
[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 499 499–530

From light logics to type
assignments: a case study

MARCO GABOARDI, Dipartimento di Informatica, Università degli Studi
di Torino. Corso Svizzera 185, 10149 Torino, Italy.
E-mail: gaboardi@di.unito.it

SIMONA RONCHI DELLA ROCCA, Dipartimento di Informatica,
Università degli Studi di Torino. Corso Svizzera 185, 10149 Torino, Italy.
E-mail: ronchi@di.unito.it

Abstract
Using Soft Linear Logic (SLL) as case study, we analyze a method for transforming a light logic into a type
assignment system for the λ-calculus, inheriting the complexity properties of the logics. Namely the typing assures
the strong normalization in a number of steps polynomial in the size of the term, and moreover all polynomial
functions can be computed by λ-terms that can be typed in the system. The proposed method is general enough
to be used also for other light logics.

Keywords: type assignment, implicit computational complexity, lambda calculus, polynomial time

1 Introduction

The light logics, Light Linear Logic (LLL) [15], Soft Linear Logic (SLL) [17] and Elementary
Linear Logic (ELL) [8], were introduced as logical counterparts of some computational com-
plexity classes. Proofs of LLL and SLL characterize polynomial time computations, while
ELL characterizes elementary time computations. The characterization is based on the fact
that proofs of these logics normalize in a number of cut-elimination steps which is either
polynomial (in case of LLL and SLL) or elementary (in case of ELL) in their size, if their
depth is fixed, and moreover they can encode every function with the given complexity.
From a computer science perspective, light logics can be used for the design of program-
ming languages with a given computational bound. This could be done in a straightforward
way by a complete decoration of the logical proofs, but, due to the presence of modalities,
the resulting languages could have a very complex syntactical structure, and they cannot be
reasonably proposed for programming (an example of complete decoration of SLL is in [3]).
A different approach is to fix as starting points:
1. The use of λ-calculus as an abstract paradigm of programming languages.
2. The use of types to characterize program properties.
In this line, the aim becomes the design of a type assignment system for λ-calculus, where
types are formulae of a light logic, in such a way that the logical properties are inherited
by the well typed terms. Then types can be used for checking, besides the usual notion of
correctness, also the complexity properties.
Some results have already been obtained in this line. Two different proposals for a polyno-
mial λ-calculus have been designed by Baillot and Terui [4] and Gaboardi and Ronchi Della

Vol. 17 No. 5, © The Author 2009. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org
doi:10.1093/jigpal/jzp019

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 500 499–530

500 From light logics to type assignments: a case study

Rocca [12], starting respectively from LAL, a simplified version of LLL defined in [1, 2],
and from SLL. A proposal for an elementary λ-calculus has been given in Coppola, Dal Lago
and Ronchi Della Rocca [7].

In all cases the starting point is the Curry-Howard isomorphism, connecting proofs with
programs, formulae with types and proof normalization with β-reduction. But the modal
aspect of the light logics breaks the last connection, since the cut elimination does not
correspond naturally to β-reduction, and so a proof decoration following the standard path
gives rise to a type assignment where the subject reduction is lost, and the complexity
properties are no more preserved. In all cases cited before, the problem has been solved
not making directly a decoration of the logical proofs by λ-terms, but by designing a type
assignment system in some sense “inspired” to the principles of the logics, in such a way to
obtain the same complexity bound, and moreover the complexity bound for the language
is not directly inherited from the logics, but it has been proved again, and in general these
proofs are quite involved. An exception is [5], where there is an alternative proof of the
complexity bound for the language in [4], that is derived from the bound of the logic in an
indirect way.

The aim of this paper is to deeply explore and further enhance this approach. We will use,
as case study, SLL, but we stress that the same kind of procedure can be adapted to all the
other light logics. The idea is to modify the logic, while preserving the complexity properties,
until a natural deduction version of it is reached, with the property that the standard
decoration of it by λ-terms is the type assignment system with the desired properties. The
transformation is given through the following path. First of all, a deep analysis of SLL
allows us to replace the cut rule by three different rules, according to the syntactical shape
of their premises. Just one of these new cuts does not correspond correctly to a β-reduction.
Then we design a new logic, by restricting SLL in such a way that a cut with the “bad”
behavior never appears. This new logic, which we call Essential Soft Linear Logic (ESLL),
preserves the good properties of SLL with respect to the complexity bound. Then we design
a natural deduction version of ESLL, namely NESLL, enjoying the desired properties too.
A decoration of NESLL proofs by λ-terms, in the standard way, gives rise to the desired
type assignment system, named STA. So we obtain for free a polynomial bound for STA,
inherited from the logic. This bound is obviously expressed in function of some measures of
the typing proof, so some further work is necessary, in order to relate it to the size of the
term.

In order to do so, some intermediate results are needed, which are interesting by them-
selves, in our opinion. First of all, the properties of SLL have been proved by Lafont using
proof-nets, which are graph representation of equivalence classes of proofs. Since we want
to obtain the type assignment through a decoration of the logic, we need in particular to
rephrase the strong normalization and its polynomial bound directly on the proofs, the tech-
nical difficulty being that in this case we need to take into account also the commutation
steps, which are not needed in the normalization of proof-nets. As far as we know, this is
the only normalization proof for a light logics not based on proof-nets. Moreover, all the
type assignment systems based on light logics use an affine version of them, being it easier
for the completeness proofs, while we use SLL in the original, not affine, version.
The completeness with respect to the polynomial computations is proved directly for
STA. The completeness we are talking about is a functional completeness, in the sense that
we prove (through a simulation of polynomial time Turing Machines) that all polynomial

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 501 499–530

From light logics to type assignments: a case study 501

functions can be computed by terms typable in STA. For the completeness, we are not
interested in inheriting the property from the one of SLL, since we will prove a stronger
result. In fact, STA is complete for FPTIME, while Lafont proved SLL complete for PTIME
only.

A type assignment for λ-calculus derived from an affine version of ESLL has been already
presented in [12] and [9]. This system has been also used in [11] and [10].

The paper is organized as follows. In Section 2, SLL is introduced, its strong normalization
in polynomial time is proved and its PTIME completeness is recalled. In Section 3, a deep
analysis is given on the mismatch between cut elimination and β-reduction for light logics,
and the methods used in the literature for solving this problem are examined. Section 4
contains ESLL and its natural deduction version, NESLL. In Section 5 the type assignment
system STA is presented, and its properties are proved.

2 Soft Linear Logic

In this section we recall the fragment of Soft Linear Logic (SLL) restricted to the connectives
�,∀ and the modality !. For this fragment, we give a proof of the polynomial soundness
and we sketch the polynomial completeness.

DEFINITION 2.1
(i) The set of formulae of SLL is defined by the following grammar:

A,B,C ::=α |A�A |∀α.A |!A
where α ranges over a countable set of variables.

(ii) SLL contexts are multisets of SLL formulae. Contexts are ranged over by �,�. FV(�)
denotes the set of free variables occurring in the formulae of � while |�| denotes the
cardinality of �, i.e. the number of occurrences of formulae in �. The notation !� is a
short for {!A |A∈�}.

(iii) The set of SLL rules prove judgements of the shape:

��A
where � is a context and A is a formula. The rules are given in Table 1, where A(n)
denotes A,...,A

︸ ︷︷ ︸

n

. As usual �A is a short for ∅�A.

(iv) Derivations are denoted by �,�,�,	,
. ����A denotes a derivation � with conclu-
sion ��A.

SLL is a restriction of Girard’s Linear Logic (LL) [14], obtained in two steps. First, by
replacing the rules of LL dealing with the modality !:

!��A
!��!A (!R)

�,B�A
�,!B�A (!L)

and the structural rules of weakening and contraction:

��A
�,!B�A (W)

�,!B,!B�A
�,!B�A (C)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 502 499–530

502 From light logics to type assignments: a case study

TABLE 1. Soft Linear Logic

A�A (Ax)
��A B,��C
�,A�B,��C (�L)

��A α �∈FV(�)
��∀α.A

(∀R)

��A �,A�B
�,��B (cut)

�,A�B
��A�B (�R)

�,A[B/α]�C
�,∀α.A�C (∀L)

��A
!��!A (sp)

�,A(n)�B n≥0
�,!A�B (m)

by the three rules of multiplexor, soft promotion and digging:

�,A(n)�B
�,!A�B (m) ��A

!��!A (sp)
�,!!B�A
�,!B�A (digging)

Note that the (m) rule is parametric in the number n, which is its rank. The resulting system
is equivalent to LL. The weakening rule is a particular case of multiplexor, with n=0. The
contraction rule can be obtained by (m) followed by (digging).
The second step is to erase the rule (digging). The result is that it doesn’t hold anymore the
linear correspondence:

!A�!!A.

