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Differential privacy

~

Definition

Given €,0 2 0, a probabilistic query Q: X» = R is
(€,0)-differentially private iff

for all adjacent database by, b, and for every SCR:

Pr[Q(bi)e S] < exp(£)Pr[Q(ba)e S] + &




(€,0)-Differential Privacy °

This corresponds to a privacy loss of the form:

D\ PriM(D) = r|E]
[’/l\)/l Y (r) =In (Pr[./\/l(D’) = T|E/]>

The (e, §)-differential privacy requirement corresponds to requiring that
for every r and every adjacent D, D’ we have:

Pr H[,/l\)/l_)D/(r)| < e} >1-94

\

Not exactly!
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Bounding the moments

A random variable can be described using its moments.
pn = E[X™

Here we consider central moments. For instance, the first
central moment is the mean, the second is the variance, the
third Is the skewness, etc.

[ Can we bound the moments of the privacy loss? ]




Moment generating function

The probability distribution of a random variable X can be
described by its moment generating function:

ozX]

mX(a) — “3[6

This function can be used to compute, or give upper
bounds on the moments of the random variable X.

2 n
a2 ILIO‘/Ln .
21

mx(a) =14 ap A oy



Can we do better than
the global sensitivity?



Global Sensitivity

-
Definition 1.8 (Global sensitivity). The global sensitivity of a function

q: X" — Ris:

Aq = max {[¢(D) — ¢(D')] \ D~ D' € X"}




Laplace Mechanism

i Algorithm 2 Pseudo-code for the Laplace Mechanism

\

1: function LAPMECH(D, g, €)
2 Y& Lap(B9)(0)

3: return q(D) +Y

4: end function

q(-)



Laplace Mechanism

(Accuracy Theorem: let » = LapMech(D, q, ¢€)

A 1

Pr{lo(D) —rl = () n (5)] = 4




Local sensitivity

10

(

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q: X" — R is:
Aq = max {[¢(D) — ¢(D')] \ D~ D' € X"}
-
Definition 1.14 (Local sensitivity). The local sensitivity of a function
q: X" —-RatDeAX" is:
(Aq(D) = max {|q(D) — ¢(D)| | D~ D', D' € X"}




Calibrating noise to the local
sensitivity

We may add noise proportional to the local sensitivity (LS).
Unfortunately, this does not guarantee privacy.

Suppose that for a given D we have LS(D)=0 but that we
also have D~D’ with LS(D’)=10°.
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Smooth Sensitivity

-

~
Definition 2.2 (Smooth sensitivity). For 3 > 0, the B-smooth sensitivity of f is
S% () = (LS - —Bdw)) .
7.8(@) Bope f(y) e
J

[Nissim, Raskhodnikova, Smith '06]
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Smooth Sensitivity

4 )
Definition 2.2 (Smooth sensitivity). For 3 > 0, the B-smooth sensitivity of f is

e — . _Bd('xay)
St 5(x) e (LSf(y) e >

- J

4 )

Definition 2.1 (A Smooth Bound on LS). For 3 > 0, a function S : D™ — R is a 3-smooth upper bound
on the local sensitivity of f if it satisfies the following requirements:

Ve € D" : S(x) > LS¢(x) ; (1)
Vo,y € D", d(z,y) =1:  S(z)<e’-S(y). 2)
\_ J

IN IV

[Nissim, Raskhodnikova, Smith '06]



Calibrating noise to the 1
smooth sensitivity

4 )
Lemma 2.6. Let h be an («, B)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : D™ — R% let S : D™ — R be a 3-smooth upper bound
on the local sensitivity of f. Then algorithm A(x) = f(x) + 5@ . 7 s (€, 6)-differentially private.

(0%

- J
For two neighbor databases z and y, the output distribution .A(y) is a shifted and scaled version of A (x).

The sliding and dilation properties ensure that Pr[A(z) € S] and Pr[A(y) € S] are close for all sets S of
outputs.

[Nissim, Raskhodnikova, Smith '06]
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Admissible Noise

{ Adding noise O(SS;(r)/e) (according to a Cauchy distribution) is sufficient for e-differential ]

privacy.

