
Type-based Sensitivity Analysis
Loris D’Antoni1, Marco Gaboardi1,2, Emilio Jesús Gallego Arias1,
Andreas Haeberlen1, and Benjamin C. Pierce1

1 University of Pennsylvania
2 Università di Bologna - INRIA Focus team

Abstract
Function sensitivity—how much the result of a function can change with respect to linear changes
in the input—is a key concept in many research areas. For instance, in differential privacy, one of
the most common mechanisms for turning a (possibly privacy-leaking) query into a differentially
private one involves establishing a bound on its sensitivity.

We propose an automatic type-based analysis that infers the sensitivity of simple functional
programs. This analysis has been implemented in the compiler for Fuzz, a language for differ-
entially private queries. The main component of the analysis is an extension to the typechecker
that generates nonlinear constraints over positive real numbers extended with infinity. A so-
lution to the constraints provides an upper bound on program sensitivity. We use Z3 to solve
these constraints and demonstrate the effectiveness of this approach by measuring our sensitivity
inference analysis on several examples.

1998 ACM Subject Classification D.3.2 Applicative (Functional) Programming, F.3.1 Specify-
ing and Verifying and Reasoning about Programs
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1 Introduction

The sensitivity of a function f(x) is an upper bound on how much f(x) can change in
response to a change to x—in other words, if f has sensitivity k, then |f(x+δ)−f(x)| ≤ k ·|δ|
for all x and δ. This property, also known as Lipschitz continuity, can be extended to entire
programs with multiple inputs, and it has important applications in many parts of computer
science, including control theory [26], dynamic systems [7], program analysis [9], and data
privacy [13].

In these applications, it is often necessary to verify a claim that a given function or
program has a particular sensitivity. For instance, consider the following scenario from the
differential privacy literature [13]: A querier Q asks the owner of a private database D to run
some program f on D and then report the result f(D) back to Q. It is known that this can
be done safely, as long as a) the program f has a finite sensitivity, and b) the answer f(D) is
perturbed with a bit of random “noise”, the amount of which depends on the sensitivity of f .
Notice that f can be an arbitrary program, and that the safety of the response depends on
knowing the correct sensitivity; if the owner of the database underestimates the sensitivity
of f , the result can be a serious privacy breach.

A related and equally important problem is to infer a minimal sensitivity for a given
program. A program with sensitivity k also has sensitivity k′ for any k′ > k; thus, it is
not incorrect to assign a program a sensitivity that is larger than necessary. However, high
sensitivities come at a cost: for instance, a highly sensitive control function may be deemed
less stable than it actually is, or a highly sensitive query on a private database may be
perturbed with more noise than is strictly necessary, reducing the accuracy of the result.
Thus, it is useful to be able to infer sensitivities that are as small as possible.

© L. D’Antoni et. al.;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


One promising approach to these problems is to use a linear type system to reason about
sensitivity [22, 15, 11]. In this approach, the program f is written in a special-purpose
programming language whose expressions are decorated with annotations describing the
sensitivity of each function; the typing rules are used to reason about the sensitivity of larger
and larger subprograms in a compositional way. Thus, the sensitivity of the overall program
can be verified from the known sensitivities of the language primitives. This approach is
attractive because it produces a formal proof that a given program has a certain sensitivity;
however, it requires the programmer to make extensive sensitivity annotations throughout
the program, which is tedious, error-prone, and hard to maintain, since a small change in
some part may require the user to redo many annotations.

In this paper, we present a method that can infer and verify the sensitivity in a completely
automated way, requiring no sensitivity annotations. Our key insight is that the type-
checking process can be split into two steps: 1) a symbolic step that is largely analogous
to standard type checking in functional programming languages, and 2) a numerical step
that infers suitable values for the sensitivity annotations. The first step produces a set of
constraints, such that each satisfying assignment corresponds to a valid upper bound on the
program’s sensitivity; the second step then finds solutions for these constraints by handing
them to a standard SMT solver.

To demonstrate that our approach is practical, we have applied it to Fuzz [22], a pro-
gramming language for differential privacy. In Fuzz, the generated constraints are nonlinear
inequalities over the positive extended real numbers (the set {r ∈ R | r > 0} ∪ {∞}, writ-
ten R∞ here), which are difficult to handle with most SMT solvers; fortunately, Z3 [12] is
able to handle this theory thanks to its built-in support for nonlinear real arithmetic and
its ability to integrate multiple theories. We have integrated our approach with the Fuzz
compiler and measured running times on five sample queries from the differential privacy
literature. Our results show that Z3 can solve all of the generated constraint systems in
less than 200 milliseconds each and that it can find a good approximation to the minimal
sensitivity in less than a second. In each case, the compiler produces a full set of sensitivity
annotations automatically, without programmer intervention.

In summary, our contributions are: first, a language-based approach for inferring and/or
verifying program sensitivity in a completely automatic way, based on generating constraints
on possible sensitivity annotations that can then be solved by an SMT solver (§2 and §3);
second, an application of our approach to Fuzz [22], a programming language for differential
privacy, and the corresponding set of concrete constraints, which are nonlinear inequalities
over the real numbers (§4); third, an implementation of our approach in the Fuzz compiler,
which is based on the SMT solver Z3 (§5); and fourth, an experimental evaluation with five
concrete programs from the differential privacy literature (§6).

2 The µFuzz language

As a vehicle for explaining our approach, we introduce µFuzz, a simple functional program-
ming language with a linear type system able to reason about sensitivity. µFuzz is a proper
subset of the language Fuzz [22], including just the features needed to illustrate how sensi-
tivity analysis works. Extending the analysis to the full Fuzz language is straightforward
and completely modular as witnessed by the implementation.

Types and terms. Figure 1 shows the formal grammar of µFuzz, a simple functional
language with real-number constants. Notice that real numbers appear in µFuzz in two
places: both as constants and as annotations. In the examples, we will also use the arithmetic
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τ, σ ::= R | !rσ ( τ |σ ⊕ τ (types, r ∈ R∞)

e ::= x | r | f |λx : !rσ.e | e1 e2 |fix e | inji e | case eof x→ el | y → er (expressions)

Γ ::= ∅ |Γ, x : !rσ (environments)

Figure 1 µFuzz syntax

operations of addition and multiplication by a scalar, but we don’t bother formalizing them
here.

