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Differential privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

Global Sensitivity
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q(b∪{x}) q(b∪{y})

Global Sensitivity
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is described in the following algorithm where q : N|X | æ R and where
the notation Y

$Ω f denotes the fact that Y is sampled from the
distribution f .

Algorithm 2 Pseudo-code for the Laplace Mechanism
1: function LapMech(D, q, ‘)
2: Y

$Ω Lap(�q
‘ )(0)

3: return q(D) + Y

4: end function

Notice that by the properties of the Laplace distribution we have
that LapMec(D, q, ‘) and Lap(�q

‘ )(D) are the same distribution, that is
we can see the Laplace mechanism as returning a Laplace distribution
centered in q(D) with scale �q

‘ . The scale �q
‘ is such that the noise that

the mechanism add is directly proportional to the global sensitivity of
q and inversely proportional to the level of protection ‘ one wants to
guarantee. Notice also that the Laplace mechanism is generic in the
kind of function it takes in input, i.e. it can be applied to any numeric
function, non only counting queries.

Likewise what we did for Randomized Response, we want to prove
two properties of the Laplace mechanism: that it ensures di�erential
privacy and that it has a non-trivial accuracy. Let’s start by proving
that it ensures di�erential privacy.

Theorem 1.4 (Privacy of the Laplace mechanism). The Laplace mecha-
nism ensures ‘-di�erential privacy.

Proof. Consider D ≥1 D
Õ œ X n, q : X n æ R, and let p and p

Õ denote the
probability density function of LapMech(D, q, ‘) and LapMech(DÕ

, q, ‘),

Laplace Mechanism
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c

Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
1

≠ ‘|q(D)≠z|
�q

2

exp
1

≠ ‘|q(DÕ)≠z|
�q

2

= exp
1

‘(|q(DÕ) ≠ z| ≠ |q(D) ≠ z|)
�q

2

Æ exp
1

‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].



Laplace Mechanism
Accuracy Theorem:  
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Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:

Lemma 1.5 (Tail bound for the Laplace Distribution). If Z is drawn from
Lap

!
b)(0) then:

Pr
Ë
|Z| Ø b t

È
= exp(≠t)

Using this property we can then prove a result about the accuracy
of the Laplace mechanism.

Theorem 1.6 (Accuracy of the Laplace mechanism). Let q : X n æ R,
and let r = LapMech(D, q, ‘). Then ’— œ (0, 1]:

Pr
Ë
|q(D) ≠ r| Ø

1�q

‘

2
ln

1 1
—

2È
= —

Proof. By definition of the Laplace mechanism we have:

Pr
Ë
|q(D) ≠ r| Ø

1�q

‘

2
ln

1 1
—

2È
= Pr

Ë
|Y | Ø

1�q

‘

2
ln

1 1
—

2È

where Y is drawn from Lap(�f
‘ )(0). Applying Lemma 1.5 we have

Pr
Ë
|Y | Ø

1�q

‘

2
ln

1 1
—

2È
= exp

1
≠ ln

1 1
—

22
= —

The above theorem tell us that for a counting query q : X n æ R
with high probability the Laplace mechanism will output a value r such
that: ---q(D) ≠ r

--- Æ O

1 1
‘n

2
(1.2)

which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.

Example 1.2. Let’s consider again a medical dataset containing infor-
mation on whether a given patient has a disease or not. Now we want
to use LapMech to approximately compute the proportion of patients
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Multidimensional Output

q : 𝒳n → ℝm

What can we do when we have a multidimensional output?



Global L1 Sensitivity

We can generalize the notion of global sensitivity:

Δ1q = max {| |q(D) − q(D′ ) | |1 |D ∼1 D′ }
Where

| | ⃗v | |1 = ∑
i=0

|vi |



Global L1 Sensitivity

What is the L1 sensitivity of  m counting query seen all 
together?

q : Xn → ℝm q(D) = (q1(D), …, qm(D))



Global L1 Sensitivity

What is the L1 sensitivity of  m counting query seen all 
together?

q : Xn → ℝm q(D) = (q1(D), …, qm(D))

m
n

The L1 global sensitivity is 



Laplace Mechanism

𝙻𝚊𝚙𝙼𝚎𝚌𝚑(D, q, ϵ) = q(D) + (Y1, …, Ym)

Yi ∼i.i.d. Lap(
Δ1q

ϵ
,0)

q : 𝒳n → ℝmWhen 

where

This mechanism is (eps,0)-DP



Accuracy revisited
Accuracy Theorem (for m counting queries together):  

