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2 Dipartimento di Matematica - Università di Torino
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Abstract. We study the relations between Multiplicative Exponential Linear
Logic (meLL) and Baillot-Mazza Linear Logic by Levels (mL3). We design
a decoration-based translation between propositional meLL and propositional
mL3. The translation preserves the cut elimination. Moreover, we show that there
is a proof net Π of second order meLL that cannot have a representative Π ′

in second order mL3 under any decoration. This suggests that levels can be an
analytical tool in understanding the complexity of second order quantifier.

1 Introduction

The implicit characterization of the polynomial and elementary time computations by
means of structural proof theory takes its origins from a predicative analysis of non
termination. We recall, indeed, that Girard conceived Elementary Linear Logic (ELL)
and Light Linear Logic (LLL) [1] by carefully analyzing the formalization of naı̈ve set
theory inside the Multiplicative and Exponential fragment of Linear Logic (meLL).
The comprehension scheme could be represented without any paradoxical side effect
by forbidding the logical principles dereliction !A � A and digging !!A � !A.

Intuitively, without dereliction and digging the proof nets of both ELL and LLL are
stratified. Namely, during the cut elimination process, every node of a proof net either
disappears or it is always contained in a constant number of regions, called boxes. The
stratified proof nets of ELL are characterized by a cut elimination cost which is bounded
by an elementary function whose parameters are the size of a given net Π and its depth,
i.e. the maximal number of nested boxes in Π .

Moreover, Girard noted that ruling out the monoidality of the functor “!”, i.e.
(!A⊗!B) �!(A ⊗ B), from ELL yields LLL whose cut elimination cost lowers to a
polynomial. The reason is that the logical connective ⊗ somewhat allows to count the
resources we may need. Commuting⊗ with ! hides the amount of used logical resources
because of the contraction !A � (!A⊗!A). So, the absence of monoidality allows to
keep counting the needed resource by means of ⊗.

In [2], the authors pursue the predicative analysis on meLL by introducing mL3.
This system generalizes ELL by means of explicit indices associated to the edges of the
proof nets of meLL. Moreover, further structural restrictions on mL3 yield a polynomial
time sound generalization mL4 of LLL. The use of indices in meLL analysis is not new
and traces back to, at least, [3,4]. The new systems mL3 and mL4 still characterize
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implicitly the elementary and polynomial computations. Their distinguishing feature
lies in a more flexible use of the nodes that change the level, so, somewhat generalizing
the notion of box.

Since mL3 is a restriction of meLL, it is natural that some derivation of the latter
cannot be represented inside the former, the reason being we know that the cost of the
cut elimination of meLL overwhelms the elementary one of mL3.

In this paper, we show that indices strongly restrict meLL proof nets in presence of
∃ and ∀, while they are minor restriction when quantifier do not get used. Indeed, we
can show that every proof net Π in the propositional fragment of meLL has a repre-
sentative Π ′ in mL3 that preserves the cut elimination. Specifically, Π ′ is the result of
a predicative analysis of Π , based on indices we can use to label every edge of mL3

proof nets. The proof net Π ′ of mL3 is the result of the algorithm @, applied to Π , we
introduce in this work. The proof net @(Π) is a decoration of both the edges and the
formulæ of Π , using the paragraph modality §, whose instances correspond to an index
change in the proof net of mL3 being constructed.

The interest of the translation that @ implements is twofold. Concerning the struc-
tural proof theory, @ shows that the modality § internalizes the notion of index at the
level of the formulæ. Concerning the implicit characterization of complexity classes,
@ offers the possibility of a finer study of normalizations measures of propositional
meLL, thanks to the structural aspects that mL3 supplies.

Finally we answer negatively to the following two natural questions: (i) Is there any
extension of @ able to translate every proof net of (full) meLL into mL3?, and (ii) Is
there any translation, alternative to any generalization of @, from meLL to mL3? The
reason of the negative answer lies in the proof net Π of meLL in Figure 6. There is no
decoration Π ′ in mL3 of Π because to obtain Π ′ either we should collapse two distinct
indices of Π ′ or we would need a new node able to change indices but not the formulæ.
Both solutions would imply a cut elimination cost blow up, unacceptable inside mL3.

