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(ε,δ)-Differential Privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



Theorem (Privacy of the Laplace Mechanism) 
The Laplace mechanism is ε-differentially private.16 Di�erential Privacy

Pr

q(·)

c

Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:
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Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Proof: Intuitively

Laplace Mechanism
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Not all the queries are numeric.

Another mechanism?



A Mechanism Design story
Selling: one painting How much will you pay?

$10 million!

$50 million!

$10.1 million?
Pay: $10 million

$3

Who wins, and for how much?
15

Auctions
¥1M

¥1M

¥3M

¥1M
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How shall we set the price under differential privacy?
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Max response

(a) (b) (c) (d)

Suppose that each one of us can vote for one star, 

and we want to say who is the star that receives 

most votes.

The answer here is not a number, how can we release it 

under differential privacy?



• We want to select some element that 
maximize some value, 


• The noise added for privacy should not 
destroy the utility, 


• If we cannot return the maximal one, 
with high probability, we want to return 
one close to it.

7
Differentially private selection
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Intuition:
We could compute the 

histogram add Laplace 

noise to each score and then 

select the maximal noised score.
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Databases differing 
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We need to coordinate 
noises



Report Noisy Max

1.12. Example: releasing an approximate Cumulative Distribution

Function 27

Algorithm 5 Pseudo-code for SmallDB
1: function SmallDB(D, Q, ‘, –)
2: Let m = log |Q|

–2

3: Let u : X n ◊ X m æ R be defined as:

u(D, Di) = ≠ max
qœQ

|q(D) ≠ q(Di)|

4: Let DÕ Ω ME(D, u, ‘)
5: return DÕ

6: end function

Algorithm 6 Pseudo-code for CDF
1: function CDF(D)
2: Partition D according to z1, . . . , zk

3: S0 Ω 0
4: for i Ω 1, . . . , k do
5: Si Ω Si≠1 + LapMech(q[y], ‘l, Di)
6: end for
7: return S
8: end function

Algorithm 7 Pseudo-code for Histogram
1: function Histogram(D, ‘)
2: for i Ω 1, . . . , |X | do
3: Myi(D) Ω LapMech(D, qyi , ‘)
4: end for
5: return H
6: end function

Algorithm 8 Pseudo-code for Report Noisy Max
1: function RNM(D, q1, . . . , qm, ‘)
2: for i Ω 1, . . . , m do
3: ci Ω LapMech(D, qi, ‘)
4: end for
5: return argmaxici

6: end function



Report Noisy Max

ck≥ck’
ck’+1≥ck

Simplifying  
assumptions

Without loss of generality, let us assume that D=D’ u {x}.

Let us use: ck=qk(D) and ck’=qk(D’)
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let’s fix the noises rj 
for alI j≠i

Pr
x∼RNM(D)

[x = i |r−i] ≤ eϵ Pr
x∼RNM(D′￼)

[x = i |r−i]
We want to show:
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Notice that since

we also have for all j

Pr
x∼RNM(D′￼)

[x = i |r−i] ≥ Pr
r∼Lap

[r ≥ 1 + r*]

and using this we have
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How can we connect them?



Laplace Distribution
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

b regulates the

skewness of

the curve,

b=.5

b=1

Lap(b, µ)(X) =
1

2b
exp

⇣
� |µ�X|

b

⌘
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respectively. We compare them at an arbitrary point z œ R. We have:
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Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].

Sliding property of the 
Laplace Distribution

Pr
x∼Lap( 1

ϵ ,μ)
[k ≤ x] ≤ ecϵ Pr

x∼Lap( 1
ϵ ,μ)

[k + c ≤ x]



Report Noisy Max
Summarizing we have:

= Pr
r∼Lap

[r ≥ r*] ≤ eϵ Pr
r∼Lap

[r ≥ 1 + r*]

Pr
x∼RNM(D)

[x = i |r−i]

≤ eϵ Pr
x∼RNM(D′￼)

[x = i |r−i]



Report Noisy Max
In a similar way we can prove:

Pr
x∼RNM(D′￼)

[x = i |r−i] ≤ eϵ Pr
x∼RNM(D)

[x = i |r−i]
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Exponential Mechanism

The Exponential Mechanism generalize this approach.


Suppose that we have a scoring function u(D,o) that to 
each pair (database, potential output) assign a score 
(a negative real number). 


We want to output approximately the element with the 
max score.
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Exponential Mechanism

Exponential Mechanism:

return               with prob.

3.4. The exponential mechanism 249

of the exponential mechanism outputs some element r ∈ R on two
neighboring databases x ∈ N|X | and y ∈ N|X | (i.e., ‖x − y‖1 ≤ 1).