As a consequence, the modality ! can be used for counting the number of duplications of
(sub)proofs.

2.1 Polynomial time soundness
In this subsection we prove that Soft Linear Logic is correct for polynomial time computa-
tions. This result has been already proved by Lafont, in [17], using the proof-nets represen-
tation of proofs. Here we rephrase his proof using directly the sequent calculus formulation,
in order to reuse it in the construction of a related type assignment system for λ-calculus.
First we need to define some measures on SLL proofs. Note that the key measure, the weight
of a proof, is different from the notion of weight used by Lafont: the change is necessary for
dealing with the new setting.

DEFINITION 2.2
• The size of a proof �, denoted by |�|, is the number of rules applications in �.
• The rank of a proof �, denoted by rk(�), is the maximal rank of multiplexor rules in �.
• The degree of a proof �, denoted by d(�), is the maximal nesting of applications of
the (sp) rule in �, i.e., the maximal number of applications of the (sp) rule in a path
connecting the conclusion and one axiom of �.

• Let r be a natural number. The weight W(�,r) of � with respect to r is defined induc-
tively as follows:

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 503 499–530

From light logics to type assignments: a case study 503

– If the last applied rule is (Ax) then W(�,r)=1.
– If the last applied rule is:

����A
!��!A (sp)

then W(�,r)=(r+1)×(W(�,r)+1).
– In any other case (also the cut case!) W(�,r) is the sum of the weights of the premises
with respect to r plus 1 .

The following lemma follows directly from the definition of measures.

LEMMA 2.3
For every SLL proof �:

(i) W(�,0)=|�|
(ii) W(�,rk(�))≤W(�,0)×(rk(�)+1)d(�)≤|�|d(�)+1
Now we will prove that the cut elimination property holds for SLL. In order to do this, we
need to define the cut elimination steps.

DEFINITION 2.4
(i) A symmetric step is a proof rewriting rule with one of the following shapes:

Case (R)-(Ax), where (R) is any rule:

����A (R) A�A (Ax)
��A (cut)

rewrites to ����A

Case (sp)-(m):

����A
!��!A (sp)
�A(n),��B

!A,��B (m)

!�,��B (cut)

in case n=0 rewrites to:

���B
!�,��B (m)

otherwise it rewrites to:

����A
����A
��,A(n)�B

�(n−1),A,��B (cut)

�(n),��B (cut)

!�,��B (m)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 504 499–530

504 From light logics to type assignments: a case study

where the double line denotes a number ≥0 of applications of the rule.

Case (sp)-(sp):

����A
!��!A (sp)
�A,��B

!A,!��!B (sp)

!�,!��!B (cut)
rewrites to

����A
�A,��B
�,��B (cut)

!�,!��!B (sp)

Case (�R)-(�L):

���,A�B
��A�B (�R)
1��1�A
2�B,�2�C

�1,A�B,�2�C (�L)

�,�1,�2�C (cut)

rewrites to:

1��1�A ���,A�B
�,�1�B (cut)

2�B,�2�C
�,�1,�2�C (cut)

Case (∀R)-(∀L):

����A
��∀α.A

(∀R)
�A[C/α],��B
∀α.A,��B (∀L)

�,��B (cut)

rewrites to:

�[C/α]���A[C/α]
��,A[C/α]�B
�,��B (cut)

where �[C/α] denotes a derivation obtained from � by replacing every occurrence of α
by the formula C .

(ii) A commutative step is a proof rewriting rule defined as follows. Let � be:

��A (R) �,A�B (R
′)

�,��B (cut)

where (R) and (R′) are rules such that at least one of them is different from (cut) and
is not building the formula A (so we will say that A is passive in it).
Let A be passive in (R), which is not (cut). Then

���′ �A

��A (R)
�,A�B (R

′)

�,��B (cut)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 505 499–530

From light logics to type assignments: a case study 505

rewrites to:

���′ �A �,A�B (R
′)

�′,��B (cut)

�,��B (R)

where, of course,
 could not occur.
Let A be passive in (R′), which is not (cut). Then

��A (R)
���′,A�C

�,A�B (R′)

�,��B (cut)

rewrites to:

��A ���′,A�C
�,�′ �C (cut)

�,��B (R′)

where, of course,
 could not occur.

Let a proof be normal if it does not contain applications of the rule (cut).
The following result is the key point for obtaining the polynomial bound.

LEMMA 2.5
Let � rewrite to �′ in one cut elimination step, and let r≥rk(�). Then

(i) If the step is symmetric, then W(�,r)>W(�′,r);
(ii) If the step is commutative, then W(�,r)=W(�′,r);

PROOF.

(i) The proof is easy, by considering all the possible cases. We just show the most difficult
one, the case (sp)-(m). Let � be:

����A
!��!A (sp)
�A(n),��B

!A,��B (m)

!�,��B (cut)

and let n>0. So �′ is:

����A
����A
��,A(n)�B

�(n−1),A,��B (cut)

�(n),��B (cut)

!�,��B (m)

clearly we have W(�,r)=(r+1)×(W(�,r)+1)+(W(
,r)+1)+1 while W(�′,r)=
n×(W(�,r)+1)+W(
,r)+|�|, so for r≥rk(�)≥n since W(�,r)≥|�| we have:

W(�,r)>W(�′,r)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 506 499–530

506 From light logics to type assignments: a case study

(ii) Immediate, by the definition of commutative step.

THEOREM 2.6
Let � be a SLL proof. Then � rewrites to a normal proof �′ by a number of cut elimination
steps bounded by 2×|�|3×(d(�)+1).

PROOF. The proof is by induction on the pair <W(�,rk(�)),h(�)>, ordered by lexico-
graphic order, where h(�) is the sum of the heights of all the subproofs of � whose root is
an application of the (cut) rule.
Consider the case where the cut elimination step is a symmetric step. Then W(�,rk(�))>
W(�′,rk(�′)) by Lemma 2.5.(i). Applications of commutative steps do not change the weight
(by Lemma 2.5.(ii)). Nevertheless, by inspecting the Definition 2.4.(ii), it is easy to verify
that they decrease the measure h(�). So the normalization procedure always stops, and the
proof can be normalized.
Now consider the number n of cut reduction steps to normal form. � clearly normalizes
in a number ns of symmetric steps bounded by W(�,rk(�)). The number of commutative
steps nc is �0≤i≤nsnic, where nic is the number of commutative steps performed after the i-th
symmetric step. Note that every nic is bound by the square of the maximum size of the proof
during the rewriting, which, by Lemma 2.3.(i), can be bounded by W(�,rk(�)). Hence we
have:

n ≤ ns+nc≤ns+ns×max(nic)≤ns×(max(nic)+1)
≤ W(�,rk(�)×(max(nic)+1)≤W(�,rk(�)×(W(�,rk(�)2+1)
≤ 2×W(�,rk(�))3

and by Lemma 2.3.(ii) we can conclude:

n≤2×|�|3×(d(�)+1)

Since every proof has a fixed depth, the bound is polynomial.

2.2 PTIME Completeness
SLL is complete for PTIME. We will not give here the details of the proof given in [17]
since the completeness proof for the type assignment we will design does not use them and
moreover we will prove a stronger result.
Here we give some hints just to give evidence of the difference between our codings and that
used by Lafont. First of all, Lafont proof uses data type defined using the connectives ⊗
and &. Instead we will define data type considering these connectives in their derivate form
in the implicative and exponential second order fragment of SLL.
Moreover, he introduces a programming discipline for Soft Linear Logic which consists in
representing programs by generic proofs, i.e. proofs that do not contain occurrences of (m)
rule, and data by homogeneous proofs, proofs where all the occurrences of rule (m) have the
same rank, while we do not need such a distinction.
Let the symbol .= denote definitional equivalence. If N .=∀α.!(α�α)�α�α then natural
numbers are definable by homogeneous proofs deriving the sequent:

�N

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 507 499–530

From light logics to type assignments: a case study 507

Polynomials in one variable are sufficient to our scope. For technical reasons instead of
polynomials Lafont has introduced a notion of polynomial expressions, terms built from
natural numbers and a variable X , using addition and multiplication. The following notation
will be useful in the sequel:

An .=
n-times

︷ ︸︸ ︷

A⊗···⊗A AX .= !A AP+Q .=AP⊗AQ APQ .=(AP)Q

Polynomial expressions are in one to one correspondence with polynomials in Horner normal
form, i.e. of the form a0+X(a1+X(···(an−1+Xan)···). If P is a polynomial expression we
denote by δ(P) its degree. The formula representing natural numbers can be extended to
polynomial expressions, i.e. N〈P〉 .=∀α.(α�α)P�α�α. Note that N〈X 〉≡N.
The following theorem assures that all polynomial expression can be represented in SLL.