Summing up, the predicative analysis of meLL by means of the indices inside mL3

identifies as the true source of impredicativity of meLL the collapse of indices, implicit
in the second order quantification of the formulæ of meLL itself. Then, the “side effect”
of such a collapse is the huge cut elimination bound of meLL.

2 Second Order meLL

We start by recalling second order Multiplicative Exponential Logic (meLL) in proof
nets style. In particular, analogously to [2], we present a meLL version including the
paragraph (§) modality.

The formulæ. meLL derives multisets of formulæ that belong to the language generated
by the following grammar:

F ::= A | �A A ::= α | A ⊗ A | A�A | ∀α.A | ∃α.A | !A | ?A | §A | A⊥

The start symbol F generates both (standard) formulæ and partially discharged for-
mulæ. Standard formulæ are generated from the start symbol A. Partially discharged
formulæ are of kind �A; the syntax prevents nesting of � symbols. We shall use A, B, C,



346 M. Gaboardi, L. Roversi, and L. Vercelli

�
A⊥ A

�A⊥ A
⊗

A B

A⊗B

`
A B

A`B

∀

A

∀α.A

∃

A{B/α }

∃α.A

Axiom Cut Tensor Par Forall Exists

�

A

�A

?�A

...

�A

?A

!

A

!A

§

A

§A

pax

�A

�A

Flat Contraction Bang Paragraph Aux. Port

Fig. 1. Nodes for the nets of meLL

possibly with sub or superscripts, to range over standard formulæ, F, G to range over
formulæ. Γ, Δ, Ξ range over multisets of formulæ. The standard meLL formulæ are
quotiented by the De Morgan rules, where (A, A⊥), (⊗,�), (∀, ∃), (§, §) and (!, ?) are
the pairs of dual operators. Notice that § is self dual, namely: (§A)⊥ = §(A⊥).

Proof nets of meLL. Given the nodes in Figure 1, we say that an Axiom node is a proof
net. Moreover, given two proof nets:

Π1

......F1 Fm

Π2

......G1 Gn

Π1 :F1, . . . , Fm Π2 :G1, . . . , Gn

with m, n ≥ 1, then all the graphs inductively built from Π1 and Π2 by the rule schemas
in Figure 2 are proof nets.

Cut elimination in meLL. Every pair of dual linear nodes (axiom/cut, ⊗/�, ∀/∃, §/§)
annihilates in one step of reduction, as usual in literature. The exponential pair of dual
nodes !/? rewrites by means of the big-step in Figure 3.

Basic definitions and properties in meLL. The modality § is not part of the original
version of meLL; it is easy to show that in meLL § is, essentially, useless, i.e. A and
§A may be proved equivalent in meLL. Nevertheless, § become useful when handling
sublogics of meLL. §kA means § . . . §A with k paragraphs.

The original formulation of meLL also contains the mix rule and units, but for sim-
plicity we omit them.

A weakening node is a contraction with 0 premises. We call axiom-edge, weakening-
edge, cut-edge, etc. an edge connected to an an axiom node, a weakening node, a cut
node, etc..

Fact 1 (About the Structure of the Proof Nets). Let Π be a proof net of meLL, and
u one of its cut links or conclusions. Let ρ be a graph-theoretical path along Π from u
to an axiom or to a weakening node v, not containing any other axioms. Then ρ does
not contain any other cut node.
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Fig. 3. Big-step reduction. A contraction with k premises in the redex implies k copies of Π in
the reduct. For the sake of clarity we do not draw all the boxes in the picture.

Thanks to this Fact, we can state that all the edges of our proof nets are directed down-
wards, from axioms or weakening nodes towards conclusions or cut nodes, even if we
do not draw the corresponding arrows. A path inside a meLL proof net Π is a sequence
of nodes τ = 〈u0, . . . , uk〉 in Π such that (i) each ui is connected with ui+1, (ii) the
direction of such edge is from ui towards ui+1, and (iii) for every i, ui �= ui+1. The
size of a meLL proof net is the number of its nodes.

