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• For simplicity we will focus on a rather 
abstract notion of databases and queries.

• We will describe a database as a multiset (or 
sometimes an histogram) and queries as 
functions from a database to some (often 
numeric) domain.

• We will usually be interested in the results of 
some set of queries.
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Databases and Queries



Name D1 D2 D3 D4 D5 D6 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15
Alice 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 1
Bob 1 0 1 1 1 0 1 0 1 0 1 0 0 1 0 0

Cynthi
aa

0 1 0 1 1 1 0 1 0 0 0 1 0 0 1 0
Dan 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1 1
Eve 0 0 0 1 1 0 1 1 0 1 0 1 0 1 0 0

Frank 0 0 1 1 0 1 1 0 1 1 0 0 1 0 1 0
Guy 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1

Hann
ah

0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
Ivan 0 1 0 0 1 0 1 1 0 1 1 1 0 1 1 0
Jon 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 1
Ken 0 1 0 1 1 0 0 1 0 1 0 1 0 1 1 0
Lou 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
Mike 1 1 1 0 1 1 1 1 0 0 1 0 1 0 1 0
Noa 0 1 1 0 0 0 0 1 0 0 0 1 0 0 1 0

Omer 0 1 0 1 0 1 1 0 1 0 1 0 1 0 0 1
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• We can think about a database as a list of 
records from some universe set:

• Sometimes we will think to them as functions

• and sometimes we will write elements 
explicitly

5

Database

4 Di�erential Privacy

Given a vector v œ �(B) we will denote by vb the probability that
v assigns to b. Now, we can describe randomized algorithms.

Definition 1.2 (Randomized Algorithms). A randomized algorithm M
with domain A and range B is an algorithm associated with a total map
M : A æ �(B). On input a œ A, the algorithm M outputs M(a) = b

with probability (M(a))b for each b œ B. The probability space is over
the coin flips of the algorithm M.

1.3 Representing Datasets

Di�erential privacy is a property of a program working on a collection
of data. The simplest model for di�erential privacy is the one where we
have a centralized dataset and we performs queries on it. We can abstract
implementation details and consider datasets as lists of records. This
representations reflects the idea of a dataset as a single big table which
allows repetitions of records but where each record can be uniquely
identified. Of course, this is not how data are usually stored in the
database practice. Nevertheless, we believe that this is a good abstraction
layer for making the reasoning about di�erential privacy easier, so we
will work under this hypothesis.

To represent a dataset as a list of records, we can consider elements
of X n. In this representation a dataset D œ X n is a function that for
every k œ N such that k Æ n gives the record D(k) œ X in position
k. We will sometime explicitly write a dataset D as its list of records
(d1, . . . , dn) œ X n and we will refer at the i-th row of D as di.

Before introducing di�erential privacy we need to formalize a concept
that allows us to reason about the participation of an individual in a
dataset. We can do this by considering every record as the whole data of
an individual and by considering two datasets that di�er in one record.
As a formal tool, we will build this intuition in a notion of distance

between datasets.

Definition 1.3 (Distance Between Datasets and Adjacency). Given two
datasets D, D

Õ œ X n, their distance, which we will denote as D�D
Õ, is

defined as
D�D

Õ = |{k Æ n | dk ”= d
Õ
k)}|
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Counting Queries

• A counting query                        is a 
function counting the fraction of people in 
a dataset satisfying the predicate 

• In symbols:

• Notice that we take a normalized count, 
which also corresponds to the average.

6

1.4. Statistical Queries 5

We will call two datasets D, D
Õ œ X n

adjacent, denoted D ≥1 D
Õ if

D�D
Õ Æ 1.

Notice that two databases are adjacent according to this definition
if they are equal or if they have the same number of records and all of
the records are equal except for one position k Æ n where dk ”= d

Õ
k.

1.4 Statistical Queries

While di�erential privacy is more and more considered in di�erent
kind of data analysis, it’s conception is closely related to the setting
of queries over statistical datasets [2, 5, 1, 4], where one is interested
in releasing several statistics about the data and she want to do this
in a privacy-preserving manner. Nowadays, the boundaries between
statistics, machine learning, optimization, etc. are less rigid than in the
past and so di�erential privacy is finding wider interest and applications.
However, the statistical setting is still one of the primary applications
for di�erential privacy. In the sequel we will use it as one of the main
intended applications for the algorithms that we will present, although
we will also present some algorithms from other areas, so we are going
now to formalize this setting.

The first class of queries we will consider are counting queries.

