Differential Privacy Basic properties.

Marco Gaboardi Boston University

The opinions expressed in this course are mine and they do not not reflect those of the National Science Foundation or the US. Census Bureau.

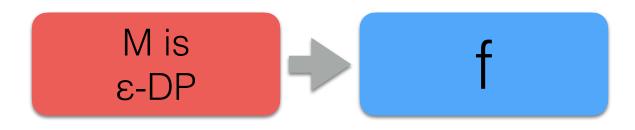
(ε, δ) -Differential Privacy

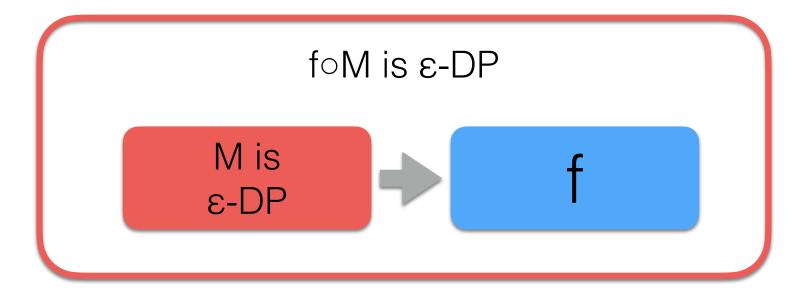
Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query Q: Xⁿ \rightarrow R is (ε, δ)-differentially private iff for all adjacent database b₁, b₂ and for every S \subseteq R: Pr[Q(b₁) \in S] $\le \exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Some important properties

- Resilience to post-processing
- Group privacy
- Composition





Proposition 1.1 (Post-processing). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f : R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M} : \mathcal{X}^n \to R'$ is also ϵ -differentially private.

Proposition 1.1 (Post-processing). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f : R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M} : \mathcal{X}^n \to R'$ is also ϵ -differentially private.

Proof. Fix any pair of neighboring databases $D \sim_1 D'$, and fix any event $S \subseteq R'$. Let $T = \{r \in R : f(r) \in S\}$. We have

Proposition 1.1 (Post-processing). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f : R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M} : \mathcal{X}^n \to R'$ is also ϵ -differentially private.

Proof. Fix any pair of neighboring databases $D \sim_1 D'$, and fix any event $S \subseteq R'$. Let $T = \{r \in R : f(r) \in S\}$. We have $\Pr[f(\mathcal{M}(D)) \in S] = \Pr[\mathcal{M}(D) \in T]$

Proposition 1.1 (Post-processing). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f : R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M} : \mathcal{X}^n \to R'$ is also ϵ -differentially private.

Proof. Fix any pair of neighboring databases $D \sim_1 D'$, and fix any event $S \subseteq R'$. Let $T = \{r \in R : f(r) \in S\}$. We have $\Pr[f(\mathcal{M}(D)) \in S] = \Pr[\mathcal{M}(D) \in T]$ $\leq \exp(\epsilon) \Pr[\mathcal{M}(D') \in T]$

Proposition 1.1 (Post-processing). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Let $f : R \to R'$ be an arbitrary deterministic mapping. Then $f \circ \mathcal{M} : \mathcal{X}^n \to R'$ is also ϵ -differentially private.

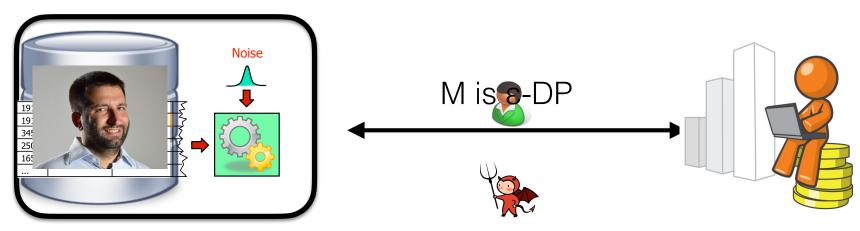
Proof. Fix any pair of neighboring databases $D \sim_1 D'$, and fix any event $S \subseteq R'$. Let $T = \{r \in R : f(r) \in S\}$. We have

 $\Pr[f(\mathcal{M}(D)) \in S] = \Pr[\mathcal{M}(D) \in T]$ $\leq \exp(\epsilon) \Pr[\mathcal{M}(D') \in T]$ $= \exp(\epsilon) \Pr[f(\mathcal{M}(D')) \in S]$

Question: Why is resilience to post-processing important?

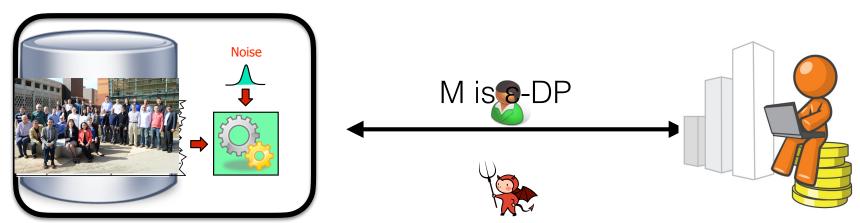
Question: Why is resilience to post-processing important?

Answer: Because it is what allows us to publicly release the result of a differentially private analysis!



$\Pr[\mathcal{M}(D) = r] \le e^{\epsilon} \Pr[\mathcal{M}(D') = r]$

8



$\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proposition 1.2 (Group Privacy). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proposition 1.2 (Group Privacy). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proof. Fix any pair of databases D, D' with $D\Delta D' \leq k$. Then, we have databases D_0, D_1, \ldots, D_k such that $D_0 = D, D_k = D'$ and $D_i \Delta D_{i+1} \leq 1$. Fix also any event $S \subseteq R'$. Then, we have have

Proposition 1.2 (Group Privacy). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proof. Fix any pair of databases D, D' with $D\Delta D' \leq k$. Then, we have databases D_0, D_1, \ldots, D_k such that $D_0 = D, D_k = D'$ and $D_i \Delta D_{i+1} \leq$ 1. Fix also any event $S \subseteq R'$. Then, we have have $\Pr[\mathcal{M}(D) \in S] = \Pr[\mathcal{M}(D_0) \in S]$ $\leq \exp(\epsilon) \Pr[\mathcal{M}(D_1) \in S]$

Proposition 1.2 (Group Privacy). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proof. Fix any pair of databases D, D' with $D\Delta D' \leq k$. Then, we have databases D_0, D_1, \ldots, D_k such that $D_0 = D, D_k = D'$ and $D_i \Delta D_{i+1} \leq$ 1. Fix also any event $S \subseteq R'$. Then, we have have $\Pr[\mathcal{M}(D) \in S] = \Pr[\mathcal{M}(D_0) \in S]$

 $\leq \exp(\epsilon) \Pr[\mathcal{M}(D_1) \in S]$

 $\leq \exp(\epsilon)(\exp(\epsilon)\Pr[\mathcal{M}(D_2)\in S]) = \exp(2\epsilon)\Pr[\mathcal{M}(D_2)\in S]$

Proposition 1.2 (Group Privacy). Let $\mathcal{M} : \mathcal{X}^n \to R$ be a randomized algorithm that is ϵ -differentially private. Then, \mathcal{M} is $k\epsilon$ -differentially private for groups of size k. That is, for datasets $D, D' \in \mathcal{X}^n$ such that $D\Delta D' \leq k$ and for all $S \subseteq R$ we have

 $\Pr[\mathcal{M}(D) \in S] \le \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

Proof. Fix any pair of databases D, D' with $D\Delta D' \leq k$. Then, we have databases D_0, D_1, \ldots, D_k such that $D_0 = D, D_k = D'$ and $D_i \Delta D_{i+1} \leq 1$. Fix also any event $S \subseteq R'$. Then, we have have

 $\Pr[\mathcal{M}(D) \in S] = \Pr[\mathcal{M}(D_0) \in S]$

- $\leq \exp(\epsilon) \Pr[\mathcal{M}(D_1) \in S]$
- $\leq \exp(\epsilon)(\exp(\epsilon)\Pr[\mathcal{M}(D_2) \in S]) = \exp(2\epsilon)\Pr[\mathcal{M}(D_2) \in S]$ $\leq \cdots$
- $\leq \exp(k\epsilon) \Pr[\mathcal{M}(D_k) \in S] = \exp(k\epsilon) \Pr[\mathcal{M}(D') \in S]$

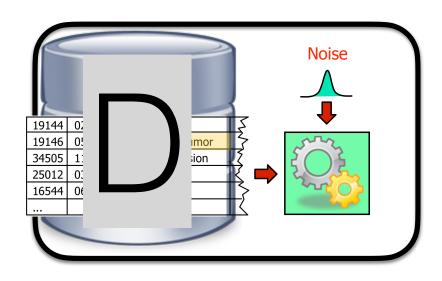
10

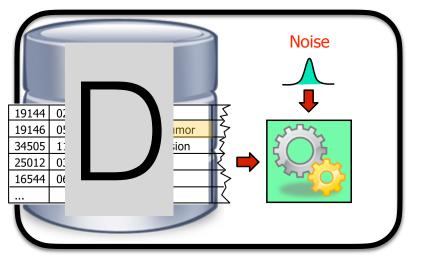
Question: Why is group privacy important?

