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Differential privacy is rigorous framework for stating and enforcing privacy guarantees on computations over
sensitive data. Informally, differential privacy ensures that the presence or absence of a single individual in a
database has only a negligible statistical effect on the computation’s result. Many specific algorithms have
been proved differentially private, but manually checking that a given program is differentially private can
be subtle, tedious, or both. This approach becomes unfeasible when larger programs are considered.

This situation has motivated research in developing techniques for assisting programmers in building
differentially private applications. We survey a range of approaches based on ideas from programming
language research, discussing the formal guarantees that each of these approaches provides and showing
how each can be used to ensure differential privacy in practice.

1. INTRODUCTION
An enormous amount of data is gathered in databases every day: hospital records,
network flows, location data, power sensor readings, etc. This information has many
potential good uses—e.g., for scientific or medical research, network monitoring, . . . —
but much of it cannot be safely released due to privacy concerns. Protecting privacy
is hard: experience has repeatedly shown that when owners of sensitive datasets
release derived data, they often reveal more than intended. Even careful efforts to
protect privacy often prove inadequate. A notable example is the Netflix prize competi-
tion, which released movie ratings from subscribers. Although the data was carefully
anonymized, Narayanan and Shmatikov were later able to de-anonymize many of the
private records [Narayanan and Shmatikov 2008].

Privacy breaches often occur when the owner of the dataset uses an incorrect threat
model—e.g., they make wrong assumptions about the knowledge available to attackers.
In the case of Netflix, Narayanan and Shmatikov had access to auxiliary data in the
form of a public, unanonymized data set (from IMDB) that contained similar ratings.
Such errors are difficult to prevent without reasoning about arbitrary information that
could be (or later become) available to an attacker.

One way out of this dilemma is to make sure that every computation on sensitive
data satisfies differential privacy [Dwork et al. 2006], a very strong guarantee: if an
individual’s data is used in a differentially private computation, the probability of any
given result changes by at most a factor of e✏ (compared to the situation where this
individual’s data is not used), where ✏ is a parameter controlling the tradeoff between
privacy and accuracy. Differential privacy impresses by the long list of assumptions it
does not require: it is not necessary to know what information an attacker has, whether
attackers are colluding, or what the attackers are looking for in particular. For this
reason, it is becoming a gold standard for data privacy.

ACM SIGLOG News 34 January 2016, Vol. 3, No. 1



A typical way to ensure differential privacy is by adding some statistical noise to
a program’s result. The amount of noise that needs to be added in order to ensure
the bound described by the privacy parameter ✏ depends on the particular program at
hand. This has motivated a large body of work in algorithm design aimed at designing
programs that are differentially private.

The design space of differential privacy is constrained also by the program’s utility,
i.e., the accuracy of the data analysis that the program performs. Having precise results
information is indeed often the very reason why we are interested in running a program
over some data. Fortunately, the algorithms community has developed algorithms that
can ensure differential privacy and at the same time can achieve a good level of accuracy.

An important aspect of the theory of differential privacy is that it provides several
composition schemes useful to compose different mechanisms. So, mechanisms become
basic building blocks that can be assembled by composition schemes. This way of
building differentially private programs is very attractive since it makes it easier to
reason about differential privacy also for programmers that are not privacy experts.
However, manually checking that these composed programs are differentially private
can be both tedious and rather subtle.

For this reason, several tools have been proposed with the goal of assisting a pro-
grammer in checking whether a given program is differentially private or not. In this
brief survey article, we summarize a range of approaches based on the use of logical
and verification techniques to ensure differential privacy. In particular, we will present
three: the first is based on the use of type systems for analyzing the sensitivity of a
program and was initiated by Reed and Pierce [2010]; the second is based on the idea
of relational verification in program logic and was initiated by Barthe et al. [2012];
the third mixes the use of type systems and relational verification by proposing a
relational type system and has been developed by Barthe et al. [2015]. Along the way,
we discuss some other developments that have built on these works to enlarge the space
of programs that can be verified differential privacy and to make these approaches
more effective.

Besides the formal methods approaches, there have been several other approaches
aiming at building systems for support differential privacy. We will discuss some of
them in the related work section.

We will begin this overview by presenting in the next section differential privacy in a
formal way.

2. DIFFERENTIAL PRIVACY
Differential privacy [Dwork et al. 2006] is a notion of privacy-preserving data analysis
that guarantees strong bounds on the increase in harm that a user I incurs as a result
of participating in the analysis, even under worst-case assumptions. More precisely,
differential privacy is a property of a program P asserting that for any two databases1

D,D0 2 dB differing only on the data of some individual I, and for any subset S ✓ R of
outputs, the probability that P releases an element of S on D is “almost the same” as
the probability that P releases an element of S on D0. Quantitatively, “almost the same”
is defined in term of two parameters ✏, � � 0 as follows.

Definition 2.1 (Differential privacy [Dwork et al. 2006]). A randomized program P :
dB ! R is (✏, �)-differentially private for ✏, � � 0 if for every D,D0 2 dB differing in one
row and for any subset S ✓ R we have

Pr[P (D) 2 S]  e✏ · Pr[P (D0) 2 S] + �. (1)

1For our presentation we will assume that a program’s input is always a “database,” a multiset of rows of the
same type, where each individual’s data is in a single row. More general definitions can also be considered.
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The parameter ✏ gives a bound on the increase of the probability of any specific event
if the individual I ’s data is included in the analysis (including any bad event that the
individual may be worried about). The parameter � can be thought of as the probability
of failure in providing this bound; it is typically very small (often zero). For small ✏, the
factor e✏ can be thought of as 1 + ✏. Both these parameters are crucial: ✏ is the privacy
cost, the larger ✏ is, the more information about individuals is potentially revealed
by the result; � allows trading off privacy and utility. However, as we will see in the
following sections, not all the formal approaches to differential privacy have considered
� > 0; some have focused only on ✏. In these cases we sometimes write ✏-differential
privacy instead of (✏, 0)-differential privacy.

A key concept in building differentially private algorithms is the notion of sensitivity:

Definition 2.2. A program P : A ! B is c-sensitive for c 2 R>0 if, for all x, y 2 A we
have

dB(P (x), P (y))  c · dA(x, y).
where dA and dB are metrics on A and B respectively.

In other words, a c-sensitive program magnifies changes in its inputs by at most a
factor of c. The definition of sensitivity requires some metric on the type of inputs and
outputs. In the following, for two databases D1, D2 2 dB we will use a metric counting
the number of individuals that differs in D1 and D2, and we will say that D1 and D2

are adjacent if they differ in only one individual.
Real-valued programs with limited sensitivity can be converted into ✏-differentially

private queries by using the Laplace mechanism [Dwork et al. 2006]. Here, we write
Lap(a,�) to denote the Laplace distribution centered in a with scale parameter �,
presented in Figure 1, whose probability density function is 1

2� e
�|a�x|

� .