Pr [| |q(D) − r | |∞ ≥ ( n
mϵ )ln( m

β
)] ≤ β

Where
| | ⃗v | |∞ = max

i=0
|vi |



Global L2 Sensitivity

We can have another notion of global sensitivity:

Δ2q = max {| |q(D) − q(D′ ) | |2 |D ∼1 D′ }
Where

| | ⃗v | |2 = ∑
i=0

v2
i
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Algorithm 14 Pseudo-code for the Gaussian Mechanism
1: function GaussMech(D, q, ‘)
2: Y

$Ω Gauss(0,
2 ln(

1.25
” )(�2q)

2

‘2 )
3: return q(D) + Y
4: end function
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Figure 1.3: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

Gauss(µ, ‡2)(X) = 1Ô
2fi‡2

exp
1

≠ 1
2‡2

((X ≠ µ)2
2

Definition 1.11 (Rényi Di�erential Privacy). Given – > 1 and 0 Æ fl Æ 1,
a probabilistic query Q : Xn æ R is (–, fl)-Rényi Di�erentially Private
(RDP) i� for all adjacent databases b1, b2:

D–

R(Q(b1)||Q(b2)) Æ fl

Definition 1.12 (zero-Concentrated Di�erential Privacy). Given 0 Æ
›, fl Æ 1, a probabilistic query Q : Xn æ R is (›, fl)-zero Concentrated
Di�erentially Private (zCDP) i� for all adjacent databases b1, b2:

’– > 1. D–

R(Q(b1)||Q(b2)) Æ › + –fl.

1.12. Example: releasing an approximate Cumulative Distribution

Function 37

Pr

q(·)

c

Figure 1.4: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.
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Theorem (Privacy of the Gaussian Mechanism) 
The Gaussian mechanism is (ε,δ)-differentially private.
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Figure 1.4: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.
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Definition 1.13 (Global sensitivity in ¸2). The global sensitivity in ¸2 of
a function q : X n æ R is:

�2q = max
ÓÒ

(q(D) ≠ q(DÕ))2

--- D ≥1 DÕ œ X n
Ô

We need δ to account  
for bigger  

differences in the tail



Gaussian Mechanism
Accuracy Theorem (for m counting queries together)

Pr [| |q(D) − r | |∞ ≥
2Δ2q

ϵ
ln(

1.25
δ

)ln
m
β ] ≤ β
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Global L2 Sensitivity

What is the L2 sensitivity of  m counting query seen all 
together?

q : Xn → ℝm q(D) = (q1(D), …, qm(D))



Global L2 Sensitivity

What is the L2 sensitivity of  m counting query seen all 
together?

q : Xn → ℝm q(D) = (q1(D), …, qm(D))

m
n

The L2 global sensitivity is 



Differential privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



Privacy Loss
In general we can think about  the following quantity 
as the privacy loss incurred by observing r as output 
of     on the databases D and D’.
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32 Di�erential Privacy

Theorem 1.18 (Standard composition for ‘-di�erential privacy). Let Mi :
X n æ Ri be ‘i-di�erentially private algorithms (for 1 Æ i Æ k). Then,
their composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D))
is

q
k

i=1 ‘i-di�erentially private.

Proof. Fix any pair of adjacent datasets D ≥1 DÕ. Fix also an output
r̨ = (r1, . . . , rk) œ R1 ◊ · · · ◊ Rk. We have:

Pr[M(D) = r̨]
Pr[M(DÕ) = r̨] = (Pr[M1(D), . . . , Mk(D)) = (r1, . . . , rk)]

(Pr[M1(DÕ), . . . , Mk(DÕ)) = (r1, . . . , rk)]

= Pr[M1(D) = r1] · · · Pr[Mk(D) = rk]
Pr[M1(DÕ) = r1] · · · Pr[Mk(DÕ) = rk]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
2

· · ·
1 Pr[Mk(D) = rk]

Pr[Mk(DÕ) = rk]
2

Æ exp(‘1) · · · exp(‘k) = exp(
kÿ

i=1

‘i).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

LDæD
Õ

M (r) = ln
3 Pr[M(D) = r]

Pr[M(DÕ) = r]

4

Proof. We have
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LDæD
Õ

M (r) = ln
3 Pr[M(D) = r]

Pr[M(DÕ) = r]

4
= ≠LD

ÕæD

M (r)

The (‘, 0)-di�erential privacy requirement corresponds to requiring
that for every r we have

---LDæD
Õ

M (r)
--- Æ ‘

Proof. We have
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This corresponds to a privacy loss of the form:

34 Di�erential Privacy
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If we don’t renormalize this is of the order of

comparable to the sample error.
O
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Using advanced composition we have as a max error

Question: how much perturbation do we have if 
we want to answer n queries under (ε,δ)-DP?