Definition 1.4 (Counting Queries). Let q : X æ {0, 1} be a predicate
on records in X . A counting query q : X æ [0, 1] is a function counting
the fraction of people in a dataset D œ X n satisfying the predicate q.
In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that we use the same symbol q for the predicate and the
counting query characterized by this predicate. We will explicitly dis-
ambiguate when the notation can create confusion.

While counting queries can seem very simple, they are already quite
expressive and sometimes we will restrict our attention to subclasses.
Some examples (see also [8]) of counting queries, and associated statistics,
are:
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Example 1 7

Let’s consider an arbitrary universe domain     and let’s consider 
the following predicate for 

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering
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Question: Suppose that we answer all the point function 
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Example II 9

Let’s consider an arbitrary ordered universe domain     and let’s 
consider the following predicate for 
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we can consider a predicate
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1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
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1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d
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which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering
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Linear Queries

• A linear query                      is a function 
averaging the value of a function              
over the elements of the dataset.

• In symbols:
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1.4. Statistical Queries 5

We will call two datasets D, D
Õ œ X n

adjacent, denoted D ≥1 D
Õ if

D�D
Õ Æ 1.

Notice that two databases are adjacent according to this definition
if they are equal or if they have the same number of records and all of
the records are equal except for one position k Æ n where dk ”= d

Õ
k.

1.4 Statistical Queries

While di�erential privacy is more and more considered in di�erent
kind of data analysis, it’s conception is closely related to the setting
of queries over statistical datasets [2, 5, 1, 4], where one is interested
in releasing several statistics about the data and she want to do this
in a privacy-preserving manner. Nowadays, the boundaries between
statistics, machine learning, optimization, etc. are less rigid than in the
past and so di�erential privacy is finding wider interest and applications.
However, the statistical setting is still one of the primary applications
for di�erential privacy. In the sequel we will use it as one of the main
intended applications for the algorithms that we will present, although
we will also present some algorithms from other areas, so we are going
now to formalize this setting.

The first class of queries we will consider are counting queries.

Definition 1.4 (Counting Queries). Let q : X æ {0, 1} be a predicate
on records in X . A counting query q : X æ [0, 1] is a function counting
the fraction of people in a dataset D œ X n satisfying the predicate q.
In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that we use the same symbol q for the predicate and the
counting query characterized by this predicate. We will explicitly dis-
ambiguate when the notation can create confusion.

While counting queries can seem very simple, they are already quite
expressive and sometimes we will restrict our attention to subclasses.
Some examples (see also [8]) of counting queries, and associated statistics,
are:
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a conjunction query qv̨on a dataset D œ X n gives the k-way

marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, D

Õ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e
‘ Pr[M(DÕ) = r] (1.1)

In words, the algorithm M is ‘-di�erentially private if for every
possible subsets of outputs S the probability that M outputs a value r

when run on two adjacent datasets is similar, where this similarity is
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qI : 0, 1k ! Nk

I ✓ [n]

{0, . . . , n}
I

qI(D) =
X

i2I

di
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I10 1 0 1

D ∈ X10 =X={0,1}3
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What can be a good privacy 
mechanism?
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A natural idea: 
anonymizing the data

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy
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• E.g. stripping PII, guaranteeing k-anonymity, 
swapping, etc.
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Why these anonymization 
techniques runs into troubles?
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An issue that these attacks highlight is that it 
is difficult if not impossible to think about 
privacy as a property of the data. 
Another issue with these anonymization 
notions is that they are not closed under 
postprocessing. 
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Question: How can we guarantee 
closure under postprocessing?
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Randomized Algorithms
• Given a discrete set B the probability simplex over B, 

denoted           is defined as:

1.2. Randomized Algorithms 3

reconstruction attack by Dinur and Nissim [2]1. Informally, this result
says that:

If an adversary can observe the results of a polynomial
number of queries answered with additive noise o(

Ô
n) on a

dataset containing n records, then she can reconstruct with
high probability the entire database.

We will see a more formal statement at the end of this section.
The result by Dinur and Nissim, as well as subsequent results, can
be seen as an impossibility result saying that we cannot answer too
many, too accurate, queries and at the same time protect sensitive
information. This principle that some people call “fundamental law of
information reconstruction” delimits what we can do to protect the
privacy of individuals and learn from the data. As many impossibility
results, also the result by Dinur and Nissim and the subsequent results
were the begin of new research aiming at what we can achieve in the
limits posed by the fundamental law of information reconstruction.
Di�erential privacy shades some light on this problem.

1.2 Randomized Algorithms

Di�erential privacy is a property of some randomized algorithms. So,
we will start by defining what a randomized algorithm is. We will focus
on randomized algorithms whose probabilistic space is discrete2. To
formalize this intuition we will use the notion of probability simplex.

