
Marco Gaboardi
Boston University

Differential Privacy
Basic properties.

1

The opinions expressed in this course are mine and they do not not reflect those of the National
Science Foundation or the US. Census Bureau.

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is
(ε,δ)-differentially private iff
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ

(ε,δ)-Differential Privacy
2

Some important properties
3

• Resilience to post-processing

• Group privacy

• Composition

4

M is
ε-DP

Resilience to Post-processing

4

M is
ε-DP f

Resilience to Post-processing

4

M is
ε-DP f

f◦M is ε-DP

Resilience to Post-processing

5

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

Resilience to Post-processing

5

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

Resilience to Post-processing

5

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

Resilience to Post-processing

5

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

Resilience to Post-processing

5

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

18 Di�erential Privacy

that have the disease. Suppose that we fix — = 0.05, n = 1, 000, 000
and ‘ = 1. Then �q = 10≠6 and ln(1

—) = 2.99. So, we see that with
probability 95% we will have that LapMech(D, q, ‘) outputs r such that:

r ≠ 0.0000299 Æ q(D) Æ r + 0.0000299.

So, even with the noise introduced by the Laplace mechanism we are able
to estimate the proportion of patients with the disease quite precisely!

1.8 Some important properties

Before touching on the last essential ingredient that we will need in
later sections we want to observe two important properties of di�er-
ential privacy. These follow directly from Definition 1.6 and they are
fundamental facts that gave to di�erential privacy strong credit.

1.8.1 Post-processing

The first property ensures that the results of di�erentially private compu-
tations can be safely released because any post-processing computation
will also be di�erentially private.

Proposition 1.1 (Post-processing). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Let f : R æ R

Õ be an arbitrary
deterministic mapping. Then f ¶ M : X n æ R

Õ is also ‘-di�erentially
private.

Proof. Fix any pair of neighboring databases D ≥1 D
Õ, and fix any

event S ™ R
Õ. Let T = {r œ R : f(r) œ S}. We have

Pr[f(M(D)) œ S] = Pr[M(D) œ T]
Æ exp(‘)Pr[M(DÕ) œ T]
= exp(‘)Pr[f(M(DÕ)) œ S]

This result can also be generalized to arbitrary randomized mappings,
an interested reader can consult [6] for a simple proof. We cannot
overemphasize how important is for di�erential privacy to be stable

Resilience to Post-processing

6

Question: Why is resilience to post-processing
important?

Resilience to Post-processing

6

Question: Why is resilience to post-processing
important?

Resilience to Post-processing

Answer: Because it is what allows us to publicly
release the result of a differentially private analysis!

7
Group Privacy

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

M is ε-DP

1.5. Di�erential Privacy 7

a conjunction query qv̨on a dataset D œ X n gives the k-way

marginal statistics at v̨ of the dataset. Answering k-way marginals
is also the base for computing contingency tables.

A generalization of counting queries are statistical queries, often
called also linear queries.

Definition 1.5 (Statistical Queries). Let q : X æ [0, 1] be a bounded
function returning an element in the interval [0, 1] for each on record in
X . A statistical query is a function q : X n æ [0, 1] averaging the value
of q on all the records of a dataset D œ X n. In symbols:

q(D) = 1
n

nÿ

i=1

q(di)

Notice that once again we use the same symbol q for the function
and the statistical query characterized by this function. Notice also that
the formula defining a statistical query is the same as the one defining
a counting query, what changes is just the fact that q is a predicate for
a counting query and an arbitrary (bounded) function for a statistical
query. As one expects from their name, statistical queries allows to
define more general statistics than the ones that can be defined by using
counting queries.

qy(x) =
I

.5 ú y1 if y = x

0 otherwise

1.5 Di�erential Privacy

We can now define di�erential privacy for a randomized algorithm M.
The definition of di�erential privacy considers two adjacent datasets
and guarantees that the outputs of M on the two datasets are similar.