THEOREM 2.3 (LAPLACE MECHANISM). Let P : dB ! R be a c-sensitive determin-
istic program, and let Q : dB ! R be the randomized program Q = �b. P (b) +N , where
N is a random variable distributed according to Lap(0, c

✏ ). Then Q is ✏-differentially
private.

Pr

f(·)

c

Fig. 1: Probability distributions of
the Laplace mechanism for a c-
sensitive function on two neighbor-
ing databases.

In other words, the Laplace mechanism con-
verts the deterministic program P into a ran-
domized program Q by adding noise from the
Laplace distribution. Note that the parameter of
the distribution—the ‘magnitude’ of the noise—
depends on both c and ✏: the stronger the privacy
requirement (smaller ✏) and the higher the sen-
sitivity of P (larger c), the more noise must be
added to P ’s result to preserve privacy.

The Laplace mechanism ensures differential
privacy while also providing a strong accuracy
guarantee:

FACT 2.1. Let P : dB ! R be a c-sensitive
deterministic program, and let Q : dB ! R be the
randomized program Q = �b. P (b) + N , where N is a random variable distributed
according to Lap(0, c

✏ ). Then, for every ↵ 2 (0, 1],

Pr
h
|Q(x)� P (x)| � ln(↵�1) · c

✏

i
 ↵.
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This can be visualized using the picture in Figure 1: with high probability, the Laplace
distribution will return a value close to the original one.

The Laplace mechanism ensures ✏-differential privacy for real-valued functions.
Another way of ensuring ✏-differential privacy for functions over arbitrary domains R
is the exponential mechanism [McSherry and Talwar 2007]. Let R be a set of outputs to
which we associate a score function F : dB⇥R ! R. Then, the exponential mechanism
can be used to output an element of R that approximately maximizes the score function.

THEOREM 2.4 (EXPONENTIAL MECHANISM [MCSHERRY AND TALWAR 2007]).
Let F : dB ⇥ R ! R be a score function that is c-sensitive in dB. The exponential
mechanismExp(F, d, ✏) takes as input d 2 dB and returns r 2 R with probability

exp(✏F (d, r)/2c)P
r02R exp(✏F (d, r0)/2c)

.

This mechanism is ✏-differentially private.

Several other mechanisms have been proposed for building differentially private
programs; see the recent book by Dwork and Roth [2014] for some of them. These
mechanisms can be composed using one of several composition principles offered by the
theory of differential privacy. The most basic is this one:

THEOREM 2.5 (SEQUENTIAL COMPOSITION). Let P1 and P2 be two differentially
private programs with parameters (✏1, �1) and (✏2, �2), respectively. Then P̂ (d) =
(P1(d), P2(d)) is an (✏1 + ✏2, �1 + �2)-differentially private program.

This composition theorem is a strong property of differential privacy, and it also holds in
an interactive setting where the program P2 has access to the result of P1(d) (see Dwork
et al. [2010]).

Another form of composition, formulated in terms of partitions of the database [Mc-
Sherry 2009], is also useful in the design of practical programs.

THEOREM 2.6 (PARALLEL COMPOSITION). Let P be a (✏, delta)-differentially pri-
vate program and let (d1, d2) be a partition of the database d in the two disjoint databases
d1 and d2. Then the program

P̂ (d) = (P (d1), P (d2))

is also (✏, �)-differentially private.

Other more complex composition principles can also be used, e.g. the “advanced compo-
sition” principle from Dwork et al. [2010]. We will briefly discuss it in the conclusions.

Differential privacy has many other attractive formal properties. Interested readers
can find more information in Dwork and Roth [2014].

3. TYPE SYSTEMS: THE FUZZ APPROACH
The first formal approach we introduce is based on the idea of using types to track the
sensitivities of parts of a program and basic typed primitives to guarantee that the
right amount of noise–proportional to the sensitivity—is added at appropriate points.
Specifically, we present an approach proposed by Reed and Pierce [2010] that considers
sensitivity as a resource and that uses linear-indexed types to explicitly track it. This
approach has been implemented in the language Fuzz [Haeberlen et al. 2011].

The idea behind the design of Fuzz is to use the type-checking procedure to ensure
that well-typed programs of a particular type are ✏-differentially private. (Fuzz does
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⌧,� ::= R | !r� ( ⌧ | � � ⌧ | M � (types, r 2 R1
>0)

e ::= x | r | f | �x :!r�. e | e e | fix g. x. e | inji e | case eof x ! e or y ! e (expressions)
let M x = e in e | unit e

� ::= ; | �, x :!r� (environments)

Fig. 2: Fuzz syntax

not support (✏, �)-differential privacy yet, though work in this direction is underway.) In
particular, to ensure ✏-differential privacy, an expression e must be typed as follows:

` e : !✏dB ( M R (2)

This type has three key components: first, the type M R representing the monadic
type of discrete probability distributions over the output type R; second, the linear
implication ( representing the space of 1-sensitive functions from !✏dB to M R; third,
the type !✏dB representing the type of databases whose metric is that of dB multiplied
by ✏, where the modality !✏ is indexed by the scaling factor ✏. Thus, the inhabitants of
the type !✏dB ( M R are epsilon-sensitive programs mapping databases to probability
distributions.

As a concrete instance, the term

�d :!✏dB. add_noise(count(d)) (3)

is a differentially private program that, given a database d, returns the number of
elements in it, using the counting function count plus some noise from the Laplace
distribution. We can give this program the type !✏dB ( M R.

The fact that the type signature in (2) actually ensures differential privacy follows
from the soundness of the Fuzz type system. To explain this in more detail, we need
some additional formal preliminaries.

Figure 2 shows the formal grammar of a simplified core of Fuzz—a functional lan-
guage with real-number constants, functions, fixpoints, conditionals (case), and the
constructors of the monad M (let and unit). Real numbers appear in Fuzz in two places:
as constants and as type annotations. The types are a linear refinement of the classical
simply typed lambda-calculus, with some extra annotations for tracking the sensitivity
of functions and with the monad M encapsulating probabilistic computations. In a
function with type !r� ( ⌧ , the annotation r (drawn from R1

>0, the set of positive reals
extended with 1) gives an upper bound on the function’s sensitivity. When r is 1, it
means that the sensitivity is not bounded. We define r +1 = 1, and r ·1 = 1. We
write � ! ⌧ as a shorthand for !1� ( ⌧ .

The expressiveness of Fuzz can be enhanced by giving special typing rules to some
standard arithmetic functions like addition and multiplication by a scalar; we elide
this here. Fuzz can also be extended by other linear type operators like ⌦ and &, and
by other algebraic data types [Reed and Pierce 2010]. Interestingly, to each of these
components one can associate a different metric.