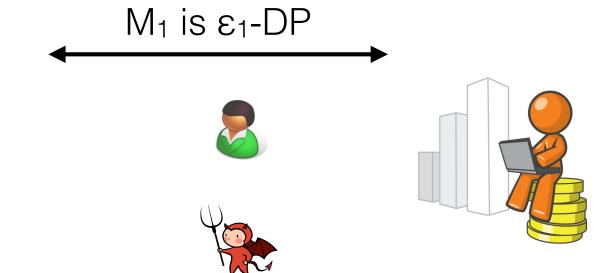
10

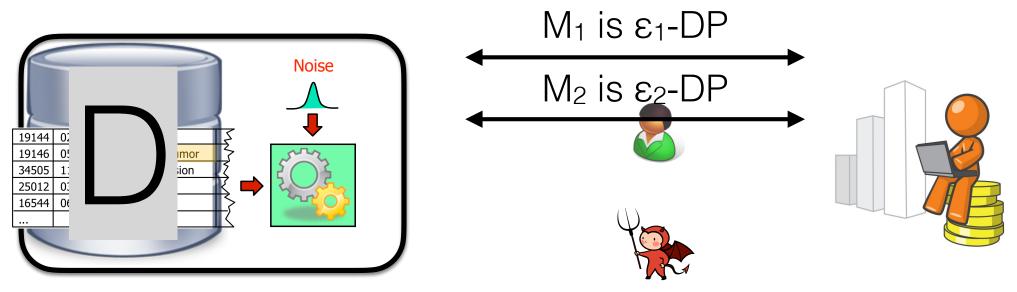
Question: Why is group privacy important?

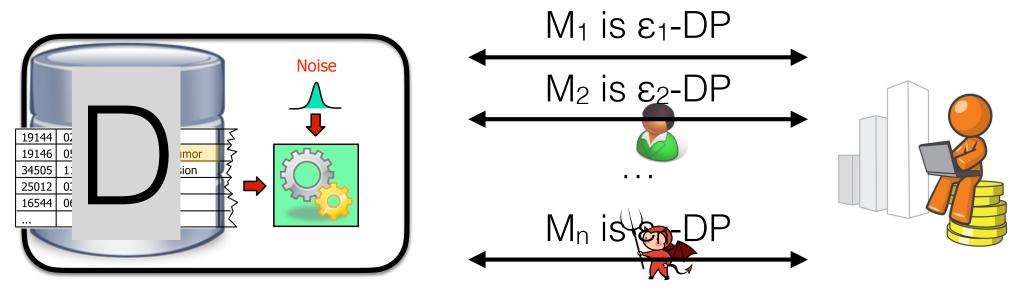
Answer: Because it allows to reason about privacy at different level of granularities!

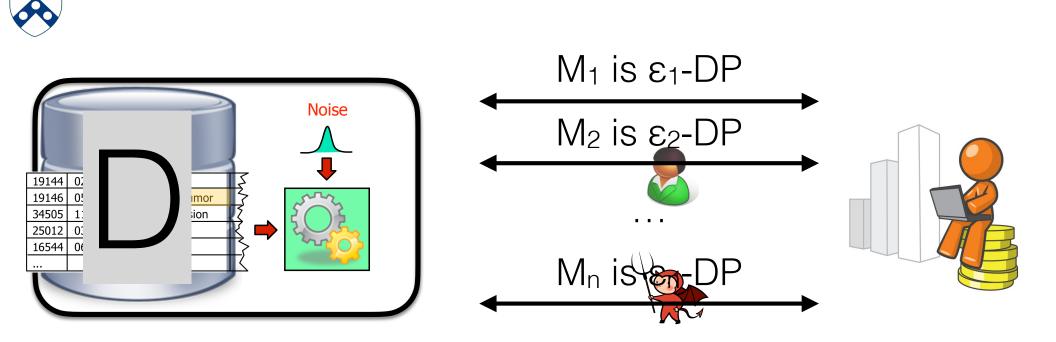












The overall process is $(\epsilon_1 + \epsilon_2 + \ldots + \epsilon_n)$ -DP

Theorem 1.7 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_1 : $\mathcal{X}^n \to R_1$ be an ϵ_1 -differentially private algorithm and let $\mathcal{M}_2 : \mathcal{X}^n \to R_2$ be an ϵ_2 -differentially private algorithm. Then their composition defined to be $\mathcal{M}_{1,2} : \mathcal{X}^n \to R_1 \times R_2$ by the mapping $\mathcal{M}_{1,2}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D))$ is $(\epsilon_1 + \epsilon_2)$ -differentially private.

17

Theorem 1.7 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_1 : $\mathcal{X}^n \to R_1$ be an ϵ_1 -differentially private algorithm and let $\mathcal{M}_2 : \mathcal{X}^n \to R_2$ be an ϵ_2 -differentially private algorithm. Then their composition defined to be $\mathcal{M}_{1,2} : \mathcal{X}^n \to R_1 \times R_2$ by the mapping $\mathcal{M}_{1,2}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D))$ is $(\epsilon_1 + \epsilon_2)$ -differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also a pair of output $(r_1, r_2) \in R_1 \times R_2$. We have:

 $\frac{\Pr[\mathcal{M}_{1,2}(D) = (r_1, r_2)]}{\Pr[\mathcal{M}_{1,2}(D') = (r_1, r_2)]} = \frac{(\Pr[\mathcal{M}_1(D), \mathcal{M}_2(D)) = (r_1, r_2)]}{(\Pr[\mathcal{M}_1(D'), \mathcal{M}_2(D')) = (r_1, r_2)]}$

Theorem 1.7 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_1 : $\mathcal{X}^n \to R_1$ be an ϵ_1 -differentially private algorithm and let $\mathcal{M}_2 : \mathcal{X}^n \to R_2$ be an ϵ_2 -differentially private algorithm. Then their composition defined to be $\mathcal{M}_{1,2} : \mathcal{X}^n \to R_1 \times R_2$ by the mapping $\mathcal{M}_{1,2}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D))$ is $(\epsilon_1 + \epsilon_2)$ -differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also a pair of output $(r_1, r_2) \in R_1 \times R_2$. We have:

$$\frac{\Pr[\mathcal{M}_{1,2}(D) = (r_1, r_2)]}{\Pr[\mathcal{M}_{1,2}(D') = (r_1, r_2)]} = \frac{(\Pr[\mathcal{M}_1(D), \mathcal{M}_2(D)) = (r_1, r_2)]}{(\Pr[\mathcal{M}_1(D'), \mathcal{M}_2(D')) = (r_1, r_2)]}$$
$$= \frac{\Pr[\mathcal{M}_1(D) = r_1] \Pr[\mathcal{M}_2(D) = r_2]}{\Pr[\mathcal{M}_1(D') = r_1] \Pr[\mathcal{M}_2(D') = r_2]}$$