0.7

zq =0, y=0.5
0.6f
Y =), g =]

0.5¢ - I, =), g =2 7
—zy =2, y=1 |

= 0.4} 0=

P(x

0.3t
0.2
0.1

0.0

-4 -2 0 2 4
X

Laplace and Gauss give (g,0)-DP

[Nissim, Raskhodnikova, Smith '06]
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Admissible Noise

{ Adding noise O(SS;(r)/e) (according to a Cauchy distribution) is sufficient for e-differential ]
privacy.

0.7

zq =0, y=0.5
0.6f
-z, =0, y=1

0.5¢ - I, =), 1 =2 .

— 2y =2, y=1 |

P(x

0.3
0.2
0.1

R . 2 4
X

Laplace and Gauss give (g,0)-DP

Computing the Smooth Sensitivity can be intractable.
[Nissim, Raskhodnikova, Smith 'O6]



Accuracy revisited

(Accuracy Theorem (smooth sensitivity using Laplace): )

S(D)

€

)

[1gD) ~ |l € O

Where

_
[V ||oo=m6})X|vi|
1=




Propose lest Release

16

-

N
Propose-test-release Given ¢ : X - R, ¢,0,8 > 0
1. Propose a target bound (8 on local sensitivity.
2. Let d = d(x, {2’ : LS, (') > 8}) + Lap(1/e), where d denotes Hamming distance.
3. If d < In(1/6) /e, output L.
4. If d > In(1/6) /e, output g(z) + Lap(8/e).
J




Stability-based algorithms

7/

-

-

Releasing stable values Given ¢: X" - R, €,0 > 0
1. Let d = d(z, {2’ : q(&) # q(z)}) + Lap(1/¢), where d denotes Hamming distance.
2. If d < 1+1n(1/6)/e, output L.

3. Otherwise output g(x).




7/

Stability-based algorithms

4 )
Releasing stable values Given ¢: X" - R, €,0 > 0

1. Let d = d(z, {2’ : q(&) # q(z)}) + Lap(1/¢), where d denotes Hamming distance.

2. If d < 1+1n(1/6)/e, output L.

3. Otherwise output g(x).
- J

Proposition 3.3 (releasing stable values). For every query q : X™ — Y and €,§ > 0, the above
algorithm is (g, §)-differentially private.
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Stability-based algorithms



Stability-based algorithms

8

[

-

Consider, for example, the mode function ¢ : X" — X, where ¢(x) is defined to be the most

frequently occurring data item in x (breaking ties arbitrarily). Then d(x,{x’ : q¢(z’) # q(x)}) equals

half of the gap in the number of occurrences between the mode and the second-most frequently
occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe X, n € N, e,§ > 0, there is an
(e, 0)-differentially private algorithm M : X" — X such that for every dataset x € X" where the
difference between the number of occurrences of the mode and the 2nd most frequently occurring
item is larger than 4[In(1/9)/e], M(x) outputs the mode of x with probability at least 1 — 9.
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Stability-based Histogram

1. For every point y € X:
(a) If ¢ (z) = 0, then set a, = 0.
(b) If gy(z) > 0, then:
i. Set a, < gqy(z)+ Lap(2/en).
ii. If ay < 2In(2/6)/en + 1/n, then set a, < 0.

2. Output (ay)yex-
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Stability-based Histogram

- \
1. For every point y € X:

(a) If g (z) = 0, then set a, = 0.
(b) If gy(z) > 0, then:
i. Set ay, < gqy(z) 4+ Lap(2/en).
ii. If a, < 2In(2/6)/en + 1/n, then set a, + 0.

2. Output (ay)yex.

- J




0

Stability-based Histogram

Utility: The algorithm gives exact answers for queries ¢, where g,(z) = 0. There are at most n
queries ¢, with ¢,(x) > 0 (namely, ones where y € {z1,...,2,}). By the tails of the Laplace distri-
bution and a union bound, with high probability all of the noisy answers ¢, (z)+Lap(2/en) computed
in Step 1(b)i have error at most O((logn)/en) < O(log(1/d)/en). Truncating the small values to
zero in Step 1(b)ii introduces an additional error of up to 2In(1/9)/en + 1/n = O(log(1/d)/en).
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Stability-based Histogram

4 )
Utility: The algorithm gives exact answers for queries ¢, where g,(z) = 0. There are at most n
queries ¢, with ¢,(x) > 0 (namely, ones where y € {z1,...,2,}). By the tails of the Laplace distri-
bution and a union bound, with high probability all of the noisy answers ¢, (z)+Lap(2/en) computed

in Step 1(b)i have error at most O((logn)/en) < O(log(1/d)/en). Truncating the small values to
661‘0 in Step 1(b)ii introduces an additional error of up to 2In(1/6)/en + 1/n = O(log(1/d)/en).




