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A natural idea: 
anonymizing the data

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy
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Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

• E.g. stripping PII, guaranteeing k-anonymity, 
swapping, etc.



Reconstruction attack with 
exponential adversary

Let M:{0,1}n  → R be a privacy mechanism 
adding noise within E perturbation. Then there 
is an adversary that can reconstruct the 
database within 4E positions.

[DinurNissim’02]
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Attack
Query phase: For each S ⊆ [n] let aS* = qS*(D).

Rule out phase: For each D’ ∈ {0,1}n: 
if there exists S such that  |qS(D’) - aS* | > E then rule out D’.
Output phase: Output a database D’ that was not ruled out.
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Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
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How can we build 
differentially private data 

analyses?
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Randomized Response 
[Warner65]

Suppose I ask a yes/no question.
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The value of the bias is what determines the epsilon

Suppose I ask a yes/no question.



An example

AlmostRandom (b : bool) : bool {
if coinToss()
then 

return b;
else 

return coinToss();
}



Let’s consider the case we have two adjacent data b and b’.
By the fact that they are adjacent we know that one of them 
is 1 and one of them is 0. Without loss of generality let’s 
assume b=1 and b’=0.

An example



Pr[AR(b)= 1] = 3/4        Pr[AR(b’)= 1] = 1/4

Let’s consider the case we have two adjacent data b and b’.
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An example

We have:
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An example
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Pr[AR(b)= R]

Pr[AR(b’)= R]

So for all b,b’:

≤ 3

AlmostRandom is (ln 3,0)-differentially private

log



Counting Queries

• A counting query                        is a 
function counting the fraction of people in 
a dataset satisfying the predicate 

• In symbols:

• Notice that we take a normalized count, 
which also corresponds to the average.
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1.4. Statistical Queries 5

We will call two datasets D, D
Õ œ X n

adjacent, denoted D ≥1 D
Õ if

D�D
Õ Æ 1.

Notice that two databases are adjacent according to this definition
if they are equal or if they have the same number of records and all of
the records are equal except for one position k Æ n where dk ”= d

Õ
k.

1.4 Statistical Queries

While di�erential privacy is more and more considered in di�erent
kind of data analysis, it’s conception is closely related to the setting
of queries over statistical datasets [2, 5, 1, 4], where one is interested
in releasing several statistics about the data and she want to do this
in a privacy-preserving manner. Nowadays, the boundaries between
statistics, machine learning, optimization, etc. are less rigid than in the
past and so di�erential privacy is finding wider interest and applications.
However, the statistical setting is still one of the primary applications
for di�erential privacy. In the sequel we will use it as one of the main
intended applications for the algorithms that we will present, although
we will also present some algorithms from other areas, so we are going
now to formalize this setting.

The first class of queries we will consider are counting queries.

Definition 1.4 (Counting Queries). Let q : X æ {0, 1} be a predicate
on records in X . A counting query q : X æ [0, 1] is a function counting
the fraction of people in a dataset D œ X n satisfying the predicate q.
In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that we use the same symbol q for the predicate and the
counting query characterized by this predicate. We will explicitly dis-
ambiguate when the notation can create confusion.

While counting queries can seem very simple, they are already quite
expressive and sometimes we will restrict our attention to subclasses.
Some examples (see also [8]) of counting queries, and associated statistics,
are:
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Randomized Response

1.6. An example: Randomized Response 9

allows to consider the size of the dataset as public information. In the
original formulation this information can instead only be estimated with
di�erential privacy.

1.6 An example: Randomized Response

Our first example of a di�erentially private algorithm is based on a
technique developed in the 60s and known as randomized response [9].
We use it here to compute an approximate di�erentially private version
of a counting query. The idea of randomized responses is quite general
and it has been used in di�erent settings, for instance it has been studied
to release an an approximate di�erentially private version of the k top
frequent items.

In the variant we present, this algorithm takes as inputs a dataset
D œ X n, a predicate q : X æ {0, 1} and ‘ and returns a vector S of
length n where each S(k) is q(k) with probability 1+‘

2
and ¬q(k) with

probability 1≠‘
2

. We describe this formally in Algorithm 2.

Algorithm 1 Pseudo-code for Randomized Response
1: function RandomizedResponse(D, q, ‘)
2: for k Ω 1 to |D| do

3: Si Ω
I

q(di) with probability e‘

1+e‘

¬q(di) with probability 1

1+e‘

4: end for
5: return (sum S)

|D|
6: end function

The first thing we want to prove is that randomized response is
di�erentially private.

Claim 1.1 (Privacy for Randomized Response). The algorithm Random-
izedResponse (Algorithm 2) is ‘-di�erentially private.