Definition 1.1 (Probability simplex). Given a discrete set B, the proba-

bility simplex over B, denoted �(B) is the set:

�(B) =
Ó

x œ R|B| : ’i, xi Ø 0, and
|B|ÿ

i=1

xi = 1
Ô

1
The approach followed in this work was then further developed by a large body

of subsequent work. We refer an interested reader to the recent survey [? ].
2
While we will extensively use distributions like Laplace and Gauss, which are

continuous, what we actually mean are proper discretized variants of those distribu-

tion.
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4 Di�erential Privacy

Given a vector v œ �(B) we will denote by vb the probability that
v assigns to b. Now, we can describe randomized algorithms.

Definition 1.2 (Randomized Algorithms). A randomized algorithm M
with domain A and range B is an algorithm associated with a total map
M : A æ �(B). On input a œ A, the algorithm M outputs M(a) = b

with probability (M(a))b for each b œ B. The probability space is over
the coin flips of the algorithm M.

1.3 Representing Datasets

Di�erential privacy is a property of a program working on a collection
of data. The simplest model for di�erential privacy is the one where we
have a centralized dataset and we performs queries on it. We can abstract
implementation details and consider datasets as lists of records. This
representations reflects the idea of a dataset as a single big table which
allows repetitions of records but where each record can be uniquely
identified. Of course, this is not how data are usually stored in the
database practice. Nevertheless, we believe that this is a good abstraction
layer for making the reasoning about di�erential privacy easier, so we
will work under this hypothesis.

To represent a dataset as a list of records, we can consider elements
of X n. In this representation a dataset D œ X n is a function that for
every k œ N such that k Æ n gives the record D(k) œ X in position
k. We will sometime explicitly write a dataset D as its list of records
(d1, . . . , dn) œ X n and we will refer at the i-th row of D as di.

Before introducing di�erential privacy we need to formalize a concept
that allows us to reason about the participation of an individual in a
dataset. We can do this by considering every record as the whole data of
an individual and by considering two datasets that di�er in one record.
As a formal tool, we will build this intuition in a notion of distance

between datasets.

Definition 1.3 (Distance Between Datasets and Adjacency). Given two
datasets D, D

Õ œ X n, their distance, which we will denote as D�D
Õ, is

defined as
D�D

Õ = |{k Æ n | dk ”= d
Õ
k)}|
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• A randomized algorithm      is an algorithm associated 
with a total map  
On input           the algorithm outputs                   with 
probability               .  
The probability space is over the coin flips of the 
algorithm.
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Sum queries
• Let’s denote by            a subset   of

• A sum query                          is defined as

30

qI : 0, 1k ! Nk

I ✓ [n]

{0, . . . , n}
I

qI(D) =
X

i2I

di



Uniform Noise
• Given a query q we want to add noise to create a new 

randomized query:

q*(D) = q(D) + Y 

31



Uniform Noise
• Given a query q we want to add noise to create a new 

randomized query:

q*(D) = q(D) + Y 

• One way to do this is to sample Y from the uniform 
distribution:

Y ~ U[0,1]

31



Question: Does this approach 
prevent privacy attacks?

32



Reconstruction attack

• Consider an adversary A (an algorithm) that 
has access to some data D through a privacy 
mechanism q*. 

• The goal of the adversary is to output some 
data D’ that is as similar as possible to D.

• To output D’ the adversary can interact several 
times with q*.
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Additive Noise Perturbation
• We say that M is a privacy mechanism obtained by 

adding noise if for every query q, M creates a new 
randomized query:

q*(D) = q(D) + Y 
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Additive Noise Perturbation
• We say that M is a privacy mechanism obtained by 

adding noise if for every query q, M creates a new 
randomized query:

q*(D) = q(D) + Y 

• We say that a mechanism M add noise within  
perturbation E iff for every q and every D:

|q*(D)-q(D)| ≤ E

36



Reconstruction attack with 
exponential adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E perturbation. Then there 
is an adversary that can reconstruct the 
database within 4E positions.

[DinurNissim’02]
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Reconstruction attack with 
exponential adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E=o(n) perturbation. Then 
Then there is an adversary that can reconstruct 
the database with constant error and running in 
exponential time.

[DinurNissim’02]
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Reconstruction attack with 
polynomial adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E=o(√n) perturbation. Then 
there is an adversary that can reconstruct the 
database with constant error running in 
polynomial time and answering n queries.

[DinurNissim’02, DworkYekhanin’08]
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Number of queries

A privacy mechanism can answer with 
perturbation √n at most a number of queries 
sublinear in n.