Theorem 1.7 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_1 : $\mathcal{X}^n \to R_1$ be an ϵ_1 -differentially private algorithm and let $\mathcal{M}_2 : \mathcal{X}^n \to R_2$ be an ϵ_2 -differentially private algorithm. Then their composition defined to be $\mathcal{M}_{1,2} : \mathcal{X}^n \to R_1 \times R_2$ by the mapping $\mathcal{M}_{1,2}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D))$ is $(\epsilon_1 + \epsilon_2)$ -differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also a pair of output $(r_1, r_2) \in R_1 \times R_2$. We have:

$$\frac{\Pr[\mathcal{M}_{1,2}(D) = (r_1, r_2)]}{\Pr[\mathcal{M}_{1,2}(D') = (r_1, r_2)]} = \frac{\left(\Pr[\mathcal{M}_1(D), \mathcal{M}_2(D)) = (r_1, r_2)\right]}{\left(\Pr[\mathcal{M}_1(D'), \mathcal{M}_2(D')) = (r_1, r_2)\right]}$$
$$= \frac{\Pr[\mathcal{M}_1(D) = r_1] \Pr[\mathcal{M}_2(D) = r_2]}{\Pr[\mathcal{M}_1(D') = r_1] \Pr[\mathcal{M}_2(D') = r_2]} = \left(\frac{\Pr[\mathcal{M}_1(D) = r_1]}{\Pr[\mathcal{M}_1(D') = r_1]}\right) \left(\frac{\Pr[\mathcal{M}_2(D) = r_2]}{\Pr[\mathcal{M}_2(D') = r_2]}\right)$$

Theorem 1.7 (Standard composition for ϵ -differential privacy). Let \mathcal{M}_1 : $\mathcal{X}^n \to R_1$ be an ϵ_1 -differentially private algorithm and let $\mathcal{M}_2 : \mathcal{X}^n \to R_2$ be an ϵ_2 -differentially private algorithm. Then their composition defined to be $\mathcal{M}_{1,2} : \mathcal{X}^n \to R_1 \times R_2$ by the mapping $\mathcal{M}_{1,2}(D) = (\mathcal{M}_1(D), \mathcal{M}_2(D))$ is $(\epsilon_1 + \epsilon_2)$ -differentially private.

Proof. Fix any pair of adjacent datasets $D \sim_1 D'$. Fix also a pair of output $(r_1, r_2) \in R_1 \times R_2$. We have:

$$\frac{\Pr[\mathcal{M}_{1,2}(D) = (r_1, r_2)]}{\Pr[\mathcal{M}_{1,2}(D') = (r_1, r_2)]} = \frac{\left(\Pr[\mathcal{M}_1(D), \mathcal{M}_2(D)) = (r_1, r_2)\right]}{\left(\Pr[\mathcal{M}_1(D'), \mathcal{M}_2(D')) = (r_1, r_2)\right]}$$
$$= \frac{\Pr[\mathcal{M}_1(D) = r_1] \Pr[\mathcal{M}_2(D) = r_2]}{\Pr[\mathcal{M}_1(D') = r_1] \Pr[\mathcal{M}_2(D') = r_2]} = \left(\frac{\Pr[\mathcal{M}_1(D) = r_1]}{\Pr[\mathcal{M}_1(D') = r_1]}\right) \left(\frac{\Pr[\mathcal{M}_2(D) = r_2]}{\Pr[\mathcal{M}_2(D') = r_2]}\right)$$
$$\leq \exp(\epsilon_1) \exp(\epsilon_2) = \exp(\epsilon_1 + \epsilon_2).$$

13

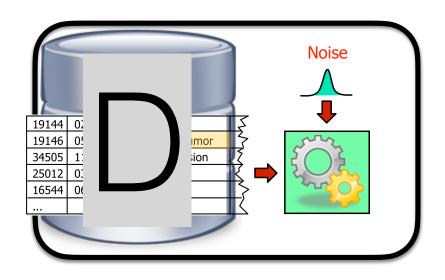
Question: Why composition is important?

13

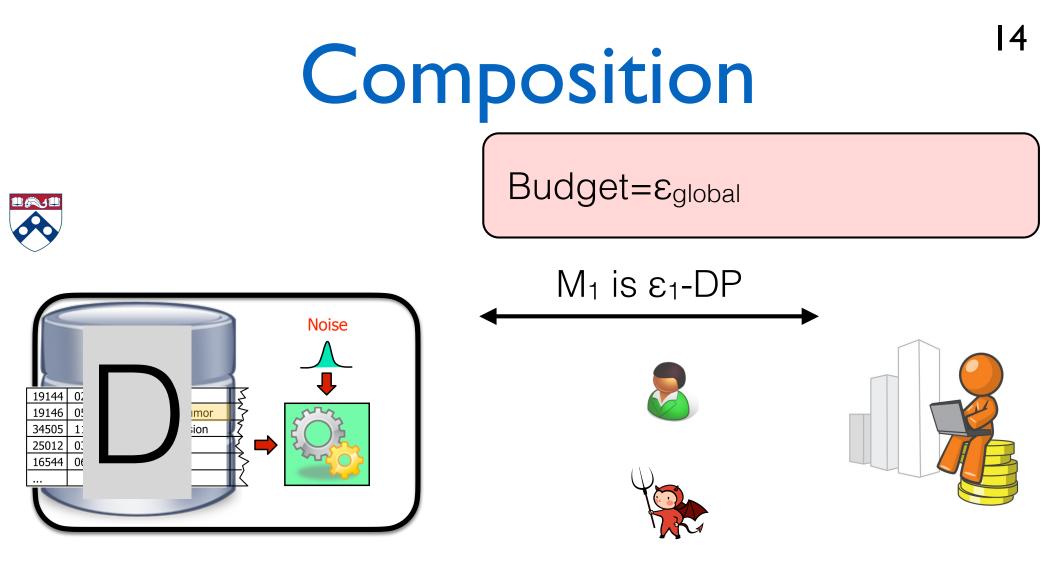
Question: Why composition is important?

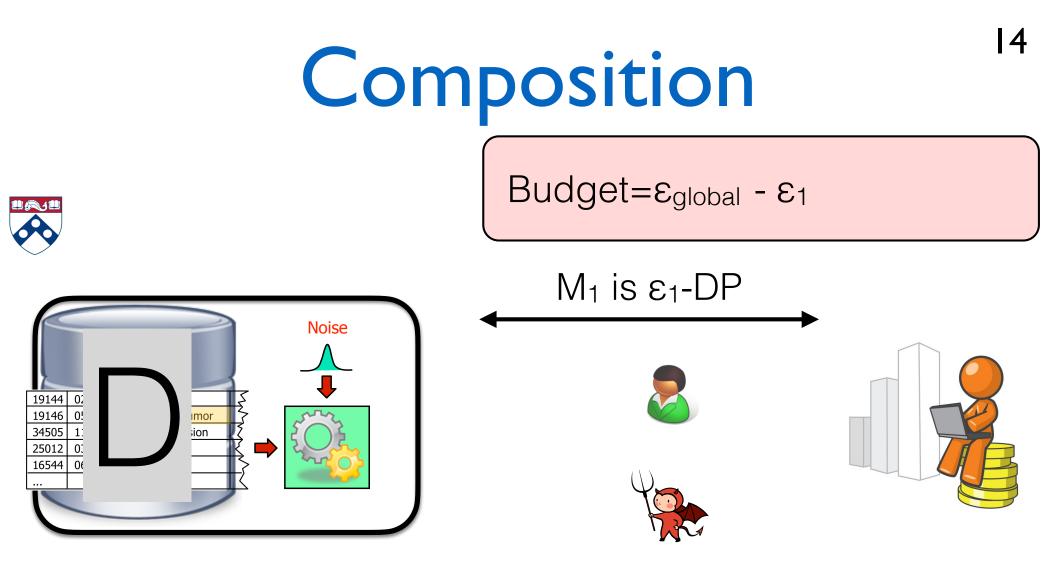
Answer: Because it allows to reason about privacy as a budget!