THEOREM 2.7
If P is a polynomial expression, there is a generic proof for the sequent:

N(δ(P))�N〈P〉

The above theorem corresponds to a polynomial iteration principle for Soft Linear Logic.
Booleans and boolean strings are definable in SLL by proofs of the following formulae:

B .=∀α.(α&α)�α S .=∀α.!((α�α)&(α�α))�α�α

We refer to [17] for the definition of Turing machine configurations. Here we only recall the
PTIME completeness theorem for SLL.

THEOREM 2.8
If a predicate on boolean strings is computable by a Turing machine in polynomial time
P(n) and in polynomial space Q(n), there is a generic proof for the sequent:

S(δ(P)+δ(Q)+1)�B

which corresponds to this predicate.

3 SLL and λ-calculus

There is a standard way to decorate the proofs of a logic in sequent calculus style in order to
obtain a type assignment system for the λ-calculus [16][20]. By applying it to SLL, we obtain
the type assignment system defined in [18] as a technical tool for studying the expressive
power of SLL. This decoration, that we name SLLλ, is presented in Table 2, where, by an
abuse of notation, we use �,� to denote SLLλ contexts i.e., variable assignments of the
shape x :A. Moreover, dom(�) denotes the set {x |x :A∈�}.
In SLLλ the subject reduction property fails. Let us show it by an example.

EXAMPLE 3.1
Consider the term M≡y((λz.sz)w)((λz.sz)w) and let C =A�A�B,S=B�!A. A possi-
ble typing for M is y :C ,s :S ,w :B�Ly((λz.sz)w)((λz.sz)w) :B as proved by the following

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 508 499–530

508 From light logics to type assignments: a case study

TABLE 2. SLLλ

x :A�Lx :A (Ax)
��LM :A �,x :A�LN :B �#�

�,��LN[M/x] :B (cut)

�,x :A�LM :B
��Lλx.M :A�B (�R)

�,x0 :A,...,xn :A�LM :B
�,x :!A�LM[x/x0,...,x/xn] :B (m)

��LM :A x :B,��LN :C �#� y fresh
�,y :A�B,��LN[yM/x] :C (�L) ��LM :A

!��LM :!A (sp)

��LM :A (∗)
��LM :∀α.A

(∀R) �,x :A[B/α]�LM :C
�,x :∀α.A�LM :C (∀L)

�#� iff dom(�)∩dom(�)≡∅ (∗) α not free in �.

(incomplete) derivation �:

s :S �Lλz.sz :S t :S ,w :B�Ltw :!A
��s :S ,w :B�L (λz.sz)w :!A (cut) y :C ,r :A,l :A�Lyrl :B

y :C ,x :!A�Lyxx :B (m)

y :C ,s :S ,w :B�Lyxx[(λz.sz)w/x]≡y((λz.sz)w)((λz.sz)w) :B (cut)

Clearly we have:

y((λz.sz)w)((λz.sz)w)→βy(sw)((λz.sz)w)

hence we want to type the reduced term in the same context:

y :C ,s :S ,w :B�Ly((sw)((λz.sz)w) :B

but in fact this is not a derivable judgement in SLLλ.

The problem is that M contains two identical redexes (λz.sz)w, while in � there is just one
subderivation � with subject (λz.sz)w. � has a modal conclusion, but a non modal context,
so it cannot be duplicated. Hence β-reducing only one occurrence of (λz.sz)w in M would not
correspond to a correct logical proof since every cut-elimination step would instead reduce
both the redexes at the same time. This means that in SLLλ a cut-elimination step does not
correspond to a β-reduction and the polynomial bound on the logic is not inherited by the
language.
Let us analyze this phenomenon in more depth. In order to do this note that we can dis-
tinguish three classes of SLLλ derivations. Consider a derivation � in SLLλ with conclusion
��LM :A. The formula A can be either modal or not. In the latter case we say that � is
a linear derivation. Otherwise we can distinguish two cases. If � can be transformed by
commutations of rules in a derivation �′ ending by a rule (sp) then we say that � is dupli-
cable. Otherwise we say that it is shareable. Note that in other words � is duplicable if it
corresponds to a !-box in the corresponding proof-net of SLL [17].

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 509 499–530

From light logics to type assignments: a case study 509

In a decorated sequent calculus system, like SLLλ, β-reduction is usually considered the
counterpart, in terms, of the cut rule of the logic. So consider an occurrence of a rule
(cut) as:

����LM :A ���,x :A�LN :B
�,��LN[M/x] :B (cut)

We can split it in three distinct rules, according to the class of �.

Linear cut

����LM :A ���,x :A�LN :B � linear
�,��LN[M/x] :B (L cut)

It corresponds to a linear substitution. In case there is a subterm of N of the shape xQ,
for some Q (denoted by N≡N[xQ]) and M≡λx.P, it generates exactly one β-redex and the
cut-elimination corresponds to one β-reduction.

Duplication cut

��!�′ �LM :!C �,x :!C �LN :B A≡!C �=!�′ � duplicable
!�′,��LN[M/x] :B (D cut)

It corresponds to a substitution where the proof � is copied n times, where n is the number
of occurrences of x in N. In case N≡N[xQ] and M≡λx.P, it generates n β-redexes. The elimi-
nation of such a kind of cut generates n further cuts (see Definition 2.4) and the elimination
of each one of these cuts corresponds to the reduction of a β-redex.

Sharing cut

����LM :!C �,x :!C �LN :B A≡!C � shareable
�,��LN[M/x] :C (S cut)

It corresponds to a substitution where the proof � is not duplicated, but shared n times,
where n is the number of occurrences of x in N. In case N≡N[xQ] and M≡λx.P, it generates
n β-redexes but a single cut-elimination step corresponds to β-reducing in parallel all of
them.
So (S cut) can break the correspondence between cut elimination and β-reduction.
The problem described above is not new, and all the type assignment systems for λ-calculus

derived from Linear Logic need to deal with it. Until now the proposed solutions follow three
different paths, all based on a natural deduction definition of the type assignment.
The first one, proposed in [19], based on Intuitionistic Linear Logic, explicitly checks the
duplicability condition before performing a normalization step. So in the resulting language
(which is a fully typed λ-calculus) the set of redexes is a proper subset of the set of classical
β-redexes.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 510 499–530

510 From light logics to type assignments: a case study

TABLE 3. Essential Soft Linear Logic.

A�EA (Ax)
��E τ �,τ �E σ

�,��E σ
(cut)

�,A[B/α]�E σ

�,∀α.A�E σ
(∀L)

��E τ A,��E σ

�,τ �A,��E σ
(�L) �,σ �EA

��E σ �A (�R)
��EA

��E∀α.A
(∀R)

��E σ

!��E!σ (sp)
�,τ(n)�E σ n≥0

�,!τ �E σ
(m)

In [4] a type assignment for λ-calculus, based on Light Affine Logic, is designed where the
modality ! is no more explicit. In fact there are two arrows, a linear and an intuitionistic
one, whose eliminations reflect the linear and the duplication cuts, respectively.
In [7], a type assignment for the λ-calculus, based on Elementary Affine Logic, is designed.
There the authors use the call-by-value λ-calculus, where the restricted definition of reduc-
tion implies that subterms of the shape (λx.M)N, when generated by an (S cut), are not
call-by-value β-redexes.
All the approaches need a careful control of the context, which technically has been realized
by splitting it in different parts, collecting respectively the linear and modal assumptions
(in case of [7] a further context is needed).
Here we want to explore a different approach starting from the following considerations.
Let � be a SLLλ derivation with subject M. If either � or some proof in which � rewrites
during the cut-elimination procedure contains some (S cut) rule, the number of β-reductions
in the normalization of M can be greater than the number of cut-elimination steps in the
normalization of �. So the typing does not induce any property on the complexity of M.
Conversely, if neither � nor any proof in which � rewrites during the cut-elimination pro-
cedure does contain (S cut), then the number of cut-elimination steps in the normalization
of � is greater or equal to the number of β-reductions in the normalization of M and then
the polynomial bound for M follows.
So we restrict SLL in such a way that S-cuts are forbidden and the polynomial properties are
preserved. Just erasing the rule (S cut) is not enough, since the cut elimination procedure
could create new (S cut) rules. So we need to restrict both the rules and the formulae.