40



Number of queries

A privacy mechanism can answer with 
perturbation √n at most a number of queries 
sublinear in n.

Question: Why error √n is a good reference?
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Sample error
• Suppose that a database contains n individuals drawn 

uniformly at random from a population of size N>>n.

• Suppose we are interested in a medical condition that 
affects a fraction p of the population.

• Then we expect the number of individuals in the 
dataset with condition p is  
                              np±Θ(√n)

• The sampling error is of the order of √n.
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Sample error
• Suppose that a database contains n individuals drawn 

uniformly at random from a population of size N>>n.

• Suppose we are interested in a medical condition that 
affects a fraction p of the population.

• Then we expect the number of individuals in the 
dataset with condition p is  
                              np±Θ(√n)

• The sampling error is of the order of √n.

We would like the noise we introduce for privacy to be 
comparable to the sampling error.

41



Foundamental Law of 
Information Reconstruction

42

The release of too many overly accurate statistics gives 
privacy violations.

[DinurNissim02]



Privacy vs Utility

UtilityPrivacy

43



Quantitative notions of Privacy
• The impossibility results discussed above suggest a 

quantitative notion of privacy,

• A notion where the privacy loss depends on the 
number of queries that are allowed.
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Quantitative notions of Privacy
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quantitative notion of privacy,

• A notion where the privacy loss depends on the 
number of queries that are allowed.
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What can this notion be?
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45Let’s take inspiration from 
semantics security. 



• The analyst learn the same after the analysis as what 
she would have learnt if I didn’t contribute my data.

45Let’s take inspiration from 
semantics security. 



• The analyst learn the same after the analysis as what 
she would have learnt if I didn’t contribute my data.

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

q1

q2
…
qk

45Let’s take inspiration from 
semantics security. 



• The analyst learn the same after the analysis as what 
she would have learnt if I didn’t contribute my data.

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

q1

q2
…
qk

45Let’s take inspiration from 
semantics security. 



• The analyst learn the same after the analysis as what 
she would have learnt if I didn’t contribute my data.

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

q1

q2
…
qk

45Let’s take inspiration from 
semantics security. 



Privacy-preserving data analysis?

Prior Knowledge
~

Posterior Knowledge
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Privacy-preserving data analysis?
47



Question: What is the problem with this                             
        requirement?

Privacy-preserving data analysis?
47



Privacy-preserving data analysis?

If nothing can be learned about an individual, 
then nothing at all can be learned at all!

Utility

Privacy

[DworkNaor10]
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Adjacent databases
• We can formalize the concept of contributing my 

data or not in terms of a notion of distance 
between datasets.

• Given two datasets D, D’∈{0,1}n, their distance is 
defined as: 

• We will call two datasets adjacent when DΔD’=1 
and we will write D~D’.

DΔD’=|{k≤n | D(k)≠D’(k)}|
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(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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A query returning a probability distribution

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
52



Privacy parameters

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
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Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

a quantification over all 
the databases

(ε,δ)-Differential Privacy
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Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

a notion of adjacency or distance

(ε,δ)-Differential Privacy
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Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

and over all the possible 
outcomes

(ε,δ)-Differential Privacy
56



ε-Differential Privacy
Definition
Given ε ≥ 0, a probabilistic query Q: Xn → R is ε-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S]
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ε-Differential Privacy

Let’s substitute a concrete instance:
Pr[Q(b∪{x})∈ S] ≤ exp(ε)Pr[Q(b∪{y})∈ S]

Definition
Given ε ≥ 0, a probabilistic query Q: Xn → R is ε-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S]
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Let’s substitute a concrete instance:

Let’s use the two quantifiers:
exp(-ε)Pr[Q(b∪{y})∈ S] ≤ Pr[Q(b∪{x})∈ S] ≤ exp(ε)Pr[Q(b∪{y})∈ S]

Pr[Q(b∪{x})∈ S] ≤ exp(ε)Pr[Q(b∪{y})∈ S]

ε-Differential Privacy
Definition
Given ε ≥ 0, a probabilistic query Q: Xn → R is ε-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S]
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And for ε ➝0
(1-ε)Pr[Q(b∪{y})∈ S] ≤ Pr[Q(b∪{x})∈ S] ≤ (1+ε)Pr[Q(b∪{y})∈ S]

ε-Differential Privacy

Let’s substitute a concrete instance:

Let’s use the two quantifiers:
exp(-ε)Pr[Q(b∪{y})∈ S] ≤ Pr[Q(b∪{x})∈ S] ≤ exp(ε)Pr[Q(b∪{y})∈ S]

