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Differential privacy

Definition
Given ε,δ ≥ 0, a probabilistic query Q: Xn → R is 
(ε,δ)-differentially private iff 
for all adjacent database b1, b2 and for every S⊆R:

Pr[Q(b1)∈ S] ≤ exp(ε)Pr[Q(b2)∈ S] + δ



3(ε,δ)-Differential Privacy

This corresponds to a privacy loss of the form:
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Theorem 1.22 (Standard composition for (‘, ”)-di�erential privacy). Let
Mi : X n æ Ri be (epsiloni, ”i)-di�erentially private algorithms
(for 1 Æ i Æ k). Then, their composition defined to be M(D) =
(M1(D), M2(D), . . . , Mk(D)) is (

q
k

i=1 ‘i,
q

k

i=1 ”i)-di�erentially pri-
vate.

Proof. Fix any pair of adjacent datasets D ≥1 DÕ. Fix also an output
r̨ = (r1, . . . , rk) œ R1 ◊ · · · ◊ Rk. We have:

Pr[M(D) = r̨]
Pr[M(DÕ) = r̨] = (Pr[M1(D), . . . , Mk(D)) = (r1, . . . , rk)]

(Pr[M1(DÕ), . . . , Mk(DÕ)) = (r1, . . . , rk)]

= Pr[M1(D) = r1] · · · Pr[Mk(D) = rk]
Pr[M1(DÕ) = r1] · · · Pr[Mk(DÕ) = rk]

=
1 Pr[M1(D) = r1]

Pr[M1(DÕ) = r1]
2

· · ·
1 Pr[Mk(D) = rk]

Pr[Mk(DÕ) = rk]
2

Æ exp(‘1) · · · exp(‘k) = exp(
kÿ

i=1

‘i).

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

LDæD
Õ

M (r) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]
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i=1 ”i)-di�erentially pri-
vate.

Proof. Fix any pair of adjacent datasets D ≥1 DÕ. Fix also an output r̨ =
(r1, . . . , rk) œ R1 ◊ · · · ◊ Rk. Since each Mi : X n æ Ri is (epsiloni, ”i)-
di�erentially private, we have events Ei and EÕ

i
such that Pr[E] Ø 1 ≠ ”i

and Pr[EÕ] Ø 1 ≠ ”i. We can then consider E = E1 · · · · · Ek and
EÕ = EÕ

1 · · · · · EÕ
k
, and we have:

LDæD
Õ

M (r̨) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]

4

= ln
A

Pr[M1(D) = r1|E1] · · · Pr[Mk(D) = rk|Ek]
Pr[M1(DÕ) = r1|EÕ

1
] · · · Pr[Mk(DÕ) = rk|EÕ

k
]

B

= ln
1 Pr[M1(D) = r1|E1]

Pr[M1(DÕ) = r1|EÕ
1
]
2

+ · · · + ln
1 Pr[Mk(D) = rk|Ek]

Pr[Mk(DÕ) = rk|EÕ
k
]
2

= LDæD
Õ

M1 (r1) + · · · + LDæD
Õ

Mk
(rk) Æ ‘1 + · · · ‘k =

kÿ

i=1

‘i.

Similarly, we can prove

Pr[M1,2(D) = (r1, r2)]
Pr[M1,2(DÕ) = (r1, r2)] Ø exp(≠(‘1 + ‘2)),

and this concludes the proof.

LDæD
Õ

M (r) = ln
3 Pr[M(D) = r|E]

Pr[M(DÕ) = r|EÕ]

4
= ≠LDæD

Õ
M (r)

The (‘, ”)-di�erential privacy requirement corresponds to requiring that
for every r and every adjacent D, DÕ we have:

Pr
Ë---LDæD

Õ
M (r)

--- Æ ‘
È

Ø 1 ≠ ”

Not exactly!



4
Bounding the moments

Can we bound the moments of the privacy loss?

A random variable can be described using its moments. 

Here we consider central moments. For instance, the first 
central moment is the mean, the second is the variance, the 
third is the skewness, etc.

µn = E[Xn]
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Moment generating function
The probability distribution of a random variable X can be 
described by its moment generating function:

38 Di�erential Privacy

We have

mX(–) = E[e–X ]

This function can be used to compute, or give upper 
bounds on the moments of the random variable X.

mX(↵) = 1 + ↵µ1 +
↵2µ2

2!
+ . . .+

↵nµn

n!
+ . . .



Can we do better than 
the global sensitivity?

6
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Figure 1.1: Probability density function for the the Laplace distribution Lap(b)(x)

with scale b =
1
2 in blue and scale b = 1 in red.

density function3:

Lap(b)(x) = 1
2b

exp
1

≠ |x|
b

2

The variance of the Laplace distribution is ‡
2 = 2b

2

The Laplace distribution centered in 0 has the symmetric shape of
two exponential distributions with symmetry axis in 0. The parameter
b describes how “concentrated” the distribution is, see Figure1.1 for two
examples.

To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:

�q = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 D

Õ œ X n
Ô

Intuitively, smaller the global sensitivity of a function is and less
impact a single individual has on the result of the function. So, when
the global sensitivity is small we can add less noise to provide the same
protection. This is the intuition behind the Laplace mechanism4 that

3
We use the notation exp(c) for ec

for making the formulas easier to read.
4
Following the literature on di�erential privacy we use here the term “mechanism”,

there this is used as a synonym of algorithm, program, etc. It doesn’t have any other

special meaning.

Global Sensitivity
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is described in the following algorithm where q : N|X | æ R and where
the notation Y

$Ω f denotes the fact that Y is sampled from the
distribution f .