Definition 1.6 (Di�erential privacy). A randomized algorithm M with
domain X n and range �R is ‘-di�erentially private for ‘ Ø 0 if for every
adjacent datasets D, D

Õ œ X n and for any output r œ R we have

Pr[M(D) = r] Æ e
‘ Pr[M(DÕ) = r] (1.1)

8
Group Privacy

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

M is ε-DP

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

9
Group Privacy

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

9
Group Privacy

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

9
Group Privacy

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

9
Group Privacy

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

9
Group Privacy

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

1.9. Composition and Privacy as a Budget 19

under post-processing. This property guarantees that no matter how
an attacker will use the result of a di�erentially private data analysis,
he will not be able to learn more than what he can learn from the raw
answer.

1.8.2 Group Privacy

The second property illustrates how di�erential privacy can be used to
protect also the privacy of groups rather than single individuals.

Proposition 1.2 (Group Privacy). Let M : X n æ R be a randomized
algorithm that is ‘-di�erentially private. Then, M is k‘-di�erentially
private for groups of size k. That is, for datasets D, D

Õ œ X n such that
D�D

Õ Æ k and for all S ™ R we have

Pr[M(D) œ S] Æ exp(k‘) Pr[M(DÕ) œ S]

Proof. Fix any pair of databases D, D
Õ with D�D

Õ Æ k. Then, we have
databases D0, D1, . . . , Dk such that D0 = D, Dk = D

Õ and Di�Di+1 Æ
1. Fix also any event S ™ R

Õ. Then, we have have

Pr[M(D) œ S] = Pr[M(D0) œ S]
Æ exp(‘) Pr[M(D1) œ S]
Æ exp(‘)(exp(‘) Pr[M(D2) œ S]) = exp(2‘) Pr[M(D2) œ S]
Æ · · ·
Æ exp(k‘) Pr[M(Dk) œ S] = exp(k‘) Pr[M(DÕ) œ S]

This property of di�erential privacy can be used to guarantee privacy
in situations where there are strong evident correlations between the
data of some individuals, e.g. members of the same family participating
to the same survey. Notice that the privacy guarantee deteriorates
linearly in the size of the group.

1.9 Composition and Privacy as a Budget

An important aspect that contributed to the success of di�erential
privacy is that the guarantee provided by di�erential privacy decreases

10

Question: Why is group privacy important?

Group Privacy

10

Question: Why is group privacy important?

Answer: Because it allows to reason about privacy
at different level of granularities!

Group Privacy

11
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D

11
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP

11
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

11
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

…
Mn is εn-DP

11
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

…
Mn is εn-DP

The overall process is (ε1+ε2+…+εn)-DP

12
Composition

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

12
Composition

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

12
Composition

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

12
Composition

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

12
Composition

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

20 Di�erential Privacy

smoothly, with a controlled degradation of the privacy loss, when di�er-
ent di�erentially private mechanism are combined. The following We
will present two such results, the first is often referred to as “standard
composition” or “sequential composition”. The second one is specific to
histhograms and it will be generalized in the next section to a form of
“parallel composition”.

Theorem 1.7 (Standard composition for ‘-di�erential privacy). Let M1 :
X n æ R1 be an ‘1-di�erentially private algorithm and let M2 : X n æ
R2 be an ‘2-di�erentially private algorithm. Then their composition
defined to be M1,2 : X n æ R1 ◊ R2 by the mapping M1,2(D) =
(M1(D), M2(D)) is (‘1 + ‘2)-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 D
Õ. Fix also a pair of

output (r1, r2) œ R1 ◊ R2. We have:

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] = (Pr[M1(D), M2(D)) = (r1, r2)]

(Pr[M1(DÕ), M2(DÕ)) = (r1, r2)]

= Pr[M1(D) = r1] Pr[M2(D) = r2]
Pr[M1(DÕ) = r1] Pr[M2(DÕ) = r2]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
21 Pr[M2(D) = r2]

Pr[M2(DÕ) = r2]
2

Æ exp(‘1) exp(‘2) = exp(‘1 + ‘2).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

In fact, the result above holds also adaptively, i.e. when the second
algorithm can adapt its choice to the output of the first algorithm.
That is, we can define sequential composition for a mechanism M1 :
X n æ R1 which is ‘1-di�erentially private and another mechanism
M2 : R1 ◊ X n æ R2 which is ‘2-di�erentially private as:

M(D) = r
$Ω M1(D); (r, M2(r, D))

13

Question: Why composition is important?