3 Multiplicative Linear Logic by Levels: mL3

The system mL3 is described in [2]. It is the subsystem of all the proof nets of meLL
admitting an indexing:
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Fig. 4. Costraints for indexing meLL proof nets

Definition 1. Let Π be a proof net of meLL. An indexing for Π is a function I from
the edges of Π to Z satisfying the constraints in Figure 4 and such that I(e) = I(e′)
for all the conclusions e, e′ of Π .

Fact 2 (Indexes do not Increase from Axioms to Conclusions). Let Π be an mL3

proof net, I an indexing for Π , ρ a path from some node u to some node v. Then
I(u) ≥ I(v).

It will be convenient to consider a particular kind of indexing.

Definition 2. Let Π be an mL3 proof net, and I be an indexing for Π . We say that I is
canonical if Π has an edge e such that I(e) = 0, and I(e′) ≥ 0 for all edges e′ of Π .

Fact 3 (Existence of Canonical Indexing [2]). Every proof net of mL3 admits one and
only one canonical indexing.

We can now define a measure on mL3 proof nets.

Definition 3. Let Π be an mL3 proof net, and let I0 be its canonical indexing. The level
of Π is the maximum integer assigned by I0 to the edges of Π .

If 2n
x is the function such that 2n

0 = 2n and 2n
m = 22n

m−1 , then:

Theorem 1 (Elementary bound for mL3 [2]). Let Π be an mL3 proof net of size s
and level l. Then, the round-by-round cut-elimination procedure reaches a normal form
in at most (l + 1)2s

2l steps.

The Theorem above is a result of weak polynomial soundness, as it only has been proved
for a particular cut-elimination procedure. It is reasonable however that it can be gen-
eralized to any reduction strategy, in analogy to what happens in ELL and LLL [5]. The
interested reader may find the definition of the round-by-round procedure and a proof
of Theorem 1 in [2].

4 Embedding Propositional meLL into mL3

Definition 4. Let Π be a proof net of meLL. A quasi-indexing for Π is a function Q
from the edges of Π to Z that respects all the constraints in Figure 4, with the possible
exception of the axiom edges, and such that for all conclusion e, e′ of Π it holds Q(e) =
Q(e′).
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Fact 4 (Quasi-Indexing Exists). Every meLL proof net admits a quasi-indexing.

Proof. Let Π be a proof net of meLL; we want to build some quasi-indexing Q. We
call c1, . . . , cn the cut nodes of Π . We arbitrarily choose a value Q(e) = i for all the
conclusion edges e of Π , and a value Q(ej

1) = Q(ej
2) = ij for every couple of edges

ej
1, e

j
2 incident in cj . Then, using the rules in Figure 4, we can calculate the value of Q

in all the edges of the proof net. The process of calculation terminates when the axiom
and weakening nodes are reached. 	

For every Π , whose cut nodes are c1, . . . , cn, we call Q(i, i1, , ...in) the (unique) quasi-
indexing that has value i on the conclusions and value i1, . . . , in on the cut-edges. This
definition is justified looking at the proof of Fact 4.

The coming level of a formula is completely unrelated to the levels of Definition 3:

Definition 5. For every formula A of meLL let the formula level fl(A) be:

fl(α) = 0 fl(�A) = fl(A) + 1 � ∈ {!, ?, §}
fl(�A) = fl(A) fl(A� B) = max{fl(A), fl(B)} � ∈ {⊗,�}

Definition 6. Let Π be a proof net of meLL, Q a quasi-indexing for it. Let e be an
edge in Π , labelled by a formula A. Then, the absolute level of e in Π is defined as
al(e) = Q(e) + fl(A).

Notice that the definition depends on the chosen quasi-indexing.
The following map is crucial in the proof of Proposition 1:

Definition 7. For every meLL formula A let (A)∗ be defined as:

(α)∗ = α

(B � C)∗ = §d(B)∗ �(C)∗ if d = fl(C) − fl(B) ≥ 0 � ∈ {⊗,�}
(B � C)∗ = (B)∗ � §−d(C)∗ if d = fl(C) − fl(B) ≤ 0 � ∈ {⊗,�}

(�A)∗ = �((A)∗) � ∈ {!, ?, �} .