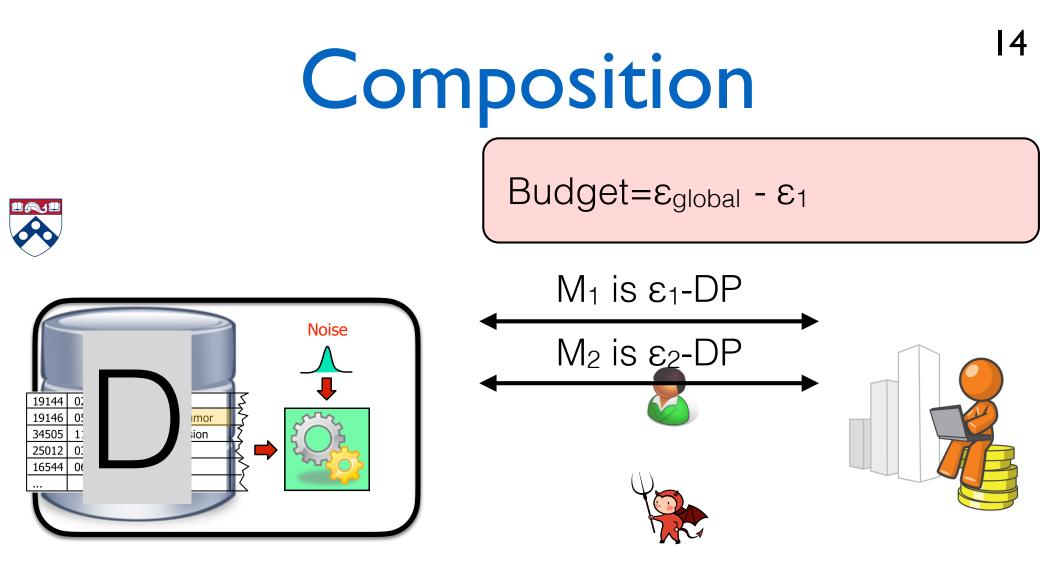
$Budget{=}\epsilon_{global}$

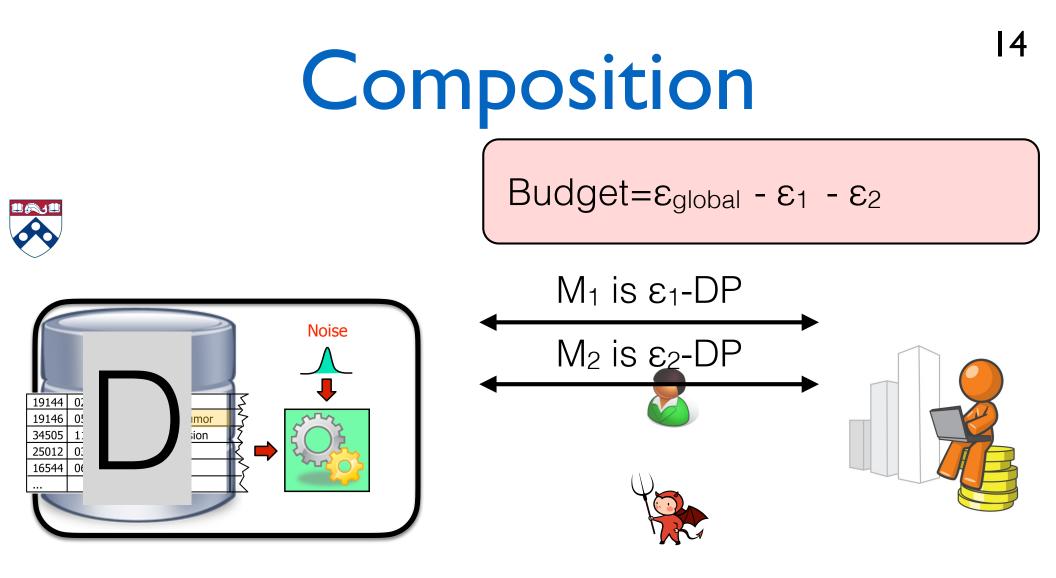


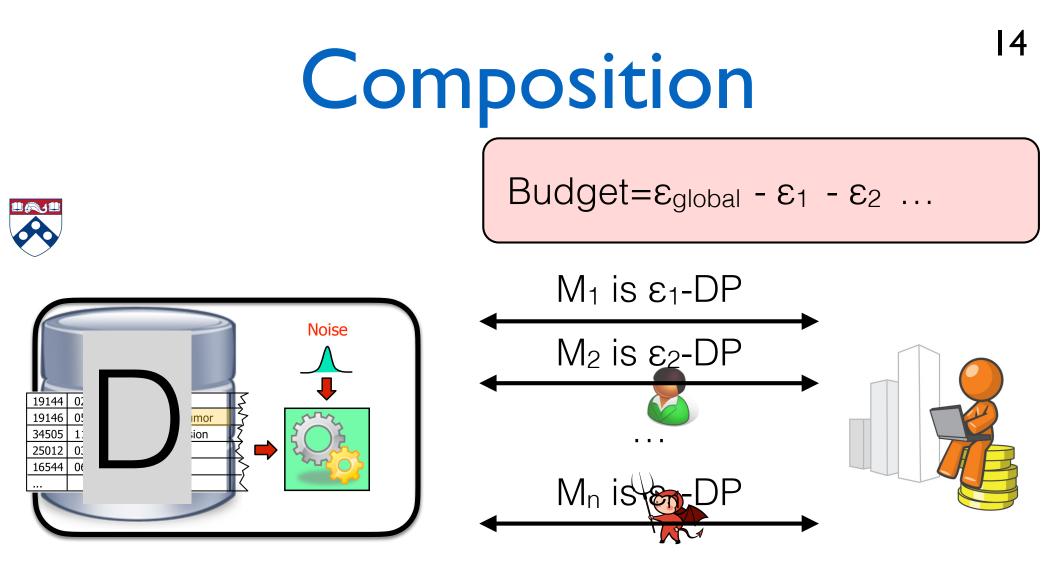
14











14 Composition Budget= $\varepsilon_{global} - \varepsilon_1 - \varepsilon_2 \dots - \varepsilon_n$ M_1 is ε_1 -DP Noise M_2 is ε_2 -DP 19144 02 19146 0! imor 34505 1: ion 25012 03 16544 0(Mn iste

Let's consider an arbitrary ordered universe domain $\mathcal X$ and let's consider the following predicate for $y\in\mathcal X$

$$q_y(x) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$$

we call a threshold function the associated counting query

$$q_y: \mathcal{X}^n \to [0,1]$$

Let's consider an arbitrary ordered universe domain \mathcal{X} and let's consider the following predicate for $y \in \mathcal{X}$

$$q_y(x) = \begin{cases} 1 & \text{if } x \le y \\ 0 & \text{otherwise} \end{cases}$$

we call a threshold function the associated counting query

$$q_y: \mathcal{X}^n \to [0, 1]$$

Question: What is the sensitivity?

Budget=Eglobal

X={0,1}³ ordered wrt binary encoding.

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
110	1	0	1

Budget= $\varepsilon_{global} - \varepsilon_1$

X={0,1}³ ordered wrt binary encoding.

 $q^{*}_{000}(D) = .3 + L(1/n\epsilon_1)$

 $D \in X^{10} =$

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget= $\varepsilon_{global} - \varepsilon_1 - \varepsilon_2$

X={0,1}³ ordered wrt binary encoding.

 $q^{*}_{000}(D) = .3 + L(1/n\epsilon_1)$ $q^{*}_{001}(D) = .4 + L(1/n\epsilon_2)$ $\mathsf{D} \in \mathsf{X}^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget= $\varepsilon_{global} - \varepsilon_1 - \varepsilon_2 - \varepsilon_3$

X={0,1}³ ordered wrt binary encoding.