Figure 3 shows the typing rules for this subset of Fuzz. The judgment � ` e : � can be
read as “the expression e has type � under the assumptions in environment �,” where
� records both the type of each free variable x appearing in e and an upper bound on
the sensitivity of e to changes in x. Formally, this is achieved by using environments
containing variable assignments of the form x :!r⌧ . The intuitive meaning is that e can
be assigned type � assuming x has type ⌧ , and moreover that e is r-sensitive in x.
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Sensitivities are managed via operations on typing environments. Given two environ-
ments � and �, we define the sum operation �+� as

�+� = {x :!r1+r2� | x :!r1� 2 � ^ x :!r2� 2 �}
[ {x :!r1� | x :!r1� 2 � ^ x 62 dom(�)}
[ {x :!r2� | x 62 dom(�) ^ x :!r2� 2 �}.

Given r 2 R1
>0 and an environment �, the product operation r · � is defined as

r · � = {x :!r·r1� | x :!r1� 2 �}.
The (Const) rule assigns the type R to a real number constant r; since r does not depend
on the variables in �, the rule does not require further assumptions. The (Prim) rule
assigns primitive functions their corresponding predefined types. The (Var) rule says
that the variable x has type ⌧ , if x is assigned the type ⌧ by the environment and
if the sensitivity annotation on x is at least 1 (since the value of x is 1-sensitive to
changes in x). The (( I) rule says that if e is r-sensitive in the free variable x, and if e
yields a value of type � when x is of type ⌧ , then the lambda-abstraction �x :!r⌧.e is an
r-sensitive function of type !r⌧ ( �.

The most interesting rule is (( E): if e1 is an r-sensitive function from ⌧ to �, and
if e2 has type ⌧ , then 1) the application e1 e2 has type �, and 2) the sensitivity of e1 e2
in each free variable x is r times the sensitivity of e2 in x plus the sensitivity of e1
in x (because each use of x in e2 is “magnified” r times by the use that e1 makes of
its argument). Similar reasoning applies in the (Case) rule; another point specific to
this rule is that the expressions el and er are required to have the same sensitivity
annotations in their free variables. One way to enforce this constraint is taking for
each variable the maximum of the sensitivity they have in el and er. Rule (inji) is for
typing the disjoint sum injections. Rule (unit) is for typing the monadic unit; notice that
the sensitivities in the environment are multiplied by 1, because unit applied to two
different values represents two distributions that (as we will see) are at distance 1. The
rule (let) is used to assign a type to the composition of two monadic computations. The
composition corresponds to sampling from the first computation and using the obtained
value in the second one. Notice that the environment in the conclusion of this rule is the
sum of the two environments from the premises; in particular, the 1 on the variable
associated with the sample does not appear in the result; this because the distance of
the result cannot depend on the sampled value. The fact that the sensitivities in the
environments are summed corresponds to the sequential composition principle from
Theorem 2.5. (The parallel composition theorem can also be internalized by using a
tensor product, omitted here. See Reed and Pierce [2010].)

The remaining constructors for expressions can be introduced as typed combinators.
For example the fixpoint combinator fix can be typed as ((!r⌧ ( �) ! (!r⌧ ( �)) !
(!r⌧ ( �). (The fixpoint itself has unbounded sensitivity, but its return type is an
r-sensitive function !r⌧ ( �.) Other primitives can be added as described by the rule
(Prim).

The operational semantics for Fuzz can be described via a standard small step
evaluation semantics (which we elide). The evaluation steps are described by judgments
of the shape e 7! e0, asserting that the expression e evaluates to the expression e0.

To connect the type system with the operational semantics and justify the way
the rules propagate sensitivities, each type ⌧ is equipped with a metric defining a
“distance” between values that is also lifted to expressions. A metric judgment of the
form ` e1 ⇡m e2 : ⌧ indicates that the expressions e1 and e2 are related at type ⌧ , and
that they are no more than distance m apart with respect to the metric on ⌧ (where
m 2 R1

�0 and 1 + m = 1, 0 · 1 = 0, and m · 1 = 1 for m 6= 0). The metric on the
base type R is the standard distance metric on reals. Metrics for type constructors
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� ` r : R (Const)
f an r-sensitive fn in � ! ⌧

� ` f : !r� ( ⌧
(Prim)

r � 1

�, x :!r⌧ ` x : ⌧
(Var)

�, x :!r⌧ ` e : �

� ` �x :!r⌧. e : !r⌧ ( �
(( I)

� ` e1 :!r⌧ ( � � ` e2 : ⌧

�+ r ·� ` e1 e2 : �
(( E)

� ` e : ⌧i
� `inji e : ⌧1 � ⌧2

(inji)
� ` e : � � ⌧ x :!r�,� ` el : µ y :!r⌧,� ` er : µ

�+ r ·� ` case eof x ! el or y ! er : µ
(Case)

� ` e : �

1 · � ` unit e : M �
(unit)

� ` e : M � x :!1�,� ` e1 : M µ

�+� ` let M x = e in e1 : M µ
(let)

Fig. 3: Type assignment rules for Fuzz

like function types are defined in terms of the metrics on their components by logical
relations (see Reed and Pierce [2010]). As an example we just provide here the metric
on a type M �, representing a notion of distance between probabilities. This is defined
as

` e1 ⇡m e2 : M � i↵ max
v:�

ln
⇣Pr[e1 = v]

Pr[e2 = v]

⌘
 m.

Notice that this corresponds to the differential privacy requirement.
The soundness of the type system is stated with respect to the metric: every expression

of type !r⌧ ! � actually computes a r-sensitive function from ⌧ to �.
THEOREM 3.1 (METRIC PRESERVATION). Let ` e :!r⌧ ! � and ` v1 ⇡m v2 : ⌧ . If

e v1 7! e1 and e v2 7! e2, then ` e1 ⇡r·m e2.
The proof of this theorem uses a metric step-indexed logical relation [Reed and Pierce
2010]. Using this theorem we can now state the formal connection between Fuzz typing
and differential privacy.

COROLLARY 3.2 (DIFFERENTIAL PRIVACY). If
` e :!✏dB ( M A

in Fuzz then e is ✏-differentially private.

An example in Fuzz
Consider the simple query “How many patients at this hospital are over the age of 40?”,
and suppose that we have the following functions available:

over_40 : row ! B
size : dB ( R
filter : (row ! B) ! dB ( dB

The predicate over_40 (which can be programmed in Fuzz) simply determines whether
or not an individual database row indicates that the corresponding patient is over
the age of 40. The primitive function size takes an entire database, and outputs how
many rows it contains; its type records the fact that this operation is 1-sensitive. The
higher-order primitive function filter takes a predicate on database rows and a database;
it returns the subset of the rows in the database that satisfy the predicate. This filtering
operation also has a sensitivity of 1 in its database argument.
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With these functions in place, the query can be written as the program

�d :!✏dB. add_noise (size (filter over_40 d)) : !✏dB ( M R,

where add_noise is the primitive adding noise according to the Laplace distribution.