4 Essential Soft Linear Logic

In this section we will present a light logic, ESLL, whose set of proofs is a proper subset of
proofs of SLL, and a natural deduction version of it. Both preserve the polytime correctness
and completeness. The key point is that every ESLL proof does not contain (S cut), and
moreover (S cuts) cannot be created during the normalization precedure. In order to obtain
this property, we need to restrict the syntax of types not allowing modal types both in the
right of a� and under a ∀, and restricting axioms to introduce only non modal types.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 511 499–530

From light logics to type assignments: a case study 511

DEFINITION 4.1
(i) The set EF of essential soft formulae is defined as follows:

A ::=α |σ �A |∀α.A (Linear Formulae)
σ ::=A |!σ

where α (β) ranges over a countable set of variables. Linear formulae are ranged over by
A,B,C , and formulae by σ,τ,ζ. The symbol ≡ denotes the syntactical equality (modulo
renaming of bound variables).

(ii) A context is a multiset of formulae. By an abuse of notation, contexts are ranged over
by �,�. The notation !� is a short for {!σ |σ ∈�}.

(iii) ESLL proves sequents of the shape ��E σ where � is a context and σ is an essential
soft formula. The rules are given in Table 3, where, as usual, the rule (∀R) has the side
condition that α must not be free in �. The notation �E σ is a short for ∅�E σ.

(iv) Derivations are denoted by �,�,�,	,
. ����E σ denotes a derivation � with con-
clusion ��E σ.

Essential Soft Linear Logic is a subsystem of Soft Linear Logic.

LEMMA 4.2
The set of proofs of ESLL is a proper subset of proofs of SLL.

PROOF. Trivial.

As corollary, we have the following theorem.

THEOREM 4.3
ESLL enjoys cut-elimination. In particular every ESLL proof normalizes in at most 2×
|�|3(d(�)+1) cut elimination steps.
PROOF. The cut-elimination procedure for SLL can be applied, with the same bound, since
Lemma 4.2.

The absence of (S cut) in ESLL proof is assured by the following property.

PROPERTY 4.4
����E!σ implies all premises in � are modal.

PROOF. By induction on �. In the case � ends by (sp) the conclusion follows directly. In
the case � ends either by (m) or (cut) rule, the conclusion follows by induction hypothesis.
The other cases are not allowed since the syntactical conditions on the formation rules.

4.1 ESLL in (quasi) Natural Deduction
A type assignment system for λ-calculus is in general defined in natural deduction style,
since in this way terms are built inductively by the rules of the system, and proofs can be
easily carried out by induction on the size of terms. In order to design a type assignment
system with such property, we tranform ESLL in a style similar to natural deduction, in
the sense that all rules are in natural deduction, but rules (m) and (sp), which are non
local. But, as we will show in the sequel, in the term decoration of the new system the
application of each one of these two rules does not change the size of the subject, so it will
be possible to reason about the type assignment system by induction on the size of terms,

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 512 499–530

512 From light logics to type assignments: a case study

TABLE 4. ESLL in (quasi) natural deduction style

A�NA (Ax)
��NA α /∈FTV(�)

��N∀α.A
(∀I)

�,σ �NA
��N σ �A (�I)

��N σ �A ��N σ �#�

�,��NA (�E)

�,τ(n)�N σ n≥0
�,!τ �N σ

(m) ��N σ

!��N!σ (sp)
��N∀α.B

��NB[A/α] (∀E)

and this is sufficient for our aims. In fact, a true natural deduction version of ESLL would
be quite involved, since the modality !. The (quasi) natural deduction version of ESLL is
a system named NESLL, and we will prove that it preserves the good properties of ESLL,
with respect to the complexity of the normalization procedure. The system NESLL proves
judgements of the shape ��N σ, where � is a context and σ is an essential soft formula,
according to Definition 4.1. The rules of the system are given in Table 4. We extend to
NESLL all notations of Definition 4.1.
We now prove some important properties of NESLL, which will be useful in the sequel.
First, let us observe that an analogous of Property 4.4 holds:

PROPERTY 4.5
(i) ����N!σ implies that all premises in � are modal.
(ii) ����N!σ implies that � is composed by a proof �′ :!��N!σ ending with an (sp) rule,
followed by some applications of (m) rule.

PROOF. Both points can be easily proved by induction on �.

NESLL enjoys the substitution property.

LEMMA 4.6 (Substitution)
Let ���,τ �N σ and ����N τ. Then there is S(�,�)��,��N σ.

PROOF. The proof is given by induction on �. In case � is an axiom, S(�,�)=�. The cases
where � ends by an application of the rules (�I),(�E),(∀I),(∀E) S(�,�) is defined by
induction. Let the last rule of � be (m). In case the active formula is different from τ, then
the proof follows by induction. Otherwise, let � end by:

�1 :�,τ
(n)
1 �N σ

�,τ �N σ
(m)

If τ has been introduced by a multiplexor of rank 0 then S(�,�) is S(�,�1) followed by
some applications of (m) rule in order to recover the context � which is modal by Property
4.5.(i). Otherwise, by Property 4.5.(ii) � is composed by a subderivation ending with the
rule

�′��1�N τ1

!�1�N τ
(sp)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 513 499–530

From light logics to type assignments: a case study 513

followed by a sequence δ of (m) rules recovering ��N τ. By induction we can build S(�′,�),
S(�′,S(�′,�)),..., S(�′,S(�′,(S(�′,...,S(�′

︸ ︷︷ ︸

n

,�))))), the last proving �,�1,...,�1
︸ ︷︷ ︸

n

�N σ. Then

(�,�) can be obtained from �,�1,...,�1
︸ ︷︷ ︸

n

�N σ by applying a sequence of (m) rules, in order

to obtain �,!�1�N σ, followed by δ. The case � ends by rule (sp) is similar.

The normalization steps for NESLL are defined in the following.

DEFINITION 4.7
• (�)-normalization step.
A (�)-redex in � is a subproof of the shape:

	��,σ �NA
��N σ �A (�I)

����N σ

�,��NA (�E)

and its reduct is S(�,), defined in the Substitution Lemma.
• (∀)-normalization step.
A (∀)-redex in � is a subproof of the shape:

	���NA
��N∀α.A

(∀I)
��NA[B/α] (∀E)

and its reduct is the proof 	, where all free occurrences of α has been replaced by B.

In order to prove that NESLL and ESLL have the same derivability power, we start by
proving the implication from ESLL to NESLL.

THEOREM 4.8
��EA implies ��NA
PROOF. By induction on the derivation � proving ��EA. The base case is trivial. The cases
where � end by (�R),(m),(sp) and (∀R) follow directly by induction hypothesis. The case
� ends by the (cut) rule follows directly by induction hypothesis and Lemma 4.6. Consider
the case � ends as:

��E τ A,��E σ

�,τ �A,��E σ
(�L)

By induction hypothesis we have a derivation with conclusion ��N τ hence we can construct
a derivation ending as:

τ �A�N τ �A (Ax) ��N τ

�,τ �A�NA (�E)

and since by induction hypothesis we also have A,��N σ, by applying Lemma 4.6 the con-
clusion follows.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 514 499–530

514 From light logics to type assignments: a case study

Consider the case � ends by the rule:

�,A[B/α]�E σ

�,∀α.A�E σ
(∀L)

By induction hypothesis we have a derivation with conclusion �,A[B/α]�N σ and since we
also have a derivation ending as:

∀α.A�N∀α.A
(Ax)

∀α.A�NA[B/α] (∀E)

by applying Lemma 4.6 the conclusion follows.

We now need to prove that NESLL implies ESLL. Since there is a one to many correspon-
dence between NESLL proofs and ESLL proofs, we will show a translation preserving the
good properties of ESLL with respect to the normalization time. So we prove at the same
time the equivalence between the two systems and the polynomial soundness of NESLL.
In order to do this, we will use the notions of size, rank and degree of a proof, defined in
Definition 2.2, which can be extended to NESLL in the obvious way.