Composition

13

Question: Why composition is important?

Composition

Answer: Because it allows to reason about privacy
as a budget!

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D

Budget=εglobal

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP

Budget=εglobal

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP

Budget=εglobal - ε1

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

Budget=εglobal - ε1

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

Budget=εglobal - ε1 - ε2

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

…
Mn is εn-DP

Budget=εglobal - ε1 - ε2 …

14
Composition

Differential Privacy: the idea

A. Haeberlen

Promising approach: Differential privacy

3
USENIX Security (August 12, 2011)

Private data

N(flue, >1955)?

826±10

N(brain tumor, 05-22-1955)?

3 ±700

Noise

?!?

Differential Privacy:

Ensuring that the presence/absence of an individual has a

negligible statistical effect on the query’s result.

Trade-off between utility and privacy.

D
M1 is ε1-DP
M2 is ε2-DP

…
Mn is εn-DP

Budget=εglobal - ε1 - ε2 … - εn

Example I 15

Let’s consider an arbitrary ordered universe domain and let’s
consider the following predicate for

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

we call a threshold function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Example I 15

Let’s consider an arbitrary ordered universe domain and let’s
consider the following predicate for

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

we call a threshold function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Question: What is the sensitivity?

Example I 16

D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)
q*100(D) = .6+L(1/nε5)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)
q*100(D) = .6+L(1/nε5)
q*101(D) = .9+L(1/nε6)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)
q*100(D) = .6+L(1/nε5)
q*101(D) = .9+L(1/nε6)
q*110(D) = 1+L(1/nε7)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)
q*100(D) = .6+L(1/nε5)
q*101(D) = .9+L(1/nε6)
q*110(D) = 1+L(1/nε7)
q*111(D) = 1+L(1/nε8)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

Example I 16

q*000(D) = .3+L(1/nε1) D ∈ X10 =

X={0,1}3 ordered
wrt binary encoding.

q*001(D) = .4+L(1/nε2)
q*010(D) = .6+L(1/nε3)
q*011(D) = .6+L(1/nε4)
q*100(D) = .6+L(1/nε5)
q*101(D) = .9+L(1/nε6)
q*110(D) = 1+L(1/nε7)
q*111(D) = 1+L(1/nε8)

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

Example II 17

Let’s consider the universe domain and let’s consider
the following predicate for an index

we call an attribute mean function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Example II 17

Let’s consider the universe domain and let’s consider
the following predicate for an index

we call an attribute mean function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Question: What is the sensitivity?

Example II 18

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal

Example II 18

q*1(D) = .4+L(1/nε1)

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1

Example II 18

q*1(D) = .4+L(1/nε1)

D ∈ X10 =

q*2(D) = .3+L(1/nε2)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2

Example II 18

q*1(D) = .4+L(1/nε1)

D ∈ X10 =

q*2(D) = .3+L(1/nε2)
q*3(D) = .4+L(1/nε3)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

Example II 18

q*1(D) = .4+L(1/nε1)

D ∈ X10 =

q*2(D) = .3+L(1/nε2)
q*3(D) = .4+L(1/nε3)

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin 4+Y1 3+Y2 4+Y3

Budget=εglobal - ε1 - ε2 - ε3

Example II 19

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin 4+Y1 3+Y2 4+Y3

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

Privacy Budget vs Epsilon 20

Sometimes is more convenient to think in terms of
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of
epsilon: εglobal= ∑ εlocal

Privacy Budget vs Epsilon 20

Sometimes is more convenient to think in terms of
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of
epsilon: εglobal= ∑ εlocal

Making them uniforms is
sometimes more informative.

Privacy Budget vs Epsilon 20

Sometimes is more convenient to think in terms of
Privacy Budget: Budget=εglobal - ∑ εlocal

Sometimes is more convenient to think in terms of
epsilon: εglobal= ∑ εlocal

Making them uniforms is
sometimes more informative.

Note: There are situations where the two are not equivalent.

