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Databases and Queries

® For simplicity we will focus on a rather
abstract notion of databases and queries.

® VWe will describe a database as a multiset (or
sometimes an histogram) and queries as
functions from a database to some (often
numeric) domain.

® VWe will usually be interested in the results of
some set of queries.
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Database

® \We can think about a database as a list of
records from some universe set:

D e X"
® Sometimes we will think to them as functions
D(k) e X

® and sometimes we will write elements
explicitly

(dl,...,dn) c X"



Counting Queries

® A counting query ¢ : X — |0, 1] is a
function counting the fraction of people in
a dataset satisfying the predicate ¢ : X — {0,1}

® |n symbols:

® Notice that we take a normalized count,
which also corresponds to the average.



Example | 7

Let’s consider an arbitrary universe domain X and let’s consider
the following predicate for y € A

(1 ify==zx
qy(T) = « /

0 otherwise

\

we call a point function the associated counting query

qy : X" — [0, 1]
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Let’s consider an arbitrary universe domain X and let’s consider
the following predicate for y € A

(1 ify=2z
qy(T) = « /

0 otherwise

\

we call a point function the associated counting query

qy : X" — 0, 1]
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Example |

X={0,113

qOoo(D) = .3

D e X10 =

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1




Example |

X={0,1}3
qOoo(D) = .3
Qoo1(D) = .1

D e X10 =

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1




Example |

X={0,1}3
qOoo(D) = .3
Joo1(D) = .1
Jo1o(D) = .2

D e X10 =

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1
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Example |

X={0,1)3  DeX0=
Jooo(D) =.3  g100(D) =0
Qoo1(D) = .1 g101(D) = .3
qo1o(D) =.2  g110(D) = .1
Jo11(D) =0
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11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1
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Example | :

D1 | b2 | D3

11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
X:{O,‘|}3 De X10=1| 5 0 0 0
6 0 0 1
17 1 1 0
8 0 0 0
19 0 1 0
110 1 0 1

000 001 010 011 100 101 110 111



Example | 9

Let’s consider an arbitrary ordered universe domain &’ and let’s
consider the following predicate for y € X

1 ifz< Y
0 otherwise

\

qy(T) = <

we call a threshold function the associated counting query

qy : X" — |0,1]
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Let’s consider an arbitrary ordered universe domain &’ and let’s
consider the following predicate for y € X

1 ifz< Y
0 otherwise

Gy(T) = «

\

we call a threshold function the associated counting query

qy : X" — |0,1]




Example |

X={0,1}3
with order
given by the
corresponding

binary encoding.

D e X10 =

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1




Example |

X={0,1}3
with order
given by the
corresponding
binary encoding.

D e X10 =

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1




Example |

X={0,1}3
with order
given by the
corresponding
binary encoding.
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D e X10 =

10

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1
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Example |l |

Let’s consider the universe domain X = {0,1}¢ and let’s consider
de{1,1,...,d,d¥* with1 <k < d and

G5(2) = quy (2) A oy (2) A=+ A oy ()
where ¢j(z) = x; and ¢; () = —a;
We call a conjunction or k-way marginal the associated counting

Hery gz : X" — [0, 1]



Example I |

Let’s consider the universe domain X = {0,1}% and let’s consider
ve{l,1,...,d, d}k with 1 < k < d and

QU(x) — Qv (LU) N Qu, (37) N A Qyy, (ZE)

where ¢j(z) = x; and ¢; () = —x;
We call a conjunction or k-way marginal the associated counting

AHey qy - X™ — [0, 1]
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Example |l

X={0,1)3

D e X10 =
qi12(D) = .2
g/13(D) = .1
anie(D) = .4
ans(D) =.5

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1

12



Linear Queries

® A linear query ¢ : X™ — [0,1] is a function
averaging the value of a function ¢ : X — [0, 1]
over the elements of the dataset.