Proof. We need to consider two adjacent datasets D, D
Õ œ X n and

every possible output. Since every output is the average sum of a vector
S œ {0, 1}n, it is enough to focus on one such S. By the definition of
adjacency we know that D and D

Õ, either are equals, in which case the



Example
Let’s consider a medical dataset containing informations on 
whether each patient has a disease. 

We can have di=1 if patient i has the disease and di=0 
otherwise.  

We can use randomized response to estimate the proportion 
of patient that have the disease. 
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The noise that each individual add protect his/her value.



A CS Example
Google Chrome RAPPOR project used randomized response 
to collect statistics of opt-in users of the Chrome browser. 

They collect statistics about the users home pages, the setting 
of the user browser, etc. 

RAPPOR used randomized response to estimate the 
proportion of users with specific settings.
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Randomized Response
Privacy Theorem:  
Randomized response is eps-differentially private.



Randomized Response
Privacy Theorem:  
Randomized response is eps-differentially private.

Proof:
We need to consider two databases D,D’∈ Xn and every. 
possible output. 
Since |D|=|D’|=n is fixed, the result will depend only on the 
value of S ∈ {0,1}n.



Randomized Response
Privacy Theorem:  
Randomized response is eps-differentially private.

Proof:
We need to consider two databases D,D’∈ Xn and every. 
possible output. 
Since |D|=|D’|=n is fixed, the result will depend only on the 
value of S ∈ {0,1}n.
Since D~D’ there is only one element where they differ. 
Let’s name this element k.



Randomized Response
Privacy Theorem:  
Randomized response is eps-differentially private.

Continued Proof:
For every j≠k we have:

10 Di�erential Privacy

probabilities in output are also equals, or they di�er for only one record
k. In this case, we have dk ”= d

Õ
k and for every j ”= k we have dj = d

Õ
j .

So, in particular, for every j ”= k we have

Pr[Sj = q(dj)] = Pr[Sj = q(dÕ
j)]

So, we need only to consider what happens on the record k. If q(dk) =
q(dÕ

k), then it is easy to see that once again the output probabilities are
the same:

Pr[Sk = q(dk)] = Pr[Sk = q(dÕ
k)]

and so the overall distributions would still be the same. So, let’s assume
that q(dk) ”= q(dÕ

k), and so q(dÕ
k) = ”= q(dk). In this case the probabilities

di�er and we have:

Pr[Sk = q(dk)]
Pr[Sk = q(dÕ

k)] = Pr[Sk = q(dk)]
Pr[Sk = ¬q(dk)] =

! e‘

1+‘

"
!

1

1+‘

" = e
‘

By a similar reasoning we can prove:

Pr[Sk = q(dÕ
k)]

Pr[Sk = q(dk)] = Pr[Sk = ¬q(dk)]
Pr[Sk = q(dk)] =

!
1

1+‘

"
! e‘

1+‘

" = 1
e‘

Using these facts, and the fact that the probabilities of flipping
each one of the results are independent, we can give a bound for
the overall mechanism. Let’s write RR(D, q, ‘) as a shorthand for
RandomizedResponse(D, q, ‘). Then, we have

Pr[S = RR(D, q, ‘)]
Pr[S = RR(DÕ, q, ‘)] =

Pr[Sk = q(dk)]
r

j ”=q Pr[Sj = q(dj)]
Pr[Sk = q(dÕ

k)]
r

j ”=q Pr[Sj = q(dÕ
j)] = Pr[Sk = q(dk)]

Pr[Sk = q(dÕ
k)] = e

‘
,

and similarly we can prove

Pr[S = RR(DÕ
, q, ‘)]

Pr[S = RR(D, q, ‘)] = 1
e‘

.

This concludes the proof that RandomizedResponse is ‘-di�erentially
private.

Notice that the proof doesn’t use the fact that we are computing an
averaged sum of the noised vector containing the noised answer to each
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For k we have two cases: 
1 - either q(dk)=q(d’k) 
2 - or q(dk)≠q(d’k)
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The case 2 where q(dk)≠q(d’k) is more interesting.
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Randomized Response

Question: How accurate is the answer that we get 
from randomized response?



Accuracy

• There are usually two main ways to measure 
accuracy:

• By comparing the noised result with the one that 
we would have without noise,

• By comparing the noised result with the one that 
we would obtain on the population.



Accuracy Statements
We can give statements about the accuracy of our 
algorithms by using formulas like

1.6. An example: Randomized Response 11

individual predicate. Indeed, just releasing the noised vector would be
di�erentially private.