O

⇣ 1

✏global
p
n

⌘

[DworkRothblumVadhan10, SteinkeUllman16]
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1.12. Example: releasing an approximate Cumulative Distribution

Function 35

Theorem 1.23 (Advanced composition). Let Mi : X n æ Ri be (‘, ”)-
di�erentially private algorithms (for 1 Æ i Æ k and k < 1/‘). Then, their
composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D)) is
(O(


2k ln(1/”Õ))‘, k” + ”Õ)-di�erentially private for every ”Õ > 0.
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Function 35

Theorem 1.23 (Advanced composition). Let Mi : X n æ Ri be (‘, ”)-
di�erentially private algorithms (for 1 Æ i Æ k and k < 1/‘). Then, their
composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D)) is
(O(


2k ln(1/”Õ))‘, k” + ”Õ)-di�erentially private for every ”Õ > 0.

Intuition: some of the outputs have positive privacy loss (i.e. 
give evidence for dataset D) and some have negative privacy 
loss (i.e. give evidence for dataset D’). The cancellations gives 
a smaller overall privacy loss.  
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1.12. Example: releasing an approximate Cumulative Distribution

Function 35

Theorem 1.23 (Advanced composition). Let Mi : X n æ Ri be (‘, ”)-
di�erentially private algorithms (for 1 Æ i Æ k and k < 1/‘). Then, their
composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D)) is
(O(


2k ln(1/”Õ))‘, k” + ”Õ)-di�erentially private for every ”Õ > 0.

Intuition: some of the outputs have positive privacy loss (i.e. 
give evidence for dataset D) and some have negative privacy 
loss (i.e. give evidence for dataset D’). The cancellations gives 
a smaller overall privacy loss.  
  Strategy:  

1-considering the expected value of the privacy loss, 
2-bound the privacy loss of all the variables together 
3-compute the probability 
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The roles of δ
We have seen three roles that δ plays in DP 
1.to account for the probability of failure in a DP 
computation 

2.in the advanced composition theorem to have a better 
bound on the growth of ε when composing n queries, 

3.to allow an analysis of the Gaussian Mechanism. 

The point 3 (and 2) were the original motivations for 
introducing (ε,δ)-differential privacy while the point 1 is 
somehow undesirable. 
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We have seen three roles that δ plays in DP 
1.to account for the probability of failure in a DP 
computation 

2.in the advanced composition theorem to have a better 
bound on the growth of ε when composing n queries, 

3.to allow an analysis of the Gaussian Mechanism. 

The point 3 (and 2) were the original motivations for 
introducing (ε,δ)-differential privacy while the point 1 is 
somehow undesirable. 

Can we give other privacy definitions that behave well 
with respect to 3 and 2 and do not require 1?
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Advanced Composition

1.12. Example: releasing an approximate Cumulative Distribution

Function 35

Theorem 1.23 (Advanced composition). Let Mi : X n æ Ri be (‘, ”)-
di�erentially private algorithms (for 1 Æ i Æ k and k < 1/‘). Then, their
composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D)) is
(O(


2k ln(1/”Õ))‘, k” + ”Õ)-di�erentially private for every ”Õ > 0.

Intuition: some of the outputs have positive privacy loss (i.e. 
give evidence for dataset D) and some have negative privacy 
loss (i.e. give evidence for dataset D’). The cancellations gives 
a smaller overall privacy loss.  
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Advanced Composition

1.12. Example: releasing an approximate Cumulative Distribution

Function 35

Theorem 1.23 (Advanced composition). Let Mi : X n æ Ri be (‘, ”)-
di�erentially private algorithms (for 1 Æ i Æ k and k < 1/‘). Then, their
composition defined to be M(D) = (M1(D), M2(D), . . . , Mk(D)) is
(O(


2k ln(1/”Õ))‘, k” + ”Õ)-di�erentially private for every ”Õ > 0.