Dependent types
As presented so far, Fuzz provides a useful analysis only for programs where sensitivities
are statically bounded. When the sensitivity depends on program inputs, Fuzz can only
show that the program is 1-sensitive, a trivial bound. This is a serious limitation:
many private mechanisms use iteration, and by composition, the total privacy level
(i.e., function sensitivity) is often a function of the number of iterations. Typically this
number controls the accuracy-privacy tradeoff of the computation, and it is an input to
the program.

To address this problem Gaboardi et al. [2013] proposed DFuzz, which can be seen as
an extended version of the Fuzz type system allowing a lightweight form of dependent
typing akin to sized types. The idea is to have types reflect size information of certain
forms; nat[2] is the type of the natural number 2; list(⌧)[3] is the type of lists of length
3 with elements of type ⌧ ; real[0.5] is the type of the real number 0.5. (Notions of sized
types can be defined for general inductive types, but to demonstrate the idea it is
enough to consider natural numbers and lists, along with a sized type for reals.) Size
information can also involve variables, known as size variables. These variables can
describe relationships between the sizes of different expressions, even when the size is
not statically specified. For instance, a function for reversing a list of booleans could
have the type

8i. list(bool)[i] ! list(bool)[i],

indicating that the function preserves the length of the list, represented by the size
variable i. Besides allowing simple size variables and constants as annotations, DFuzz
features a small language of size expressions S:

S ::= i | n | S + S

With size annotations, we can reflect the sizes of the input parameters in the types.
For instance, an input parameter representing the number of iterations can be given
type nat[i]. To connect this information with the sensitivity, DFuzz defines a language of
sensitivity expressions R:

R ::= k | r | S | R+R | R ·R | 1

These annotations generalize the sensitivities in Fuzz: they can be real constants (as in
Fuzz), or they can be variables, size expressions, or arithmetic combinations of other
sensitivity expressions. By enriching the sensitivity language, DFuzz is able to model
sensitivities that are not known statically. For instance, a function that has sensitivity 3
times the input parameter—possibly representing the number of iterations—is reflected
by the DFuzz type 8i. !3·inat[i] ( real.

The inclusion of size variables requires additional bookkeeping in the judgments.
First, judgments track the size and sensitivity variables that are in scope with a index
variable context �. Second, judgments can also record equality statements about size
expressions. This information is crucial for recording information in case analyses on
sized types. For instance, when we perform a case on an expression with type nat[S], the
two cases should record our assumptions about the size expression S: in the first case,
S = 0, while in the second case, S = i+ 1 for a fresh size variable i. This information is
stored in the constraint context �, which is a conjunction of equalities S1 = S2.
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function cdf (eps : num[e]) (buckets : list(num)[i])
(b :[i * e] dB) : M list(num)[i]{

case buckets of
[] => unit []

| (x :: y) =>
res = filter (fun n => n<x) b;
let M count = add_noise eps (size res);
recstep = cdf eps y b;
unit (count :: recstep)

}

Fig. 4: Pseudo-code for the Cumulative Distribution Function in DFuzz

Putting everything together, DFuzz judgments have the following form:
�;�;� ` e : ⌧.

The rules of the type system for DFuzz are an extension of the ones for Fuzz. As an
example, here is the rule for conditionals:

�;�;� ` e : list(⌧)[S] �;� ^ S = 0;� ` u1 : �
�, i : ◆;� ^ S = i+ 1;�, x :!Rlist(⌧)[i], y :!R⌧ ` u2 : �

�;�;�+R · � ` case eof nil ! u1 or cons(y, x[i]) ! u2 : �
(Dcase)

DFuzz’s expressive power also comes from the availability of a subtyping relation (for
sizes and sensitivities) and the availability of universal and existential quantifiers over
size and sensitivity variables (see Gaboardi et al. [2013]). Finally, DFuzz enjoys a metric
preservation theorem analogous to Theorem 3.1, ensuring differential privacy.

An example in DFuzz
We show how to use DFuzz to type an algorithm that computes the Cumulative Distribu-
tion Function (CDF) as presented by McSherry and Mahajan [2010]. Given a database
of numeric records and a list of “buckets” defined by cutoff values, it computes the
number of records in each bucket. There are several variants of this algorithm with
different privacy/utility tradeoffs. We consider the one counting the number of record in
each bucket and adding independent noise to each of them.

We show how this algorithm can be written in Fuzz concrete syntax in Figure 4. We
use several basic data types and primitive extending the ones we used in Section 3.
The list of buckets has type list(num)[i] asserting that it consists of a list of numbers
of length i, for a size variable i. The return type is similar, except for the presence of
the monad M asserting that the output is a distribution over lists of numbers of length
i. The epsilon parameter eps has a precise type num[e] asserting that it is equal to
the sensitivity variable e. We omitted the binder for size and sensitivity variables for
keeping the notation lighter but both of them are quantified universally. The database
is encoded with the type dB and we assume that a database is a multiset or bag of
numbers. On this datatype we also have a filter operation filter that remove all the
database elements that do not satisfy a given predicate. We use this predicate to collect
only the elements that are in a particular bucket.

The bulk of the code is an iteration on the list of buckets of the filter operation with
predicates that depends on each bucket value followed by counting and adding noise.
Notice that because of this iteration the sensitivity depends on the number of buckets.
For this reason, the database variable b in the type signature has the sensitivity
annotation [i*e] asserting that overall cdf is i*e-differentially private. To ensure this
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typing the type-checker uses assumptions about the sensitivity of the test when typing
the case constructor, as described by the rule (Dcase) presented above. Notice that in
Fuzz this example cannot be proved differentially private because of this dependency.

Further developments
The approach proposed by Fuzz has been extended in different directions. Eigner and
Maffei [2013] extend the type system of Fuzz to consider a notion of local state and to
integrate ideas from type systems for cryptographic protocols. This extension has been
used to verify differential private concrete distributed protocols. D’Antoni et al. [2013]
provide an automated sensitivity inference tool for Fuzz where the actual type-inference
process is built on top of a familiar ML-like language by using SMT solvers to handle
the numerical annotations. Using a similar approach, Azevedo de Amorim et al. [2014]
study instead the type checking problem for DFuzz.

4. RELATIONAL HOARE LOGIC: THE CERTIPRIV APPROACH
The second approach that we summarize is based on the idea of using relational Hoare
logic for verifying differential privacy, as implemented in the tool CertiPriv [Barthe
et al. 2012]. In traditional Hoare logic one can reason about a program using logical
predicates as pre- and post-conditions in judgments of the form

` c : � =)  .