® |n symbols:

|3



Sum queries

® |et’s denote by I C [n] a subset [ of

{0,...,n}

® Asum query g; 0, 1 — N* is defined as
ar(D) =) d;

el

14
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Example

X={0,1)8  DeX0=

gq.231(D) = (1,1,1)

D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1
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D1 D2 D3
11 0 0 0
12 1 0 1
13 0 1 0
14 1 0 1
15 0 0 0
16 0 0 1
|7 1 1 0
18 0 0 0
19 0 1 0
10 1 0 1
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Example

X={0,1}3 D e X10 =
gq.231(D) = (1,1,1)
gi1.2.4/(D) = (2,0,2)

qs.8/(D) = (0,0,0)
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Example

X={0,1)8  DeX0=

af1.23(D) = (1,1,1)
a(1.2.4)(D) = (2,0,2)
qs.8/(D) = (0,0,0)
Q2,4,7,10/(D) = (4,1,3)

Q

)
(S}

O
w

11

12

13

|4

15

16

|7

18

19

il (=N (=N LN [« N [ek E N [k L (e

(@l LN (el E i (el (el (ah Ll (el (o]

il (=N (=N =k Ll [k L [k L (e

10




Privacy Mechanism




Privacy Mechanism

Lotor tothe Edtor
Methodological weakness in using correlation coefficients for
assessing the interchangeability of analyte data between
' e I C a samples collected under different sampling conditions - the
—




Privacy Mechanism

Does Joe
have

cancer?




Private Mechanism

Does Joe
have
cancer?
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A natural idea:
anonymizing the data

® E.g.stripping Pll, guaranteeing k-anonymity,
swapping, etc.



Attacks on stripping PlI

(Narayanan, Shmatikov: Robust De-anonymization of Large Sparse
Datasets. IEEE Symposium on Security and Privacy 2008)

NETELIX

Anonymous Data




Attacks on stripping PlI

(Narayanan, Shmatikov: Robust De-anonymization of Large Sparse
Datasets. IEEE Symposium on Security and Privacy 2008)

Additional Data

\correlations/ N [T I: I. I x




Attacks on Swapping

(Garfinkel, Abowd, Martindale: Understanding Database Reconstruction
Attacks on Public Data. ACM Queue 16(5): 50 (2018))

C United States®

ensus

essssssssmme Bureau

Anonymous Data




Attacks on Swapping

(Garfinkel, Abowd, Martindale: Understanding Database Reconstruction
Attacks on Public Data. ACM Queue 16(5): 50 (2018))

Commercially | United States®
available data Censu S

Additional Data Anonymous Data




Attacks on K-anonymity

(A. Cohen:Attacks on Deidentification’s Defenses.
Usenix Security 2022)

ed)|

Anonymous Data

~




Attacks on K-anonymity

(A. Cohen:Attacks on Deidentification’s Defenses.
Usenix Security 2022)

Linked m \correlatiory m

Additional Data Anonymous Data
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Warner, S. L. (March 1965). "Randomised response: a survey technique for eliminating evasive
answer bias". Journal of the American Statistical Association. Taylor & Francis. 60 (309): 63—609.
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Randomized Algorithms /%3

e @Given a discrete set B the probability simplex over B,
denoted A(B) is defined as:

| B
A(B) = {x c RIBl . i 2; >0, and Z.CEZ = 1}
i=1



7Lf
Randomized Algorithms -

e QGiven a discrete set B the probability simplex over B,
denoted A(B) is defined as:

| B
A(B) = {x c RIBl . i 2; >0, and ZCEZ = 1}
i=1
e Arandomized algorithm M is an algorithm associated

with a total map M : A — A(B)

On input a € A the algorithm outputs M (a) = b with
probability (M (a))s .