LEMMA 4.9
There is a translation T , from NESLL proofs to ESLL proofs, such that, if ����N σ, then
T (�)���E σ, and moreover T preserves the measures, i.e., rk(�)=rk(T (�)), d(�)=
d(T (�)) and |T (�)|≤3×(|�|).
PROOF. T is defined by induction on �. In the (Ax) case, T is the identity. Otherwise, let
� be

�′���N σ

�′ �N σ ′ (R)

If R is (m) or (sp), then T (�) is T (�′) followed by (R). If R is (�I) or (∀I), then T (�)
is T (�′) followed by (�R) or (∀R). If � ends by the rule:

�1���N τ �A �2���N τ

�,��NA (�E)

then T (�) is

T (�1)���E τ �A
T (�2)���E τ A�EA (Ax)

�,τ �A�EA (�L)

�,��EA (cut)

If � ends by the rule:

����N∀α.A
��NA[B/α] (∀E)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 515 499–530

From light logics to type assignments: a case study 515

then T (�) is

T (�)���E∀α.A
A[B/α]�EA[B/α] (Ax)
∀α.A�EA[B/α] (∀L)

��EA[B/α] (cut)

Now for each � it is easy to verify that rk(�)=rk(T (�)), d(�)=d(T (�)). Moreover the
size of T (�) is equal to the sum of the size of |�| and two times the number of (�E) and
(∀E) in �. So in particular |T (�)|≤3×|(�)|.
The following lemma shows the key property, that allows to extend to NESLL the complexity
results obtained for ESLL.
LEMMA 4.10
Let � be a NESLL proof, which reduces to �′ in n normalization steps. Then T (�) reduces
to T (�′) in m≥n cut-elimination steps.
PROOF. It is sufficient to prove the lemma for n=1. If the normalization step reduces a
(∀)-redex, then the proof can be carried out easily by induction on the proof which is the
premise of the (∀I) rule. Consider the case of a (�)-redex, so let � contain a subproof of
the shape:

	��,σ �NA
��N σ �A (�I)

����N σ

�,��NA (�E)

and �′ is obtained by replacing this subproof by S(�,). Then T (�) contain a subproof:

T ()��,σ �EA
��E σ �A (�R)

T (�)���E σ A�EA (Ax)
�,τ �A�E σ

(�L)

�,��EA (cut)

Let R and R′ be respectively the last applied rule of T () and T (�). Note that:

1. neither R nor R′ can be a left introduction rule (by definition of T), and in particular
R cannot be (sp) (by definition of essential soft formulae).

By two cut elimination steps we obtain:

T (�)���E σ T ()��,σ �EA
�,��EA (cut)

and we need to prove that this reduces to S(�,), so T (�) reduces to T (�′). The proof
is carried out by induction on 	. All possible cases follow by induction, but the case of
(sp)−(m) cut. In this case the redex is:

1��′ �E τ

T (�)�!�′ �E!τ (sp)

2��,τ(n)�EA
T ()��,!τ �EA (m)

!�′,��EA (cut)

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 516 499–530

516 From light logics to type assignments: a case study

where σ ≡!τ and �≡!�′. Note that, by definition of T , there are two NESLL proofs 	′ and
�′ such that
1=T (�′) and
2=T (′).
Eliminating this cut we obtain:

T (�′)��′ �E τ

T (�′)��′ �E τ T (′)��,τ(n)�EA
�′(n−1),τ,��EA

(cut)

�′(n),��EA
(cut)

!�′,��EA (m)

By induction the elimination of all these cuts generates S(T (�′),S(T (�′),...,S(T (�′)
︸ ︷︷ ︸

n

,T (′)).

This, followed by the sequence of applications of (m) rules, is, by definition, S(T (�),T ()).
So, replacing it to the redex in �, we obtain T (�′).

We can now prove the following.

THEOREM 4.11
Let � be a NESLL proof. Then � is strongly normalizing and the number of normalization
steps to normal form is O(|�|3×(d(�)+1)).
PROOF. By Lemma 4.10 and Theorem 4.3.

5 The Soft Type Assignment System

Finally a type assignment system for λ-calculus can be obtained, just decorating, in a stan-
dard way, NESLL proofs by λ-terms. We will prove that such system inherits from NESLL
all the desired properties.

DEFINITION 5.1
i) Terms of λ-calculus are defined by the following grammar:

M,N,Q ::=x |MM |λx.M

where x ranges over a countable set of variables.
ii) The reduction relation →β is the contextual closure of the following rule:

(λx.M)N→βM[N/x]
where, as usual, M[N/x] is the capture free substitution of N to all the free occurrences
of x in M. →∗

β is the reflexive and transitive closure of →β.
iii) A context is a set of assumptions of the shape x :σ, where x is a variable and σ is an
essential soft type. Variables in a context are all distinct. By abuse of notation, contexts
are ranged over by �,�,
.

iv) The Soft Type Assignment System (STA) proves statements of the shape:

��M :σ
where � is a context, M is a term of λ-calculus, and σ is an essential soft type. The rules
are given in Table 5.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 517 499–530

From light logics to type assignments: a case study 517

TABLE 5. The Soft Type Assignment system STA

x :A�x :A (Ax)

�,x :σ �M :A
��λx.M :σ �A (�I)

��M :σ �A ��N :σ �#�

�,��MN :A (�E)

�,x1 :σ,...,xn :σ �M :µ
�,x :!σ �M[x/x1,··· ,x/xn] :µ (m)

��M :σ
!��M :!σ (sp)

��M :A α /∈FTV(�)
��M :∀α.A

(∀I) ��M :∀α.B
��M :B[A/α] (∀E)

5.1 Polynomial Time Soundness
STA is sound for polynomial time. In particular in STA a�-normalization step corresponds
to a β-reduction, so the polynomial soundness of NESLL implies directly the polynomial
soundness of STA. Nevertheless the bound is expressed with respect to the size of the typing
proof, while we are interested in giving it with respect to the size of the term. In order to
do this we will introduce two new measures, the λ-rank rk and the λ-weight W counting the
number of effectively contracted variables and the number of�-reduction steps respectively.

DEFINITION 5.2
• The size |M| of a term M is defined as |x|=1, |λx.M|=|M|+1, |MN|=|M|+|N|+1.
• The λ-rank of a rule (m):

�,x1 :τ,...,xn :τ �M :σ
�,x :!τ �M[x/x1,...,x/xn] :σ (m)

is the number k≤n of variables xi such that xi ∈FV(M). Let r be the the maximum
λ-rank of a rule (m) in �. The λ-rank rk(�) of � is the maximum between 1 and r .

• The λ-weight W(�,r) of � with respect to r is defined inductively as follows.
– If the last applied rule is (Ax) then W(�,r)=1.
– If the last applied rule is (�I) with premise a derivation �, then W(�,r)=W(�,r)+1.
– If the last applied rule is (sp) with premise a derivation �, then W(�,r)=rW(�,r).
– If the last applied rule is (�E) with premises � and � then W(�,r)=W(�,r)+
W(�,r)+1.

– In every other case W(�,r)=W(�,r) where � is the unique premise derivation.

The previously introduced measures are related each other as shown explicitly by the fol-
lowing lemma:

LEMMA 5.3
Let ����M :σ. Then:
1. rk(�)≤|M|≤|�|.
2. W(�,r)≤rd(�)W(�,1)
3. W(�,1)=|M|.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 518 499–530

518 From light logics to type assignments: a case study

PROOF. Easy.

The following is the weighted version of Lemma 4.6

LEMMA 5.4 (Weighted Substitution)
Let ���,x :τ �M :σ and ����N :τ. Then ���,��M[N/x] :σ and W(�,r)≤W(�)+W(�).

PROOF. It follows easily by an inspection of how the λ-weight changes in the proof of
Lemma 4.6.

From the weighted substitution it follows that the weight decreases when a�-normalization
step is performed.

LEMMA 5.5
Let ����M :σ and � rewrites to �′���M′ :σ by a�-normalization step. Then, for every
r≥rk(�):

W(�′,r)<W(�,r)

PROOF. Easy.

So the desired results can be obtained.

THEOREM 5.6 (Strong Polystep Soundness)
Let ����M :σ, and M β-reduces to M′ in m steps. Then:

1. m≤|M|d(�)+1
2. |M′|≤|M|d(�)+1

PROOF.

1. By Lemma 5.3.2, Lemma 5.3.3 and by repeatedly using Lemma 5.5, since |M|≥rk(�).
2. By repeatedly using Lemma 5.5 there is a derivation ����M′ :σ such that W(�,r)<

W(�,r). By Lemma 5.3.3 |M′|=W(�,1). Since clearly W(�,1)≤W(�,r) we have |M′|<
W(�,r) and by Lemma 5.3.2 the conclusion follows.

THEOREM 5.7 (Polytime Soundness)
Let ����M :σ, then M can be evaluated to normal form on a Turing machine in time
O(|M|3(d(�)+1)).
PROOF. Clearly, as pointed in [21], a β reduction step N→βN′ can be simulated in time
O(|N|2) on a Turing machine. Let M≡M0→βM1→β ···→βMn be a reduction of M to normal
form Mn . By Theorem 5.6.2 |Mi |≤|M|d(�)+1 for 0≤ i≤n, hence each step in the reduction takes
time O(|M|2(d(�)+1)). Furthermore since by Theorem 5.6.1 n is O(|M|d(�)+1), the conclusion
follows.