 $q^*_{000}(D) = .3 + L(1/n\epsilon_1)$ $q^*_{001}(D) = .4 + L(1/n\epsilon_2)$ $q^*_{010}(D) = .6 + L(1/n\epsilon_3)$ $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3 + L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4 + L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6 + L(1/n\epsilon_{3})$$

$$q^{*}_{011}(D) = .6 + L(1/n\epsilon_{4})$$

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3 + L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4 + L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6 + L(1/n\epsilon_{3})$$

$$q^{*}_{011}(D) = .6 + L(1/n\epsilon_{4})$$

$$q^{*}_{100}(D) = .6 + L(1/n\epsilon_{5})$$

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0		0
l4	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3 + L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4 + L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6 + L(1/n\epsilon_{3})$$

$$q^{*}_{011}(D) = .6 + L(1/n\epsilon_{4})$$

$$q^{*}_{100}(D) = .6 + L(1/n\epsilon_{5})$$

$$q^{*}_{101}(D) = .9 + L(1/n\epsilon_{6})$$

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6 - ε_7 16

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3 + L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4 + L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6 + L(1/n\epsilon_{3})$$

$$q^{*}_{011}(D) = .6 + L(1/n\epsilon_{4})$$

$$q^{*}_{100}(D) = .6 + L(1/n\epsilon_{5})$$

$$q^{*}_{101}(D) = .9 + L(1/n\epsilon_{6})$$

$$q^{*}_{110}(D) = 1 + L(1/n\epsilon_{7})$$

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6 - ε_7 - ε_8

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3+L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4+L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6+L(1/n\epsilon_{3})$$

$$q^{*}_{011}(D) = .6+L(1/n\epsilon_{4})$$

$$q^{*}_{100}(D) = .6+L(1/n\epsilon_{5})$$

$$q^{*}_{101}(D) = .9+L(1/n\epsilon_{6})$$

$$q^{*}_{110}(D) = 1+L(1/n\epsilon_{7})$$

$$q^{*}_{111}(D) = 1+L(1/n\epsilon_{8})$$

 $D \in X^{10} =$

	D1	D2	D3
l1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
110	1	0	1

Budget=
$$\varepsilon_{global}$$
 - ε_1 - ε_2 - ε_3 - ε_4
- ε_5 - ε_6 - ε_7 - ε_8

6

X={0,1}³ ordered wrt binary encoding.

$$q^{*}_{000}(D) = .3+L(1/n\epsilon_{1})$$

$$q^{*}_{001}(D) = .4+L(1/n\epsilon_{2})$$

$$q^{*}_{010}(D) = .6+L(1/n\epsilon_{3})$$

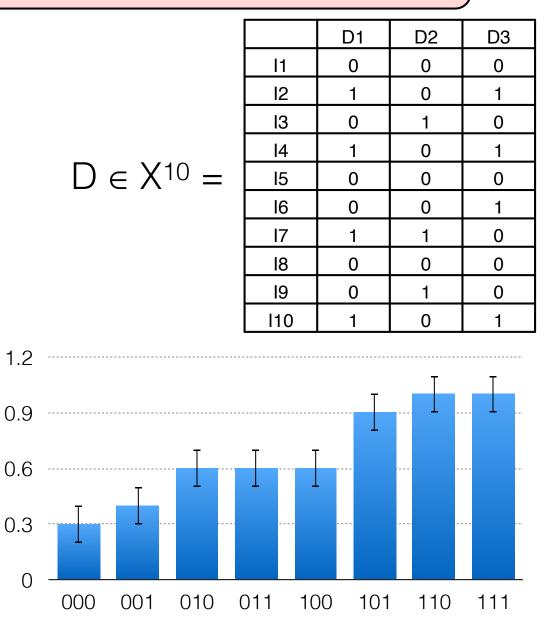
$$q^{*}_{011}(D) = .6+L(1/n\epsilon_{4})$$

$$q^{*}_{100}(D) = .6+L(1/n\epsilon_{5})$$

$$q^{*}_{101}(D) = .9+L(1/n\epsilon_{6})$$

$$q^{*}_{110}(D) = 1+L(1/n\epsilon_{7})$$

$$q^{*}_{111}(D) = 1+L(1/n\epsilon_{8})$$



Let's consider the universe domain $\mathcal{X} = \{0, 1\}^d$ and let's consider the following predicate for an index $1 \le j \le d$

$$q_j(x) = x_j$$

we call an attribute mean function the associated counting query $q_j: \mathcal{X}^n \to [0,1]$

Let's consider the universe domain $\mathcal{X} = \{0, 1\}^d$ and let's consider the following predicate for an index $1 \le j \le d$

$$q_j(x) = x_j$$

we call an attribute mean function the associated counting query $q_j: \mathcal{X}^n \to [0,1]$

Question: What is the sensitivity?

Budget=Eglobal

$$X^{10} = \begin{bmatrix} D1 & D2 \\ 11 & 0 & 0 \\ 12 & 1 & 0 \\ 13 & 0 & 1 \\ 14 & 1 & 0 \\ 15 & 0 & 0 \\ 16 & 0 & 0 \\ 17 & 1 & 1 \\ 18 & 0 & 0 \\ 19 & 0 & 1 \end{bmatrix}$$

l10

D3

$$D \in X^{10} =$$

Budget= $\epsilon_{global} - \epsilon_1$

$$D \in X^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/n\epsilon_{1})$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
I 4	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget= $\varepsilon_{global} - \varepsilon_1 - \varepsilon_2$

$$\mathsf{D} \in \mathsf{X}^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/n\epsilon_{1})$ $q_{2}^{*}(D) = .3 + L(1/n\epsilon_{2})$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
l5	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global} - \varepsilon_1 - \varepsilon_2 - \varepsilon_3$$

$$\mathsf{D} \in \mathsf{X}^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/n\epsilon_{1})$ $q_{2}^{*}(D) = .3 + L(1/n\epsilon_{2})$ $q_{3}^{*}(D) = .4 + L(1/n\epsilon_{3})$

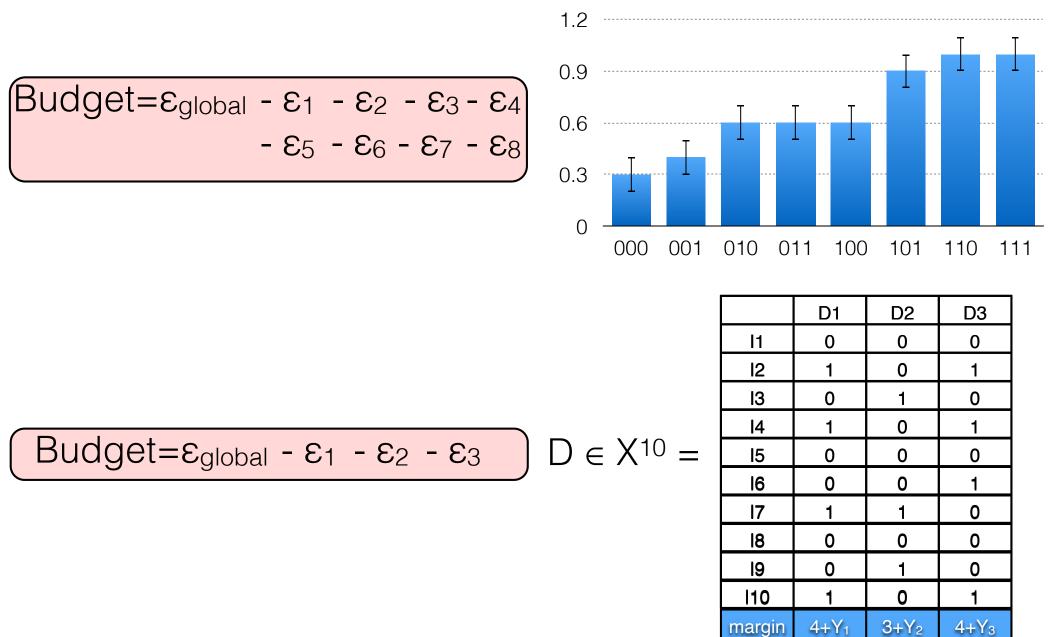
	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

Budget=
$$\varepsilon_{global} - \varepsilon_1 - \varepsilon_2 - \varepsilon_3$$

$$\mathsf{D} \in \mathsf{X}^{10} =$$

 $q_{1}^{*}(D) = .4 + L(1/n\epsilon_{1})$ $q_{2}^{*}(D) = .3 + L(1/n\epsilon_{2})$ $q_{3}^{*}(D) = .4 + L(1/n\epsilon_{3})$

	D1	D2	D3
11	0	0	0
12	1	0	1
13	0	1	0
I 4	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1
margin	4+Y ₁	3 +Y ₂	4+Y ₃



Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy Budget: Budget= ε_{global} - $\sum \varepsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\varepsilon_{global} = \sum \varepsilon_{local}$

Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privacy Budget: Budget= ε_{global} - $\sum \varepsilon_{local}$

Sometimes is more convenient to think in terms of epsilon: $\varepsilon_{global} = \sum \varepsilon_{local}$

Making them uniforms is sometimes more informative.

