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Differential privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &




Global Sensitivity

-
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — Ris:

Aq = max {[¢(D) — ¢(D')] \ D~ D' € X"}
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Laplace Mechanism

i Algorithm 2 Pseudo-code for the Laplace Mechanism

\

1: function LAPMECH(D, g, €)
2 Y& Lap(B9)(0)

3: return q(D) +Y

4: end function

q(-)



Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, q, ¢€)

A 1

Pr{lo(D) —rl = () n (5)] = 4




Multidimensional Output

[

\

What can we do when we have a multidimensional output?
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Global LI Sensitivity

We can generalize the notion of global sensitivity:
Arg = max {11(D) - g1, |D ~, D'}

Where

V1], =) v
i=0




Global LI Sensitivity

(

What is the L1 sensitivity of m counting query seen all
together?

qg:X"—->R" q(D) = (q,(D), ...,q,(D))




Global LI Sensitivity

(

What is the L1 sensitivity of m counting query seen all
together?

qg:X"—->R" q(D) = (q,(D), ...,q,(D))

The L1 global sensitivity Is

m

n




Laplace Mechanism

When ¢qg: 2" - R™

LapMech(D, g,€) = g(D) + (Y;, ..., Y,)

Ag
where Y, ~;;, Lap(——0)
€

This mechanism is (eps,0)-DP




Accuracy revisited

(Accuracy Theorem (for m counting queries together): )

Pr|11g(D) =11, 2 (- )in(70)] <

me

Where

_
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Global L2 Sensitivity

We can have another notion of global sensitivity:

Ayg = max {1 1g(D) - gD 1, |D ~, D'}

- _ 2
VL= ) v
i=0

Where




Gaussian Mechanism

P
Algorithm 14 Pseudo-code for the Gaussian Mechanism

1: function GAusSsSMECH(D, g, ¢€)

n(122 2
y & Gauss(0, Al 562)(A2q) )

2
3: return ¢(D) + Y
4: end function

N
v

g

q(-)




Gaussian Mechanism
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Algorithm 14 Pseudo-code for the Gaussian Mechanism

. function GAUSSMECH(D, q, ¢€)

n(122 2
y & Gauss(0, 21nf 562)(A2q) )

1

2

3: return q(D) +Y
4: end function




Gaussian Mechanism

Algorithm 14 Pseudo-code for the Gaussian Mechanism

1: function GAussMECH(D, ¢, €)

n(L25)(Agq)?
v & Gauss(0, ki 562)(AQQ) )

2
3: return q(D) +Y
4: end function

-

-

.

Theorem (Privacy of the Gaussian Mechanism)
The Gaussian mechanism is (g,0)-differentially private.

J




Gaussian Mechanism

4 )
Theorem (Privacy of the Gaussian Mechanism)

\The Gaussian mechanism is (g,0)-differentially private. )

Proof: Intuitively

Pr

N

AN
WV

q(-)

WV



Gaussian Mechanism
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Theorem (Privacy of the Gaussian Mechanism)
The Gaussian mechanism is (g,0)-differentially private.

J

Proof: Intuitively We need 6 to account
for bigger
Pr differences in the talil
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Gaussian Mechanism

(Accuracy Theorem (for m counting queries together) )

2A 1.25
Pr|lq(D)—rll, > jq\/lm - >ln%]sﬁ




Laplace vs Gaussian
Mechanism

16



Global L2 Sensitivity

(

What is the L2 sensitivity of m counting query seen all
together?

qg:X"—->R" q(D) = (q,(D), ...,q,(D))




Global L2 Sensitivity

(

What is the L2 sensitivity of m counting query seen all
together?

qg:X"—->R" q(D) = (q,(D), ...,q,(D))

The L2 global sensitivity Is

Jm

n




Differential privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &
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Privacy Loss

In general we can think about the following quantity

as the privacy loss incurred by observing r as output
of Mon the databases D and D’.

D=D'(\ — 1 PrlM(D) = r] D'—D
R0 = (G =) ~ 5K

4 )
The (e, 0)-differential privacy requirement corresponds to requiring that
for every r and every adjacent D, D’ we have:

‘ﬁD%D/)‘<€




(€,0)-Differential Privacy *

This corresponds to a privacy loss of the form:

D PrlM(D) = r|E]
Ejl\)/l Y (r) =In (Pr[./\/l(D’) = T|E/]>

N
The (e, §)-differential privacy requirement corresponds to requiring that

for every r and every adjacent D, D’ we have:

Pr H[,/l\)/l_)D/(r)| < e} >1-94




Composition for (8,5)-DP2

Theorem 1.22 (Standard composition for (e, d)-differential privacy).
Let M; : X™ — R; be (e;,0;)-differentially private algorithms (for
1 < i < k). Then, their composition defined to be M(D) =
(M1 (D), Ma(D),...,Mp(D)) is (X5, e, 2%, 6;)-differentially pri-

vate. Y,

Proof. Fix any pair of adjacent datasets D ~1 D’. Fix also an output 7¥ =
(ri,...,7%) € Ry X -+ X Rp. Since each M; : X" — R; is (epsilon;, d;)-
differentially private, we have events F; and E! such that Pr[FE;] > 1—4;
and Pr[E/] > 1 — §;. We can then consider £ = FE; A --- A E} and
E'=FE{N---NE].