The algorithm @. The main result of this section concerns the following algorithm
@. Let the arguments of @ be a proof net Π : A1, . . . , An of propositional meLL and
a quasi-indexing Q for Π . The algorithm returns an mL3 proof net. We will give a
direct proof of this fact. Let the conclusions and the cut edges of Π be e1, . . . , en. Let
K = max1≤i≤n {al(ei)}. For every edge ei, with 1 ≤ i ≤ n, labelled with the formula
Ai, we define @ to perform the following steps:

1. Replace Ai by (Ai)∗.
2. Add ki new (§) nodes after the edge ei where ki = K−al(ei), label the new edges

respectively by §1(Ai)∗, . . . , §ki(Ai)∗ and modify the quasi-indexing accordingly.
Note that now al (ei) = K . See Figure 5 a.

3. Apply the subroutine ϑ of @, here below, to the edge ei.

The subroutine ϑ takes an edge e of (the already modified version of) Π as its argument.
ϑ is recursive and is defined by cases on the kind of the edge e:
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Fig. 5. The main cases of the rewriting steps performed by @ (Proof of Proposition 1)

(a) If e is an axiom edge, then it is done.
(b) If e is the conclusion of a (⊗) node with premises the edges f and g labelled with

formulae B and C respectively, then replace B by (B)∗ and C by (C)∗ respectively.
Let us suppose for clarity that fl(B) > fl(C) (see Figure 5 b). Calling d =
(fl(B)−fl(C)), we add d new (§) nodes after the edge g and label the new edges
g1, . . . , gd respectively by §1(Ci)∗, . . . , §d(Ci)∗. Modify Q accordingly, then apply
ϑ on f and g.

(c) If e is the conclusion of a (!) node (or (�) or (pax)) with premises the edge f labelled
with the formula B then replace it by (B)∗ and apply ϑ on f .

(d) If e is the conclusion of a (?) node with premises the edges f1, . . . , fl labelled with
formulae B1, . . . Bl, then replace them by (B1)∗, . . . , (Bl)∗ and apply ϑ on every
f1, . . . , fl.

Proposition 1 (Embedding Propositional meLL into mL3). There is an algorithm
@(·, ·) that takes every proof net Π of propositional meLL, endowed with a quasi-
indexing Q, and returns a proof net @(Q, Π) of mL3. The proof nets Π and @(Q, Π)
only differ for the possible presence of some new paragraph nodes.

Proof. @(·, ·) is the algorithm already described. @(·, ·) transforms a proof net Π of
meLL in a new graph @(Q, Π), with conclusions labelled by §k1(A1)∗, . . . , §kn(An)∗,
for some k1, . . . , kn, to which it is naturally associated a quasi-indexing Q′. The quasi-
indexing Q′ associates to conclusions and cut edges of @(Q, Π) the same indices as Q
assigns to conclusions and cut edges of Π . We need to check that @(Q, Π) is really a
proof net of meLL, and that this proof net is in mL3.

Let us consider the transformations previously described. The untyped graph is still
an untyped proof net of meLL, because we have just added some paragraphs. More-
over, by construction every edge e of Π labelled by A is translated into an edge e′ of
@(Q, Π), labelled by (A)∗. So, in particular, axioms, cuts and contractions are labelled
correctly. The labelling of the other nodes follows by construction of @(·, ·).



A By-Level Analysis of Multiplicative Exponential Linear Logic 351

At last, we need to show that Q′ is an indexing. Let us consider two edges f, g
incident into an axiom in @(Q, Π), labelled resp. by A and A⊥. Notice that, by con-
struction, for every edge e of @(Q, Π) it holds al(e) = K . As a consequence, f and g
have the same quasi-index Q′(e) = al(e)− fl(A) = K − fl(A), and so Q′ is also an
indexing. 	