Privacy Budget vs Epsilon

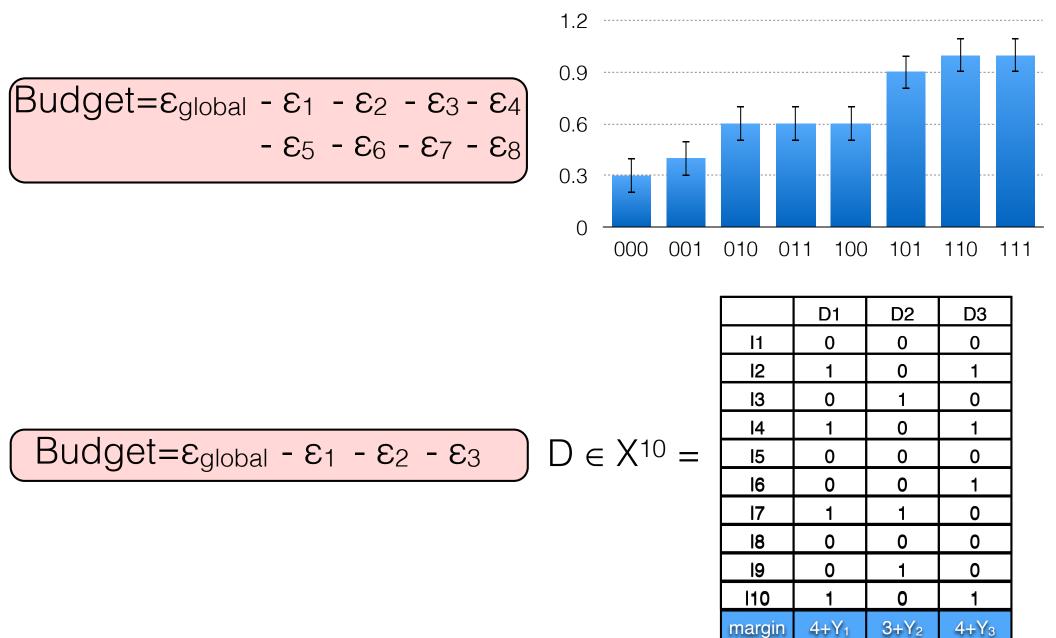
Sometimes is more convenient to think in terms of Privacy Budget: Budget= $\epsilon_{global} - \sum \epsilon_{local}$

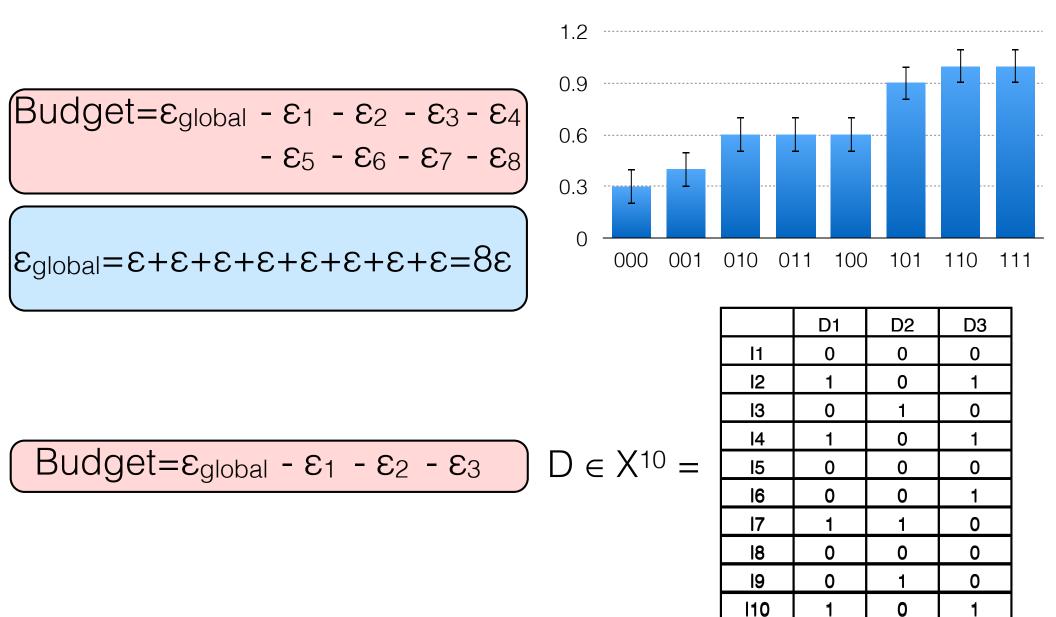
70

Sometimes is more convenient to think in terms of epsilon: $\varepsilon_{global} = \sum \varepsilon_{local}$

Making them uniforms is sometimes more informative.

Note: There are situations where the two are not equivalent.





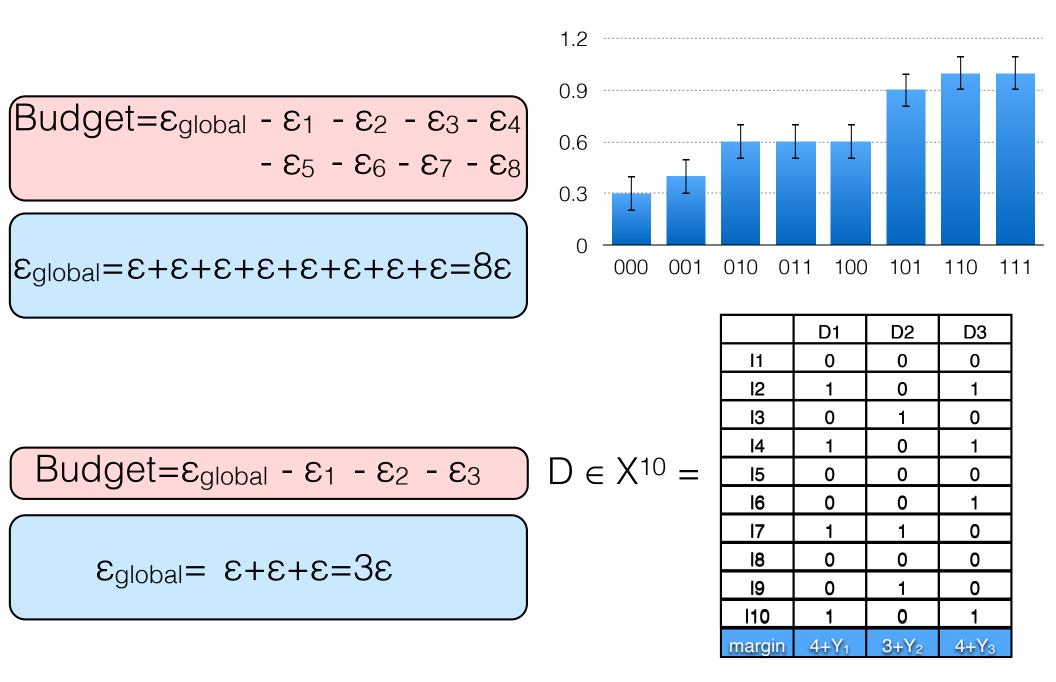
21

3+Y₂

 $4+Y_{1}$

margin

 $4 + Y_3$



Composition

Question: How about histograms?

Let's consider an arbitrary universe domain $\mathcal X$ and let's consider the following predicate for $y\in\mathcal X$

$$q_y(x) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

we call a point function the associated counting query

$$q_y: \mathcal{X}^n \to [0, 1]$$

Let's consider an arbitrary universe domain $\mathcal X$ and let's consider the following predicate for $y\in\mathcal X$

$$q_y(x) = \begin{cases} 1 & \text{if } y = x \\ 0 & \text{otherwise} \end{cases}$$

we call a point function the associated counting query

$$q_y: \mathcal{X}^n \to [0,1]$$

Question: What is the sensitivity?