The types are a refinement of the classical simply typed lambda-calculus with some extra
information about sensitivity. Specifically, in a function with type !rσ ( τ , the annotation
r (drawn from R∞) gives an upper bound on the function’s sensitivity. When r is equal to
∞, it means that the sensitivity is not bounded. We define r +∞ = ∞, and r · ∞ = ∞.
We write σ → τ as a shorthand for !∞σ ( τ . For the moment, sensitivity annotations on
lambda-abstractions are explicit; we explain how to infer them in §3.

Typing. Figure 2 shows the rules for type assignment in µFuzz. The judgment Γ ` e : σ
can be read as “the expression e has type σ under the assumptions in environment Γ,”
where Γ records both the type of each free variable x appearing in e and an upper bound
on the sensitivity of e to changes x; the binding x : !rτ in Γ means that e can be assigned
type σ assuming that x has type τ and that e is r-sensitive on x. Given r ∈ R∞ and
two environments Γ and ∆ binding the same set of variables, we define the r-scaled sum
operation Γ + r ·∆ as follows:

Γ + r ·∆ = {x : !r1+r·r2σ | x : !r1σ ∈ Γ ∧ x : !r2σ ∈ ∆}∪
{x :r1 σ | x :r1 σ ∈ Γ ∧ x 6∈ dom(∆)} ∪ {x :r·r2 σ | x 6∈ dom(Γ) ∧ x :r2 σ ∈ ∆}.

The (Prim) rule assigns to the primitives in our language the corresponding predefined
types. The (Const) rule assigns the type R to a real number constant r; since the expression
r does not depend on the variables in Γ the rule does not require further assumptions. The
(Var) rule says that the variable x has type τ , if x is assigned the type τ by the enviroment,
and the sensitivity annotation on x is at least 1; this rule is motivated by the fact that the
value of the expression x is indeed 1-sensitive to changes in x. The (( I) rule says that if
e is r-sensitive in the free variable x, and if e yields a value of type σ when x is of type τ ,
then the lambda-abstraction λx : !rτ.e is an r-sensitive function of type !rτ ( σ. The most
interesting rule is (( E): if e1 is an r-sensitive function from τ to σ, and if e2 has type τ ,
then 1) the application e1 e2 has type σ, and 2) the sensitivity of e1 e2 in each free variable
x is the sum of r times the sensitivity of e2 in x, and the sensitivity of e1 in x (because
each use of x in e2 is “magnified” r times by the use that e1 makes of its argument). A
similar policy for sensitivities is used by the rule (Case). A further aspect specific to this
rule is that the expressions el and er are required to have the same sensitivities in their free
variables. For this reason they are required to be typed in the same environment Γ.

The remaining constructors for expressions are introduced as typed combinators. Their
types are shown in Fig. 3. Notice that there is a fixpoint combinator fix for every type
((!rτ ( σ) → (!rτ ( σ)) → (!rτ ( σ). Even though such a combinator has unbounded
sensitivity, notice that its return type !rτ ( σ is an r-sensitive function. In the same table,
we also present the types of some primitives1 that are used in our examples. Other primitives

1 From a type checking perspective combinators and primitive are treated in the same way. This distinc-
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f r-sensitive primitive σ → τ

Γ ` f : !rσ ( τ
(Prim)

Γ ` r : R
(Const)

r ≥ 1
Γ, x : !rτ ` x : τ

(Var)

Γ, x : !rτ ` e : σ
Γ ` λx : !rτ.e : !rτ ( σ

(( I)
Γ ` e1 : !rτ ( σ ∆ ` e2 : τ

Γ + r ·∆ ` e1 e2 : σ
(( E)

∆ ` e : σ ⊕ τ x : !rσ,Γ ` el : µ y : !rτ,Γ ` er : µ
Γ + r ·∆ ` case eof x→ el | y → er : µ

(Case)

Figure 2 Type assignment rules for µFuzz

can be added as described by the rule (Prim).

Semantics. To connect the type system with the operational semantics and justify the
way the rules propagate sensitivities, we equip each type τ with a metric that defines a
“distance” between expressions. The metric on the base type R is the standard distance
metric on reals. Metrics for type constructors like function types are defined in terms of
the metrics on their components; see [22]. A metric judgment of the form ` e1 ≈m e2 : τ
indicates that the expressions e1 and e2 are related at type τ , and that they are no more than
distance m apart with respect to the metric on τ (where m ∈ R≥0 ∪ {∞} and ∞+m =∞,
0 · ∞ = 0 and m · ∞ =∞ for m 6= 0). The type system is sound with respect to the metric
if every expression of type !rτ → σ actually computes a r-sensitive function from τ to σ
under a standard operational semantics for expressions. Formally (writing e ↪→ v to mean
that expression e evaluates to value v):

I Theorem 1 (Metric Preservation [22]). Let ` e : !rτ → σ and ` v1 ≈m v2 : τ such that
r ·m is finite. Then, e v1 ↪→ w1 iff e v2 ↪→ w2 for some w1, w2 with ` w1 ≈r·m w2.

3 The Challenge of Sensitivity Analysis

A well-typed function definition in the explicitly annotated language described above can
thus be viewed as a proof that this function has a particular sensitivity. For instance, if we
assume the primitive 2· (with typing rule ` 2· : !2R ( R), then the expression λx : !2R . 2 ·x
can be given the type !2R ( R, expressing the fact that the underlying function λx. 2 · x is
2-sensitive in its argument x. The same underlying function can be annotated differently to
certify other (less precise) claims about its sensitivity. Indeed, for every k ≥ 2 we can show
x : !kR ` 2 · x : R by using the (( E) rule with premises ` 2· : !2R ( R and x : !iR ` x : R,
where k = 2 · i and i ≥ 1 (the latter coming from the Var rule).

Finding such a proof—i.e., checking the well-typedness of a fully annotated program—
requires some nontrivial reasoning on the part of the typechecker. For example, suppose we
want to check that the following is a valid typing judgment:

x : !5R ` (λf : !1(!3R ( R). f x) (λy : !3R. 3 · y + 0.5 · x) : R

The first step is to type the subexpressions. This requires splitting the annotation on x—i.e.,
finding two environments x : !r1R and x : !r2R that respectively allow us to prove

x : !r1R ` λf : !1(!3R ( R). f x : !1(!3R ( R) ( R

tion is however important from a semantic point of view. The latter reduce to values (in one step), the
former reduce to expressions that can need further reductions.
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inj1 : τ1 ( τ1 ⊕ τ2 (typed combinators)
inj2 : τ2 ( τ1 ⊕ τ2
fix : ((!rτ ( σ)→ (!rτ ( σ))→ (!rτ ( σ) (∀r ∈ R>0)

(+) : !1R ( !1R ( R (typed primitives)
(r ·) : !rR ( R (∀r ∈ R>0)
Figure 3 Types of combinators and primitive expressions

and
x : !r2R ` λy : !3R. 3 · y + 0.5 · x : !3R ( R.