Intuitively (and ignoring termination issues), this judgment expresses the fact that
given a memory m satisfying the logical predicate � (the precondition), the command
c will produce a memory m0 satisfying the logical predicate  (the postcondition). In
relational Hoare logic, one instead reasons about two programs, with logical relations as
pre- and post-conditions. This approach was first introduced by Benton [2004] as a way
to prove the correctness of compiler optimizations for a core (deterministic) imperative
language. This approach can be made formal by using judgments of the form

` c1 ⇠ c2 :  =) �.

Intuitively, this judgment expresses the fact that given two memories m1,m2 satisfying
the logical relation  (the precondition), the command c1 and c2 will produce memories
m0

1 and m0
2 satisfying the logical relation � (the postcondition).

The logic proposed by Barthe et al. [2012] is an approximate, probabilistic, and
relational Hoare logic, named apRHL, for reasoning about differential privacy. The
approximate in apRHL refers to the fact that in this logic one can prove statements
about approximate equivalence between probabilistic distributions—in other words one
can reason in a principled way about notions of distance over distributions.

Judgments in apRHL are of the form2

` c1 ⇠h✏,�i c2 :  =) �, (4)
where c1 and c2 are probabilistic programs,  and � are relations over memories, and
✏, � are real values representing the parameters of differential privacy and describing
some notion of distance over the distributions computed by the probabilistic programs
c1 and c2.

When c is a probabilistic program and c/ and c. are two copies of c resulting from
renaming the variables in c in two different ways, one can use judgments of this form
to assert differential privacy. The reading of this judgment is that, if

` c/ ⇠h✏,�i c. :  =) out/ = out.

2The original apRHL rules are based on a multiplicative privacy budget. We adapt the rules to an additive
privacy parameter for consistency with the rest of the article.
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` c1 ⇠h✏,�i c2 :  ^ b1 =) � ` d1 ⇠h✏,�i d2 :  ^ ¬b1 =) �

` if b1 then c1 else d1 ⇠h✏,�i if b2 then c2 else d2 :  ^ b1 = b2 =) �
[cond]

` c1 ⇠h✏,�i c2 : ⇥ ^ b1 ^ k = e =) ⇥ ^ k < e ⇥ ^ n  e =) ¬b1 ⇥ =) b1 = b2
` while b1 do c1 ⇠hn✏,n�i while b2 do c2 : ⇥ ^ 0  e =) ⇥ ^ ¬b1

[while]

` c1 ⇠h✏,�i c2 :  =) �0 ` c01 ⇠h✏0,�0i c02 : �0 =) �

` c1; c
0
1 ⇠h✏+✏0,�+�0i c2; c

0
2 :  =) �

[seq]

` y1 $ Lap✏(e1) ⇠h|e1�e2|✏,0i y2 $ Lap✏(e2) : true =) y1 = y2
[lap]

` y1 $ Exp✏(s1, e1) ⇠h✏ maxr |s1(x1,r)�s2(x2,r)|,0i y2 $ Exp✏,s(s2, e2) : s1 = s2 =) y1 = y2
[exp]

Fig. 5: Selected proof rules of apRHL

is derivable, then c is (✏, �)-differentially private with respect to the relation  on initial
memories—here out denotes the output value of c, so out/ and out. respectively denote
the outputs of the first and second runs of c. In particular, the relation  can be the
adjacency condition over databases as in the usual definition of differential privacy.

The fact that the judgment of Equation 4 actually ensures differential privacy follow
from the soundness of the logic. In order to express the notion of valid judgment and
hence to state soundness of the logic, we first need some more formal preliminaries.

apRHL expresses judgments on pWHILE commands defined by the following grammar:

c ::= skip | c; c | x e | x $ Lap✏(e) | x $ Exp✏(e, e) | if e then c else c | while e do c

where x is a variable and e is an expression drawn from a language including sim-
ply typed lambda terms and basic operations on booleans, lists and integers. The
only non-standard commands are the probabilistic assignments involving Lap✏(e) and
Exp✏(e, e) which internalize the (discrete version of the) mechanisms of Theorem 2.3
and Theorem 2.4 with parameter ✏.

The original presentation of the apRHL logic [Barthe et al. 2012] is organized in three
sets of rules: the first set includes a set of core rules, the second set includes rules for
mechanisms such as the Laplace and Exponential mechanisms, the third one includes
generalized rules for loops. We omit the latter and we present a selection of the first
two sets of rules in Fig. 5. Before introducing validity for judgments in apRHL we first
need to define the semantics of pWHILE programs.

The semantics of pWHILE is probabilistic. To describe probabilities we consider the
set M A of sub-distributions over a set A. This is the set of functions µ : A! [0, 1] with
discrete support such that

P
x2A µx  1; when equality holds, µ is a true distribution.

Sub-distributions can be given the structure of a monad3: for every function g : A! M B
and distribution µ : M A, we define g? µ : M B to be the sub-distribution

g? µ def
= �b.

X

a2A

(g a b)(µa),

The unit of the monad is given by the function �a.1a : A! M A that given an element
a 2 A returns a probability distribution with all the mass assigned to the value a.

3That is why we use the notation M A.
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The semantics of a well-typed pWHILE program is defined by its (probabilistic) action
on memories; we denote the set of memories by M. A program memory m 2 M is a
partial assignment of values to variables. Formally, the semantics of a pWHILE program
c is a function JcK : M ! MM mapping a memory m 2 M to a distribution JcKm 2 MM.
The denotational semantics of programs is largely standard and we provide here as an
example the interpretation of some selected constructions:

JskipK m = 1m Jc1; c2K m = Jc2K? (Jc1Km)

Jif e then c1 else c2K m = if (JeKm = true) then (Jc1Km) else (Jc2Km)

skip is interpreted using the unit of the monad while the sequential composition ; is
interpreted by using the composition of the monad. We also show the interpretation
of the conditional to illustrate that the interpretation of commands requires also an
interpretation of expressions JeK : M ! M.

It will be convenient to use an alternative characterization of (✏, �)-differential privacy
based on the notion of ✏-distance. Given µ1, µ2 2 M A, the ✏-distance �✏ is defined as

�✏(µ1, µ2)
def
= max

S✓A
(µ1 S � e✏ µ2 S),

where µS def
=

P
a2S µa. Note that �✏(µ1, µ2) � 0. By the definition of ✏-distance, a

probabilistic program c is (✏, �)-differentially private with respect to ✏ > 0, � � 0, if for
every two adjacent memories m1 and m2, we have

�✏(JcK m1, JcK m2)  �.

The validity in apRHL can be described in terms of a particular monadic lifting L✏,�(·)
that turns a relation  ✓ M⇥M over memories into a relation L✏,�( )M M⇥M M,
where the lifting is defined as:

Definition 4.1 (Lifting of a relation). Given  ✓ M⇥M, we have L✏,�( ) µ1 µ2 iff
there is a distribution µ 2 M (M⇥M) such that

(1) µ (a, b) > 0 implies (a, b) 2  ,
(2) ⇡1 µ  µ1 and ⇡2 µ  µ2, and
(3) �✏(µ1,⇡1 µ)  � and �✏(µ2,⇡2 µ)  �,

where ⇡1 µ = �x.
P

y µ (x, y) and ⇡2 µ = �y.
P

x µ (x, y).