 $Budget = \epsilon_{global}$

		D1	D2	D3
	1	0	0	0
:	12	1	0	1
	13	0	1	0
	I 4	1	0	1
	15	0	0	0
	l6	0	0	1
	17	1	1	0
	18	0	0	0
	19	0	1	0
	110	1	0	1

 $D \in X^{10} =$

Budget=ε_{global} - ε

 $D \in X^{10} =$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

24

$q^{*}_{000}(D) = .3 + L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon$$

$$D \in X^{10} =$$

	D1	D2	D3
	וט	DZ	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

 $q^{*}_{000}(D) = .3 + L(1/n\epsilon)$ $q^{*}_{001}(D) = .1 + L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon$$

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon - \varepsilon$$

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$ $q^{*}_{011}(D) = 0+L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon - \varepsilon$$

- ε

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

24

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$ $q^{*}_{011}(D) = 0+L(1/n\epsilon)$ $q^{*}_{100}(D) = 0+L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon - \varepsilon$$

- $\varepsilon - \varepsilon$

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

24

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$ $q^{*}_{011}(D) = 0+L(1/n\epsilon)$ $q^{*}_{100}(D) = 0+L(1/n\epsilon)$ $q^{*}_{101}(D) = .3+L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon - \varepsilon$$

- $\varepsilon - \varepsilon - \varepsilon$ 24

$$\mathsf{D} \in \mathsf{X}^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
14	1	0	1
15	0	0	0
16	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

$$q^*_{000}(D) = .3+L(1/n\epsilon)$$

 $q^*_{001}(D) = .1+L(1/n\epsilon)$
 $q^*_{010}(D) = .2+L(1/n\epsilon)$
 $q^*_{011}(D) = 0+L(1/n\epsilon)$
 $q^*_{100}(D) = 0+L(1/n\epsilon)$
 $q^*_{101}(D) = .3+L(1/n\epsilon)$

Budget=
$$\varepsilon_{global} - \varepsilon - \varepsilon - \varepsilon - \varepsilon$$

- $\varepsilon - \varepsilon - \varepsilon - \varepsilon$

$$D \in X^{10} =$$

	D1	D2	D3
1	0	0	0
12	1	0	1
13	0	1	0
l4	1	0	1
15	0	0	0
l6	0	0	1
17	1	1	0
18	0	0	0
19	0	1	0
l10	1	0	1

$$q^{*}_{000}(D) = .3+L(1/n\epsilon)$$

$$q^{*}_{001}(D) = .1+L(1/n\epsilon)$$

$$q^{*}_{010}(D) = .2+L(1/n\epsilon)$$

$$q^{*}_{011}(D) = 0+L(1/n\epsilon)$$

$$q^{*}_{100}(D) = 0+L(1/n\epsilon)$$

$$q^{*}_{101}(D) = .3+L(1/n\epsilon)$$

$$q^{*}_{110}(D) = .1+L(1/n\epsilon)$$

$$q^{*}_{000}(D) = .3+L(1/n\epsilon)$$

$$q^{*}_{001}(D) = .1+L(1/n\epsilon)$$

$$q^{*}_{010}(D) = .2+L(1/n\epsilon)$$

$$q^{*}_{011}(D) = 0+L(1/n\epsilon)$$

$$q^{*}_{100}(D) = 0+L(1/n\epsilon)$$

$$q^{*}_{101}(D) = .3+L(1/n\epsilon)$$

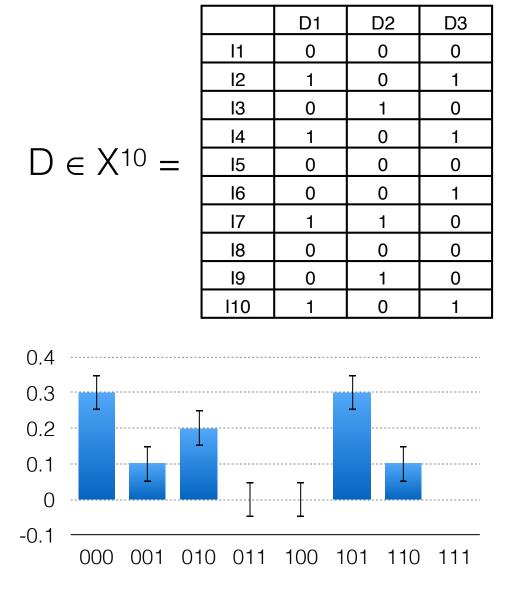
$$q^{*}_{110}(D) = .1+L(1/n\epsilon)$$

$$q^{*}_{111}(D) = 0+L(1/n\epsilon)$$

$$D \in X^{10} = \begin{bmatrix} D_1 & D_2 & D_3 \\ 11 & 0 & 0 & 0 \\ 12 & 1 & 0 & 1 \\ 13 & 0 & 1 & 0 \\ 14 & 1 & 0 & 1 \\ 15 & 0 & 0 & 0 \\ 16 & 0 & 0 & 1 \\ 17 & 1 & 1 & 0 \\ 18 & 0 & 0 & 0 \\ 19 & 0 & 1 & 0 \\ 110 & 1 & 0 & 1 \end{bmatrix}$$

Can we do better?

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$ $q^{*}_{011}(D) = 0+L(1/n\epsilon)$ $q^{*}_{100}(D) = 0+L(1/n\epsilon)$ $q^{*}_{101}(D) = .3+L(1/n\epsilon)$ $q^{*}_{110}(D) = .1+L(1/n\epsilon)$ $q^{*}_{111}(D) = 0+L(1/n\epsilon)$



		D1	D2	D3			D1	D2	D3
	1	0	0	0		1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0	D' ∈ X ¹⁰ =	13	0	1	0
$D \in X^{10} = 15$	14	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		16	0	0	1
	17	1	1	0		17	1	1	0
7 8 9	18	0	0	0		18	0	0	0
	0	1	0		19	0	1	0	
	l10	1	0	1		l10	1	0	1

$D \in X^{10} = \begin{bmatrix} 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \end{bmatrix}$	D1	D2	D3			D1	D2	D3	
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
	I 4	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

 $q_{000}(D) = .3$

		D1	D2	D3			D1	D2	D3
	1	0	0	0		1	0	0	0
	12	1	0	1		12	1	0	1
$D \in X^{10} = 13$	13	0	1	0		13	0	1	0
	l4	1	0	1	D' ∈ X ¹⁰ =	14	1	0	1
	15	0	0	0		15	0	1	0
	16	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

 $q_{000}(D) = .3$ $q_{001}(D) = .1$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	-	1	0	0	0
	12	1	0	1		12	1	0	1
$D \in X^{10} = 13$	13	0	1	0		13	0	1	0
	14	1	0	1	D' ∈ X ¹⁰ =	14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0	-	18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

 $q_{000}(D) = .3$ $q_{001}(D) = .1$ $q_{010}(D) = .2$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	-	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
$D \in X^{10} = $	14	1	0	1		14	1	0	1
	15	0	0	0	D' ∈ X ¹⁰ =	15	0	1	0
	16	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
-	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

 $q_{000}(D) = .3$ $q_{001}(D) = .1$ $q_{010}(D) = .2$ $q_{011}(D) = 0$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
$D \in X^{10} = $	14	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
-	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

- $q_{000}(D) = .3$ $q_{001}(D) = .1$ $q_{010}(D) = .2$ $q_{011}(D) = 0$
- $q_{011}(D) = 0$ $q_{100}(D) = 0$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
$D \in X^{10} =$	l4	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		16	0	0	1
	17	1	1	0		17	1	1	0
-	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

- $q_{000}(D) = .3$
- $q_{001}(D) = .1$ $q_{010}(D) = .2$
- $q_{011}(D) = 0$ $q_{100}(D) = 0$
- $q_{101}(D) = .3$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
$D \in X^{10} = \Box$	14	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	16	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
-	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

- $q_{000}(D) = .3$ $q_{001}(D) = .1$ $q_{010}(D) = .2$
- $q_{011}(D) = 0$ $q_{100}(D) = 0$
- $q_{101}(D) = .3$ $q_{110}(D) = .1$

		D1	D2	D3			D1	D2	D3
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
$D \in X^{10} = $	14	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	16	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
-	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

- $q_{000}(D) = .3$
- $q_{001}(D) = .1$ $q_{010}(D) = .2$ $q_{011}(D) = 0$
- $q_{100}(D) = 0$
- $q_{101}(D) = .3$ $q_{110}(D) = .1$
- $q_{111}(D) = 0$

					Г				
		D1	D2	D3			D1	D2	D3
	1	0	0	0	D' ∈ X ¹⁰ =	1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
	I 4	1	0	1		14	1	0	1
	l5	0	0	0		15	0	1	0
	l6	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1