However, without further analyses on the subexpressions we do not know anything about
the values r1 and r2 except that they should be such that 5 ≥ r1 + 1 · r2, as required
by the rule (( E). This example shows how even typechecking fully annotated expressions
requires reasoning about constraints. A similar situation arises for languages like ML, whose
polymorphic type systems require unification-based constraint solving, except that here the
constraints are numerical.

In this particular example, the generated constraints are local and can be solved efficiently
by a simple special-purpose algorithm (as was done in the original Fuzz implementation,
for example). However, this form of constraint solving is not powerful enough to enable
convenient programming with sensitivities. In particular, the task of providing complete
annotations can be difficult and error-prone, so we would also like to be able to check the
correctness of “partial programs” where some of the explicit sensitivity annotations are
replaced by variables. We might, for example, want to verify a judgment like the following:

x : !5R ` (λf : !i1(!i2R ( R). f x) (λy : !i3R. 3 · y + 0.5 · x) : R

This requires not only finding the split environments for x as described above but also finding
values for i1, i2, and i3 with the condition that i2 must be equal to i3. Notice that now the
only information we have from the rule (( E) is that 5 ≥ r1 +i1r2; unlike the previous case,
this constraint is nonlinear and thus harder to solve. Similar constraints can arise when a
program contains case expressions.

A natural further step is to ask not just for some set of annotations that makes an
expression well typed, but for a set of minimal annotations. Consider a similar judgment:

x : !jR ` (λf : !i1(!i2R ( R). 2 + f x) (λy : !i3R. 3 · y + 0.5 · x) : R

To know the minimal value that j can take on, we have to find the least j satisfying the
equation j ≥ r1 + i1r2. (It turns out to be 7

2 .)
To formally define these problems, we enrich the possible annotations in expressions,

types, and environments to include sensitivity variables i, j, k, . . . from a set X . We will
call any object containing such sensitivity variables open. Assigning values to variables
corresponds to applying a substitution, a total function ρ : X → R∞. As usual, substitutions
on variables can be extended to open expressions, types and environments. A constraint C
containing free sensitivity variables is satisfiable if there is a substitution ρ such that ρ(C) is
valid in the structure R∞; we write Jρ(C)K in this case. Now, the two problems we address
can be described formally as follows.
I Problem 1 (Sensitivity Checking). Input: an open expression (or annotated program) e,
and an open type σ. Output: yes, if there exists a substitution ρ such that ` ρ(e) : ρ(σ);
no, otherwise.
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Partially annotated
µFuzz program Minimal solution set

Sensitivity constraints Solution set

Type-based analysis

SMT solver

Minimization engine

Missing annotations

Figure 4 Our approach

I Problem 2 (Sensitivity Minimization). Input: an open expression e (or annotated program),
an open type σ, and a set of sensitivity variables ~i. Output: ρ sat, if ρ is the minimal
substitution with respect to ~i such that ` ρ(e) : ρ(σ); unsat if there is no such substitution.

Our approach to these problems is outlined in Figure 4. The input of the analysis is a
µFuzz program where the sensitivity of every function expression is either provided by the
user or left unspecified. The program is processed using a sensitivity analysis extending a
standard typechecking. The result is a set of sensitivity constraints over R∞ capturing all
the program’s sensitivity information. The resulting set of constraints is then submitted to
an SMT solver. If the formula is satisfiable, the solver supplies the values of the unknown
sensitivities (solution set). Otherwise, the solver provides a negative answer meaning that
the user annotations are incorrect. In the case of a positive answer, a minimization engine
can be used to generate a solution that is minimal (minimal solution set). This minimal
solution provides the values of the missing annotations.

4 Constraint Solving and Generation

We describe our method for extracting constraints from a given µFuzz program, such that (1)
the constraints are satisfiable iff the program is typable, and (2) every satisfying assignment
directly corresponds to an upper bound on the program’s sensitivity. For clarity, we present
our method in two steps. First, we present a type-based constraint generation algorithm
which, given a program, produces a set of constraints over R∞; the minimal solutions to
such constraints characterize the program sensitivities (§4.1). Second, we transform the
constraints over R∞ into a different representation that can be solved using SMT solvers
such as Z3 (§4.2). We conclude the section with a discussion on complexity (§4.3).

4.1 Type-based constraint generation
Our constraint generation algorithm is shown in Figure 5. The algorithm takes as input an
environment without sensitivity annotations and an open expression (Γ ` e). It returns a
type σ, an updated environment Γ′ containing the annotations !k for the original variables
in Γ, and a constraint C. We write Γ ` e⇒ σ a Γ′ | C for an algorithm call. We write Γ for
the environment resulting from removing all the sensitivity annotations from the bindings in
Γ. Formally Γ = {x : σ | (x : !iσ) ∈ Γ}. The algorithm operates by traversing the expression
syntax tree and accumulating information about the sensitivities in the set of constraints C;
at the same time, it updates the environments to reflect the newly computed information
about sensitivities.

The first two rules are standard and do not generate any interesting constraint. The rule
(Var) , given a variable x, introduces a new sensitivity variable and a constraint to record
that the sensitivity of x is greater or equal than one. The rule (( I), given an abstraction
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~m fresh
Γ ` r⇒ R a fresh~m(Γ) | ~m > 0

(Const)
f typed σ ~m fresh

Γ ` f ⇒ σ a fresh~m(Γ) | ~m > 0
(Prim)

r fresh ~m fresh
x : σ,Γ ` x⇒ σ a x : !rσ, fresh~m(Γ) | r ≥ 1 ∧ ~m > 0

(Var)

x : σ,Γ ` e⇒ τ a x : !rσ,Γ′ | C
Γ ` λx : !kσ.e⇒ !kσ ( τ a Γ′ | k ≥ r ∧ C

(( I)

Σ ` e1 ⇒ !rσ ( τ a Γ | C1 Σ ` e2 ⇒ σ′ a ∆ | C2 ~m fresh
Σ ` e1 e2 ⇒ τ a fresh~m(Σ) | C1 ∧ C2 ∧merge~m(Γ, r,∆) ∧ σ = σ′