Example II 21

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin 4+Y1 3+Y2 4+Y3

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

Example II 21

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin 4+Y1 3+Y2 4+Y3

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

εglobal= ε+ε+ε+ε+ε+ε+ε+ε=8ε

Example II 21

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1
margin 4+Y1 3+Y2 4+Y3

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

Budget=εglobal - ε1 - ε2 - ε3

0

0.3

0.6

0.9

1.2

000 001 010 011 100 101 110 111

Budget=εglobal - ε1 - ε2 - ε3 - ε4
- ε5 - ε6 - ε7 - ε8

εglobal= ε+ε+ε+ε+ε+ε+ε+ε=8ε

εglobal= ε+ε+ε=3ε

22

Question: How about histograms?

Composition

Example III 23

Let’s consider an arbitrary universe domain and let’s consider
the following predicate for

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

we call a point function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Example III 23

Let’s consider an arbitrary universe domain and let’s consider
the following predicate for

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

we call a point function the associated counting query

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

6 Di�erential Privacy

Point Functions - histograms For arbitrary X , and for each y œ X
we can consider a predicate

qy(x) =
I

1 if y = x

0 otherwise

and call a point function the associated counting query qy : X n æ
[0, 1]. Answering all the point functions qy for y œ X n on a dataset
D gives the histogram of the dataset.

Threshold Functions - CDFs For a totally ordered set X , and for
each y œ X we can consider a predicate

qy(x) =
I

1 if x Æ y

0 otherwise

and call a threshold function the associated counting query qy :
X n æ [0, 1]. Answering all the threshold functions qy for y œ X n

on a dataset D gives the cumulative distribution function of the
dataset.

Attribute Means - 1-way Marginals For X = {0, 1}d, and for each
1 Æ j Æ d we can consider a predicate

qj(x) = xj

and call an attribute mean the associated counting query qy :
X n æ [0, 1]. Answering an attribute mean query qj for 1 Æ j Æ d

on a dataset D œ X n gives the 1-way marginal statistics at j of
the dataset.

Conjunctions - k-way Marginals For X = {0, 1}d, and for each
v̨ œ {1, 1̄, . . . , d, d̨}k with 1 Æ k Æ d we can consider a predicate

qv̨(x) = qv1(x) · qv1(x) · · · · · qvk(x)

which is the conjunction of k atomic predicates defined respectively
as qj(x) = xj and qj̄(x) = ¬xj for 1 Æ k Æ d. We call an
conjunction the counting query qv̨ : X n æ [0, 1] associated to one
such predicate qv̨. For a vector v̨ such that |v̨| = k, answering

Question: What is the sensitivity?

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D ∈ X10 =

Budget=εglobal

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

Budget=εglobal - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)

Budget=εglobal - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)

Budget=εglobal - ε - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)

Budget=εglobal - ε - ε - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)

Budget=εglobal - ε - ε - ε - ε
- ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)

Budget=εglobal - ε - ε - ε - ε
- ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)

Budget=εglobal - ε - ε - ε - ε
- ε - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)
q*111(D) = 0+L(1/nε)

Budget=εglobal - ε - ε - ε - ε
- ε - ε - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)
q*111(D) = 0+L(1/nε)

-0.1
0

0.1
0.2
0.3
0.4

000 001 010 011 100 101 110 111

Budget=εglobal - ε - ε - ε - ε
- ε - ε - ε - ε

Example III 24

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)
q*111(D) = 0+L(1/nε)

-0.1
0

0.1
0.2
0.3
0.4

000 001 010 011 100 101 110 111

Budget=εglobal - ε - ε - ε - ε
- ε - ε - ε - ε

Can we do better?

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

q000(D’) = .2

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

q000(D’) = .2
q001(D’) = .1

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

q000(D’) = .2
q001(D’) = .1
q010(D’) = .3

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

q000(D’) = .2
q001(D’) = .1
q010(D’) = .3
q011(D’) = 0
q100(D’) = 0
q101(D’) = .3
q110(D’) = .1
q111(D’) = 0

Example III 25

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q000(D) = .3

D ∈ X10 =

q001(D) = .1
q010(D) = .2
q011(D) = 0
q100(D) = 0
q101(D) = .3
q110(D) = .1
q111(D) = 0 0

0.075

0.15

0.225

0.3

000 001 010 011 100 101 110 111

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 1 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