Theorem 5.7 holds for every strategy. In fact analogously to [22] it could have been for-
mulated as a strong polytime soundness, considering Turing machine with an oracle for
strategies. We refer to [22] for further details.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 519 499–530

From light logics to type assignments: a case study 519

5.2 Polynomial Time Completeness
In order to prove polynomial time completeness for STA we need to encode Turing machines
(TM) configurations, transitions between such configurations and iterators. We encode input
data, TM configurations and transitions following the lines of [18] and iterators as usual by
Church numerals. In fact, in [18] the authors have shown that the multiplicative fragment of
SLL is complete for PTIME. We here adapt their proof to show that it is also complete for
FPTIME. Moreover, we exploit the fact that to a term can be assigned an infinite number
of types, by introducing the notion of indexed types for typing the polynomial, and this
allows us to skip the Lafont’s programming discipline, i.e. the distinction between programs
as terms typable by generic proofs and data as terms typable by homogeneous proofs.
Nevertheless, in order to make the bound in Theorem 5.6 polynomial, we show that each
input data can be typed through derivations with fixed degree. In particular we show that
they are typable with derivation with degree equal to 0.

5.2.1 Definability
We generalize the usual notion of lambda definability, given in [6], to different kinds of input
data.
DEFINITION 5.8
Let f :I1×···×In→O be a total function and let elements o∈O and ij ∈Ij , for 0≤ j≤n, be
encoded by terms o and ij such that ��o :O and �j �ij :Ij where �=�1,...,�n . Then, f
is definable if, there exists a term f∈� such that ��fi1 ···in :O and:

fi1 ···in=o⇐⇒ fi1 ···in=βo

In what follows the symbol .= denotes the definitional equivalence. Moreover, as usual Mn(N)
denotes the term inductively defined as M0(N) .=N and Mn+1(N) .=M(Mn(N)) for every n∈N.

5.2.2 Composition
The composition of two terms M and N, denoted M◦N is definable as λz.M(Nz). In particular
for composition we can derive the following rule:

��M :A�B ��N :σ �A �#�

�,��M◦N :σ �B (comp)

Composition can be generalized to the n-ary case, denoted M1◦M2◦···◦Mn , definable by the
term λz.M1(M2(···(Mnz))).

5.2.3 Multiplicative Unit
The multiplicative unit is definable by second order quantifier as:

1 .=∀α.α�α

The constructors and destructors for this data type are definable as:

I
.=λx.x let z be I in M .=zM

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 520 499–530

520 From light logics to type assignments: a case study

The following are derived rules:

�I :1
��N :1 ��M :σ

�,�� let N be I in M :σ

5.2.4 Restricted Weakening
STA is not an affine system, but we can introduce a restricted form of weakening. For
doing so we adapt some results, presented in [18]. The following is a slight modification of
Definition 1 in [18].

DEFINITION 5.9
A type A is �1 if ∀-types occur only positively in it. A type A is e�1 if it contains positive
occurrences of ∀-types or negative occurrences of inhabited ∀-types.
The following analogous of Theorem 1 of [18] will be used in the sequel. We refer to [18] for
its proof.

THEOREM 5.10
For any closed e�1 type A, there is a term WA typable as �WA :A�1.

5.2.5 Tensor product
Tensor product is definable by second order quantifier as

σ⊗τ
.=∀α.(σ �τ �α)�α

The constructors and destructors for this data type are definable as:

〈M,N〉 .=λx.xMN let z be x,y in N .=z(λx.λy.N)

The following are derived rules:

��M :σ ��N :τ �#�

�,��〈M,N〉 :σ⊗τ

��N :σ⊗τ �,x :σ,y :τ �M :ρ �#�

�,�� let N be x,y in M :ρ
We can use Theorem 5.10 to define projection functions. Let σ1⊗σ2 be a closed e�1 type and
Wσ1 and Wσ2 be the terms obtained applying Theorem 5.10. Then, we can define projection
functions as follows:

π21 ≡ λx.let x be y1,y2 in (let Wσ2y2 be I in y1)
π22 ≡ λx.let x be y1,y2 in (let Wσ1y1 be I in y2)

n-ary tensor product can be easily defined through the binary one as follows:

σ1⊗···⊗σn
.= (σ1⊗···⊗σn−1)⊗σn

〈M1,...,Mn+1〉 .= λx.x〈M1,...,Mn〉Mn+1
let z be x1,�x in M .= z(λt.λx1.let t be �x in M)

In what follows σn denotes σ⊗···⊗σ n-times. Let n≥ j≥2 and σ1⊗···⊗σn be a closed e�1
type, then we can define projections using the binary one as follows:

πnn=π22 πnj
.=πn−1j ◦π21

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 521 499–530

From light logics to type assignments: a case study 521

5.2.6 Church numerals
To encode natural numbers we will use Church numerals:

n
.=λs.λz.sn(z)

Church numerals are typable by the usual SLL type for natural numbers

N .=∀α.!(α�α)�α�α

nevertheless we prefer, for reasons that will be explained later, to introduce the following
more general notion of indexed type.

DEFINITION 5.11
The indexed type Ni for each i∈N is defined as:

Ni
.=∀α.!i(α�α)�α�α

where !i stands for !...!
︸︷︷︸

i

.

Clearly N1≡N. The following lemma holds.
LEMMA 5.12
For each Church numerals n and for each i>0∈N:

�n :Ni
PROOF. By induction on n.

5.2.7 Iteration
As usual Church numerals behave as iterators. In fact we can define the iteration N times
of the term S (representing the step function) over the term B (representing the base func-
tion) as:

Iter(N,S,B) .=NSB

Clearly for every Church numeral n:

Iter(n,S,B)→∗
βS
nB

moreover it is easy to verify that the following is a derived rule:

��N :N �1�B :A �2�S :A�A
�,�1,!�2�Iter(N,S,B) :A

It is worth noting that the step function is iterable only if it is definable through a term
typable with type A�A for some linear type A. This in contrast with what happens in
linear logic, where in general step functions proving !A�A are allowed.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 522 499–530

522 From light logics to type assignments: a case study

5.2.8 Polynomials
Successor, addition and multiplication are definable through the usual terms [6].

LEMMA 5.13
The terms succ .=λp.λs.λz.s(psz), add .=λp.λq.λs.λz.ps(qsz) and mul .=λp.λq.λs.p(qs)
define respectively the successor, addition and multiplication functions. They are typable in
STA for i,j>0∈N as:

�Nsucc :Ni�Ni+1
�Nadd :Ni�Nj�Nmax(i,j)+1
�Nmul :Nj�!jNi�Ni+j

PROOF. Easy.

Note that the terms succ,add and mul cannot be typed by the usual types N�N (for the
first) and N�N�N (for the last two). As consequence they cannot be iterated through
Church numerals iteration, but they can be composed to obtain all the polynomials.

EXAMPLE 5.14
If we want to multiply two natural numbers we can use mul typed as:

�Nmul :N�!N�N2

If we want to multiply three natural numbers, we can use the term λx.λy.λz.mul(mulxy)z.
Such term is typable by the following derivation:

��x :N,y :!N�Nmul(mulxy) :!!N�N3
z :N�Nz :N
z :!!N�Nz :!!N

x :N,y :!N,z :!!N�Nmul(mulxy)z :N3
x :N,y :!N�Nλz.mul(mulxy)z :!!N�N3

x :N�Nλy.λz.mul(mulxy)z :!N�!!N�N3
�Nλx.λy.λz.mul(mulxy)z :N�!N�!!N�N3

where � is the following derivation:

�Nmul :N2�!!N�N3

�Nmul :N�!N�N2 x :N�Nx :N
x :N�Nmulx :!N�N2

y :N�Ny :N
y :!N�Ny :!N

x :N,y :!N�N (mulxy) :N2
x :N,y :!N�Nmul(mulxy) :!!N�N3

So in particular the two occurrences of mul need to be typed by different types. In the
derivation we have assigned the type N�!N�N2 to the innermost and N2�!!N�N3 to
the outermost one.