Ristogram

(Accuracy with the standard histogram DP algorithm:

an(D) — ] < O (loga»c\))

n

\_

[Accuracy with the stable histogram DP algorithm:

gn(D) — 1| < O <l09(1/5)>

n




How can we make this
reasoning mathematically
precise?



Formal Semantics

We need to assign a formal meaning to the different
components:

Precondition

Program

Postcondition
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Formal Semantics

We need to assign a formal meaning to the different

components:

Precondition
Program

Postcondition

~

™~

formal semantics
of specification
conditions

formal semantics
of programs

formal semantics
of specification
conditions




Formal Semantics

We need to assign a formal meaning to the different

components:

Precondition
Program

Postcondition

~

<«

We also need to describe the rules
which combine program and

specifications.

™~

formal semantics
of specification
conditions

formal semantics
of programs

formal semantics
of specification
conditions




An example

FastExponentiation (n, k :
n’:= n; kl:=%k; r := 1;
1f k’ > 0 then

while k’ > 1 do
if even(k’) then

Nat

n” := n’ x n’
k! := k' /2;
else
r := n’" x r;
n” :=n’" x n’;
k" = (k' - 1)/2;
r = n’" x r;

(* result is r *)




Programming Language

c::= abort

skip

X:=e

C;C

1f e then ¢ else c
while e do c

xX,Y,Z,.. program variables
e1,€2,... e€expressions

cCi,C2,.. commands



Expressions

We want to be able to write complex programs with our language.

e::= X
| f£(e1,..,en)

Where £ can be any arbitrary operator.

Some expression examples

x+5 x mod k xX[1] (x[1+1] mod 4)+5



Memories

We can formalize a memory as a map m from variables to values.
m:[Xl — Vl,...,Xn — Vn]

We consider only maps that respect types.



Memories

We can formalize a memory as a map m from variables to values.
m:[Xl — Vl,...,X]_’] — Vn]

We consider only maps that respect types.
We want to read the value associated to a particular variable:

m (x)
We want to update the value associated to a particular variable:

m [ X«—v ]

(Vv If X=Y
m [ XV ] (y)_{m(y) Otherwise

This is defined as



Semantics of Expressions

What is the meaning of the following expressions?
x+5 x mod k X[1] (x[1+1] mod 4)+5



Semantics of Expressions

What is the meaning of the following expressions?

x+5 x mod k X[1] (x[1+1] mod 4)+5

We can give the semantics as a relation between expressions,
memories and values.

Exp * Mem * Val

We will denote this relation as:

{e}ln=vVv



Semantics of Expressions

What is the meaning of the following expressions?

x+5 x mod k X[1] (x[1+1] mod 4)+5

We can give the semantics as a relation between expressions,
memories and values.

Exp * Mem * Val
We will denote this relation as:

fe).=v This is commonly typeset
=

as. ﬂ@ﬂm —



Semantics of Commands

What is the meaning of the following command??

k:=2; z:=x mod k; 1f z=0 then r:=1 else r:=2



Semantics of Commands
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memories and memories or failure.
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Semantics of Commands

What is the meaning of the following command??
k:=2; z:=x mod k; 1f z=0 then r:=1 else r:=2

We can give the semantics as a relation between command,
memories and memories or failure.

Exp * Mem * (Mem | )

We will denote this relation as:
This is commonly typeset
{C}ln=m’ Or {c}n=L1 as

el =m’



Semantics of Commands

This is defined on the structure of commands:
{abort}, = 1L

{skip}m = m

{x:=e}ln = m[x—{e}n]

{cictn= {c’}w If {Clm = m'

{cic’tn= L If {cln= 1L
{if e then ct else cslpn = {Ctln If {e}l,=true
{1f e then ct else csln= {cCtln If {e}ln=false

{while e do cC}n =sUpnenat{while, e do ciln

where
while, e do ¢ = whiler e do ¢;1f e then abort else skip

and



Semantics of Commands

This is defined on the structure of commands:
{abort}, = 1L

{skip}n = m

{x:=e}ln = m[x—{e}n]

{cictn= {c’}w If {Clm=m'

{c;c’tn= 1L If {cln= 1L
{if e then ct else cslpn = {Ctln If {e}l,=true
{1f e then ct else csln= {cCtln If {e}ln=false

{while e do cC}n =sUpnenat{while, e do ciln

where
while, e do ¢ = whiler e do ¢;1f e then abort else skip

and .
whilel e do ¢ = skip

whilentl e do c 1f e then (c;whiler e do ¢) else skip
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components:

Precondition

Program

Postcondition
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Formal Semantics

We need to assign a formal meaning to the different

components:

Precondition
Program

Postcondition

~

<«

We also need to describe the rules
which combine program and

specifications.

