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(€,0)-Differential Privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &




Laplace Mechanism

4 )
Theorem (Privacy of the Laplace Mechanism)

\The Laplace mechanism is e-differentially private. )

Proof: Intuitively
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Another mechanism?




Auctions
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How shall we set the price under differential privacy?




Max response
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Suppose that each one of us can vote for one star,
and we want to say who is the star that receives
Most votes.



Max response
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Suppose that each one of us can vote for one star,
and we want to say who is the star that receives
Most votes.

4 )
The answer here is not a number, how can we release it
under differential privacy?

- J




Differentially private selection

e \We want to select some element that
maximize some value,

¢ [he noise added for privacy should not
destroy the utlility,

e |f we cannot return the maximal one,

with high probability, we want to return
one close to It.



Max response

Intuition:

We could compute the

histogram add Laplace

- noise to each score and then
select the maximal noised score.




Report Noisy Max

qi(D)+noise
Given a set of queries q2(D)+noise
with sensitivity |, return 43(D)+noise

the index of the noised
query with themax -

value qk(D)+noise

T —




Report Noisy Max

qi(D)+noise
Given a set of queries q2(D)+noise
with sensitivity |, ret;urn 43(D)+noise
the index of the noised
query with themax -
value qk(D)+noise

T —

A naive analysis gives
ke-differentially private




Report Noisy Max - intuition

We can prove this algorithm
e-differentially private
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in one individual




Report Noisy Max - intuition
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Report Noisy Max - intuition

| sensitive queries
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Report Noisy Max - intuition

| sensitive queries

qi(D)+noise  qi(D’)+noise
q2(D)*+noise  q2(D’)*+noise

" q3(D)*noise  g3(D’)*noise

qx(D’)*+noise

We can prove this algorithm
e-differentially private

Databases differing
in one individual




Report Noisy Max - intuition

We need to coordinate | sensitive queries
noises

qi(D)+noise  qi(D’)+noise
q2(D)*+noise  q2(D’)*+noise

" q3(D)*noise  g3(D’)*noise

qx(D’)*+noise

We can prove this algorithm
e-differentially private

Databases differing
in one individual




Report Noisy Max

Algorithm 8 Pseudo-code for Report Noisy Max

1: function RNM(D, q1,...,qn, €)
2 for: <+ 1,....,m do

3 ci < LapMech(D, g;, €)

4: end for

5 return argmax;c;

6: end function




Report Noisy Max

Simplifying
assumptions

CkZCk'
cr' +12cy

Without loss of generality, let us assume that D=D" u {x}.
Let us use: ck=0gk(D) and ck'=gk(D’)



Report Noisy Max

oo Simplifying
assumptions
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Without loss of generality, let us assume that D=D" u {x}.
Let us use: ck=0x(D) and ck’=gk(D’)



Report Noisy Max

Simplifying
assumptions

CkZCk'
cr' +12cy

Notation Tk, rx’

noise added at
round I.




Report Noisy Max

Q Simplifying
assumptions
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Report Noisy Max

Simplifying
assumptions

Cr2Cr’
cr' +12cy

Notation Tk, rx’

noise added at
round I.

_et’s focus on the
iteration i and

let’s fix the noises r;
for all 7#1




Report Noisy Max

S Simplifying
assumptions
6.75 -
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225 Notation rx, r'x’

noise added at
round I.
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iteration i and

let’s fix the noises r;
for all 7#1




Report Noisy Max

Simplifying
assumptions

Cr2Cr’
cr' +12cy

Notation Tk, rx’

noise added at
round I.

_et’s focus on the
We want to show: iteration i and

Pr [x=i|r]<e Pr [x=i|r] let’s fix the noises r;
x~RNM(D) x~RNM(D") for all 3751




Report Noisy Max

T S._— B M s i i Simplifying
assumptions
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. noise added at

round I.
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_et’s focus on the

We want to show: iteration i and

Pr [x=ilr]<e Pr [x=i|r] let’s fix the noises r;
x~RNM(D) x~RNM(D") forall j#1



Report Noisy Max

Simplifying
assumptions

CkZCk'
c’' +12cy

Notation Tk, Tk’

noise added at
round I.