The probability space is over the coin flips of the
algorithm.
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Private Statistical database

Noise statistical
query

>

answer+noise
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Private Statistical database

statistical
query

>

answer+noise




Sum queries

® |et’s denote by I C [n] a subset [ of

{0,...,n}

® Asum query gy : 0,1% — N¥is defined as

ar(D) =) d;

el

30
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Uniform Noise

e (iven a query q we want to add noise to create a new
randomized query:

q°(D) =q(D) +Y
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Uniform Noise

e (Given a query q we want to add noise to create a new
randomized query:

g*(D) = (D) + Y

¢ One way to do this is to sample Y from the uniform
distribution:

Y ~ U[0,1]
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Reconstruction attack

e Consider an adversary A (an algorithm) that
has access to some data D through a privacy
mechanism q*.

e The goal of the adversary is to output some
data D’ that is as similar as possible to D.

e To output D’ the adversary can interact several
times with g*.
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Reconstruction attack

Attacker

e
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Reconstruction attack

ol Attacker

< >
:i!q
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Reconstruction attack

ol Attacker
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Reconstruction attack

ol Attacker
< >

g2 \ N :
< -

gk

< >




34

Reconstruction attack

ol Attacker
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Reconstruction attack

X% We say that the attacker wins if
)

In our case we can use Hamming
distance
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Additive Noise Perturbation

e We say that M is a privacy mechanism obtained by
adding noise if for every query g, M creates a new
randomized query:

g*(D) = (D) + Y
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Additive Noise Perturbation

e We say that M is a privacy mechanism obtained by

adding noise if for every query g, M creates a new
randomized query:

g*(D) = (D) + Y

e We say that a mechanism M add noise within
perturbation E iff for every q and every D:

I9”(D)-q(D)l < E



Reconstruction attack with’
exponential adversary

[DinurNissim’02]



Reconstruction attack with"
exponential adversary

[DinurNissim’02]



Reconstruction attack with’
polynomial adversary

[DinurNissim’02, DworkYekhanin’08]
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Number of queries

A privacy mechanism can answer with
perturbation vn at most a number of queries
sublinear in n.
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Number of queries

A privacy mechanism can answer with
perturbation vn at most a number of queries
sublinear in n.
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Sample error

Suppose that a database contains n individuals drawn
uniformly at random from a population of size N>>n.

Suppose we are interested in a medical condition that
affects a fraction p of the population.

Then we expect the number of individuals in the
dataset with condition p is

npxO(Vn)

The sampling error is of the order of Vn.



4|

Sample error

® Suppose that a database contains n individuals drawn
uniformly at random from a population of size N>>n.

® Suppose we are interested in a medical condition that
affects a fraction p of the population.

® Then we expect the number of individuals in the
dataset with condition p is

np£O(Vn)

® The sampling error is of the order of Vh.
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Foundamental Law of
Information Reconstruction

The release of too many overly accurate statistics gives
privacy violations.

[DinurNissim02]



Privacy vs Utility

|

43



44
Quantitative notions of Privacy

® The impossibility results discussed above suggest a
quantitative notion of privacy,

® A notion where the privacy loss depends on the
number of queries that are allowed.



44
Quantitative notions of Privacy

® The impossibility results discussed above suggest a
quantitative notion of privacy,

® A notion where the privacy loss depends on the
number of queries that are allowed.




Let’s take inspiration from

semantics security.

® The analyst learn the same after the analysis as what
she would have learnt if | didn’t contribute my data.
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® The analyst learn the same after the analysis as what
she would have learnt if | didn’t contribute my data.
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® The analyst learn the same after the analysis as what
she would have learnt if | didn’t contribute my data.




Let’s take inspiration from

semantics security.

® The analyst learn the same after the analysis as what
she would have learnt if | didn’t contribute my data.
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< >
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gk
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Privacy-preserving data analysis?

Prior Knowledge

"y

Posterior Knowledge
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Privacy-preserving data analysis!?
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Privacy-preserving data analysis!?




Privacy-preserving data analysige?

[DworkNaor|0]



Let’s take inspiration from *

semantics security v2.