(( E)

Σ ` e⇒ σ ⊕ τ a Γ | Ce

x : σ,Σ ` el ⇒ µl a x : !rl
,∆l | Cl y : τ,Σ ` er ⇒ µr a y : !rr

,∆r | Cr

Σ ` case eof x→ el ⇒ µ a fresh~m(Σ) | Ce ∧ Cl ∧ Cr ∧ r ≥ {rl, rr}
| y → er ∧ merge~m(Γ, r, fresh~n(Σ)) ∧ sup~n(∆l,∆r) ∧ µl = µr

(⊕ E)

fresh~m(Γ) ≡ {xi : !mi
σi | (xi : σi) ∈ Γ}

sup~m(Γ,∆) ≡ {mi ≥ ji ∧mi ≥ ki | (xi : !ji
: σ, xi : !ki

σ) ∈ (Γ,∆)}
merge~m(Γ, r,∆) ≡ {mi ≥ ji + r · ki | (xi : !ji

σi, xi : !ki
σi) ∈ (Γ,∆)}

Figure 5 Constraint generation algorithm

λx : !kσ.e, runs the analysis on the inner expression e; such analysis will return a type σ
and a sensitivity r which is checked against the annotations k.

The rule (( E), given an application e1 e2, runs the analysis on e1 and e2. These two
calls to the algorithm return two environments Γ and ∆ containing different sensitivities
annotations which need to be combined into a single environment representing Γ + r ·∆. To
compute such an environmnet, we use the procedure fresh(Σ) that introduces a fresh sensitiv-
ity variable for each element of the initial environment Σ, and the procedure merge(Γ, r,∆)
that produces a set of arithmetic constraints that link the new variables to the ones from Γ
and ∆. Since the inferred types σ, σ′ may contain different sensitivities, we impose the con-
straint σ = σ′, which assuming structural equality of σ and σ′ requires all the sensitivities
appearing in the types to be equal. If the types are not structurally equal, the term is not
typable.

The rule (⊕) generalizes the approach described above. Given an expression case eof x→
el | y → er, it runs the analysis on e, el and er. The first step to obtain the output en-
vironment is to find an upper bound for the two environments ∆l and ∆r inferred for the
two branches of the case. This is again achieved by using the procedure fresh~n(Σ) that
introduces a fresh sensitivity variable in ~n for each element of the initial environment Σ, and
the procedure sup~n(∆l,∆r) that produces a set of arithmetic constraints that link the new
variables in ~n to the ones from ∆l and ∆r. The second step is to find an upper bound for the
sensitivities of x and y. This is obtained by introducing a new sensitivity variable r and by
imposing the constraints r ≥ rl and r ≥ rr. Using the results of these two steps, the environ-
ments fresh~n(Σ) and Γ can be combined into a single one representing fresh~n(Σ)+r ·Γ using
the same technique described for the rule (( E). Finally, we need to make sure that the
return type in the two branches is the same. To obtain this we impose the constraint µl = µr

which assuming structural equality of µl and µr requires all the sensitivities appearing in
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I(r) = (r.inf, r.val) r ∈ X (r.inf, r.val) ∈ (XB,XR)
I(r) = (false, r) r 6=∞
I(∞) = (true,_)
I(r1 + r2) = (r1.inf ∨ r2.inf, r1.val + r2.val) (ri.inf, ri.val) = I(ri), i ∈ {1, 2}
I(r1 ∗ r2) = (r1.inf ∨ r2.inf, r1.val ∗ r2.val)

P [r1 2 r2] = P2[I(r1) 2 I(r2)] 2 ∈ {=,≥}
P2[(b1, r1) = (b2, r2)] = (b1 ∧ b2) ∨ (¬b1 ∧ ¬b2 ∧ r1 = r2)
P2[(b1, r1) ≥ (b2, r2)] = b1 ∨ (¬b1 ∧ ¬b2 ∧ r1 ≥ r2)

Figure 6 Translation of the extended real numbers

the types to be equal.
Notice that the sensitivity annotations are only required to be greater or equal than the

value of the actual sensitivity. For example a 1-sensitive function can be annotated with
any sensitivity greater than 1.

Next, we relate the constraint generation algorithm with the type system presented in §2,
which does not contemplate the use of sensitivity variables in the judgments. The algorithm
in Figure 5 is sound in the sense that, if it generates a set of constraints C for a given
expression e, then any satisfying assignment of C corresponds to a valid type for e. The
algorithm is also complete in the sense that it always generates a satisfiable set of constraints
C if the input is a well typed expression e. Moreover, for every sound sensitivity annotation
of e there exists a solution of C with values corresponding to those of such annotation.

I Theorem 2 (Soundness). For all e and Γ, if Γ ` e⇒ σ a Γ′ | C, then for all ρ such that
Jρ(C)K, we have ρ(Γ′) ` ρ(e) : ρ(σ).

I Theorem 3 (Completeness). If Γ ` e : σ, then Γ ` e ⇒ σ a Γ′ | C and exists ρ such that
Jρ(C)K and Γ ≥ ρ(Γ′).

4.2 Constraint Satisfiability and Minimization
The constraint generation algorithm in Figure 5 generates equalities and inequalities over a
set of terms containing variables, constants in R∞ and functions {+, ∗}. The structure of
the generated constraints is described by the following grammar:

r ::= X | R∞ c ::= r ≥ e | r = r e ::= r | e + r ∗ e (1)

Given the above constraints, we study how to solve them and how to minimize the value of
a solution.

4.2.1 Constraint solving over the extended real line:
Our constraints are quite common in nonlinear real arithmetic with one important exception:
we use real arithmetic extended to real line with ∞. This raises a difficulty, as most SMT
solvers are restricted to solving over R.

To overcome this limitation we encode terms r over R∞ as a pair (B×R). Assume a set
of variables XB and XR for variables over B and R. The translation I from terms over R∞
to terms over (B × R) is presented in Figure 6. Predicates over R∞ are encoded using the
same principles, using the translation function P . The boolean component determines when
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a term is infinity, and variables over R∞ are represented as a pair of variables over (B×R).
Notice that the translation is not a bijection, although it would be easy to do so.

The constraints resulting from the encoding are still challenging to solve because they
mix boolean constraints with nonlinear real arithmetic, but, as we will show in §5, there is
at least one current solver (Z3) that can handle them.