This notion of lifting generalizes the notion of coupling, used in probability theory to
represent a possible joint distribution µ of µ1 and µ2, see Barthe et al. [2015] for more
general uses of this lifting relation. We can now define validity in apRHL as follows.

Definition 4.2 (Validity in apRHL). A judgment ` c1 ⇠h✏,�i c2 :  =) � is valid iff

8m1,m2. m1 m2 =) L✏,�( ) (Jc1Km1)(Jc2Km2)

Using this notion of validity, the definition of lifting and the definition of ✏ distance one
can prove the following theorem stating the correctness for differential privacy.

THEOREM 4.3 (DIFFERENTIAL PRIVACY IN apRHL).
Let c be a pWHILE command, if

` c/ ⇠h✏,�i c. : adjacent =) =

Then, c is (✏, �)-differentially private.
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An example in CertiPriv

As an example, we describe a differentially private algorithm for computing partial
sums over lists of integer values taken from a bounded interval [0,M ]; the example is a
mild generalization of the one presented by Chan et al. [2011], which considers the case
M = 1 for privately computing more elaborate statistics over streams, including for
instance heavy hitters. Given a list a of length n, the goal of the algorithm is to release
private approximations of the partial sums c[j] =

Pj
i=0 a[i], for all j  n. The two most

immediate approaches for achieving this goal are:

(1) input perturbation: add Laplace noise to each element of the list and compute all
partial sums using the noised list;

(2) output perturbation: compute partial sums accurately and add Laplace noise to
each partial sum.

However, the first approach offers poor privacy and good accuracy, and the second
one offers poor accuracy but good privacy. A more suitable solution, which achieves a
reasonable trade-off between privacy and accuracy, combines these two approaches,
using the more private but less accurate approach for computing partial sums on chunks
of the list, and the less private but more accurate approach for computing partial sums
of the list from the partial sums on chunks. More specifically, we assume that the list a
has length n = q ·m. The algorithm is shown in Figure 6, using array notation.

SmartSum (a: list(int))(epsilon:R): list(real)
j = 0; s = 0; x = 0;
while (j < n){

x = Lap(epsilon,a[j]);
if j mod q = 0 {c[j] = c[j-q] + s + x; s = 0;}
else {s = s + a[j]; c[j]= c[j-1] + x;}

return c;

Fig. 6: CertiPriv code for computing partial sums

The privacy analysis of the algorithm can be established in three steps. First, one per-
forms code rewriting to obtain a semantically equivalent program which uses explicitly
the two naive solutions: output perturbation and input perturbation. Then, one proves
that each of these algorithms is differentially private. Finally, one uses the rule for
loops to conclude that the smart sum algorithm achieves 2✏-differential privacy, when
M = 1. For other values of M , the noise must be proportional to M in order to achieve
privacy. In fact, the rule for loops we presented in Figure 5 yields an overly conservative
privacy bound, so a more advanced rule is also needed to prove 2✏-privacy, see Barthe
et al. [2012].

Further developments
Barthe et al. [2013] have used EasyCrypt—a tool for verifying cryptographic protocols
based on a logic similar to CertiPriv—to verify that programs are computational
differential private. This is a computational analogous of the standard definition of
differential privacy [Mironov et al. 2009]. Barthe et al. [2014] have developed an
approach to reduce the derivability in apRHL to derivability in standard Hoare Logic
and use the latter to verify differential privacy. This can be done by duplicating part
of the code of the original program and by using ghost variables to keep track of the
privacy budget.
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5. RELATIONAL TYPE SYSTEMS: THE HOARE2 APPROACH
The third approach we present combines the advantages of the two approaches we
presented before: the higher order approach of Fuzz with the expressiveness of apRHL.
This approach is based on the use of Higher Order Approximate Refinement types and it
has been implemented in the tool HOARe2 [Barthe et al. 2015].

The idea of refinement types is to specify properties of expressions with types of the
form {x :: � | �}. This should be read as: “x is a variable of type �, satisfying the logical
formula �”. These assertions serve two purposes: (1) they express facts about the code
(both the whole program and subprograms) and (2) they assert mathematical facts
about primitive operations. A refinement type system formally verify that the first kind
of annotations are correct, while assuming the assertions of the second kind as axioms.

Similarly to apRHL, in HOARe2 the assertion � is relational: it can refer to two “copies”
of each variable x, usually written x/ and x.. The idea is that one may make assertions
about two runs of the same program, where in the first run one can use the variable
x/, and in the second one the variable x.. For instance, the type {x :: N | |x/ � x.|  k}
models pairs of natural numbers which differ by at most k. Relational refinements can
be used to model (✏, �)-differentially private computations as follows:

` e : {x :: dB | adjacent(x/, x.)} ! M✏,�[{y :: U | y/ = y.}], (5)
This typing judgment can be read as e is a program that run over two adjacent databases
x/ and x. returns as outputs two probability distributions satisfying the definition
of differential privacy. In particular, the output type uses once again a monad for
probabilistic computations. Now, however the monad is parametrized by ✏ and �, and
the underlying type is a relational refinement stating that in the two runs one needs to
consider only the probability of returning the same value—as required by the definition
of differential privacy. Once again the fact that the typing judgment in Equation 5
actually ensures differential privacy follows from the soundness of the type system and
we will now give more details to understand it.

HOARe2 is a relational type discipline for a �-calculus with probabilities, inductive
types and recursion. For simplicity, here we will consider a terminating fragment4 of
HOARe2, we refer to Barthe et al. [2015] for the presentation of the full system.

Most of the syntax of expression is standard and similar to the one of Fuzz presented
in Section 3. However, HOARe2 also have a set of relational expressions built over
the set of relational variables. These are variables x with associated a left instance
x/ and a right instance x.. Expressions are used in the subject of typing judgments,
and correspond to the actual programs to which one can assign semantics. Relational
expressions are used in assertions that can appear in refinement types. Similarly,
HOARe2 distinguishes simple types, expressing properties of a single interpretation of
an expression, and relational types, which express properties about two interpretations
of an expression. Relational types extend the grammar of simple types with relational
refinements, and use a dependent function type rather than standard function types.
Simple types are standard while relational types are elements of the following grammar

T, U 2 T ::= e⌧ | M✏,�[T ] | ⇧(x :: T ). T | {x :: T | �}
where e⌧ is a basic type. The type ⇧(x :: T ). U corresponds to the dependent type product
of T over U indexed by x. A type of the shape {x :: T | �} refines the type T using the
assertion �. In both these types the bound variable is required to be relational, to bound
both the left instance x/ and the right instance x. of the bound variable x. Assertions �
are built from primitive assertions using the standard connectives and quantification

4In fact, HOARe2 doesn’t require termination but uses a partiality monad to track possibly unbounded
recursions. This ensures the consistency of the system even in presence of higher-order refinement types.
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(d1, d2) 2 Je⌧K2

(d1, d2) 2 Le⌧M✓

(d1, d2) 2 LT M✓ J�K
✓
n
x/ 7! d1
x. 7! d2

o

(d1, d2) 2 L{x :: T | �}M✓

µ1, µ2 2 M[|T |]
L✏,�(LT M✓) µ1 µ2

(µ1, µ2) 2 LM✏,�[T ]M✓

(f1, f2) 2 J|T | ! |U |K2 8(d1, d2) 2 LT M✓. (f1(d1), f2(d2)) 2 LUM✓{x/ 7! d1,x. 7! d2}

(f1, f2) 2 L⇧(x :: T ). UM✓

Fig. 7: Relational interpretation of types

over both relational and standard variables. Primitive assertions are equalities and
inequalities over relational expressions.