_et’s focus on the
By fixing the noises r; for all j#1 iteration i and
we can compute the following let’s fix the noises r;

r¥=min, ci+r > cy+r;forall 5| forall j#i




Report Noisy Max

S Simplifying
assumptions
6.75 -
CkZCk'

45 cr’+12cy
= Notation T'x, Tk’
0 noise added at

round I.
S TN @ a3 as @] o |7 o
5 6 7 8
_et’s focus on the
By fixing the noises r; for all 7#1 iteration 1 and
we can compute the following let’s fix the noises r;

r¥=min, ci+r > cy+r;forall 5| forall j#i




Report Noisy Max

r*=min, ci;+r 2 c;+r; forall ; Simplifying
assumptions

Notice that cr>cy
cr’+12cy

Pr [x=i|r_]= Pr [r>r¥*]
x~RNM(D) r~Lap

Notation Tk, rx’

noise added at
round I.

_et’s focus on the
iteration i and

let’s fix the noises r;
for all 7#1



Report Noisy Max

r*=min, ci+r 2 cy+r; forall ]

Notice that since
ci+r* 2 CytI5
we also have for all |
ci’+1+r* 2 cy’ +r;

and using this we have

Pr [x=i|r]]> Pr [r>1+r*]
x~RNM(D") r~Lap

Simplifying
assumptions

Cr2Cr’
cr' +12cy

Notation Tk, rx’

noise added at
round I.

_et’s focus on the
iteration i and

let’s fix the noises r;
for all 7#1



Report Noisy Max

r*=min, ci;+r 2 c;+r; forall ; Simplifying
assumptions
Summarizing we have: Cr>c
Pr [x=ilr_]= Pr [r>r*] c’' +12cy
x~RNM(D) r~Lap
And Notation Ik, rx’
Pr [x=ilr_]> Pr [r>1+r*] noise added at
x~RNM(D’) r~Lap round .
| et’s focus on the

iteration i and
let’s fix the noises r;
for all 7#1



Report Noisy Max

r*=min, ci;+r 2 c;+r; forall ; Simplifying
assumptions
Summarizing we have: Cr>c
Pr [x=ilr_]= Pr [r>r*] c’' +12cy
x~RNM(D) r~Lap
And Notation Ik, rx’
Pr [x=ilr_]> Pr [r>1+r*] noise added at
x~RNM(D’) r~Lap round .
| et’s focus on the

How can we connect them? iteration i1 and
let’s fix the noises r;

for all 7#1




Laplace Distribution

1 w— X
Lap(b, 1) (X) = — exp ( _ | ‘) b regulates the
20 b skewness of
the curve,




Sliding property of the

Laplace Distribution

Pr [k<x]<e”“ Pr [k+c<x]
x~Lap( ) x~Lap(=.p)

Pr

C

A qg(-)




Report Noisy Max

Summarizing we have:

Pr [x=1i|r_]
x~RNM(D)

= Pr [r>r*]<e® Pr [r>1+ r¥]
r~Lap r~Lap

<e* Pr [x=i|r]
x~RNM(D’)



Report Noisy Max

In a similar way we can prove:

Pr [x=i|lr_] e Pr [x=i|r_]
x~RNM(D’) x~RNM(D)
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Exponential Mechanism

The Exponential Mechanism generalize this approach.

Suppose that we have a scoring function u(D,0) that to

each pair (database, potential output) assign a score
(a negative real number).

We want to output approximately the element with the
max Score.
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Exponential Mechanism

Exponential Mechanism:
Mp(z,u,R) ox (eu(a:,’r) )
return » € R with prob. Pl oAy
eu(x,r’)
Z’I"/ER eXp( 2Au )

where

Au = max max |u(x,r) — u(y, r)
rc’R x~1y
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Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.

- J

The proof is very similar to the one for the Laplace Mechanism.
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Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.

- J

The proof is very similar to the one for the Laplace Mechanism.

