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A natural idea:
anonymizing the data

® E.g.stripping Pll, guaranteeing k-anonymity,
swapping, etc.



Reconstruction attack with’
exponential adversary

[DinurNissim’02]



Attack

Query phase: For each S ¢ [n] let as* = gs*(D).

Rule out phase: For each D’ € {0,1}":
iIf there exists S such that 1gs(D’) - as* | > E then rule out D’.

Output phase: Output a database D’ that was not ruled out.



(€,0)-Differential Privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &




How can we build
differentially private data
analyses?



Randomized Response
[Warneré5]

Suppose | ask a yes/no question.
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Randomized Response
[Warneré5]

Suppose | ask a yes/no question.

True
J Q answer
bia;ed Opposite
coin answer

[The value of the bias is what determines the epsilon]




An example

AlmostRandom (b : bool) : bool {
1f coinToss ()
then
return b;
else

return coinToss();
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An example

[ AlmostRandom is (In 3,0)-differentially private]

Let’s consider the case we have two adjacent data b and b’.
By the fact that they are adjacent we know that one of them
is | and one of them is 0.Without loss of generality let’s
assume b=1 and b’=0.

We have:
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Counting Queries

® A counting query ¢ : X — |0, 1] is a
function counting the fraction of people in
a dataset satisfying the predicate ¢ : X — {0,1}

® |n symbols:

® Notice that we take a normalized count,
which also corresponds to the average.

10



Randomized Response

[

Algorithm 1 Pseudo-code for Randomized Response

1: function RANDOMIZEDRESPONSE(D, ¢, €)
2: for k < 1 to |D| do
[ g(d;)  with probability <

€

3: S, < L 1+4-e€
‘ | —¢q(di) with probability ; jee

4: end for

e return (Su|rg| 5)

6: end function
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Let’s consider a medical dataset containing informations on
whether each patient has a disease.

We can have di=1 if patient | has the disease and di=0
otherwise.

We can use randomized response to estimate the proportion
of patient that have the disease.
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to collect statistics of opt-in users of the Chrome browser.

They collect statistics about the users home pages, the setting
of the user browser, etc.

RAPPOR used randomized response to estimate the
proportion of users with specific settings.
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Randomized Response

Privacy Theorem:
Randomized response is eps-differentially private.

Proof:
We need to consider two databases D,D’'e X" and every.

possible output.
Since |D|=|D’|=nis fixed, the result will depend only on the

value of S € {0,1}n.

Since D~D’ there is only one element where they differ.
Let's name this element k.
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Privacy Theorem:
Randomized response is eps-differentially private.

Continued Proof:
For every |k we have:

Pr[S; = q(d;)] = Pr[S; = q(d})]

For k we have two cases:
1 - either g(dk)=a(d’k)
2 - or g(dk)=q(d’k)
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Randomized Response

Privacy Theorem:
Randomized response is eps-differentially private.

Continued Proof:
In the case 1 we have

Pr[Sy, = q(di)] = Pr[Sk = q(d})]

The case 2 where qg(dk)=g(d’x) is more interesting.
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Randomized Response

Privacy Theorem:
Randomized response is eps-differentially private.

Continued Proof:
In this case we have for example

PrSe = q(d)] _ PrlSp=q(d)] (%)
Pr[S = q(d},)]  Pr[Sk = ~q(di)]  (13=)

By a similar reasoning we can show

Pr(Sk = g(dy)] _ Pr[Sk = ~q(dy)] _ (532) _ 1
Pr[Sk = q(dk)] PI‘[Sk = q(dk)] (fi ) ec




Randomized Response

Privacy Theorem:
Randomized response is eps-differentially private.

Continued Proof:
Putting the pieces together and using the tact that each coin
independent from each other we have:
Pr[S = RR(D,q,¢)]  Pr[Sk = q(dx)] 1., Pr[S; = q(d;)]
Pr[S = RR(D',q,¢)]  Pr[Sk = q(d},)] T1,, PrlS; = q(d")]
_ PrSk =qldw)] _ .
Pr[Sk = q(d},)]




Randomized Response

Privacy Theorem:
Randomized response is eps-differentially private.