 $\begin{array}{l} q_{000}(D) = .3\\ q_{001}(D) = .1\\ q_{010}(D) = .2\\ q_{011}(D) = 0\\ q_{100}(D) = 0\\ q_{101}(D) = .3\\ q_{110}(D) = .1\\ q_{111}(D) = 0 \end{array}$

$$q_{000}(D') = .2$$

		D1	D2	D3			D1	D2	D3
	1	0	0	0		1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0	D' ∈ X ¹⁰ =	13	0	1	0
$D\inX^{10}=$	14	1	0	1		14	1	0	1
	15	0	0	0		15	0	1	0
	l6	0	0	1		l6	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1
					-				
$q_{000}(D) =$.3	Q 000	(D') = .	2					
$q_{000}(D) = q_{001}(D) =$.1	q 001	(D') = . (D') = .	1					

- $q_{001}(D) = .2$ $q_{010}(D) = .2$ $q_{011}(D) = 0$ $q_{100}(D) = 0$ $q_{101}(D) = .3$
- $q_{101}(D) = .3$ $q_{110}(D) = .1$
- $q_{110}(D) = .1$ $q_{111}(D) = 0$

		D1	D2	D3			D1	D2	D3
	1	0	0	0		1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
	14	1	0	1		14	1	0	1
$D \in X^{10} =$	15	0	0	0	D' ∈ X ¹⁰ =	15	0	1	0
	l6	0	0	1		16	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1
$\begin{array}{l} q_{000}(D) = \\ q_{001}(D) = \\ q_{010}(D) = \\ q_{011}(D) = \\ q_{100}(D) = \\ q_{101}(D) = \\ q_{110}(D) = \\ q_{111}(D) = \end{array}$.1 .2 0 .3 .1	Q 001	(D') = . (D') = . (D') = .	1					

		D1	D2	D3			D1
	1	0	0	0		1	0
	12	1	0	1		12	1
	13	0	1	0		13	0
	14	1	0	1		14	1
D ∈ X ¹⁰ =	15	0	0	0	D' ∈ X ¹⁰ =	15	0
	l6	0	0	1		16	0
	17	1	1	0		17	1
	18	0	0	0		18	0
	19	0	1	0		19	0
	l10	1	0	1		l10	1
$\begin{array}{l} q_{000}(D) = \\ q_{001}(D) = \\ q_{010}(D) = \\ q_{011}(D) = \\ q_{100}(D) = \\ q_{101}(D) = \\ q_{110}(D) = \\ q_{111}(D) = \end{array}$.1 .2 0 .3 .1	Q001 Q010 Q011 Q100 Q101 Q110	(D') =	.1 .3 0 .3 .1			

D3

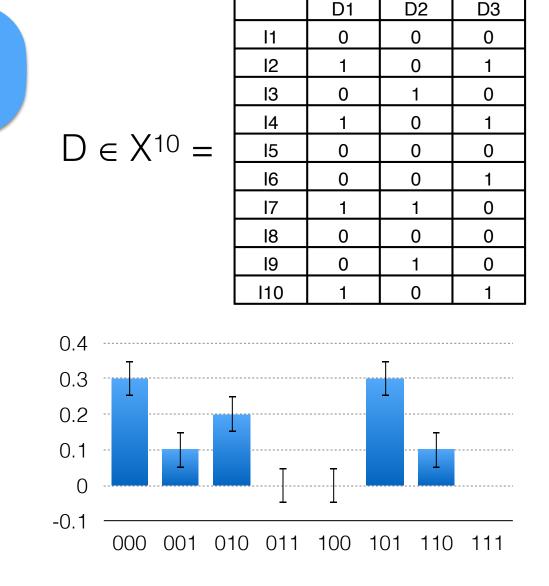
D2

		D1	D2	D3			D1	D2	D3
	1	0	0	0		1	0	0	0
	12	1	0	1		12	1	0	1
	13	0	1	0		13	0	1	0
	14	1	0	1	D' ∈ X ¹⁰ =	14	1	0	1
$D \in X^{10} =$	15	0	0	0		15	0	1	0
	16	0	0	1		16	0	0	1
	17	1	1	0		17	1	1	0
	18	0	0	0		18	0	0	0
	19	0	1	0		19	0	1	0
	l10	1	0	1		l10	1	0	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					$\begin{array}{c} 0.3 \\ 0.225 \\ 0.15 \\ 0.075 \\ 0 \\ 000 001 \end{array}$	010 01	1 100	101 1	10 111

Budget= ϵ_{global} - 2ϵ

Can we do better?

 $q^{*}_{000}(D) = .3+L(1/n\epsilon)$ $q^{*}_{001}(D) = .1+L(1/n\epsilon)$ $q^{*}_{010}(D) = .2+L(1/n\epsilon)$ $q^{*}_{011}(D) = 0+L(1/n\epsilon)$ $q^{*}_{100}(D) = 0+L(1/n\epsilon)$ $q^{*}_{101}(D) = .3+L(1/n\epsilon)$ $q^{*}_{110}(D) = .1+L(1/n\epsilon)$ $q^{*}_{111}(D) = 0+L(1/n\epsilon)$



Releasing partial sums

DummySum(d : {0,1} list) : real list

```
i:= 0;
s:= 0;
r:= [];
while (i<size d)
s:= s + d[i]
z:=$ s + Lap(1/eps)
r:= r ++ [z];
i:= i+1;
return r
```

What is the global epsilon here?

Releasing partial sums

```
DummySum(d : {0,1} list) : real list
i:=0;
s:=0;
r:=[];
while (i<size d)
z:=$ d[I] + Lap(eps)
s:= s + z
r:= r ++ [s];
i:= i+1;
return r
```

What is the global epsilon here?

Parallel Composition

Let $M_1:DB \rightarrow R$ be a $(\varepsilon_1, \delta_1)$ -differentially private program and $M_2:DB \rightarrow R$ be a $(\varepsilon_2, \delta_2)$ -differentially private program. Suppose that we partition D in a data-independent way into two datasets D_1 and D_2 . Then, the composition $M_{1,2}:DB \rightarrow R$ defined as $MP_{1,2}(D)=(M_1(D_1),M_2(D_2))$ is $(\max(\varepsilon_1,\varepsilon_2),\max(\delta_1,\delta_2))$ -differentially private.

Question: how much perturbation do we have if we want to answer n queries under ε -DP?

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

We can split the privacy budget uniformly:

$$\epsilon = \frac{\epsilon_{\rm global}}{n}$$

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

We can split the privacy budget uniformly:

$$\epsilon = rac{\epsilon_{\mathsf{global}}}{n}$$

Laplace accuracy: with high probability we have: $\left|q(D) - r\right| \leq O\left(\frac{1}{\epsilon n}\right)$

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

By putting them together (hiding some details) we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Question: how much perturbation do we have if we want to answer n counting queries under ε_{global} -DP?

By putting them together (hiding some details) we have as a max error

$$O\left(\frac{n}{\epsilon_{\mathsf{global}}n}\right) = O\left(\frac{1}{\epsilon_{\mathsf{global}}}\right)$$

Notice that if we don't renormalize this is of the order of $O\left(\frac{n}{\epsilon_{\text{global}}}\right)$ bigger than the sample error.

Question: how many counting queries can we answer with small error under ε_{global} -DP?

Let's now target an error similar to sample error. How many queries we can answer?

If we want a non-normalized error of:

$$O\!\left(\frac{\sqrt{n}}{\epsilon_{\mathsf{global}}}\right)$$

we can answer at most \sqrt{n} queries.

Question: Can we do better?

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

[DworkRothblumVadhan10, SteinkeUllman16]

Question: how much perturbation do we have if we want to answer n queries under (ε, δ) -DP?

We have (by hiding many details) as a max error

$$O\left(\frac{1}{\epsilon_{\mathsf{global}}\sqrt{n}}\right)$$

If we don't renormalize this is of the order of $O\Big(\frac{\sqrt{n}}{\epsilon_{\rm global}}\Big)$ comparable to the sample error.

[DworkRothblumVadhan10, SteinkeUllman16]

Summary

- Resilience to post-processing
- Group privacy
- Composition