® The analyst learn almost the same about me after
the analysis as what she would have learnt if | didn’t
contribute my data.
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Let’s take inspiration from *

semantics security v2.

® The analyst learn almost the same about me after
the analysis as what she would have learnt if | didn’t
contribute my data.

g1

< >
g2

< >
gk
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Adjacent databases

® VWe can formalize the concept of contributing my
data or not in terms of a notion of distance
between datasets.

® Given two datasets D, D’€{0, |}, their distance is
defined as:

DAD’=[{k=n | D(k)£D’(k)}|

® We will call two datasets adjacent when DAD’=|
and we will write D~D’.
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(€,0)-Differential Privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &
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(€,0)-Differential Privacy

A query returning a probability distribution

~

Definition v
Given €,0 2 0,(a probabilistic query Q:}X» = Riis
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &
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(€,0)-Differential Privacy

Privacy parameters

—

"Definitio/ \
Given 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:
PriQ(bi)e S] = exp(€)Pr[Q(b2)e S] + O
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(€,0)-Differential Privacy

Definition \
Given €,0 2 0, a probabilistic query Q: X» = R is

(€,0)-differentially private iff

I(for all)adjacent database bj, b and for every SCR:

T Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + &

\_

a quantification over all
the databases

——




55

(€,0)-Differential Privacy

~

Definition
Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all(adjacent database by, by ind for every SCR:
A

Pr[Q(bi)e S] & exp(£)Pr[Q(b2)e S] + &

a notion of adjacency or distance
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(€,0)-Differential Privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is

(€,0)-differentially private iff

for all adjacent database b, b; and for every(SCR)
A

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &

J

\_

and over all the possible
outcomes

R




e-Differential Privacy

(Definition

\_

Given € 2 0, a probabilistic query Q: X — R is e-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S]

57



e-Differential Privacy

(Definition

\_

Given € 2 0, a probabilistic query Q: X — R is e-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S]

Let’s substitute a concrete instance:

PriQ(bu{x})e S] = exp(g)Pr[Q(bu{y})e S]
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e-Differential Privacy

(Definition

\_

Given € 2 0, a probabilistic query Q: X — R is e-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(b1)e S] < exp(€)Pr[Q(b2)e S]

Let’s substitute a concrete instance:
PriQ(bu{x})e S] = exp(g)Pr[Q(bu{y})e S]
Let’s use the two quantifiers:
exp(-£)Pr[Q(bu{y})e S] = Pr[Q(bu{x})e S] < exp(€)Pr[Q(bu{y})e S]

59
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e-Differential Privacy

Given
for all

\_

(Definition

£ 2 0, a probabilistic query Q: X» = R is ¢-differentially private iff
adjacent database b, by and for every SCR:

Pr[Q(b1)e S] < exp(€)Pr[Q(b2)e S]

Let’s substitute a concrete instance:

Let’

PriQ(bu{x})e S] = exp(g)Pr[Q(bu{y})e S]

s use the two quantifiers:

exp(-£)Pr[Q(bu{y})e S] = Pr[Q(bu{x})e S] < exp(€)Pr[Q(bu{y})e S]

And for £ —0

[(I-S)Pr

Q(buiy})e S] = PriQ(buix})e S] = (I +€)Pr[Q(buty})e S]J




61

e-Differential Privacy

In general we can think about the following quantity
as the privacy loss incurred by observing r on the
databases b and b’.