Continued Proof:
Similarly we can prove

Pr[S = RR(D',q,¢)] 1

Pr[S = RR(D, q,¢)] e

and this concludes the proof.
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Accuracy

® There are usually two main ways to measure
accuracy:

® By comparing the noised result with the one that
we would have without noise,

® By comparing the noised result with the one that
we would obtain on the population.



Accuracy Statements

We can give statements about the accuracy of our
algorithms by using formulas like

PrilX >a|l<p
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We can give statements about the accuracy of our
algorithms by using formulas like

PrilX >a|l<p
T

Here X Is a
random variable
representing some
measure on the
differentially private
output.

T——— S




Accuracy Statements

We can give statements about the accuracy of our
algorithms by using formulas like

PrilX >a|l<p
T
alphais a

given value of
accuracy we
want to achieve.

T— —




Accuracy Statements

We can give statements about the accuracy of our
algorithms by using formulas like
beta is the
PT[X > Oé] < 6 <« probability of

failure

B ——————
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Accuracy Statements

We can give statements about the accuracy of our
algorithms by using formulas like

PrilX >a|l<p

For example, it we want to compare the noisy
answer with the one without noise:

Prlla —a| > o] <




Randomized Response

0 )
Accuracy Theorem:

1+e 1 1+e [log(2/8
i a1 (= 13) ~ a0 2 (ee+—€1)\/ B <5
~ J




Randomized Response

g
Accuracy Theorem:

-

l—l—ee(

Pr [66—1

r<—RR(D,q,e)

o)

log(2/8)

| 1—|—6 \/

2n

| <8

J

T

This represents the

variable measuring t

difference between t

noised answer and t
non-noised one.

| T— T

ne
ne

ne
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Randomized Response

(Accuracy Theorem:
o [1—|—€e( ) |_ 1+ e \/logQ/ﬂ)}_B

r<RR(D,q,e) 1e€ — 1 2n
g Y,

T

This is our alpha.
Notice that we
express it in terms
of beta.

TT— S
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Randomized Response

(Accuracy Theorem:
o [1—|—€E( ) ‘_ 1+ e \/10g2/ﬂ)}_6

r<RR(D,q,e) Ll e — 1 2n
. Y,

~

(Intuitive reading: with high probability we have:

—ao] <o)

\/ﬁ Notice that this is of the
T

same order as the
normalized sampling error.

Bl




Randomized Response

P
Accuracy Theorem:
1+ e 1—|—e log(2/P)
r(—R}IZ%)(lb,q,e) [ e — 1 ( ) | _ \/ n } — 6
- Y
Proof:

First we can compute the expected value of each S and then
apply some form of Chebyshev inequality.



Additive Chernoff Bound

(Theorem 1.2 (Additive Chernoff Bound). Let X, ..., X, be i.i.d ran-

dom wvariables such that 0 < X, < 1 for every 1 < 7 < n. Let

S = 15" X, denote their mean and E[S] their expected mean, where

T n

E[S] = 13" | E[X;] by linearity of expectation, then for every A\ we
have:

Pr[|S — E[S]| > A] < 2¢~ 27
\_ J




Example revisited

(Accuracy Theorem:
1+ €€ 1+4+e° [log(2/p)
pr IS () a0 > e

r<RR(D,q,e) [ et — 1 n } <P
\ Y,

Let’s consider again the example of the medical dataset
containing informations on whether each patient has a disease
(di=0 or di=1).

We can use randomized response to estimate the proportion
of patient that have the disease. We need to fix the
parameters.



Example revisited

(Accu racy Theorem:
o [1+e€( ) ‘_ 1 4 e \/logQ/ﬁ)

r<RR(D,q,e) Ll e — 1 n } <P
g Y,

Let’s fix the following values for the parameters:

n=1,000,000
e=1
3=0.05
lte® ~ 9216 L ~0.26

ec—1 ) 1+e€



Example revisited

(Accuracy Theorem:
o [1—|—€E( ) ‘_ 1+ e \/logQ/ﬁ)}_B

r<RR(D,q,e) Ll e — 1 2n
g Y,

With this set of parameters we have with 95% confidence

0.89
1000

(2.16(7» ~0.26) - q(D)) < 2.16



Example revisited

g
Accuracy Theorem:

1+ €° 1
Hee—el(r_ 1+ e€

1+ ef
(es— 1)

\/1og(2/5)

2n

Pr
r<—RR(D,q,e)

) —a(D)| > | <p

.