Pr[ME(x, u, R) = r]
Pr[ME(y, u, R) = r] =

(
exp( εu(x,r)

2∆u )∑
r′∈R exp( εu(x,r′)

2∆u )

)

(
exp( εu(y,r)

2∆u )∑
r′∈R exp( εu(y,r′)

2∆u )

)

=
(

exp(εu(x,r)
2∆u )

exp(εu(y,r)
2∆u )

)

·




∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )





= exp
(

ε(u(x, r′) − u(y, r′))
2∆u

)

·




∑

r′∈R exp(εu(y,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )





≤ exp
(

ε

2

)
· exp

(
ε

2

)
·




∑

r′∈R exp(εu(x,r′)
2∆u )

∑
r′∈R exp(εu(x,r′)

2∆u )





= exp(ε).

Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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Privacy theorem:
The Exponential Mechanism is differentially private.

The proof is very similar to the one for the Laplace Mechanism.
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Here we change y with x by 
paying exp(ε/2).
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OPTu(x). Then:

Pr
[
u(ME(x, u, R)) ≤ OPTu(x) − 2∆u

ε

(
ln

( |R|
|ROPT|

)
+ t

)]
≤ e−t

Proof.

Pr[u(ME(x, u, R)) ≤ c] ≤ |R| exp(εc/2∆u)
|ROPT| exp(εOPTu(x)/2∆u)

= |R|
|ROPT|

exp
(

ε(c − OPTu(x))
2∆u

)
.

The inequality follows from the observation that each r ∈ R
with u(x, r) ≤ c has un-normalized probability mass at most
exp(εc/2∆u), and hence the entire set of such “bad” elements r has
total un-normalized probability mass at most |R| exp(εc/2∆u). In
contrast, we know that there exist at least |ROPT| ≥ 1 elements
with u(x, r) = OPTu(x), and hence un-normalized probability mass
exp(εOPTu(x)/2∆u), and so this is a lower bound on the normalization
term.

The theorem follows from plugging in the appropriate value
for c.

Since we always have |ROPT| ≥ 1, we can more commonly make
use of the following simple corollary:

Corollary 3.12. Fixing a database x, we have:

Pr
[
u(ME(x, u, R)) ≤ OPTu(x) − 2∆u

ε
(ln (|R|) + t)

]
≤ e−t

As seen in the proofs of Theorem 3.11 and Corollary 3.12, the Expo-
nential Mechanism can be particularly easy to analyze.

Example 3.6 (Best of Two). Consider the simple question of determin-
ing which of exactly two medical conditions A and B is more common.
Let the two true counts be 0 for condition A and c > 0 for condition B.
Our notion of utility will be tied to the actual counts, so that conditions
with bigger counts have higher utility and ∆u = 1. Thus, the utility
of A is 0 and the utility of B is c. Using the Exponential Mechanism

It follows from this lemma
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Laplace Accuracy Theorem:  

1.7. The Laplace mechanism 17

Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:

Lemma 1.5 (Tail bound for the Laplace Distribution). If Z is drawn from
Lap

!
b)(0) then:
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Ë
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È
= exp(≠t)

Using this property we can then prove a result about the accuracy
of the Laplace mechanism.

Theorem 1.6 (Accuracy of the Laplace mechanism). Let q : X n æ R,
and let r = LapMech(D, q, ‘). Then ’— œ (0, 1]:
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Proof. By definition of the Laplace mechanism we have:
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where Y is drawn from Lap(�f
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Let’s compare it with the accuracy of the Laplace Mechanism.
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Similarly, Pr[ME(y,u)=r]
Pr[ME(x,u)=r] ≥ exp(−ε) by symmetry.

The exponential mechanism can often give strong utility guarantees,
because it discounts outcomes exponentially quickly as their quality
score falls off. For a given database x and a given utility measure u :
N|X | × R → R, let OPTu(x) = maxr∈R u(x, r) denote the maximum
utility score of any element r ∈ R with respect to database x. We will
bound the probability that the exponential mechanism returns a “good”
element of R, where good will be measured in terms of OPTu(x). The
result is that it will be highly unlikely that the returned element r has
a utility score that is inferior to OPTu(x) by more than an additive
factor of O((∆u/ε) log |R|).

Theorem 3.11. Fixing a database x, let ROPT = {r ∈ R : u(x, r) =
OPTu(x)} denote the set of elements in R which attain utility score
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Let’s compare it with the accuracy of the Laplace Mechanism.

Here we have

a dependency on


the size of the

output space
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The Exponential Mechanism is a very general 
mechanism. It can actually be used as a kind of 
universal mechanism.


Unfortunately, when the output space is big it can be 
very costly to sample from it - the best option is to 
enumerate all the possibilities.


Moreover, when the output space is big also the 
accuracy get worse.