™~

formal semantics
of specification
conditions

formal semantics
of programs

formal semantics
of specification
conditions




Hoare triple

Precondition
(a logical formula)

Precondition J

Program . P ; Q
Postcondition C .

| |

Program Postcondition
(a logical formula)



Some examples

1:=0;

r:=1;

while(1=k)do
r:=r * n;
1:=1 + 1

Precondition
- {0 <k} = {r=n")

Postcondition

Is it a good
specification?
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Some examples

1:=0;

r:=1;

while(1=k)do
r:=r * n;
1:=1 + 1

Precondition
{0 <k} = {r=n")

Postcondition

s it a good X
specification?
m,=lk=1n=2,i=0,r =0]
m,. =k=1n=2i=2r=4]
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Some examples

1:=0;

r:=1;

while(1=k)do
r:=r * n;
1:=1 + 1
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Is it a good
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Some examples

1:=0;

r:=1;

while(1=k)do
r:=r * n;
1:=1 + 1

Precondition

{0 <k} = {r=n')

Postcondition

Is it a good
specification”?

4



How do we determine the
validity of an Hoare triple?



Validity of Hoare triple

Precondition
(a logical formula)

|

c.:P=>0

|

Program Postcondition
(a logical formula)



Validity of Hoare triple

Precondition We are interested only
(a logical formula) in inputs that meets P
| and we want to have
outputs satisfying Q.

c.:P=>0

|

Program Postcondition
(a logical formula)



Validity of Hoare triple

Precondition We are interested only
(a logical formula) in inputs that meets P
| and we want to have
outputs satisfying Q.

C . P : Q How shall we formalize

| this intuition?

Program Postcondition
(a logical formula)



Validity of Hoare triple
We say that the triple c: P=Q Is valid Iif

and only if
for every memory m such that P (m)
and memory m’ such that {c},=m"’
we have Q(m’).



Validity of Hoare triple
We say that the triple c: P=Q Is valid Iif

and only if
for every memory m such that P (m)
and memory m’ such that {c},=m"’
we have Q(m').

Is this condition easy to check?




Rules of Hoare Logic:

—skip: P=P —-x:=e : Ple/x]=P
Fc:P=R Fc’ :R=0 P=>S Fc:S5S=R R=0
—c;c’t P=0 —c: P=0

F1f e then ¢ else ¢ : P=0Q

Fc : e NP > P
while e do¢c : P =P A —e
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Rules of Hoare Logic:

—skip: P=P —-x:=e : Ple/x]=P
Fc:P=R Fc’ :R=0 P=>S Fc:S5S=R R=0
—c;c’t P=0 —c: P=0

Fci:e AN P =0 Fco:i—me A P = 0
F1f e then ¢ else ¢ : P=0Q

Fc : e NP > P
while e do¢c : P =P A —e




Some examples

Fx:i=z*%2;72:=x%2
: {z*4 =8} = {z=28}

Is this a valid triple?
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Some examples

Fx:i=z*%2;72:=x%2
: {z*4 =8} = {z=28}

s this a valid triple? J

Can we prove it with the J
rules that we have?




Some Examples

Fx:=z*%2{(z*2)*2=8}=> {x*2 =28}
{z¥4 =8} > {(z*2)*2 =8}

Fx:=z%2{z¥4=8}=> {x*2=8} Fz:=x*2:{x*2=8}= {z=28]}

Fx:=z%2;z:=x*2: {z*4 =8} = {z=28}



Soundness

If we canderivel-c : P = (O through
the rules of the logic, then the triple

c : P = (Q isvald.



Relative Completeness
P=S —c: S=R R=0

—c: P=0



Relative Completeness

P=5 —cCi: S=R R=0
—c: P=0

If atriple ¢ : Pre = Post isvalid, and we

have an oracle to derive all the true statements
of the form P=S and of the form R=0Q ,which

we can use in applications of the conseq rule, then
we can derive —c : Pre = Post  through

the rules of the logic.