However, this fact becomes important when we want to evaluate
how good is the answer given by the algorithm. Indeed, in general
having a di�erential privacy guarantee is not enough to show that an
algorithm is interesting. We need also to provide evidence that the
algorithm returns an answer which is useful. This can be done mainly in
two ways: through an experimental evaluation or by providing a useful
theoretical accuracy analysis. Often this kind of theoretical analysis can
be formulated with a formula of the shape

Pr[X Ø –] Æ —

where X is a random variable representing a quantitative relation
between the result of the di�erentially private algorithm with respect
to the problem that the algorithm is solving, 1 ≠ — is the probability
with which – gives a bound on how close these two quantities are. For
example if we denote a the answer of the algorithm without noise and
â the ones with noise, we can write

Pr[|a ≠ â| Ø –] Æ —

to say that with probability at least 1 ≠ — the di�erence between the
noised answer and the one without noise will be bound by –.

Before giving the accuracy guarantee for Randomized Response we
need to introduce a tool that will be useful to describe it.

Theorem 1.2 (Additive Cherno� Bound). Let X1, . . . , Xn be i.i.d ran-
dom variables such that 0 Æ Xi Æ 1 for every 1 Æ i Æ n. Let
S = 1

n

qn
i=1 Xi denote their mean and E[S] their expected mean, where

E[S] = 1

n

qn
i=1 E[Xi] by linearity of expectation, then for every ⁄ we

have:
Pr[|S ≠ E[S]| Ø ⁄] Æ 2e

≠2⁄2n

The following theorem shows the accuracy guarantee of Randomize-
dResponse for a counting query q.

Theorem 1.3 (Accuracy). The algorithm RandomizedResponse (Algo-
rithm 2) provides the following accuracy guarantee for every dataset D
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Here X is a  
random variable 

representing some 
measure on the  

differentially private  
output.
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â the ones with noise, we can write
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answer with the one without noise:
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where RR(D, q, ‘) is a shorthand for RandomizedResponse(D, q, ‘).

Proof. We will use the same notation as in Algorithm 2. First, we can
compute the expected value of each Sj . For every j we have:

E[Sj ] = q(dj)( e
‘

1 + e‘
) + ¬q(dj)( 1

1 + e‘
)

= q(dj)( e
‘

1 + e‘
) + (1 ≠ q(dj))( 1

1 + e‘
)

= q(dj)(e‘ ≠ 1)
1 + e‘

+ 1
1 + e‘

Using this and the additive Cherno� bound (Theorem 1.2) we have

Pr
Ë---

1
n

ÿ

j

Sj ≠ 1
n

ÿ

j

1
q(dj)(e‘ ≠ 1)

1 + e‘
≠ 1

1 + e‘

2--- Ø ⁄

È
Æ 2e

≠2⁄2n

where the probability is taken on the output of RR(D, q, ‘). This can
be rewritten as
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The accuracy guarantee can be di�cult to understand at first but
what is important to understand is that it provides a quantitative
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This represents the   
variable measuring the  
difference between the  
noised answer and the  

non-noised one.
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This is our alpha. 
Notice that we  

express it in terms  
of beta.
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Intuitive reading: with high probability we have:
���r � q(D)

���  O

⇣ 1p
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⌘
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=

p
n

n

Notice that this is of the 
same order as the 

normalized sampling error.
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Additive Chernoff Bound

1.6. An example: Randomized Response 11

individual predicate. Indeed, just releasing the noised vector would be
di�erentially private.

However, this fact becomes important when we want to evaluate
how good is the answer given by the algorithm. Indeed, in general
having a di�erential privacy guarantee is not enough to show that an
algorithm is interesting. We need also to provide evidence that the
algorithm returns an answer which is useful. This can be done mainly in
two ways: through an experimental evaluation or by providing a useful
theoretical accuracy analysis. Often this kind of theoretical analysis can
be formulated with a formula of the shape

Pr[X Ø –] Æ —

where X is a random variable representing a quantitative relation
between the result of the di�erentially private algorithm with respect
to the problem that the algorithm is solving, 1 ≠ — is the probability
with which – gives a bound on how close these two quantities are. For
example if we denote a the answer of the algorithm without noise and
â the ones with noise, we can write

Pr[|a ≠ â| Ø –] Æ —

to say that with probability at least 1 ≠ — the di�erence between the
noised answer and the one without noise will be bound by –.

Before giving the accuracy guarantee for Randomized Response we
need to introduce a tool that will be useful to describe it.

