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Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
2



Some important properties
3

• Resilience to post-processing

• Group privacy

• Composition
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that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln( 1

— ) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T ]
Æ exp(‘)Pr[M(DÕ) œ T ]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable
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Question: Why is resilience to post-processing 
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Answer: Because it is what allows us to publicly 
release the result of a differentially private analysis!
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Group Privacy

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

M is ε-DP

1.5. Di�erential Privacy 7

a conjunction query qv̨on a dataset D œ X n gives the k-way

marginal statistics at v̨ of the dataset. Answering k-way marginals
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under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases
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20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))
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Answer: Because it allows to reason about privacy 
as a budget!
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Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
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0 otherwise

and call a threshold function the associated counting query qy :
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Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
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v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate
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which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering
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Question: What is the sensitivity?
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Question: What is the sensitivity?
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D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal 
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q*1(D) = .4+L(1/nε1)

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1
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D ∈ X10 =
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D ∈ X10 =

D1 D2 D3
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Sometimes is more convenient to think in terms of 
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of 
epsilon: εglobal= ∑ εlocal



Privacy Budget vs Epsilon 20

Sometimes is more convenient to think in terms of 
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of 
epsilon: εglobal= ∑ εlocal

Making them uniforms is 
sometimes more informative.



Privacy Budget vs Epsilon 20

Sometimes is more convenient to think in terms of 
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of 
epsilon: εglobal= ∑ εlocal

Making them uniforms is 
sometimes more informative.

Note: There are situations where the two are not equivalent.
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Question: How about histograms?

Composition
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Let’s consider an arbitrary universe domain     and let’s consider 
the following predicate for 
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qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
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such predicate qv̨. For a vector v̨ such that |v̨| = k, answering
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Question: What is the sensitivity?
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D1 D2 D3
I1 0 0 0
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I3 0 1 0
I4 1 0 1
I5 0 0 0
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I8 0 0 0
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I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)
q*111(D) = 0+L(1/nε)
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Budget=εglobal - 2ε

Can we do better?



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:= 0; 
 s:= 0; 
 r:= []; 
 while (i<size d) 
    s:= s + d[i] 
    z:=$ s + Lap(1/eps) 
    r:= r ++ [z]; 
    i:= i+1; 
 return r

What is the global epsilon here?



Releasing partial sums
DummySum(d : {0,1} list) : real list 
 i:=0; 
 s:=0; 
 r:=[]; 
 while (i<size d) 
    z:=$ d[I] + Lap(eps) 
    s:= s + z 
    r:= r ++ [s]; 
    i:= i+1; 
 return r

What is the global epsilon here?



Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and 
M2:DB →R be a (ε2,δ2)-differentially private program.  Suppose 
that we partition D in a data-independent way into two datasets 
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2)) 
is (max(ε1,ε2),max(δ1,δ2))-differentially private.
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Question: how much perturbation do we have if 
we want to answer n queries under ε-DP?

Composition
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Composition

We can split the privacy budget uniformly:

✏ =
✏global
n
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Composition

Laplace accuracy: with high probability we have:
���q(D)� r

���  O

⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏global
n
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Composition

By putting them together (hiding some details) we have as a 
max error

O

⇣
n

✏globaln

⌘
= O

⇣ 1

✏global

⌘
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Question: how much perturbation do we have if we 
want to answer n counting queries under εglobal-DP?

Composition

By putting them together (hiding some details) we have as a 
max error

O

⇣
n

✏globaln

⌘
= O

⇣ 1

✏global

⌘

Notice that if we don’t renormalize this is of the order of
O

⇣
n

✏global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.
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Question: how many counting queries can we 
answer with small error under εglobal-DP?

Composition

Let’s now target an error similar to sample error. How many 
queries we can answer? 
If we want a non-normalized error of: 

we can answer at most √n queries. 

O

⇣ p
n

✏global

⌘
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Question: Can we do better?

Composition
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Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

Composition
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Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O

⇣ 1

✏global
p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]



If we don’t renormalize this is of the order of

comparable to the sample error.
O

⇣ p
n

✏global

⌘

36
Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O

⇣ 1

✏global
p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]



Summary
37

• Resilience to post-processing

• Group privacy

• Composition