A logic for
iInformation flow control



Private vs Public

We want to distinguish confidential information
that need to be kept secret from nonconfidential
information that can be accessed by everyone.

We assume that every variable is tagged with
one either public or private.

X:public X:private



Information Flow Control

We want to guarantee that confidential
iInformation do not flow in what is considered
nonconfidential.



Information Flow Control

We want to guarantee that confidential
iInformation do not flow in what is considered
nonconfidential.

private private

—_— | —



Is this program secure?

:private
:public

X

X.=VY
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: =D
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Is this program secure?

X:private
vi:public

ﬁ

mod 3
1

1 0 then

"X
I © Il

LS
X .

0




Is this program secure?

X:private
vi:public

ﬁ

1 mod 3 = 0 then

1

"X
I © Il

LS
X .

0

Secure




Is this program secure?

X:private
vi:public

-
=
O
O,
o
|

(D
R Fh
o0 (j) o0
I @D | X

0 then

o




Is this program secure?

X:private
vi:public

-
=
O
O,
o
|

(D
R Fh
o0 U) o0
I @D | X

0 then

o

Insecure




How can we formulate a
policy that forbids flows
from private to public?



Low equivalence

Two memories m+ and my are low
equivalent if and only if they coincide in
the value that they assign to public
variables.

In symbols: m1 ~jow M2



Noninterference

In symbols
M1 ~ow M2 and {C}m1=m+" and {C}m2=m2’
implies M1 ~jow M2

private private

—_—  —)




Does this program satisfy
noninterference?

X:private
vi:public

X<V
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Does this program satisfy
noninterference?

X:private
vi:public

Yes

X<V

min1=[xzn1,y=k: minzz[xznz,yzk:

mOUt'I:[X:k,y:k: mout2:[xzk,y=k:
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Does this program satisfy
noninterference?

X:private
vipublic No

V=X

min1=[xzn1,y=k] minzz[xznz,yzk]

mout1=[xzn1,y=n1] moutzz[xznz,yznz]



Does this program satisfy

noninterference?

X:private
public

=D

Vv
V=X
Vv




Does this program satisfy

noninterference?

X:private
public

Yes

=D

Vv
V=X
Vv




Does this program satisfy

noninterference?

X:private
vi:public

Yes

V=X
V=D




Does this program satisfy

noninterference?

X:private
vi:public

Yes

V=X
V=D

min1=[xzn1,y=k] minzz[xznz,yzk]




Does this program satisfy

noninterference?
X:private
vipublic
Yes
Vi=X
V=D
min1=[x=n1,y=K] miny=[x=n2,y=K]

mout1=[xzn1 ,y=5] moutzz[xznz,y=5]



Does this program

X:private

vi:public

if v mod 3 = 0 then
X:=1

else

X :=0




Does this program

X:private
vi:public

if v mod 3 = 0 then
xX:=1

Yes

else
X =0




Does this program

X:private
vi:public

if v mod 3 = 0 then

Yes

X:=1
else
X =0

min1:[xzn1,y=6]



Does this program

X:private
vi:public

if v mod 3 = 0 then

Yes
Xe:=1
else
X : =0

min1=[x=n1,y=6] miny=[x=n2,y=6]



Does this program

X:private
vi:public
1f v mod 3
X:=1

else

X : =0

0 then

min1:[xzn1,y=6:

movut, :[X:1 ,y:6:

mina=[x=n2,y=0]

mout=[x=1,y=6]

Yes




Does this program

X:private
vi:public
1f x mod 3

0O then




Does this program

X:private
vi:public
1f x mod 3

0O then

NoO




Does this program

X:private
vi:public
1f x mod 3

0O then

NoO




Does this program

NoO

X:private
vi:public
1f x mod 3 = 0 then
Y=
else
Y=
miny=[x=6,y=K] miny=[x=5,y=K]




Does this program

X:private
vi:public
1f x mod 3

0O then

NoO




Does this program

sl:public
sZ2:private
r:private
1:public

proc Compare (sl:1list[n] bool,s2:1ist[n] bool)
1:=0;

r:=0;
while 1i<n /\ r=0 do
1f not(sl[i1]=s2[1]) then
r:=1

1:=1+1




Does this program

sl:public
sZ2:private
r:private
1:public

proc Compare (sl:1list[n] bool,s2:1ist[n] bool)
1:=0;

r:=0;
while i<n /\ r=0 do
1f not(sl[i1]=s2[1]) then
r:=1
1:=1+1

No




How can we prove our
programs noninterferent?