Composition for (8,5)-DP2

Theorem 1.22 (Standard composition for (e, d)-differential privacy).
Let M; : X™ — R; be (e;,0;)-differentially private algorithms (for
1 < i < k). Then, their composition defined to be M(D) =
(M1 (D), Ma(D),...,Mp(D)) is (X5, e, 2%, 6;)-differentially pri-

vate.

We have:

1 ( Pr[M; (D) = r1|Ey] - - - Pr[My(D) = 71| Ex] )
(D) = 71|E}] - - Pr[My(D’) = ry| E})

L i Pr[My(D) = r|E]
=1 (Pr[/\/ll(D’) :r1|Ei]) ot (Pr[/\/lk(D’) :”'“k|E;’J)

2
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Composition for (8,5)-DP2

Theorem 1.22 (Standard composition for (e, d)-differential privacy).
Let M; : X™ — R; be (e;,0;)-differentially private algorithms (for
1 < i < k). Then, their composition defined to be M(D) =
(M1 (D), Ma(D),...,Mp(D)) is (X5, e, 2%, 6;)-differentially pri-
\_ vate. )

We still need to reason about the probability of E and E’. We know
that for each E;, E. we have Pr[E;] > 1 — §; and Pr[E}] > 1 — 4;. So,
by union bound we have Pr[E] > 1 — %, 6; and Pr[E'] > 1 - 3% . §;,
and so we can conclude.
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Advanced Composition

Using advanced composition we have as a max error

“ ( eglobil \/5)

(If we don’t renormalize this is of the order of

o)
€global
_.comparable to the sample error. )

[DworkRothblumVadhan 10, SteinkeUllman | 6]
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Advanced Composition

(Theorem 1.23 (Advanced composition). Let M; : X" — R; be (¢,9)-
differentially private algorithms (for 1 <4 < k and k < 1/¢). Then, their
composition defined to be M (D) = (M1(D), Ma(D), ... , My(D)) is

\(O(\/len(l/&))e, ké 4 0')-differentially private for every ¢’ > 0.

J
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Advanced Composition

(Theorem 1.23 (Advanced composition). Let M; : X" — R; be (¢,9)-
differentially private algorithms (for 1 <4 < k and k < 1/¢). Then, their
composition defined to be M (D) = (M1(D), Ma(D), ... , My(D)) is

\(O(\/Zkln(l/é’))e, ké 4 0')-differentially private for every ¢’ > 0.

4 )
Intuition: some of the outputs have positive privacy loss (i.e.

give evidence for dataset D) and some have negative privacy
loss (i.e. give evidence for dataset D). The cancellations gives
2 smaller overall privacy loss.
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Advanced Composition

(Theorem 1.23 (Advanced composition). Let M; : X" — R; be (6,5)—\
differentially private algorithms (for 1 <4 < k and k < 1/¢). Then, their
composition defined to be M (D) = (M1(D), Ma(D), ... , My(D)) is

\(O(\/Zkln(l/é’))e, ké 4 0')-differentially private for every ¢’ > 0.

J

4 )
Intuition: some of the outputs have positive privacy loss (i.e.

give evidence for dataset D) and some have negative privacy
loss (i.e. give evidence for dataset D). The cancellations gives
2 smaller overall privacy loss.

Strategy:

1-considering the expected value of the privacy loss,
2-bound the privacy loss of all the variables together
3-compute the probability
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The roles of ©

We have seen three roles that 6 plays in DP

1.to account for the probability of tailure in a DP
computation

2.in the advanced composition theorem to have a better
bound on the growth of € when composing n queries,

3.to allow an analysis of the Gaussian Mechanism.

The point 3 (and 2) were the original motivations for
introducing (€,06)-differential privacy while the point 1 is
somehow undesirable.
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Advanced Composition
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(€,0)-Differential Privacy *

This corresponds to a privacy loss of the form:

D PrlM(D) = r|E]
Ejl\)/l Y (r) =In (Pr[./\/l(D’) = T|E/]>

N
The (e, §)-differential privacy requirement corresponds to requiring that

for every r and every adjacent D, D’ we have:

Pr H[,/l\)/l_)D/(r)| < e} >1-94

Not exactly!



Bounding the moments

29

A random variable can be described using its moments.

pn = E[X™

Here we consider central moments.

-or instance, the first

central moment is the mean, the second is the variance, the

third Is the skewness, etc.

[ Can we bound the moments of the privacy loss? ]




Moment generating function

The probability distribution of a random variable X can be
described by its moment generating function:

ozX]

mX(a) — “3[6

This function can be used to compute, or give upper
bounds on the moments of the random variable X.

2 n
QL2 ILIO‘/Ln .
21 '

mx(a) =14 ap A oy