Pr[Q(b∪{x})∈ S] ≤ exp(ε)Pr[Q(b∪{y})∈ S]

Definition
Given ε ≥ 0, a probabilistic query Q: Xn → R is ε-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S]
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Pr[Q(b)=r] 
Pr[Q(b’)=r]logLb,b’(r) =

ε-Differential Privacy
In general we can think  about  the following quantity 
as the privacy loss  incurred by observing r on the 
databases b and b’.
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Q : db => R   probabilistic

Q(b∪{x}) Q(b∪{y})

ε-Differential Privacy
62



d(Q(b∪{x}),Q(b∪{y}))≤ ε

ε-Differential Privacy
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Pr[Q(b∪{x})=r] 
Pr[Q(b∪{y})=r]

log ≤ε

ε-Differential Privacy

ε

-ε
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(ε,δ)-Differential Privacy
Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is (ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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Similarly, we have

Pr[Q(b1)∈ S] - δ
Pr[Q(b2)∈ S]log ≤ ε

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is (ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

Pr[Q(b1)∈ S] + δ
Pr[Q(b2)∈ S]log-ε ≤

(ε,δ)-Differential Privacy
66



Pr[Q(b1)∈ S] - δ
Pr[Q(b2)∈ S]

Similarly, we have

Probability 
of failure

log ≤ ε

Pr[Q(b1)∈ S] + δ
Pr[Q(b2)∈ S]log-ε ≤

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is (ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
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Pr[Q(b1)=r] 
Pr[Q(b2)=r]

log ≤ε
ε

-ε

with probability 1-δ

(ε,δ)-Differential Privacy
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The rest of the class
• Understanding some basic methods 

to guarantee differential privacy and 
how they provide an answer for the 
privacy vs utility trade-off.

• Looking at how we can formally 
support differential privacy using 
EasyCrypt.
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Summary

• Statistical queries and databases,

• Additive noise perturbation,

• Reconstruction attack,

• Fundamental Law of Information Reconstruction,

• Differential privacy
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Reconstruction attack with 
exponential adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E perturbation. Then there 
is an adversary that can reconstruct the 
database within 4E positions.

[DinurNissim’02]
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Proof
Query phase: For each S ⊆ [n] let aS* = qS*(D).

Rule out phase: For each D’ ∈ {0,1}n: 
if there exists S such that  |qS(D’) - aS* | > E then rule out D’.
Output phase: Output a database D’ that was not ruled out.
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Proof
Query phase: For each S ⊆ [n] let aS* = qS*(D).

Rule out phase: For each D’ ∈ {0,1}n: 
if there exists S such that  |qS(D’) - aS* | > E then rule out D’.

Notice that since for the real database we clearly have 
|qS(D) - qS*(D) | ≤ E 

the procedure clearly return a candidate output in an 
exponential number of steps.

Output phase: Output a database D’ that was not ruled out.
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Proof
Query phase: For each S ⊆ [n] let aS* = qS*(D).

Rule out phase: For each D’ ∈ {0,1}n: 
if there exists S such that  |qS(D’) - aS* | > E then rule out D’.

We now want to show that dH(D,D’) ≤ 4E

Notice that since for the real database we clearly have 
|qS(D) - qS*(D) | ≤ E 

the procedure clearly return a candidate output in an 
exponential number of steps.

Output phase: Output a database D’ that was not ruled out.

72



Proof
Let ’s consider D to be the real dataset and D’ to 
be the outputted one. Consider the sets of indices

R = { i | D(i)=0 }        and      T = { i | D(i)=1 }
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Proof
Let ’s consider D to be the real dataset and D’ to 
be the outputted one. Consider the sets of indices

R = { i | D(i)=0 }        and      T = { i | D(i)=1 }
Since D’ was not ruled out we have

|qS*(D)-qS(D’)|≤E 
but by definition we also have

|qS*(D)-qS(D)|≤E 
so by triangle inequality |qS(D)-qS(D’)|≤2E.  
Since qR(D)=0, we have that on the indices in R the 
Hamming distance between D and D’ is at most 2E. 
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Proof
Let ’s consider D to be the real dataset and D’ to 
be the outputted one. Consider the sets of indices

R = { i | D(i)=0 }        and      T = { i | D(i)=1 }
Since D’ was not ruled out we have

|qS*(D)-qS(D’)|≤E 
but by definition we also have

|qS*(D)-qS(D)|≤E 
so by triangle inequality |qS(D)-qS(D’)|≤2E.  
Since qR(D)=0, we have that on the indices in R the 
Hamming distance between D and D’ is at most 2E. 
We can apply a similar reasoning to T. So overall D 
and D’ differ in at most 4E positions.
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