Proposition 2 (@(·, ·) preserves the Cut-Elimination). For every reduction Π →+ Σ
in propositional meLL, and for every quasi-indexing Q of Π , there exists a quasi-
indexing Q̃ of Σ such that @(Q, Π) →+ @(Q̃, Σ):

Π →+ Σ in meLL
↓ ↓

@(Q, Π) →+ @(Q̃, Σ) in mL3

Proof. It is enough to prove the result for 1-step reductions Π → Σ. So, let c be the cut
fired during this reduction; c corresponds to a unique cut c′ of @(Q, Π). By construction
of @(·, ·), the only difference between Π and @(Q, Π) is the possible presence of
paragraphs. As many (§) nodes as T may occur just above c′. If we eliminate all the T
(§) nodes we have that the edges entering c′ correspond to the edges entering c. Firing
c′ yields a proof net Θ of mL3. We have to show that Θ = @(Q̃, Σ), for some Q̃. If
c was a cut with an axiom, or a cut between a weakening and a closed box, then both
c and c′ annihilate. Otherwise, we get (at least) one residual c′′ of c′ inside Θ. We can
define Q̃ equal to Q on all the conclusions and cut edges that are not involved in the
reduction, and that is defined on the edges entering c′′ as follows. We distinguish two
cases. If c is not an exponential cut, e is an edge incident to c, and f is an edge incident
to c′′, then Q̃(f) = Q(e) + T . If c is an exponential cut, Q̃(f) = Q(e) + T + 1. 	

Corollary 1 (Complexity Bound for meLL). Let Π be a proof net of meLL. Let’s call
M = max{fl(A) | A a formula labelling an edge of Π}. Then, the round-by-round

cut-elimination procedure of Π terminates in at most (M + 1) · 2M·|Π|
2M steps.

Proof. Let us fix the quasi indexing Q = Q(0, 0, . . . , 0), and let us calculate @(Q, Π).
Notice in particular that (i) the constant K = max1≤i≤n {al(ei)} used defining @
in this case is K = max1≤i≤n {fl(ei)} ≤ M ; and (ii) the indexing I induced on
@(Q, Π) is canonical. We want apply Theorem 1 to @(Q, Π). The size |@(Q, Π)| is
bounded by K · |Π |: indeed, for every node of Π , @ adds at most K new (§) nodes. The
level of @(Q, Π) is l = max{I(e) | e is an edge of @(Q, Π)}. Every I(e) is bounded
by K , so l ≤ K . Thus, @(Q, Π) reduces in at most (K +1) ·2K·|Π|

2K ≤ (M +1) ·2M·|Π|
2M

steps because of Theorem 1. At last, Proposition 2 tells that Π reduces in at most as
many steps as @(Q, Π), and the thesis follows. 	


5 The Full meLL Case

The Proposition 1 fails for second order meLL proof nets. The counterexample is the
proof net Π in Figure 6. The behaviour of Π is analogous to the λ-term (λx.xx)2. Note
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Fig. 6. This proof net represents the λ-term (λx.xx)2. The two dashed boxes are the proof nets
proving � C⊥, D and, essentially, � ?D⊥, C.

that the argument 2 of Π is not really necessary, but it is makes evident the dynamic
interaction of the two occurrences of x.

We call ρ the path starting from the axiom v and arriving into the contraction u
passing through the (∃) node w1; we call τ the path starting from v and arriving into u
passing through the (∃) node w2.

Firstly, we can imagine to extend the algorithm @ used in the proof of Proposition 1,
to a new algorithm @. It is necessary to extend the definitions of the map (·)∗ and of
the formula level. The most naı̈ve assumption is that (QA)∗ = Q(A)∗ and fl(QA) =
fl(A) for each quantifier Q. It will be enough to study the behaviour of @ along the
paths ρ and τ . Starting from the cut node c, @ would add several new (§) nodes to Π ,
in particular over the right premise of the (⊗) nodes z1 and z2, but no new nodes over
ρ and τ . So, the resulting net would not admit any indexing, because the two edges
incident in v would still have different quasi-indices 2 and 3.