A constraint satisfiability problem for a set of constraints C consists in finding a substi-
tution ρ such that ρ(C) is a valid set of (in)equalities in R∞ or alternatively in saying that
no such substitution exists. It is easy to show that the encoding is correct and complete
with respect to constraint solving, that is to say, an encoded constraint will have a solution
with respect to the theory of the booleans and reals iff it has a solution over the theory of
the extended positive real line, or formally ∀C.(∃ρ.Jρ(C)K ⇐⇒ ∃ρ(B×R)Jρ(B×R)(P [C])K).

4.2.2 Sensitivity minimization:
A constraint minimization problem for a set of constraints C and a variable x consists on
finding the substitution ρ that satisfies C such that for every other valid substitution ρ′,
ρ′(x) ≥ ρ(x). Assume a formula C(x) parametric on x, then we can express the minimization
problem as the following first-order formula: ∃x.(C(x) ∧ ∀y.(C(y)→ y ≥ x).

This definition can be extended to several variables by extending the ≥ operation to take
a variable set:

f( ~xmin) = ∃ ~xmin.(C( ~xmin) ∧ ∀ ~x′min(C( ~x′min)→ ~x′min
~≥ ~xmin))

Notice that a formula may have no minimal solution.
The constraints generated by the sensitivity algorithm — characterized in Eq. (1) —

have an important property for minimization:

I Lemma 4. Assume a constraint C(~x) with variables among ~x and a solution ρ for it. For
every variable x ∈ ~x, if C(~x) ∧ x < ρ(x) has a solution ρ′, then the substitution ρ[ρ′(x)/x]
is also a solution for C(~x).

The main effect of the lemma is that trying a lower value for a variable will never force other
sensitivity variables to be assigned a higher value. By this fact, we can use a one-variable-
at-time minimization strategy, and the order in which we pick the variables to be minimized
will not affect the final result.

4.3 Complexity Bounds
First-order constraints (with conjunction and negation) over R with inequalities, equalities,
sum and multiplication are generally referred to as Existential Theory of the Reals (ETR).
Solving ETR constraints is a PSpace problem with an NP-Hard lower bound [23]. This
complexity result can be applied to our problem using the following variant of the reduction
in 4.2. Every variable x over R∞ can be represented by two variables x.inf and x.val, this
time both of type R, where if x.inf = 0 then x represents∞ else x represents the real number
x.val. Operations such as sum and multiplication are as in §4.2. The resulting number of
variables and constraints is polynomial in the size of the initial constraint set, so the PSpace
bound still holds.

The constraint minimization problem can be solved via quantifier elimination. This
procedure takes a formula f(x) and computes an equivalent formula f ′(x) that does not
contain quantifiers. The first order theory of reals (ETR with quantifiers) admits quantifier
elimination, and, when the number of quantifier alternations is bounded, has complexity
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ExpTime [4]. We can apply this technique to solve our constraints. The formula f( ~xmin)
of §4.2 can be encoded, as in the previous paragraph, as a formula f1( ~xmin.val) of size
polynomial in that of f( ~xmin). After this encoding we can use the quantifier elimination
and obtain an equivalent formula f ′( ~xmin.val), where ~xmin.inf is forced to have value greater
than 0, of size exponential in that of f1( ~xmin.val). Finally, f ′( ~xmin.val) can be solved using
the PSpace procedure of [23], with final complexity ExpSpace. If f ′( ~xmin.val) does not
admit any solution, the special case in which ~xmin.inf = 0 (the minimum value of ~xmin is
∞) is checked separately (this does not change the complexity).

4.4 Global vs Local constraints

The approach described above uses the classic two-stage idea of constraint-based type in-
ference [21]: the first stage generates a global constraint; the second one solves it (in our
case by interacting with an SMT solver). A possible alternative would have been to use a
more local procedure that generates and solves the constraints on the fly. This could be
particularly useful to detect early failures.

This approach however would have two disadvantages. First, the annotations, both
provided by the user and by the typed primitives, have a global scope; thus, there can be
situations where two distinct part of the program are forced to have the same sensitivity. A
local approach would fail to handle these situations. A second and more important issue is
due to the fact that the rule for typing application (( E) requires the sensitivities in the
function input type to be exactly the same as the sensitivities in the type of the argument.
This can create dependencies between programs fragments that a local approach can fail to
handle. So, the local approach would not give a complete procedure.

5 Implementation: Fuzz and Z3

We have applied our sensitivity analysis method to Fuzz [22], a programming language for
differential privacy that uses a sensitivity analysis to determine how much private informa-
tion a given program could release. Our implementation is now part of the public release of
Fuzz, available from the project web page [25].

After some experimenting with SMT solvers we decided to use Z3, which recently incor-
porated a complete solver (nlsat) for the existential theory of the reals [17]. This solver
seamlessly integrates with boolean formulas; thus, Z3 supports the encoding of R∞ we have
described in §4.2.

Our implementation is based on Z3’s Python bindings. The compiler applies some basic
optimizations to the generated constraints. For instance, it removes trivial constraints like
∞ ≥ i or 4 ≥ 3. Notice that the encoding of R∞ interferes with Z3 own optimizations, as
constraints like i = 3, which Z3 would eliminate using substitution propagation, are seen as
a conditional boolean formula. There is room to experiment with compiler-side constraint
optimization, for instance, compiler-side substitution propagation would halve the number
of sensitivity variables finally sent to Z3, with the consequent runtime improvement.

As discussed in §4.2, the minimization problem can be expressed using quantifiers; how-
ever, Z3 does not yet support quantifier elimination for the minimization problem. Instead,
we have implemented a simple minimization procedure based on binary search (see pseu-
docode in Algorithm 1). The basic idea is to use the constraint solver to successively narrow
the range of the variable that is being optimized until the desired precision has been reached.
Our procedure supports both relative and absolute precision parameters.
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Algorithm 1 Constraint Minimization
Input: (x) variable to minimize, (lower) lower bound on x’s value,

(upper) upper bound on x’s value, (cs) set of satisfiable constraints,
(CloseEnough) binary predicate that returns true iff its two arguments
reached the desired distance/precision.