( p(“55) >

PriMg(z,u,R)=r] \ 2. e €XD( A2

PrMp(y,u,R) =r] ( exp(ELwr)) )
2 e

R eXP(Z5EE)
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Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.
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The proof is very similar to the one for the Laplace Mechanism.
exp(“5aer))
PriMg(z,u,R)=r]  \2ver exp( 53
PriMg(y,u,R) = r] ( exp(Z4:r)) )
)3

/
r'eR exp( €u2(z’q: ) )

<exp(€";<§5>)> [ Srerexp(Thk )))
) X <€u2(2’5))



27

Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.
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The proof is very similar to the one for the Laplace Mechanism.
exp(“5aer))
PriMg(z,u,R)=r]  \2ver exp( 53
PriMg(y,u,R) = r] ( exp(Z4:r)) )
)3

/
r'eR exp( €u2(z’q: ) )

- <exp<€z<§;f>>> [ Ser exp(Ca)
) ZT’ER exp( 5"2(2’5 ) )

() —u(y )\ [ Drer exp(Zad)
- P ( 2AU ) . (




Exponential Mechanism

-

\

Privacy theorem:
The Exponential Mechanism is differentially private.

Continuing

28
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Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.

- J

Continuing
e (e(u(w’)—u(y,r’))) (Zrer w5k
b 2AU Eu(x,r’))




28

Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.

- J

Continuing

20U
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Exponential Mechanism

4 )

Privacy theorem:
The Exponential Mechanism is differentially private.

- J

Continuing

~ exp (2027 DY (zn exp<@;)

20U

< e (£) . Ser exp(Ee)
N 2 > er €XP( 5“2(2’5 : )

( Here we change y with x by
paying exp(e/2).
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Exponential Mechanism

4 )

Exponential Mechanism Accuracy theorem:

Let OPT,(z) = max,er u(x,r). Then

Pr [OPTU(ZE) —u(:v;./\/lE(:E,u,R)) > (Ziu) In (%)} < g

- J
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Exponential Mechanism

4 )

Exponential Mechanism Accuracy theorem:
Let OPT,(z) = max,er u(x,r). Then

Pr [OPTU(ZE) —u(:v;./\/lE(:E,u,R)) > (Ziu) In (%)} < g

- J

It follows from this lemma

Py [u(/\/lE(a:,u,R)) < OPT,(z) — QAT“ (m (!R‘ZETO + t)] <t

Proof.

IR| exp(ec/2Au)
PriviMe(e,u.R)) < d < o o (FOPT, (1) /2A0)

L IRl (e OPTL(o)
’ROPT‘ 2AU .
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Exponential Mechanism

4 )

Exponential Mechanism Accuracy theorem:
Let OPT,(z) = max,cr u(z,r). Then

Pr [OPTu(x) — (e, Mg(z,u,R)) > (26“) In (%)} <
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Exponential Mechanism

4 )

Exponential Mechanism Accuracy theorem:
Let OPT,(z) = max,cr u(z,r). Then

Pr [OPTu(:c) — u(z, Mg(z,u, R)) > (26“) In (%)} <3

Let's compare it with the accuracy of the Laplace Mechanism.

~

(Laplace Accuracy Theorem: let r = LapMech(D, g, ¢)
Aq 1\-
_ > [ —= — —
Pr{lg(D) —r| > (57 )m(5)] =5




Here we have

Exponential Mect . jopondenoy on

the size of the

i - : output space
Exponential Mechanism Accuracy the _ HHPUL SP

Let OPT,(z) = max,cr u(z,r). Then
Pr [OPTu(:c) — u(z, Mg(z,u, R)) > (26“) In @} <3

Let's compare it with the accuracy of the Laplace Mechanism.

T — T

fLapIace Accuracy Theorem: let r = LapMech(D, g, ¢) )

Pr[la(p) —r1 = (S m ()] = 5
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Exponential Mechanism

The Exponential Mechanism is a very general
mechanism. It can actually be used as a kind of
universal mechanism.

Unfortunately, when the output space is big it can be
very costly to sample from it - the best option is to
enumerate all the possibilities.

Moreover, when the output space is big also the
accuracy get worse.