Intuition: some of the outputs have positive privacy loss (i.e. 
give evidence for dataset D) and some have negative privacy 
loss (i.e. give evidence for dataset D’). The cancellations gives 
a smaller overall privacy loss.  
  Strategy:  

1-considering the expected value of the privacy loss, 
2-bound the privacy loss of all the variables together 
3-compute the probability 
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This corresponds to a privacy loss of the form:

34 Di�erential Privacy

Theorem 1.22 (Standard composition for (‘, ”)-di�erential privacy). Let
Mi : X n æ Ri be (epsiloni, ”i)-di�erentially private algorithms
(for 1 Æ i Æ k). Then, their composition defined to be M(D) =
(M1(D), M2(D), . . . , Mk(D)) is (

q
k

i=1 ‘i,
q

k

i=1 ”i)-di�erentially pri-
vate.

Proof. Fix any pair of adjacent datasets D ≥1 DÕ. Fix also an output
r̨ = (r1, . . . , rk) œ R1 ◊ · · · ◊ Rk. We have:

Pr[M(D) = r̨]
Pr[M(DÕ) = r̨] = (Pr[M1(D), . . . , Mk(D)) = (r1, . . . , rk)]

(Pr[M1(DÕ), . . . , Mk(DÕ)) = (r1, . . . , rk)]

= Pr[M1(D) = r1] · · · Pr[Mk(D) = rk]
Pr[M1(DÕ) = r1] · · · Pr[Mk(DÕ) = rk]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
2

· · ·
1 Pr[Mk(D) = rk]

Pr[Mk(DÕ) = rk]
2

Æ exp(‘1) · · · exp(‘k) = exp(
kÿ

i=1

‘i).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

LDæD
Õ

M (r) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]

4

34 Di�erential Privacy

Theorem 1.22 (Standard composition for (‘, ”)-di�erential privacy). Let
Mi : X n æ Ri be (epsiloni, ”i)-di�erentially private algorithms
(for 1 Æ i Æ k). Then, their composition defined to be M(D) =
(M1(D), M2(D), . . . , Mk(D)) is (

q
k

i=1 ‘i,
q

k

i=1 ”i)-di�erentially pri-
vate.

Proof. Fix any pair of adjacent datasets D ≥1 DÕ. Fix also an output r̨ =
(r1, . . . , rk) œ R1 ◊ · · · ◊ Rk. Since each Mi : X n æ Ri is (epsiloni, ”i)-
di�erentially private, we have events Ei and EÕ

i
such that Pr[E] Ø 1 ≠ ”i

and Pr[EÕ] Ø 1 ≠ ”i. We can then consider E = E1 · · · · · Ek and
EÕ = EÕ

1 · · · · · EÕ
k
, and we have:

LDæD
Õ

M (r̨) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]

4

= ln
A

Pr[M1(D) = r1|E1] · · · Pr[Mk(D) = rk|Ek]
Pr[M1(DÕ) = r1|EÕ

1
] · · · Pr[Mk(DÕ) = rk|EÕ

k
]

B

= ln
1 Pr[M1(D) = r1|E1]

Pr[M1(DÕ) = r1|EÕ
1
]
2

+ · · · + ln
1 Pr[Mk(D) = rk|Ek]

Pr[Mk(DÕ) = rk|EÕ
k
]
2

= LDæD
Õ

M1 (r1) + · · · + LDæD
Õ

Mk
(rk) Æ ‘1 + · · · ‘k =

kÿ

i=1

‘i.

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

LDæD
Õ

M (r) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]

4
= ≠LDæD

Õ
M (r)

The (‘, ”)-di�erential privacy requirement corresponds to requiring that
for every r and every adjacent D, DÕ we have:

Pr
Ë---LDæD

Õ
M (r)

--- Æ ‘
È

Ø 1 ≠ ”

Not exactly!
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Bounding the moments

Can we bound the moments of the privacy loss?

A random variable can be described using its moments. 

Here we consider central moments. For instance, the first 
central moment is the mean, the second is the variance, the 
third is the skewness, etc.

µn = E[Xn]
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Moment generating function
The probability distribution of a random variable X can be 
described by its moment generating function:

38 Di�erential Privacy

We have

mX(–) = E[e–X ]

This function can be used to compute, or give upper 
bounds on the moments of the random variable X.

mX(↵) = 1 + ↵µ1 +
↵2µ2

2!
+ . . .+

↵nµn

n!
+ . . .