The simply typed part of HOARe2 is standard and omitted here. Simply typed terms
are interpreted using a denotational semantics that is also largely standard. In particu-
lar, similarly to what happens in apRHL, a simply typed monadic type M T̂ is interpreted
as the space of discrete probability distributions over elements in the interpretation of
the simple type T̂ . The relationally typed part of HOARe2 is less standard and requires
several ingredients. A relational environment G is a finite map defined by relational
bindings (x :: T ) s.t. a variable is never bound twice and only relational variables are
bound. We write xG for the application of the finite map G to x.

A valuation ✓ is a map from variables to the interpretation of valus. Given a valuation
✓ we can interpret relational assertions and relational types. Assertions are interpreted
relationally in the expected way where some care is needed for quantifiers since the
interpretation distinguishes between binders for relational and standard variables.

Relational types are interpreted as sets of pairs of elements of the interpretation
of the erased type. The formal interpretation is given in 7 where |·| is a type erasure
from relational to simple types, which maps dependent products to function spaces,
and erases refinements and the indexes of the probabilistic monad. The definition of |·|
extends recursively to relational environments.

Notice that a pair (d1, d2) is in the relational interpretation of a refinement {x :: T | �}
if the assertion � holds in a relational context where d1 and d2 are assigned to x/ and
x., respectively. The relational interpretation of the dependent product is defined in
a logical relation style: it relates function elements f1, f2 that map related elements
d1, d2 (in LT M✓) to related elements (in LUM✓{x/ 7! d1,x. 7! d2}).

The monadic type LM✏,�[T ]M✓ is interpreted using a lifting construction L✏,�(·) that
turns a relation  on T1⇥T2 into a relation L✏,�( ) on M T1⇥M T2, where the lifting is
defined similarly to the one presented in Definition 4.1.

The relational typing rules proves judgments of the shape G ` e1 ⇠ e2 :: T expressing
the fact that e1 and e2 are well typed at the relational type T under the relational
environment G. We give a selection of the typing rule in Figure 8 where we use G ` e :: T
as a shorthand for G ` e ⇠ e :: T .

As in relational Hoare logic [Benton 2004], one can distinguish between 1-sided and
2-sided rules; the latter operate on both expressions of the judgments, whereas the
former operate on a single expression and can relate expressions that have different
shapes.

The case construction is an example of a rule with both a 1-side and a 2-side version.
The 1-side rule requires a synchronicity condition: the same branch must be taken in
the left and right expressions. For the case of lists, this is ensured by requiring that the
matched lists are either both empty or both non-empty. In contrast, the 2-sided rule

ACM SIGLOG News 48 January 2016, Vol. 3, No. 1



C

G ` T G ` e :: e⌧ list 8✓. ✓ ` G =) J(|e|/ = ✏) , (|e|. = ✏)K✓
G ` e1 :: T G, x :: e⌧ , y :: e⌧ list, {|e|/ = x/ :: y/ ^ |e|. = x. :: y.} ` e2 :: T

G ` case e with [✏ ) e1 | x :: y ) e2] :: T

M

G ` e1 :: M✏1,�1 [T1]
G ` M✏2,�2 [T2] G, x :: T1 ` e2 :: M✏2,�2 [T2]

G ` let M x = e1 in e2 :: M✏1+✏2,�1+�2 [T2]
AR

e1 ! e01 G ` e1 ⇠ e2 :: T

G ` e01 ⇠ e2 :: T

AC

G ` T |G| ` e : e⌧ list |G| ` e0 : |T |
G, {|e|/ = ✏} ` e1 ⇠ e0 :: T G, x :: e⌧ , y :: e⌧ list, {|e|/ = x/ :: y/} ` e2 ⇠ e0 :: T

G ` case e with [✏ ) e1 | x :: y ) e2] ⇠ e0 :: T

Fig. 8: Relational Typing (Selected Rules)

does not require this condition. The reduction rule (AR) close typing under reduction,
and is useful to relate expressions that do not have the same shape.

The main property of the refinement typing is the soundness with respect to the
denotational semantics. This is expressed by the following theorem.

THEOREM 5.1 (SOUNDNESS). If G ` e1 ⇠ e2 :: T , then for every valuation ✓ validat-
ing G we have (Je1K✓, Je2K✓) 2 LT M✓.
It follows that HOARe2 accurately models differential privacy.

COROLLARY 5.2 (DIFFERENTIAL PRIVACY). If
` e :: {x :: dB | adjacent(x/, x.)} ! M✏,�[{y :: ⌧ | y/ = y.}]

then JeK is (✏, �)-differentially private.
HOARe2 is very expressive and in particular all the (terminating) programs of

DFuzz can be embedded in it. To do this, the first step is to define by using asser-
tions a predicate D� for each type. Then, one can define an map (�)⇤ on types, terms
and contexts of DFuzz turning them in corresponding components of HOARe2 ensuring
similar invariants. One then have the following:

THEOREM 5.3 (DFuzz EMBEDDING). If �;�;� `D e : ⌧ then
�⇤,�⇤,�⇤ ` e⇤ :: {y :: ⌧⇤ | D⌧ (y/, y.)  D�(�

⇤
/,�

⇤
.)},

where D�(�⇤
/,�

⇤
.) =

P
x:!R�2� R · D�(x/, x.).

The main insight to prove this theorem is that one can define the metric of DFuzz—
which is defined by logical relations—by using refinements. Then, the type system
permits to preserve this invariant for the whole translation.