Theorem 1.2 (Additive Cherno� Bound). Let X1, . . . , Xn be i.i.d ran-
dom variables such that 0 Æ Xi Æ 1 for every 1 Æ i Æ n. Let
S = 1

n

qn
i=1 Xi denote their mean and E[S] their expected mean, where

E[S] = 1

n

qn
i=1 E[Xi] by linearity of expectation, then for every ⁄ we

have:
Pr[|S ≠ E[S]| Ø ⁄] Æ 2e

≠2⁄2n

The following theorem shows the accuracy guarantee of Randomize-
dResponse for a counting query q.

Theorem 1.3 (Accuracy). The algorithm RandomizedResponse (Algo-
rithm 2) provides the following accuracy guarantee for every dataset D
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The accuracy guarantee can be di�cult to understand at first but
what is important to understand is that it provides a quantitative

Let’s consider again the example of the medical dataset 
containing informations on whether each patient has a disease 
(di=0 or di=1).  

We can use randomized response to estimate the proportion 
of patient that have the disease.  We need to fix the 
parameters.
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The accuracy guarantee can be di�cult to understand at first but
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Let’s fix the following values for the parameters: 

n=1,000,000 
ε=1 
β=0.05

1.7. The Laplace mechanism 13

relation between the results of RandomizedResponse and the result q(D)
without noise. Notice that the above theorem tell us that with high
probability we have
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So, fixing ‘ the accuracy improves as n grows, as we will show in the
next example.

Example 1.1. Let’s consider a medical dataset containing information
on whether a given patient has a disease or not. We can imagine that this
information is stored in a dataset where every record is 1 if the patient
has a disease or 0 otherwise. Now we want to use RandomizedResponse
to approximately compute the proportion of patients that have the
disease. Suppose that we fix — = 0.05, n = 1, 000, 000 and ‘ = 1. Then
1+e‘

e‘≠1
¥ 2.16 and 1

1+e‘ ¥ 0.26. So, we see that with probability 95% we
have ---2.16

1
r ≠ 0.26

2
≠ q(D)

--- Æ 2.16 0.89
1000

which tell us that

2.16r ≠ 0.5591 Æ q(D) Æ 2.16r ≠ 0.5619

So, even with the noise introduced by RandomizedResponse we are able
to estimate the proportion of patients with the disease quite precisely.

In this work we will focus mainly on the verification of the privacy
guarantee, nevertheless it is important to keep in mind that besides
achieving good privacy we want to achieve good accuracy.

1.7 The Laplace mechanism

We will now see another simple method based on additive noise to
obtain di�erential privacy for numeric queries/functions. This method
adds to the result of a numeric query some statistical noise distributed
accordingly to the Laplace distribution.

Definition 1.7 (Laplace Distribution). The Laplace distribution (cen-
tered at 0) with scale b is the probability distribution with probability
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adds to the result of a numeric query some statistical noise distributed
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Randomized Response

Summarizing:

• Randomized Response is a first simple example 
which is very useful in practice,

• It protect privacy at the local level - we will come 
back to this later in the class,

• Provides a theoretical accuracy guarantee that is of 
the same order as the sampling error.



Noise on the output

Question: What is a good way to add noise to the 
output of a statistical query?

Intuitive answer: it must depend on ε or the accuracy 
we want to achieve, and on the scale that a change can 
have on the output.
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

Global Sensitivity
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is described in the following algorithm where q : N|X | æ R and where
the notation Y

$Ω f denotes the fact that Y is sampled from the
distribution f .

Algorithm 2 Pseudo-code for the Laplace Mechanism
1: function LapMech(D, q, ‘)
2: Y

$Ω Lap(�q
‘ )(0)

3: return q(D) + Y

4: end function

Notice that by the properties of the Laplace distribution we have
that LapMec(D, q, ‘) and Lap(�q

‘ )(D) are the same distribution, that is
we can see the Laplace mechanism as returning a Laplace distribution
centered in q(D) with scale �q

‘ . The scale �q
‘ is such that the noise that

the mechanism add is directly proportional to the global sensitivity of
q and inversely proportional to the level of protection ‘ one wants to
guarantee. Notice also that the Laplace mechanism is generic in the
kind of function it takes in input, i.e. it can be applied to any numeric
function, non only counting queries.

Likewise what we did for Randomized Response, we want to prove
two properties of the Laplace mechanism: that it ensures di�erential
privacy and that it has a non-trivial accuracy. Let’s start by proving
that it ensures di�erential privacy.

Theorem 1.4 (Privacy of the Laplace mechanism). The Laplace mecha-
nism ensures ‘-di�erential privacy.