Output: minimal solution for the variable x in cs with precision depending on
the predicate CloseEnough

1: function Min(x, lower, upper, cs,CloseEnough)
2: if CloseEnough(lower, upper) then
3: return GetValueOf(x, cs)
4: AddConstraint(x ≤ (upper + lower)/2, cs)
5: if IsSatisfiable(cs) then
6: return Min(x, lower,GetValueOf(x, cs), cs,CloseEnough)
7: else
8: RemoveLastConstraint(cs)
9: return Min(x, (upper + lower)/2, upper, cs,CloseEnough)

6 Evaluation

In this section we report results from an experimental evaluation of our approach, based
on the extension to full Fuzz described in §5. The key metric we focus on is performance:
in order to be practical for interactive applications (such as developing Fuzz programs),
the analysis must complete within a reasonable amount of time, i.e., on the order of a
few minutes. Since the time needed to generate the constraints is dwarfed by the time
needed to solve them, we only report the latter, unless specified otherwise. Our experiments
were performed on a commodity laptop—specifically, an Apple MacBook with a 1.7 GHz
processor and 4 GB of memory.

6.1 Performance for realistic programs

To get a first impression of the performance for realistic Fuzz programs, we ran our analysis
on the five example programs that are distributed with Fuzz. Each of these programs is
motivated by a concrete application from the differential privacy literature. The programs
take a database with private information (e.g., census data) as their single argument, and
they return some aggregate result (e.g., the number of individuals in the database who have
certain attributes).

We separately measured the time needed for sensitivity checking and for sensitivity min-
imization. For the former, we removed all sensitivity annotations except for the one on the
database argument; for the latter, we removed all annotations and asked for the sensitivity
of the database argument to be minimized, with a precision of ±0.001. We additionally
report the number of iterations for the binary search, as well as the number of lines of code
(LoC) in each program.

Table 1 shows our results. All experiments completed within one second (in the case of
sensitivity checking even within 100 ms), which is fast enough for interactive applications,
such as program development. As a sanity-check for our implementation, we also verified that
the minimum sensitivities matched the (known) sensitivities of the programs, as expected.
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Problem SC (ms) SM (ms) DB sensitivity Iterations (p = 0.01) LoC
over40 33 266 1 10 47
income 50 424 4 11 81
age-histo 48 438 1 10 84
ipquery 53 368 1 10 74
k-means 67 662 6 12 126

Table 1 Running times for Sensitivity Checking (SC) and Sensitivity Minimization (SM) for DP
algorithms. The Iterations column denotes the number of binary search iterations necessary to find
the minimal sensitivity with error ±0.01. The lines of code (LoC) omit those in the libraries for
lists and bags (about 250 lines).
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Figure 7 Running times for Sensitivity Checking and Sensitivity Minimization on k-means bench-
mark varying lines of code. We consider an absolute error of 0.01. The graph on the left also shows
(dotted line) the running time required by the solver to say that the constraints are not satisfiable
when inserting the wrong sensitivity annotation.

6.2 Scalability Analysis

Next, we measured how the analysis scales with respect to three key parameters: the sen-
sitivity of the program, the size of the program in LoC, and the requested precision for
minimization.
Sensitivity values. The cost of the binary search depends partly on the absolute value
of the program’s sensitivity—if this value is very big or very small, the search takes more
time. To quantify this, we ran the analysis on a series of small programs with sensitivity
values ranging between compute 0.39 and 29. We found that the running times were slightly
affected by the sensitivitity values, althouth remaining below one second. Thus, at least for
the small programs we tested, the runtime remains practical even for extreme sensitivities.
Program size. We expect the analysis time to increase with the program size as well, since
larger programs tend to generate more constraints. To generate a number of comparable
programs of different sizes, we varied the number of iterations in the k-means program; the
main loop calls 11 auxiliary functions, so each extra iteration adds 58 LoC once the loop is
unrolled. We thus obtained ten programs K1, . . . ,K10 with sizes between 84 LoC (K1) and
606 LoC (K10). Figure 7 shows our results; the dotted line on the left is for the unsatisfiable
constraints. For programs of 600 LoC or less, sensitivity checking takes at most 1 seconds
until the check either succeeds or fails. For sensitivity minimization, at 600 LoC, the running
time is of 6 seconds.
Precision. Finally, we quantified the impact of the requested precision on the runtime of
the analysis. We re-ran all the tests from §6.1 with absolute precisions between 0.01 and
0.000001 and relative precisions between 1% and 0.0001%. We found that, the maximum
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runtime was 1350 ms, and therefore still practical.
Summary and discussion. The main conclusions from our evaluation results are as
follows. Sensitivity checking is usable: In all of our experiments, the tool produced a (positive
or negative) answer to the sensitivity checking problem in less than a second, for programs
of up to 600 LoC. For the realistic programs (§6.1), the answer never took more than one
second. Higher-order functions are supported well: Since complex types cause the application
rule to generate more equality constraints, we initially expected the analysis to slow down
as the order of functions increases (i.e., the depth of functions taking functions as arguments
which themselves take functions...). However, in our experiments we did not find a significant
slowdown, even with sixth-order functions. Precision is not expensive: The binary search
provides a way to get high precision at a relatively small cost: increasing the precision by an
order of magnitude adds only two extra iterations. Big and small numbers take time: Our
minimization procedure is affected by the values of the sensitivity: when large programs
have large sensitivity values, the minimization procedure can be slowed down. However,
once SMT solvers add native support for minimization, performance should improve. Large
programs take time: The minimization procedure takes longer than 5 seconds when the
size of the program exceeds 500 LoC, even for relatively low precisions. However, practical
queries are often smaller than this, and minimization need only be run once (after that,
the identified values can be plugged into the program as annotations), so this may still be
acceptable. Also, performance should improve once native support for minimization becomes
available.

7 Related Work

Sensitivity analyses. Chaudhuri et al. in [8] and [9] study an automatic program analysis
that can verify robustness of imperative programs. Their notion of robustness is same as
program sensitivity: a program isK-robust if an ε-variation of the input can cause the output
to vary by at most ±Kε. In [9] they further extend this notion by parametrizing it over the
“size” of the input (e.g. the number of elements in an array). Their technique performs a
numerical analysis of the function computed by the program and then reasons about such
function. Our approach differs from the one in [9] in several aspects. (1) Their analysis
only considers terminating programs for which bounds on the number of loop iterations are
known a priori. Our analysis does not impose a priori restrictions on the program that can
be studied. (2) Their analysis allows to prove robustness of programs for which our analysis
fails. Moreover, they are able to express the robustness in terms of sizes, rational numbers,
and input values. This also entails the capability of reasoning in a more refined way about
conditional branching. While Fuzz is not able to do this, the extended type system proposed
in [15] can capture such variations to some extent. We plan on extending our analysis to
this more complex type system. (3) Their analysis is able to verify but not infer a minimal
sensitivity. And (4) their analysis is “mostly automated” due to proof obligations that are
not always automatically solvable, while ours is fully automated.