An example in HOARe2

As an example we describe here an algorithm for privately answering a large set of
queries. The Laplace mechanism is a simple solution, but it’s known that this will add
noise to each query proportional to

p
k for k queries under (✏, �)-privacy. When k is

large, the large noise will make the released answers completely useless. Fortunately,
there is a line of algorithms where noise is added in a carefully correlated manner,
guaranteeing privacy while adding noise proportional only to log k. We present one such
algorithm, called DualQuery [Gaboardi et al. 2014]. The algorithm is parameterized
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by a natural number s and a set qs of queries to answer accurately. The input is the
number of rounds t and database b, and the output is a private synthetic database that
is accurate for the given queries. The code of the algorithm is in Figure 9. We encode the

Function DualQuery ({t::num | t/ = t.}) ({b::list(num) | adjacent b/ b.})
: Ms· t2·✏,0 [{l::list(num) | l/ = l.}] {

match t with
| 0 -> unit []
| 1 + t’ -> let M curdb = DualQuery t’ b in

let M e = expmech b (build_quality t’ curdb in) in
let M new_qry = sampleN s e in
unit ((opt new_qry) :: curdb)

}

Fig. 9: Pseudo-code for DualQuery in HOARe2.

database as a list of natural numbers; adjacent databases are lists of the same length
differing in one element. We represent the output of the mechanism as a list of selected
records, each encoded as a natural number.

The algorithm performs t steps, producing one record of the synthetic database in
every round. For each round, we first build a quality score—a function from queries to
real numbers—based on the previously produced records, using the auxiliary function
build_quality. If we think of the current records as forming an approximate database,
the quality score measures how poorly the approximation performs on each query.
We then sample s queries using the exponential mechanism with this quality score;
queries with higher error are more likely to be selected. These queries are fed into an
optimization function opt, which chooses the next record to add to the approximate
database.

The only private operation we use in this example is the exponential mechanism.
This is defined as a primitive implementing the mechanism presented in Theorem 2.4.
The quality score we generate at each round i has sensitivity i, and so a draw form
the exponential mechanism is i✏-private. Since i is upper bounded by t and there are
s samples per round, the privacy cost per round is bounded by s·t·✏. With t rounds in
total, the whole algorithm is s·t2 · ✏-private. This guarantee is reflected in the type of
DualQuery:

{t :: N | t/ = t.} ! {db :: list(num) | adjacent(db/, db.)} ! Ms·t2·✏,0[{l :: list(num) | l/ = l.}].

The type states that for two runs with adjacent databases, dualquery will return
synthetic databases that are s·t2 · ✏ apart, where t is the number of iterations and s is
the number of samples used.

Further developments
The ideas of relational verification using HOARe2 has been also used in the context of
verifying incentive properties in auctions and games [Barthe et al. 2015].

6. RELATED WORK
Formal techniques have been applied to guarantee differential privacy using other
computational models as well. Tschantz et al. [2011] consider a verification framework
for interactive private programs, where the algorithm can receive new input and produce
multiple outputs over a series of steps. Their approach is based on verifying the correct
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use of differentially private primitives. Their programs are modeled by probabilistic I/O-
automata, and they provide a proof technique based on probabilistic bisimulation. Their
method is currently limited only to ✏-differential privacy. Chatzikokolakis et al. [2014a]
study a similar approach based on bisimulation in the context of process algebras. They
also extend their approach to consider different metrics. Xu [2012] proposes techniques
to ensure differential privacy in a distributed setting using a probabilistic process
calculus.

Many other tools supporting development of differentially private programs have
been designed without using formal methods. We describe some of them here. The first
approach proposed to ensure ✏-differential privacy was based on the idea of designing
agents tracking at runtime the privacy budget consumption, and aborting the compu-
tation when the budget is exhausted. This approach was proposed by McSherry and
implemented in PINQ [McSherry 2009] a set of encapsulation methods for LINQ—a
SQL-like language embedded in C#. The idea behind the PINQ design is to use program
annotations describing the amount of noise each component needs, and a runtime moni-
tor to check that the total amount of noise respects the privacy bound ✏. Airavat [Roy
et al. 2010] combines an approach similar to PINQ with access control in a MapReduce
framework. While PINQ is restricted to ✏-differential privacy, Airavat can handle also
approximate differential privacy using a runtime monitor for �.

More recently several works have extended the approach of PINQ. Proserpio et al.
[2014] extend PINQ with weighted datasets, which give natural descriptions of graph
algorithms. Ebadi et al. [2015] extend PINQ with a formal model using ideas from
provenance to track the data of individuals and to ensure a refined version of differential
privacy named personalized differential privacy.

Mohan et al. [2012] propose a platform for private data analysis based on the sample-
and-aggregate framework [Nissim et al. 2007] that optimizes utility for certain queries.
One advantage of this approach is that it can be applied to programs considered
as black-boxes, but it provides good accuracy guarantees only for a limited set of
programs. Mir et al. [2013] develop a framework to release aggregate mobility data
using differential privacy. Chatzikokolakis et al. [2014b] develop tools using differential
privacy to protect the location of individuals in geo-location systems. Eigner et al. [2014]
develop an architecture for distributed differential privacy using several mechanisms
achieving optimal utility also in a distributed scenario. Erlingsson et al. [2014] develop
a framework for achieving differential privacy based on the randomized response
approach [Warner 1965]. Narayan et al. [2015] develop a system ensuring differential
privacy and using zero knowledge proofs to guarantee the consistency of the program’s
output.

7. CONCLUSION AND FURTHER DIRECTIONS
Differential privacy is emerging as a gold standard for data privacy. Designing methods
and tools for supporting the development of differentially private programs is crucial.
We have summarized a range of approaches based on the use of logical and verification
techniques to support the design of differentially private programs.

An appealing aspect of differential privacy is its support for composition schemes.
Most of the techniques we have described in this article support the sequential and
parallel composition described by Theorem 2.5 and Theorem 2.6, respectively. In the
differential privacy literature there are other composition schemes that give better
guarantees—similar accuracy but with less privacy cost. An important example is the
“advanced composition” theorem from Dwork et al. [2010], which permits trading off ✏
with �. Informally, the theorem states that if we run n programs, P1(D), . . . , Pn(D), on
the same dataset D, and if each of them is (✏, �)-differentially private, then the resulting
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program is roughly (
p
n✏, n�)-differentially private. None of the methods we presented

here support it yet.
The approaches we presented have focused so far on developing methods and tools to

ensure the privacy bound neglecting the accuracy guarantee. However, guaranteeing a
good accuracy for programs is fundamental in practice. Accuracy statements usually
take the form Pr[|P (x)� x| � ↵]  �, expressing the fact that the program P (x) returns
a result at distance greater than ↵ from the non-noised value x with probability less
than �. An example is Fact 2.1. These accuracy statements are natural requirements for
probabilistic computations, and they appear in many practical situations like energy-
efficient computation, audio-video streaming programming, etc. Interestingly, the proofs
of these statements pose important challenges to verification. Even when they are not
too complex, they depend on a wide range of probabilistic tools like concentration or
union bounds, properties of expectation, reasoning principles using independence or
conditional independence of random variables, martingales, etc. These are all challenges
that must be addressed in order to provide full support for differential privacy.
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