-conversion
and typability. Information and Computation 150(1), 1–21 (1999)

	Type Inference for a Polynomial Lambda Calculus
	Introduction
	The System STA
	Type Inference for the Propositional Fragment
	Type Schemes, Substitutions and Constraints
	Unification Algorithm
	The Algorithm

	Constraints Resolution
	Type Inference Complexity

	Type Inference for the Full System
	Schemes, Substitutions and Constraints
	Unification Algorithm
	The Algorithm
	Examples

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