Palamidessi and Stronati [20] recently proposed a constraint-based approach to compute
the sensitivity of relational algebra queries. In particular, their analysis is able to compute
the minimal sensitivity of wide range of queries. In contrast, the goal of our approach is
to provide an upper bound on the sensitivity not of relational queries but for higher order
functional programs.
Type systems and constraint solvers. Many previous works have reduced type inference
and type checking to constraint satisfiability (see [19, 21] for an introduction). A recent
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language that uses an SMT solver for typechecking is Dminor [5]. This typed language
uses subtyping and refinement types to process relational data. The SMT solver is used to
check logical constraints corresponding to the refinement types and the subtyping relation.
Similarly, the SAGE language [16] uses an SMT solver to check the validity of refinement
types in a language with dynamic typing. This approach differs from ours since it considers
symbolic constraints rather than numeric ones. Linear types are a key tool to support fine
grained reasoning about resource management. Type checking and type inference for linear
types usually involve some type decoration problem that can be reduced to a corresponding
problem on integer constraints [1, 2]. These constraints can usually be solved efficiently
using constraint solvers for integer programming. Dal Lago and Petit [11] have recently
proposed an inference algorithm for a type system for implicit complexity that combines
linear indexed types with dependent types. Their algorithm generates integer constraints
that can be solved using Why3 [6], a platform combining automatic and interactive solvers.
ATS [10] is a language that combines linear types with automatic and interactive solvers for
integer constraints. ATS helps reasoning about memory and pointers properties. However,
linear types as used in ATS are not enough to reason about the sensitivity of programs. Our
approach differs from all of these in the use of an SMT solver to decide constraints over the
reals.
Differential privacy. Differential privacy [14] is one of the strongest privacy guarantees
that has been proposed to date. Other linguistic tools besides Fuzz have been proposed to
ensure differential privacy. PINQ [18] is an SQL-like differentially private query language
embedded in C#; Airavat [24] is a MapReduce-based solution using a modified Java VM.
CertiPriv [3]. is a machine-assisted framework—built on top of the Coq proof assistant—for
reasoning about differential privacy from first principles. None of these tools provides a
static sensitivity analysis method.

8 Conclusion

We have presented an approach for checking and inferring the sensitivity of functional pro-
grams. The approach is based on the type system of Fuzz, a higher-order functional program-
ming language for differential privacy. Our technique generates constraints over positive real
numbers extended with infinity so that each constraint solution is an upper bound for the
program sensitivity. We used the SMT solver Z3 to solve such constraints and adopted our
analysis to infer and verify the correct sensitivity of real world differential privacy programs.

We were able to scale our analysis for programs with more than 500 lines of code. We
identified a few limitations in our method related to the minimization procedure. The use
of an SMT solver makes our approach modular and extensible whenever new SMT solving
techniques are introduced and we believe that future advances in the SMT community will
address our analysis limitations.

We plan to extend our method to deal with the type system proposed in [15]. This
extension would enable analysis of programs for which the sensitivity depends on some
input values, for example array sizes.
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A Proofs

A.1 The core Fuzz system
In order to prove theorems 2 and 3 we will use a slightly simpler core system featuring the
additive product N from linear logic. The rules and primitives for N are:

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 N σ2
(N I) proji: τ1 N τ2 ( τi (N E)

We add case as a primitive:

case : !r(σ ⊕ τ) ( (!rσ ( µ) N (!rτ ( µ) ( µ

and the original rule is recovered by two uses of (( I) followed of one N I rule:

∆ ` e : (σ ⊕ τ)

x : !rσ,Γ ` el : µ
Γ ` λx.e1 : !rσ ( µ

y : !rσ,Γ ` er : µ
Γ ` λy.e2 : !rτ ( µ

Γ ` 〈λx.el, λx.er〉 : (!rσ ( µ) N (!rτ ( µ)
Γ + r ·∆ ` case e 〈λx.el, λy.er〉 : µ

The algorithmic rule for N I is:

Σ ` e1 ⇒ σ a Γ | C1 ~m fresh Σ ` e2 ⇒ τ a ∆ | C2

Σ ` 〈e1, e2〉 ⇒ σ N τ a fresh~m(Σ) | C1 ∧ C2 ∧ sup~m(Γ,∆)
(N I)

which can be used to recover the algorithmic rule for case in a similar way.

A.2 Correctness and completeness Proofs
Now we prove the theorems in the core system.

I Definition 5 (Context weakening). We say Γ′ is a weakening of a context Γ, Γ′ ≥ Γ iff
∀(x :i σ) ∈ Γ, (x :j σ) ∈ Γ′ ∧ j ≥ i.

I Lemma 6 (Weakening). Assume a derivation Γ ` e : σ, then for any Γ′ such that Γ′ ≥ Γ,
there is a derivation Γ′ ` e : σ.

Proof. By induction on the length of the derivation. J

I Theorem 7 (Soundness). For all e and Γ, if Γ ` e⇒ σ a Γ′ | C, then for all ρ such that
Jρ(C)K, we have ρ(Γ′) ` ρ(e) : ρ(σ).

Proof. By induction on the input term e.

Case e = x. If e is a variable, for all Γ and σ, we have:

x : σ,Γ ` x⇒ σ a x : !rσ, fresh~m(Γ) | r ≥ 1 ∧ ~m > 0

and all the substitutions ρ such that Jρ(r ≥ 1 ∧ ~m > 0)K will necessarily map r to 1 or
greater, creating an instance of the (Var) rule.
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Case e = λx : !kσ.e. By induction hypothesis we have:

x : σ,Γ ` e⇒ τ a x : !rσ,Γ′ | C ∀ρ.Jρ(C)K⇒ ρ(x!r : σ,Γ′) ` ρ(e) : ρ(σ)

and we want:

∀ρ′.Jρ′(C ∧ k ≥ r)K⇒ ρ′(Γ′) ` ρ′(λx : !kσ.e) : ρ′(σ)

which follows using Lemma 6, as every ρ′ that satisfies C ∧ k ≥ r will satisfy C, with a
typing derivation where r has been mapped to a value less than k.