~ Pr[Q(b)=r]
Lop(r) =log PrQ(b")=r]




e-Differential Privacy

Q£=> R probabilistic
Q(buix}) Q(buiy})

0 05T
y y
| / |
X X
2 1,6 1,2 08 0,4 0 04 08 12 16 2 04 08 1.2 16 2
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e-Differential Privacy

d(Q(bu{x}),Q(bu{y}))= &




e-Differential Privacy

Pr[Q(bu{x})=r]

8 Pr{Q(bu{y})=r]

<€

/
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(€,0)-Differential Privacy )

~

‘Definition
Given €,0 2 0, a probabilistic query Q: X» = R is (g,0)-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] < exp(€)Pr[Q(b2)e S] + O

\_ J




(€,0)-Differential Prlvacy

‘Definition
Given €,0 2 0, a probabilistic query Q: X» = R is (g,0)-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] =< exp(€)Pr[Q(b2)e S] + &

\_ J

Similarly, we have

Pr[Q(bi1)e S] - ©

08 —PrQEe ST <

Pr[Q(bi)e S] + &
< log —pramy)e 3]




(€,0)-Differential Prlvacy

Defmltlon

\_

Given €,0 2 0, a probabilistic query Q: X» = R is (g,0)-differentially private iff
for all adjacent database by, bz and for every SCR:

Pr[Q(bi)e S] =< exp(€)Pr[Q(b2)e S] + &

Similarly, we have

Pr[Q(bi)e S] - (B ~

a GRS ST
Pr[Q(b1)e S] + ) —

< log —pramy)e 3]



(€,0)-Differential Privacy g

I Pr[Q(bi)=r]
° T Pr[Q(b2)=r]

<€ | with probability 1-0

yd




The rest of the class

Understanding some basic methods
to guarantee differential privacy and
how they provide an answer for the
privacy vs utility trade-off.

Looking at how we can formally

support differential privacy using
EasyCrypt.
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Summary

Statistical queries and databases,

Additive noise perturbation,

Reconstruction attack,

Fundamental Law of Information Reconstruction,

Differential privacy

/0



Reconstruction attack with
exponential adversary

[DinurNissim’02]



Proof

Query phase: For each S ¢ [n] let as* = gs*(D).

Rule out phase: For each D’ € {0,1}":
iIf there exists S such that 1gs(D’) - as* | > E then rule out D’.

Output phase: Output a database D’ that was not ruled out.

72
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Proof

Query phase: For each S ¢ [n] let as* = gs*(D).

Rule out phase: For each D’ € {0,1}":
iIf there exists S such that 1gs(D’) - as* | > E then rule out D’.

Output phase: Output a database D’ that was not ruled out.

Notice that since for the real database we clearly have
Igs(D) - gs*(D) | <E

the procedure clearly return a candidate output in an

exponential number of steps.
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Proof

Query phase: For each S ¢ [n] let as* = gs*(D).

Rule out phase: For each D’ € {0,1}":
iIf there exists S such that 1gs(D’) - as* | > E then rule out D’.

Output phase: Output a database D’ that was not ruled out.

Notice that since for the real database we clearly have
Igs(D) - gs*(D) | <E

the procedure clearly return a candidate output in an

exponential number of steps.

We now want to show that du(D,D’) < 4E



Proof

Let ’s consider D to be the real dataset and D’ to
be the outputted one. Consider the sets of indices

R={ilD({)=0} and T={ilD(i)=1}

/3
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Proof

Let ’s consider D to be the real dataset and D’ to
be the outputted one. Consider the sets of indices
R={il D(i)=0} and T ={ilD()=1}
Since D’ was not ruled out we have
lgs™(D)-gs(D’)I<E
but by definition we also have
lgs™(D)-gs(D)I<E
so by triangle inequality Iqs(D)-qs(D’)I<2E.
Since gr(D)=0, we have that on the indices in R the
Hamming distance between D and D’ is at most 2E.
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Let ’s consider D to be the real dataset and D’ to
be the outputted one. Consider the sets of indices
R={il D(i)=0} and T ={ilD()=1}
Since D’ was not ruled out we have
lgs™(D)-gs(D’)I<E
but by definition we also have
lgs™(D)-gs(D)I<E
so by triangle inequality Iqs(D)-qs(D’)I<2E.
Since gr(D)=0, we have that on the indices in R the
Hamming distance between D and D’ is at most 2E.

We can apply a similar reasoning to T. So overall D
and D’ differ in at most 4E positions.