Can we use the tool we
studied so far?

Precondition
(a logical formula)

Precondition J

Program . P ; Q
Postcondition C .

| |

Proaram Postcondition
J (a logical formula)



Validity of Hoare triple
We say that the triple c: P=0Q Is valid if

and only if
for every memory m such that P (m)
and memory m’ such that {c},=m"’
we have Q(m’).



Validity of Hoare triple
We say that the triple c: P=0Q Is valid if

and only if
for every memory m such that P (m)
and memory m’ such that {c},=m"’
we have Q(m').

Validity talks only about one
memory. How can we manage
two memories?




Relational Property

In symbols, c is noninterferent if and only if for
every miq ~jow Mz, {C}m1=mM+ and {C}m2=my’
implies m+1 ~jow M2



Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

private . private I
publicl < : public I




Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

private . private I
publicl < : public I

private . private I
publicl ‘ : public I




Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

private . private I
public ( : public I

V

private I
public I

private '

public
V




Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

private I

publlc

prlvate '

public

private I

publlc

prlvate '

public




Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

private I

public

prlvate '

public

private I

public

prlvate '

public




Relational Property

In symbols, c is noninterferent if and only if for
every m1 ~iow M2, {C}m1=m1 and {C}m2=my’
implies m+1 ~jow M2

prlvate . private I O,
public public
private private

ﬁ q O

public public




Relational Hoare Logic - RHL

Precondition
(a logical formula)

Precondition J
Program ~ Program | o~ L P = ()
Postcondition 1 2

] |

Program  Program Postcondition
(a logical formula)



Relational Assertions
cy~Cy:P=>0

Need to talk about variables
of the two memories



Relational Assertions
cy~Cy:P=>0

Need to talk about variables
of the two memories

cy~Cy i x(l) <x(2) = x(1) > x(2)



Relational Assertions
cy~Cy:P=>0

Need to talk about variables
of the two memories

cy~Cy i x(l) <x(2) = x(1) > x(2)

Tags describing which
memory we are referring to.



Rules of Relational Hoare Logic
Skip

—skip~skip:P=P



Rules of Relational Hoare Logic
Composition

FCci1~Co: PR Fc17 ~cy’ :R=S

Cc1;C1" ~Cor; o’ : P=2S



Rules of Relational Hoare Logic
Consequence

P=5 —Cci1~C»o: S=R R=0

—Cci1~Co: P=0

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.



Rules of Relational Hoare Logic
Assignment

X1 :=e1~Xo:=€e9:
Ple1<1l>/x1<1>,e<2>/x,<2>]=P



Rules of Relational Hoare Logic

If then else
P = 61<1>=eg<2>
ci1~Cr:e1<1>A P = Q

Ci1/ ~cr! :—e1<I>A P = Q

1f e;1 then c¢1 else ¢’
— ~ : P=0
1f e, then ¢, else ¢



Rules of Relational Hoare Logic
If then else - left

Fci~Ccr:e<]1> A P = 0O

Ci1 ' ~Cr:—me<l> A P = QO

1f e then c¢1 else ¢’
= ~ : P=0
C2



Rules of Relational Hoare Logic
If then else - left

Cci~Cr:e<2>A P = (O

Ci1~Co! 1me<2>AN P = 0

C1
= ~ : P=0
1f e then ¢, else ¢y’



Soundness

If we can derive -c{~c», : P=0 through

the rules of the logic, then the quadruple

c1~Co:P=0Q Isvalid.



Relative Completeness

If a quadruple c{~co:P=0Q Isvalid, and we

have an oracle to derive all the true statements
of the form P=S and of the form R=0Q , then

we can derive —-c,~C»: P=0 through

the rules of the logic.



Soundness and completeness
with respect to Hoare Logic

—rurp, C1~C2: P=0Q
Iff
—pr, C1:C2: P=0



Soundness and completeness
with respect to Hoare Logic

—rurp, C1~C2: P=0Q
Iff
—pr, C1:C2: P=0

Under the assumption that we can partition the memory
adequately, and that we have termination.




Questions?