J

With this set of parameters we have with 95% confidence

0.89
1000

.2.16(r ~0.26) - q(D)l < 2.16

So, we have:

2.167 — 0.5591 < q(D) < 2.167 — 0.5619
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Randomized Response

Summarizing:

® Randomized Response is a first simple example
which is very useful in practice,

® |t protect privacy at the local level - we will come
back to this later in the class,

® Provides a theoretical accuracy guarantee that is of
the same order as the sampling error.



Noise on the output

4 )
Intuitive answer: it must depend on € or the accuracy
we want to achieve, and on the scale that a change can
have on the output.

\ J




Noise on the output
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Global Sensitivity

-
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — Ris:

Aq = max {[¢(D) — ¢(D')] \ D~ D' € X"}

q(bu{x}) q(bu{y})




Laplace Mechanism

Algorithm 2 Pseudo-code for the Laplace Mechanism

1: function LAPMECH(D, q, €)
2 Y& Lap(A)(0)

3: return ¢(D)+Y

4: end function




Laplace Distribution

b regulates the

1 u— X| K ¢

Lap(b, 1)(X) = — ex (_ ) skewness 0
PGS 2" b the curve,
g in our case

b=Aqg/e




Laplace Mechanism

4 )
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private. )

Proof: Intuitively
Pr

N

AN\
Vv

q(-)
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4 )
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private. )

Proof:
Consider D ~1 D' € X", q: X™ — R, and let p and p’ denote the
probability density function of LapMech(D, g, €) and LapMech(D’, q, ¢€)

We compare them at an arbitrary point z € R.



Laplace Mechanism

4 )
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private. )

Proof:
Consider D ~1 D' € X", q: X™ — R, and let p and p’ denote the
probability density function of LapMech(D, g, €) and LapMech(D’, q, ¢€)

We compare them at an arbitrary point z € R.

p(z) o (- F)

P (2) exp ( _ eI(J(D’)—Zl)




Laplace Mechanism

-

-

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is e-ditferentially private.

_ 6Iq(D)—Zl)

Continued proof: p(2) eXp( Aq

p(z) exp ( _ EIQ(D’)—Z!)




Laplace Mechanism

g
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private.

: exp ( _ €|Q(D)_Z|)
Continued proof:  p(2) _ Aq
A

e(lg(D") — z| — |g(D) — 2
o (1921 = = D) =)



Laplace Mechanism

g
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is e-ditferentially private.

-

_ €lg(D)—=|
Continued proof: »p(z) _ eXp( Aq )

e(|]q(D') — z| —|q(D) — ZI))




Laplace Mechanism

g
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is e-ditferentially private.

_ €lg(D)—=|
Continued proof: p(?) eXp( Aq )

P2 exp ( - e|q<zzq>—zr)
(E(ICJ(D’) —z| — |q(D) — ZI))

-




Laplace Mechanism

g
Theorem (Privacy of the Laplace Mechanism)

The Laplace mechanism is e-ditferentially private.

.

_ €lg(D)—=|
Continued proof: »p(z) _ eXp( Aq )

e(|]q(D') — z| —|q(D) — ZI))

~
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iInformations on whether each patient has a disease.
We can have di=0 if patient i has the disease and di=1

otherwise.

We first compute the proportion of patients that have the
disease. Notice that this has sensitivity 1/n.

Then we can add Laplace noise proportional to 1/en.

[ The noise protect each individual value.
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Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, q, ¢€)
Pr [Ja(D) ~ 1= (S7) 1 (5)] = 4

€

This represents the
variable measuring the
difterence between the

noised answer and the
non-noised one.
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Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, q, ¢€)

Pr[jg(D) — 71 = (B9)m (£)] = 6

€ b
T

This is our alpha.
Notice that we
express it in terms
of beta.

T—— S




Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, q, ¢€)

A 1
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Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, ¢, ¢)

Pr[o(0) ~ 1l 2 () m ()] =5

.