Proof. Consider D ≥1 D
Õ œ X n, q : X n æ R, and let p and p

Õ denote the
probability density function of LapMech(D, q, ‘) and LapMech(DÕ

, q, ‘),

Laplace Mechanism
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Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.16 Di�erential Privacy
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
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≠ ‘|q(D)≠z|
�q

2

exp
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≠ ‘|q(DÕ)≠z|
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Æ exp
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‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Proof: Intuitively

Laplace Mechanism
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Laplace Mechanism

Question: How accurate is the answer that we get 
from the Laplace Mechanism?
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Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:

Lemma 1.5 (Tail bound for the Laplace Distribution). If Z is drawn from
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The above theorem tell us that for a counting query q : X n æ R
with high probability the Laplace mechanism will output a value r such
that: ---q(D) ≠ r
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which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.
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Example 1.2. Let’s consider again a medical dataset containing infor-
mation on whether a given patient has a disease or not. Now we want
to use LapMech to approximately compute the proportion of patients

where Y is drawn from Lap(0,Δq/ε)
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density function3:

Lap(b)(x) = 1
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exp
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≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
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�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

Lap(b, µ)(X) =
1

2b
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⇣
� |µ�X|

b

⌘

Pr
h
|X| � b t

i
= exp(�t)



Laplace Mechanism
Accuracy Theorem:  

1.7. The Laplace mechanism 17

Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:
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Using this property we can then prove a result about the accuracy
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The above theorem tell us that for a counting query q : X n æ R
with high probability the Laplace mechanism will output a value r such
that: ---q(D) ≠ r
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which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.
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Let’s consider again the example of the medical dataset 
containing informations on whether each patient has a 
disease (di=0 or di=1).  

We can use the Laplace Mechanism to estimate the 
proportion of patient that have the disease.  We need to fix 
the parameters.
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that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln( 1

— ) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T ]
Æ exp(‘)Pr[M(DÕ) œ T ]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable
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and ‘ = 1. Then �q = 10≠6 and ln( 1

— ) = 2.99. So, we see that with
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So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T ]
Æ exp(‘)Pr[M(DÕ) œ T ]
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This result can also be generalized to arbitrary randomized mappings,
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overemphasize how important is for di�erential privacy to be stable

Question: What is the sensitivity?
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with high probability the Laplace mechanism will output a value r such
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which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.
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that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln( 1

— ) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T ]
Æ exp(‘)Pr[M(DÕ) œ T ]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable
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Question: What is the sensitivity?
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Randomized Response
Accuracy Theorem:  

Proof:
First we can compute the expected value of each S:
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where RR(D, q, ‘) is a shorthand for RandomizedResponse(D, q, ‘).
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The accuracy guarantee can be di�cult to understand at first but
what is important to understand is that it provides a quantitative
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Additive Chernoff Bound

1.6. An example: Randomized Response 11

individual predicate. Indeed, just releasing the noised vector would be
di�erentially private.

However, this fact becomes important when we want to evaluate
how good is the answer given by the algorithm. Indeed, in general
having a di�erential privacy guarantee is not enough to show that an
algorithm is interesting. We need also to provide evidence that the
algorithm returns an answer which is useful. This can be done mainly in
two ways: through an experimental evaluation or by providing a useful
theoretical accuracy analysis. Often this kind of theoretical analysis can
be formulated with a formula of the shape

Pr[X Ø –] Æ —

where X is a random variable representing a quantitative relation
between the result of the di�erentially private algorithm with respect
to the problem that the algorithm is solving, 1 ≠ — is the probability
with which – gives a bound on how close these two quantities are. For
example if we denote a the answer of the algorithm without noise and
â the ones with noise, we can write

Pr[|a ≠ â| Ø –] Æ —

to say that with probability at least 1 ≠ — the di�erence between the
noised answer and the one without noise will be bound by –.

Before giving the accuracy guarantee for Randomized Response we
need to introduce a tool that will be useful to describe it.

Theorem 1.2 (Additive Cherno� Bound). Let X1, . . . , Xn be i.i.d ran-
dom variables such that 0 Æ Xi Æ 1 for every 1 Æ i Æ n. Let
S = 1

n

qn
i=1 Xi denote their mean and E[S] their expected mean, where

E[S] = 1

n

qn
i=1 E[Xi] by linearity of expectation, then for every ⁄ we

have:
Pr[|S ≠ E[S]| Ø ⁄] Æ 2e

≠2⁄2n

The following theorem shows the accuracy guarantee of Randomize-
dResponse for a counting query q.

Theorem 1.3 (Accuracy). The algorithm RandomizedResponse (Algo-
rithm 2) provides the following accuracy guarantee for every dataset D
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