It is important to stress that the change of type as in the Example 5.14, in particular on
the number of modalities, does not depend on the values of data.
We can finally show that STA is complete for polynomials.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 523 499–530

From light logics to type assignments: a case study 523

THEOREM 5.15 (Polynomial Completeness)
Let P be a polynomial in the variable X and deg(P) be its degree. Then there is a term P
defining P, typable as :

x :!deg(P)N�NP :N2deg(P)+1
PROOF. Consider P in Horner normal form, i.e., P=a0+X(a1+X(···(an−1+Xan)···). By
induction on deg(P) we show something stronger, i.e., for i>0, it is derivable:

x0 :Ni,x1 :!iNi,...,xn :!i(deg(P∗)−1)Ni�NP∗ :Ni(deg(P∗))+deg(P∗)+1

where P∗ =a0+X0(a1+X1(···(an−1+Xnan)···) so the conclusion follows using the (m) rule
and taking i=1.
Base case is trivial, so consider P∗ =a0+X0(P ′). By induction hypothesis:

x1 :Ni,...,xn :!i(deg(P ′)−1)Ni�NP′ :Ni(deg(P ′))+deg(P ′)+1

Take P∗ ≡add(a0,mul(x0,P′)), clearly we have:

x0 :Ni,x1 :!iNi,...,xn :!i(deg(P ′)−1)+iNi�NP∗ :Ni(deg(P ′)+1)+deg(P ′)+1+1

Since deg(P∗)=deg(P ′)+1: it follows
x0 :Ni,x1 :!iNi,...,xn :!i(deg(P∗)−1)Ni�NP∗ :Ni(deg(P∗))+deg(P∗)+1

Now by taking i=1 and repeatedly applying (m) rule we conclude
x :!deg(P)N�NP≡P∗[x/x1,··· ,x/xn] :N2deg(P)+1

5.2.9 Booleans
Let us encode booleans, as in [18], by:

0 .=λx.λy.〈x,y〉 1 .=λx.λy.〈y,x〉
By convention we use 0 and 1 for true and false respectively. They can be typed in STA by
the following e�1 type:

B .=∀α.α�α�(α⊗α)

It is easy to verify that the following are derived rules:

�0 :B (B0R) �1 :B (B1R)

From the fact that B is a e�1 type we have the terms:

Or
.= λb1.λb2.π21(b10b2)

And
.= λb1.λb2.π21(b1b21)

Not
.= λb1.λx.λy.b1yx

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 524 499–530

524 From light logics to type assignments: a case study

defining the boolean disjunction, conjunction and negation respectively, which are typable as:

�And :B�B�B �Or :B�B�B �Not :B�B

Moreover, we have terms acting as weakening and contraction on booleans:

WB ≡ λz.let zII be x,y in (let y be I in x)
CB ≡ λz.π21(z〈0,0〉〈1,1〉)

which are respectively typable as:

�WB :B�1 �CB :B�B⊗B
The above functions are useful to prove the following lemma.

LEMMA 5.16
Each boolean total function f :Bn→B

m , where n,m≥1, can be defined by a term f typable
in STA as �f :Bn�Bm .
PROOF. Easy.

In the sequel it will be usefull the following analogous of Lemma 1 of [18]:

LEMMA 5.17
Let A be a (not necessarily closed) e�1 type. Then the following is a derived rule:

��NM :B �NL :A �NR :A
��N if M then L else R :A (BE)

5.2.10 Strings
Strings of booleans can be encoded as:

[] .=λc.λz.z [b0,b1,...,bn] .=λc.λz.cb0(···(cbnz)···)
where bi ∈{0,1}. Boolean strings are typable in STA by the indexed type:

Si
.=∀α.!i(B�α�α)�(α�α)

In particular for each n,i>0∈N the following is a derived rule:

b0 :B,...,bn :B�[b0,...,bn] :Si (SiR)

In the sequel we will use the following.

LEMMA 5.18
The term len .=λc.λs.c(λx.λy.let WBx be I in sy) defines the function returning the length
of an input string. It is typable in STA with typing:

� len :Si�Ni
PROOF. Easy.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 525 499–530

From light logics to type assignments: a case study 525

5.2.11 Turing Machine
We define Turing machine configurations by terms of the shape

λc.〈cbl0◦···◦cbln,cbr0◦···◦cbrm,Q〉
where cbl0◦···◦cbln and cbr0◦···◦cbrm represent respectively the left and the right part of
the tape, while Q≡〈b1,··· ,bn〉 is a n-ary tensor product of boolean values representing the
current state.
We assume, without loss of generality, that by convention the left part of the tape is repre-
sented in a reversed order, that the alphabet is composed by the two symbols 0 and 1, that
the scanned symbol is the first symbol in the right part and that final states are divided in
accepting and rejecting.

DEFINITION 5.19
The indexed type TMki for each i,k ∈N is defined as:

TMki
.=∀α.!i(B�α�α)�((α�α)2⊗Bk)

The above indexed type is useful to type Turing machine configurations.

LEMMA 5.20
Let k ∈N. Every term λc.〈cbl0◦···◦cbln,cbr0◦···◦cbrm,〈q0,...,qk〉〉 defines a Turing machine
configuration. For every i>0 such terms are typable in STA as:

�λc.〈cbl0◦···◦cbln,cbr0◦···◦cbrm,〈q0,...,qk〉〉 :TMki
The initial configuration of a Turing machine is represented by a tape of fixed length filled
by 0 with the head at the begin of the tape and in the initial state Q0. The following lemma
shows how the initial configuration of a Turing machine can be obtained starting from a
numeral representing the length of the tape.

LEMMA 5.21
The term Init .=λt.λc.〈λz.z,λz.t(c0)z,Q0〉 defines the function that, taking as input a
Church numeral n, gives as output a Turing machine with tape of length n filled by 0's
in the initial state Q0≡〈q0,...,qk〉 and with the head at the beginning of the tape. For each
i∈N it is typable in STA as:

�Init :Ni�TMki
PROOF. Easy.

Following [18], in order to show that Turing machine transitions are definable we consider
two distinct phases. In the first one the TM configuration is decomposed to extract the first
symbol of each part of the tape. In the second phase the symbols obtained in the previous
one are combined, depending on the transition function, to reconstruct the tape after the
transition step. In order to type the decomposition of a TM configuration we will use the
type IDki defined as:

IDki
.=∀α.!i(B�α�α)�((α�α)2⊗(B�α�α)⊗B⊗(B�α�α)⊗B⊗Bk)

The decomposition phase is described in the following lemma.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 526 499–530

526 From light logics to type assignments: a case study

LEMMA 5.22
The term:

Dec .=λs.λc.let s(F[c]) be l,r,q in let l〈I,λx.let WBx be I in I,0〉be tl ,cl ,bl0 in
let r〈I,λx.let WBx be I in I,0〉 be tr ,cr ,br0 in 〈tl ,tr ,cl ,bl0,cr ,br0,q〉

where F[c] .=λb.λz.let z be g,h,i in 〈hi◦g,c,b〉 is typable as:
�Dec :TMki �IDki

Its behavior is to decompose a configuration as:

Dec(λc.〈cbl0◦···◦cbln,cbr0◦···◦cbrm,Q〉)→∗
β

λc.〈cbl1◦···◦cbln,cbr1◦···◦cbrm,c,bl0,c,br0,Q〉
PROOF. To verify that Dec has the above typing and the intended behavior is boring but
easy.

Analogously for the combining phase we have the following lemma.

LEMMA 5.23
The term:

Com .=λs.λc.let sc be l,r,cl ,bl ,cr ,br ,q in
let δ〈br ,q〉 be b′,q′,m in (if m then R else L)b′q′〈l,r,cl ,bl ,cr 〉

where

R
.= λb′.λq′.λs.let s be l,r,cl ,bl ,cr in 〈crb′ ◦clbl ◦l,r,q′〉

L
.= λb′.λq′.λs.let s be l,r,cl ,bl ,cr in 〈l,clbl ◦crb′ ◦r,q′〉

is typable as:

�NCom :IDki �TMki
Its behavior is, depending on the δ transition function, to combine the symbols returning a
configuration as:

Com (λc.〈cbl1◦···◦cbln,cbr1◦···◦cbrm,c,bl0,c,br0,Q〉)
→∗

β λc.〈cb′ ◦cbl0◦cbl1◦···◦cbln,cbr1◦···◦cbrm,Q′〉 if δ(br0,Q)=(b′,Q′,Right)
or
→∗

β λc.〈cbl1◦···◦cbln,cbl0◦cb′ ◦cbr1◦···◦cbrm,Q′〉 if δ(br0,Q)=(b′,Q′,Left)

PROOF. To verify that Com has the above typing and the intended behavior is boring but
easy.

By combining the above terms we obtain an entire Turing machine transition step.

LEMMA 5.24
The term Tr .=Com◦Dec defines a Turing machine transition step and is typable as:

�NTr :TMki �TMki

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 527 499–530

From light logics to type assignments: a case study 527

PROOF. Easy, by Lemma 5.22 and Lemma 5.23.

We need a term that initializes a Turing machine with an input string.