Proof: By definition of the Laplace mechanism we have:

Pr [Jo(D) — 7l = (S (5)] =P [Iv]= (39 (5)]

where Y is drawn from Lap(0,Aqg/e)



Tail bound for the Laplace
Distribution

?— P\ @ P\ ‘sﬁx
-1 0 1

Pr |X| > ht| = exp(—t)




Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, ¢, ¢)

Pr[o(0) ~ 1l 2 () m ()] =5

-

Continued proof: applying this bound we get:

re 1> (20 (3)] <o (-1 (3)) =



Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, ¢, ¢)

Pr[Ja(D) 1= (1) m ()] =

.

(Intuitive reading: with high probability we have:

o) <o(}




Example revisited

(Accuracy Theorem: let » = LapMech(D, ¢, ¢)

Pr D) -+l 2 () n (5)] =5

€

.

Let’s consider again the example of the medical dataset
containing informations on whether each patient has a

disease (di=0 or di=1).

We can use the Laplace Mechanism to estimate the
proportion of patient that have the disease. We need to fix

the parameters.
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€

-

|et’s fix the following values for the parameters:

n=1,000,000
e=1
3=0.05

111(%) = 2.99
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Example revisited

(Accuracy Theorem: let r = LapMech(D, ¢, ¢€)

\ Pr [Jo(D) — 7l = (S0) 1 (3)] = 5

_et’s fix the following values for the parameters:

n=1,000,000
e=1
3=0.05

In(%) = 2.99 ]

B
Aqg = 107°




Example revisited

(Accuracy Theorem: let » = LapMech(D, ¢, ¢)

Pr[o(0) ~ 1l 2 () m ()] =5

-

With this set of parameters we have with 95% confidence

r —0.0000299 < ¢(D) < r + 0.0000299.



Randomized Response

vs Laplace
(Accuracy for Randomize response: with high probability\
we have: 1

r—q(D ‘ < O(—)
\ q(D)| < T

(Accuracy for Laplace: with high probability we have:

o) <o(}




Summary

e Definition of Differential Privacy
e Randomized Response
¢ | aplace Mechanism
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Randomized Response

(Accu racy Theorem:
- 1+e€( ) |_ 1+ € \/log2/6)}_6

r<RR(D,q,e) [ e — 1 2n
g Y,

Proof:
First we can compute the expected value of each S:

BIS;] = a(dj) () + ~a(d) (1)
= q(d;)(

e* 1
1 —q(d;
q(dj)(e®—1) 1
_I_
1 + e 1 + e€

)




Additive Chernoff Bound

(Theorem 1.2 (Additive Chernoff Bound). Let X, ..., X, be i.i.d ran-

dom wvariables such that 0 < X, < 1 for every 1 < 7 < n. Let

S = 15" X, denote their mean and E[S] their expected mean, where

T n

E[S] = 13" | E[X;] by linearity of expectation, then for every A\ we
have:

Pr[|S — E[S]| > A] < 2¢~ 27
\_ J




Randomized Response

(Accuracy Theorem:
o [1—|—€E( ) ‘_ 1+ e \/logQ/ﬁ)}_B

r<RR(D,q,e) Ll e — 1 2n
g Y,

Continued Proof:
Applying the Chernoff bound and the fact that

BlS;) = Q(dji)(fee_ 2k 1+1@€

we can prove

| | d) (e — 1 |
Pr[‘ﬁ%:‘gj_ﬁg:(Q( 1)(+ee )_1+ee>




Randomized Response

-

g
Accuracy Theorem:

1 €
6€+_€1 (

Pr [
r<—RR(D,q,e)

o)

‘ . 1—|—e \/log 2/86)

| <8

2n

J

Continued Proof:
This can be rewritten as

1 /1 1 1
Pr He€+—61 ((ﬁzjzsj)_ 1+e€) —gzj:q

which by definition of counting queries is equivalent to

r<—RR(D,q,e)

1—|—€6( 1

Pr hﬁ—l

/r‘_
1+ e€

) —Q(D)‘ >

14
(e€ —61 }

1+ e

(es— 1)

—2)\2n

)\} < 26—2)\277,



Randomized Response

~

J

(Accuracy Theorem:
1+ e 1 1+e° [log(2/p)
%RJ}%)(Ib,q,e) Hee —1 (T 14+ ee) - q(D)‘ = (€ — 1)\/ on } <P
g
Continued Proof:
By setting
_ /log(2/8)
A= \/ 2N
we can conclude
Lhet Ly 1+e [log(2/6)
B [ ) a2 5 ) <