Now, the reader may legitimately think that this problem is due to our particular (and
naı̈ve) definition of the algorithm @. In fact, the problem is more serious. We will show
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Fig. 7. Exponential inductive rule schemes to build proof nets of SLL

that there is no way of building an mL3 proof net just adding some (§)-nodes to Π . In
order to have the same index on the two sides of v, we need to add along the path ρ one
(§) node more than the ones we add along τ . The problem arises as the two formulas
labelling the premises of u must be equal. Along ρ, a (§) node can be added only along
the four edges connecting v to t; but whatever edge we choose, if we add a (§) node
along it, we are forced to add another (§) node along τ to make the premises of u agree.
And so the resulting proof net cannot be indexed.

6 Concluding Remarks and Further Works

The main contribution of our work is a predicative analysis of meLL by means of the
indices inside mL3. Such an analysis highlights that the source of the huge complex-
ity cost of meLL is due to the use of second order quantifiers that hide and collapse
indices. Our analysis is also connected to other problems, that motivate some further
developments we outline in the following.

mL3 as a framework for ICC. We recall that the main reason behind mL3 is to better
understand computations with elementary cost. This work is to support the idea that
mL3 is very useful to characterize other complexity classes. Of course, the simple def-
inition of mL4 as a subsystem of mL3, that generalizes a simplified version of LLL,
studied in [6,7], already supports such an idea. We strengthen it further by embedding
the propositional fragment of SLL [8] in mL3. We recall that the formulæ of SLL are
a subset of the meLL ones. The proof nets of SLL are built using the “linear” nodes
of meLL, and the “exponential” nodes in Figure 7. Our embedding of SLL into mL3 is
based on an intermediate embedding of SLL into meLL. Let us call exponential every
path from a (�) node u of a meLL proof net to the first (?) node we may cross, starting
from u. SLL can be identified with the subsystem of meLL including all and only the
proof nets Π that satisfy the following conditions:

R1: Every exponential path entering a (?) node with one premise crosses at most one
(pax) node.

R2: Every exponential path entering a (?) node with more that one premise does not
cross any (pax) node.

§N: No (§) node occurs in Π .

R1 and R2 simplify analogous conditions in [7]. Basing it on the R1, R2, and §N,
we define the following map algorithm from the proof nets of SLL to those ones of



354 M. Gaboardi, L. Roversi, and L. Vercelli

meLL. Every (?) node of Π becomes a (�) node followed by a (pax) node followed
by a (?) node. Every multiplexor (m) with k premises becomes a tree composed by k
(�) nodes, followed by a (?) node. Proposition 1 implies that propositional SLL has a
corresponding subsystem in mL3. In particular, it is easy to verify that such a subsystem
is the one obtained by considering only the proof nets of propositional mL3 satisfying
exactly R1 and R2 since @ preserves them.

Our future work is on the embedding of full SLL into mL3. This should be possi-
ble because the structural constraints that lead from meLL to SLL limit the interaction
between second order quantifiers and indices, implicitly hidden by the of-course modal-
ity. The proof net in Figure 6, not in SLL, supports this idea, because the second order
quantifiers, associated to the duplication-related modality, may require to collapse in-
dices which must be necessarily distinct, as already observed in Section 5.

Complexity bounds for the simply typed λ-calculus. We also aim at a proof theo-
retical based analysis of the computational complexity of the simply typed λ-calculus,
which, under the Curry-Howard analogy, can correspond to intuitionistic propositional
meLL. We mean we want to trace back to simply typed λ-calculus the purely structural
analysis of the computational complexity that mL3 supplies for propositional meLL.
The point is to avoid any reference to the type of a given simply typed λ-term to infer
its normalization cost, as in [9,10]. First steps in this direction are Proposition 1, and a
careful inspection of the definition of @. Let Π be a proof net of propositional meLL.
Proposition 1 implies that the length of the reduction sequences of @(Π) in mL3 bound
those ones of Π . The definition of @ reveals a relation between the structure of Π and
the level of @(Π). The latter comes from the formulæ levels of formulæ of only specific
axiom nodes of Π . So, the open points for coming work are at least two: (i) Is there any
linear or polynomial function relating the size of Π and the level of @(Π)?, and (ii) Is
there any alternative @′ to @ never using the formulæ of the above specific axioms in
Π able to yield @′(Π) in mL3?
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