LEMMA 5.25
The term

In .=λs.λm.s(λb.(Tb)◦Dec)m

where

T
.=λb.λs.λc.let sc be l,r,cl ,bl ,cr ,br ,q in let WBbr be I in Rbq〈l,r,cl ,bl ,cr 〉

and R
.=λb′.λq′.λs.let s be l,r,cl ,bl ,cr in 〈crb′ ◦clbl ◦l,r,q′〉, defines the function that,

when supplied by a boolean string and a Turing machine, writes the input string on the
tape of the Turing machine. Such a term is typable as

�N In :S�TMki �TMki
Finally we need a term that returns the acceptance or not of a final configuration.

LEMMA 5.26
Let f be a function deciding if a state is accepting or rejecting. Then the term:

Ext .=λs.let s(λb.λc.let WBb be I in c) be l,r,q in (l◦r)(fq)

defines the function that given a Turing machine configuration returns 0 if it is accepting,
1 otherwise. It is typable in STA as:

�NExt :TMki �B

PROOF. Easy. Note that the existence of the term f is assured by Lemma 5.16.

Now we can show that STA is complete for PTIME.

THEOREM 5.27 (PTIME Completeness)
Let a decision problem P be decided in polynomial time P, where deg(P)=m, and in poly-
nomial space Q, where deg(Q)= l , by a Turing machine M. Then it is definable by a term
M typable in STA as:

s :!max(l,m,1)+1S�NM :B

PROOF. By Theorem 5.15: sp :!mS�NP[lensp/x] :N2m+1 and sq :!lS�NQ[lensq/x] :N2l+1. Fur-
thermore, by composition:

s :S,q :N2l+1,p :N2m+1�NExt(pTr(Ins(Init(q)))) :B

so by substitution and by some applications of (m) rule the conclusion follows.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 528 499–530

528 From light logics to type assignments: a case study

Without loss of generality we can assume that a Turing machine stops in a final configuration
with the head at the beginning of the tape. This means that the final configuration is
represented by terms of the shape:

λc.〈λz.z,cbr0◦···◦cbrm,Q〉

The following lemma shows that the function extracting the output string from the final
configuration is easily definable.

LEMMA 5.28
The term:

ExtF
.=λs.λc.let sc be l,r,q in let WBkq be I in l◦r

defines the function that given an accepting Turing machine configuration extracts the result
from the tape. It is typable in STA as:

�NExtF :TMki �Si
PROOF. Easy.

So we can conclude that STA is also complete for FPTIME.

THEOREM 5.29 (FPTIME Completeness)
Let a function F be computed in polynomial time P, where deg(P)=m, and in polynomial
space Q, where deg(Q)= l , by a Turing machineM. Then it is definable by a term M typable
in STA as:

!max(l,m,1)+1S�NM :S2l+1
PROOF. Similar to the proof of Theorem 5.27 but using ExtF. By Theorem 5.15: sp :!mS�N
P[lensp/x] :N2m+1 and sq :!lS�NQ[lensq/x] :N2l+1. By composition:

s :S,q :N2l+1,p :N2m+1�NExtF(pTr(Ins(Init(q)))) :S2l+1
so by substitution and some applications of (m) rule the conclusion follows.

6 Conclusion and future work

We have shown a type assignment system for λ-calculus, which is correct and complete for
polynomial time, i.e., each term that can be typed can be reduced to normal form in time
polynomial with respect to its size, and all polynomial functions can be computed by a
well typed term. The next step is to consider the problem of type inference. We conjecture
because of the presence of the second order quantifier that this problem is undecidable. It
would be possible to follow the same method as in [23] for System F.
In an incoming paper [13], we proved that, if we restrict ourselves to consider just the
propositional fragment, the type inference problem for STA is decidable in polynomial time
in the length of the input term. Moreover, for the whole system, we showed an algorithm
generating all the constraints that need to be satisfied in order to type a given term. This

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 529 499–530

From light logics to type assignments: a case study 529

algorithm can be used for checking the typability in some particular cases. We leave for
future investigations the checking of our conjecture and, in case this will be proved true,
the design of an “approximate” typability algorithm, checking for typability with respect to
given constraints on the shape of the possible typings.

References
[1] Andrea Asperti. Light affine logic. In Proceedings of the Thirteenth Annual IEEE Sym-
posium on Logic in Computer Science (LICS ’98), pages 300–308. IEEE Computer
Society, 1998.

[2] Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transactions
on Computational Logic, 3(1):137–175, 2002.

[3] Patrick Baillot and Virgile Mogbil. Soft lambda-calculus: a language for polynomial
time computation. In Proceedings of the 7th International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS ’04), volume 2987 of Lecture
Notes in Computer Science, pages 27–41. Springer, 2004.

[4] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda-calculus. In Proceedings of the Nineteenth Annual IEEE Symposium on Logic
in Computer Science (LICS ’04), pages 266–275. IEEE Computer Society, 2004.

[5] Patrick Baillot and Kazushige Terui. Light types for polynomial time computation in
lambda calculus. Information and Computation, 207(1):41–62, 2009.

[6] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier/North-
Holland, Amsterdam, London, New York, revised edition, 1984.

[7] Paolo Coppola, Ugo Dal Lago, and Simona Ronchi Della Rocca. Elementary affine logic
and the call by value lambda calculus. In Proceedings of the 8th International Conference
on Typed Lambda-Calculi and Applications (TLCA ’05), volume 3461 of Lecture Notes
in Computer Science, pages 131–145. Springer, 2005.

[8] Vincent Danos and Jean-Baptiste Joinet. Linear logic and elementary time. Information
and Computation, 183(1):123–137, 2003.

[9] Marco Gaboardi. Linearity: an Analytic Tool in the study of Complexity and Semantics
of Programming Languages. PhD thesis, Università degli Studi di Torino - Institut
National Polytechnique de Lorraine, 2007.

[10] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. A logical account
of PSPACE. In 35th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages POPL 2008, San Francisco, January 10-12, 2008, Proceedings, pages
121–131, 2008.

[11] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca. Soft linear logic
and polynomial complexity classes. In Proceedings of the Second Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2007), volume 205 of Electronic
Notes in Theoretical Computer Science, pages 67–87. Elsevier, 2008.

[12] Marco Gaboardi and Simona Ronchi Della Rocca. A soft type assignment system for λ-
calculus. In Proceedings of the 21st International Workshop on Computer Science Logic
(CSL ’07), volume 4646 of Lecture Notes in Computer Science, pages 253–267. Springer,
2007.

[13] Marco Gaboardi and Simona Ronchi Della Rocca. Type inference for a polynomial
lambda-calculus. In Types for proofs and programs 2008, TYPES’08, Lecture Notes in
Computer Science. Springer, 2009. Accepted.

[18:38 6/10/2009 jzp019.tex] Paper Size: a4 paper Job: JIGPAL Page: 530 499–530

530 From light logics to type assignments: a case study

[14] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[15] Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204,

1998.
[16] Jean Goubault-Larrecq and Ian Mackie. Proof Theory and Automated Deduction, vol-

ume 6 of Applied Logic Series. Kluwer Academic Publishers, Dordrecht, 1997.
[17] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,

318(1-2):163–180, 2004.
[18] Harry G. Mairson and Kazushige Terui. On the computational complexity of cut-

elimination in linear logic. In ICTCS, volume 2841 of Lecture Notes in Computer Sci-
ence, pages 23–36. Springer, 2003.

[19] Simona Ronchi Della Rocca and Luca Roversi. Lambda calculus and intuitionistic linear
logic. Studia Logica, 59(3), 1997.

[20] Morten H. Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism,
volume 149 of Studies in Logic and the Foundations of Mathematics. Elsevier, 2006.

[21] Kazushige Terui. Light affine lambda calculus and polytime strong normalization. In
Proceedings of the Sixteenth Annual IEEE Symposium on Logic in Computer Science
(LICS ’01), pages 209–220. IEEE Computer Society, 2001.

[22] Kazushige Terui. Light logic and polynomial time computation. PhD thesis, Keio Uni-
versity, 2002.

[23] J. B. Wells. Typability and type checking in System F are equivalent and undecidable.
Annals of Pure and Applied Logic, 98(1–3):111–156, 1999.

Received May 11, 2008

	From light logics to type assignments: a case study
	1 Introduction
	2 Soft Linear Logic
	2.1 Polynomial time soundness
	2.2 PTIME Completeness

	3 SLL and -calculus
	4 Essential Soft Linear Logic
	4.1 ESLL in (quasi) Natural Deduction

	5 The Soft Type Assignment System
	5.1 Polynomial Time Soundness
	5.2 Polynomial Time Completeness

	6 Conclusion and future work