D’ ∈ X10 =

q000(D’) = .2
q001(D’) = .1
q010(D’) = .3
q011(D’) = 0
q100(D’) = 0
q101(D’) = .3
q110(D’) = .1
q111(D’) = 0

Example III 26

D1 D2 D3
I1 0 0 0
I2 1 0 1
I3 0 1 0
I4 1 0 1
I5 0 0 0
I6 0 0 1
I7 1 1 0
I8 0 0 0
I9 0 1 0

I10 1 0 1

q*000(D) = .3+L(1/nε)

D ∈ X10 =

q*001(D) = .1+L(1/nε)
q*010(D) = .2+L(1/nε)
q*011(D) = 0+L(1/nε)
q*100(D) = 0+L(1/nε)
q*101(D) = .3+L(1/nε)
q*110(D) = .1+L(1/nε)
q*111(D) = 0+L(1/nε)

-0.1
0

0.1
0.2
0.3
0.4

000 001 010 011 100 101 110 111

Budget=εglobal - 2ε

Can we do better?

Releasing partial sums
DummySum(d : {0,1} list) : real list
 i:= 0;
 s:= 0;
 r:= [];
 while (i<size d)
 s:= s + d[i]
 z:=$ s + Lap(1/eps)
 r:= r ++ [z];
 i:= i+1;
 return r

What is the global epsilon here?

Releasing partial sums
DummySum(d : {0,1} list) : real list
 i:=0;
 s:=0;
 r:=[];
 while (i<size d)
 z:=$ d[I] + Lap(eps)
 s:= s + z
 r:= r ++ [s];
 i:= i+1;
 return r

What is the global epsilon here?

Parallel Composition
Let M1:DB →R be a (ε1,δ1)-differentially private program and
M2:DB →R be a (ε2,δ2)-differentially private program. Suppose
that we partition D in a data-independent way into two datasets
D1 and D2. Then, the composition M1,2:DB→R defined as

 MP1,2(D)=(M1(D1),M2(D2))
is (max(ε1,ε2),max(δ1,δ2))-differentially private.

30

Question: how much perturbation do we have if
we want to answer n queries under ε-DP?

Composition

31

Question: how much perturbation do we have if we
want to answer n counting queries under εglobal-DP?

Composition

We can split the privacy budget uniformly:

✏ =
✏global
n

31

Question: how much perturbation do we have if we
want to answer n counting queries under εglobal-DP?

Composition

Laplace accuracy: with high probability we have:
���q(D)� r

��� O

⇣ 1

✏n

⌘

We can split the privacy budget uniformly:

✏ =
✏global
n

32

Question: how much perturbation do we have if we
want to answer n counting queries under εglobal-DP?

Composition

By putting them together (hiding some details) we have as a
max error

O

⇣
n

✏globaln

⌘
= O

⇣ 1

✏global

⌘

32

Question: how much perturbation do we have if we
want to answer n counting queries under εglobal-DP?

Composition

By putting them together (hiding some details) we have as a
max error

O

⇣
n

✏globaln

⌘
= O

⇣ 1

✏global

⌘

Notice that if we don’t renormalize this is of the order of
O

⇣
n

✏global

⌘Notice that if we don’t renormalize this is of the order of

bigger than the sample error.

33

Question: how many counting queries can we
answer with small error under εglobal-DP?

Composition

Let’s now target an error similar to sample error. How many
queries we can answer?
If we want a non-normalized error of:

we can answer at most √n queries.

O

⇣ p
n

✏global

⌘

34

Question: Can we do better?

Composition

35

Question: how much perturbation do we have if
we want to answer n queries under (ε,δ)-DP?

Composition

36
Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if
we want to answer n queries under (ε,δ)-DP?

O

⇣ 1

✏global
p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]

If we don’t renormalize this is of the order of

comparable to the sample error.
O

⇣ p
n

✏global

⌘

36
Composition

We have (by hiding many details) as a max error

Question: how much perturbation do we have if
we want to answer n queries under (ε,δ)-DP?

O

⇣ 1

✏global
p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]

Summary
37

• Resilience to post-processing

• Group privacy

• Composition