Case e = 〈e1, e2〉. By induction hypothesis we have:

Σ ` e1 ⇒ σ a Γ | C1 ∀ρ1.Jρ1(C1)K⇒ ρ1(Γ) ` ρ1(e1) : ρ1(σ)
Σ ` e2 ⇒ τ a ∆ | C2 ∀ρ2.Jρ2(C2)K⇒ ρ2(∆) ` ρ2(e2) : ρ2(τ)

and we want:

∀ρ.Jρ(C1 ∧ C2 ∧ sup~m(Γ,∆))K⇒ ρ(weaken~m(Σ) ` ρ(〈e1, e2〉) : ρ(σ N τ)

It is easy to see that any ρ will also satisfy ρ1 and ρ2, with ρ(weaken~m(Σ)) ≥ ρ(Γ) and
ρ(weaken~m(Σ)) ≥ ρ(∆) thus the sought after derivation exists by Lem. 6.

Case e = e1 e2. By induction hypothesis we have:

Σ ` e1 ⇒ !rσ ( τ a Γ | C1 ∀ρ1.Jρ1(C1)K⇒ ρ1(Γ) ` ρ1(e1) : ρ1(!rσ ( τ)
Σ ` e2 ⇒ σ′ a ∆ | C2 ∀ρ2.Jρ2(C2)K⇒ ρ2(∆) ` ρ2(e2) : ρ2(σ′)

We want:

∀ρ.ρ(C1 ∧ C2 ∧merge(Γ, r,∆) ∧ σ = σ′)⇒ ρ(weaken(Σ)) ` ρ(e1 e2) : ρ(τ)

First note that if any of C1 or C2 are not satisfiable, then C1 ∧C2 ∧merge(Γ, r,∆)∧ σ = σ′

will also not be, ruling out the possibility of building an erroneous derivation.
Then, for every ρ satisfying the constraint it is obvious that is also satisfy C1 and C2,

obtaining ground derivations Γ ` e1 : !iσ ( τ and ∆ ` e2 : σ, and the rule (( E) allows to
build the derivation Γ + r ·∆ ` e1 e2 : τ .

Now, it may be the case that ρmaps themi to a value greater than the one corresponding
to the obtained from the induction hypothesis. Indeed we are considering all substitutions
ρ(weaken(Σ)) that respect the constraint merge(Γ, r,∆), thus of the form ρ(mi) ≥ ρ1(ji) +
r · ρ2(ki) for every binding at position i. Indeed, those are exactly all the contexts that are
weakenings of Γ+r ·∆, and thus by Lemma 6, the derivation ρ(weaken(Σ)) ` ρ(e1 e2) : ρ(τ)
exists. J

I Theorem 8 (Completeness). If Γ ` e : σ, then Γ ` e ⇒ σ a Γ′ | C and exists ρ such that
Jρ(C)K and Γ ≥ ρ(Γ′).

Note that the algorithm actually reconstructs the minimal sensitivity information for the
given context.

Proof. By induction on the typing derivation Γ ` e : σ. We inductively build the substitu-
tion ρ for each step of the typing derivation for e:
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Case e = x. We have Γ, x : !iσ ` x : σ with i ≥ 1 and the rest of Γ with sensitivities ~k > 0
by definition. The algorithm returns:

x : σ,Γ ` x⇒ σ a x : !rσ, fresh~m(Γ) | r ≥ 1 ∧ ~m > 0

The substitution ρ = {r 7→ i, ~m 7→ ~k} completes the proof of this subcase.

Case e = λx : !rσ.e. We have the typing derivation:

Γ, x : !iσ ` e : τ
Γ ` λx : !iσ.e : !iσ ( τ

and algorithm call:

x : σ,Γ ` e⇒ τ a x : !rσ,Γ′ | C
Γ ` λx : !iσ.e⇒ !iσ ( τ a Γ′ | i ≥ r ∧ C

We know by induction that ∃ρ such that Jρ(C)K and x : !i : σ,Γ ≥ ρ(x : !r : σ,Γ′), which
implies Jρ(i ≥ r ∧ C)K and Γ ≥ ρ(Γ′), so ρ is the wanted substitution, concluding the proof
of the subcase.

Case e = 〈e1, e2〉. We have the typing derivation:

Γ ` e1 : σ1 Γ ` e2 : σ2

Γ ` 〈e1, e2〉 : σ1 N σ2

and algorithm call:

Γ ` e1 ⇒ σ a Γ1 | C1 ~m fresh Γ ` e2 ⇒ τ a Γ2 | C2

Γ ` 〈e1, e2〉 ⇒ σ N τ a weaken~m(Γ) | C1 ∧ C2 ∧ sup~m(Γ1,Γ2)

such that by induction hypothesis there exists ρ1 such that Jρ1K and Γ ≥ ρ1(Γ1) and ρ2 such
that Jρ2K and Γ ≥ ρ2(Γ2). We build the new substitution ρ assigning to the elements of ~m
the maximum value of ρ1(Γ1) and ρ2(Γ2) for every position of the environment. Then it is
easy to check that Γ ≥ ρ(weaken~m(Γ)).

Case e = e1 e2. We have the derivation:

Γ ` e1 : !iσ ( τ ∆ ` e2 : σ
Γ + i ·∆ ` e1 e2 : τ

and an algorithm call:

Σ ` e1 ⇒ !rσ ( τ a Γ′ | C1 Σ ` e2 ⇒ σ a ∆′ | C2

Σ ` e1 e2 ⇒ τ a weaken(Σ) | C1 ∧ C2 ∧merge(Γ′, r,∆′)

where Σ = Γ + i ·∆. By induction hypothesis, there exists ρ1 such that Jρ1(C1)K and
Γ ≥ ρ1(Γ′); and ρ2 such that Jρ2(C2)K and ∆ ≥ ρ2(∆′), and i = ρ1(r)

We want ρ such that Jρ(C1 ∧ C2 ∧merge(Γ′, r,∆′))K and Γ + i ·∆ ≥ ρ(weaken(Σ)).
By induction and routine calculation we show that Γ + i · ∆ ≥ ρ1(Γ′) + i · ρ2(∆′) =

ρ(weaken(Σ)). Fix ρ as the constraint-respecting substitution mapping everymi in weaken(Σ)
to ρ1(ji) + i ·ρ2(ki), then ρ(weaken(Σ)) = ρ1(Γ′) + i ·ρ2(∆′), which completes the proof. J
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