Algorithm 2 Pseudo-code for the Laplace Mechanism
1: function LapMech(D, q, ‘)
2: Y

$Ω Lap(�q
‘ )(0)

3: return q(D) + Y

4: end function

Notice that by the properties of the Laplace distribution we have
that LapMec(D, q, ‘) and Lap(�q

‘ )(D) are the same distribution, that is
we can see the Laplace mechanism as returning a Laplace distribution
centered in q(D) with scale �q

‘ . The scale �q
‘ is such that the noise that

the mechanism add is directly proportional to the global sensitivity of
q and inversely proportional to the level of protection ‘ one wants to
guarantee. Notice also that the Laplace mechanism is generic in the
kind of function it takes in input, i.e. it can be applied to any numeric
function, non only counting queries.

Likewise what we did for Randomized Response, we want to prove
two properties of the Laplace mechanism: that it ensures di�erential
privacy and that it has a non-trivial accuracy. Let’s start by proving
that it ensures di�erential privacy.

Theorem 1.4 (Privacy of the Laplace mechanism). The Laplace mecha-
nism ensures ‘-di�erential privacy.

Proof. Consider D ≥1 D
Õ œ X n, q : X n æ R, and let p and p

Õ denote the
probability density function of LapMech(D, q, ‘) and LapMech(DÕ

, q, ‘),

Laplace Mechanism
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Figure 1.2: Probability distributions of the Laplace mechanism for a c-sensitive

function on two neighboring databases.

respectively. We compare them at an arbitrary point z œ R. We have:

p(z)
pÕ(z) =

exp
1

≠ ‘|q(D)≠z|
�q

2

exp
1

≠ ‘|q(DÕ)≠z|
�q

2

= exp
1

‘(|q(DÕ) ≠ z| ≠ |q(D) ≠ z|)
�q

2

Æ exp
1

‘(|q(DÕ) ≠ q(D)|)
�q

2

Æ exp(‘)

Similarly, we can prove that exp(≠‘) Æ p(z)

pÕ(z)
, and this concludes the

proof.

Figure 1.2 gives a graphical intuition of the privacy proof. If we
assume that q is c-sensitive and we consider q(D) and q(DÕ) we know
that they di�er for at most c. By adding to both of them noise according
to the Laplace distribution with scale �q

‘ we obtain two distributions
whose means are at most at distance c, and whose shape is given by the
Laplace distribution, as depicted in Figure 1.2. Notice that the scale of
the two distribution is independent from their mean and it is equal for
both of them. Two such Laplace distributions have the property that
for each point z the ratio of their pdf evaluated in z lies in the interval
[e≠‘

, e
‘].



Laplace Mechanism
Accuracy Theorem:  
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Similarly to what we did for Randomized Response, we can prove
that the Laplace mechanism has a non trivial accuracy. The proof will
rely on the following property of the Laplace distribution:

Lemma 1.5 (Tail bound for the Laplace Distribution). If Z is drawn from
Lap

!
b)(0) then:

Pr
Ë
|Z| Ø b t

È
= exp(≠t)

Using this property we can then prove a result about the accuracy
of the Laplace mechanism.

Theorem 1.6 (Accuracy of the Laplace mechanism). Let q : X n æ R,
and let r = LapMech(D, q, ‘). Then ’— œ (0, 1]:

Pr
Ë
|q(D) ≠ r| Ø

1�q

‘

2
ln

1 1
—

2È
= —

Proof. By definition of the Laplace mechanism we have:

Pr
Ë
|q(D) ≠ r| Ø

1�q

‘

2
ln

1 1
—

2È
= Pr

Ë
|Y | Ø

1�q

‘

2
ln

1 1
—

2È

where Y is drawn from Lap(�f
‘ )(0). Applying Lemma 1.5 we have

Pr
Ë
|Y | Ø

1�q

‘

2
ln

1 1
—

2È
= exp

1
≠ ln

1 1
—

22
= —

The above theorem tell us that for a counting query q : X n æ R
with high probability the Laplace mechanism will output a value r such
that: ---q(D) ≠ r

--- Æ O

1 1
‘n

2
(1.2)

which improves with respect to the bound provided by Randomized
response. To better understand this accuracy guarantee let’s consider
again the calculations we looked at in Example 1.1.

Example 1.2. Let’s consider again a medical dataset containing infor-
mation on whether a given patient has a disease or not. Now we want
to use LapMech to approximately compute the proportion of patients
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Local sensitivity
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To ensure a bound on the privacy loss we need to calibrate the
additive noise to the possible influence that a single individual can have
on the result of the numeric query. This influence is captured by the
notion of global sensitivity.

Definition 1.8 (Global sensitivity). The global sensitivity of a function
q : X n æ R is:
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Definition 1.12 (zero-Concentrated Di�erential Privacy). Given 0 Æ fl Æ
1, a probabilistic query Q : Xn æ R is fl-zero Concentrated Di�erentially
Private (zCDP) i� for all adjacent databases b1, b2:

’– > 1. D–(Q(b1)||Q(b2)) Æ –fl.

Definition 1.13 (Global sensitivity in ¸2). The global sensitivity in ¸2 of
a function q : X n æ R is:

�2q = max
ÓÒ

(q(D) ≠ q(DÕ))2

--- D ≥1 DÕ œ X n
Ô

We have

mX(–) = E[e–X ]

E[e
(–≠1)

1
Q(b1)
Q(b2)

2

] Æ e(–≠1)fl

fl = –�2q

2‡2

fl = �2q

2‡2

Theorem 1.26 (Composition for (–, ‘)-RDP). Let M1 : X n æ R1 be
an (–, ‘1)-RDP algorithm and let M2 : X n æ R2 be an (–, ‘2)-RDP
algorithm. Then their composition defined to be M1,2 : X n æ R1 ◊ R2

by the mapping M1,2(D) = (M1(D), M2(D)) is (–, ‘1 + ‘2)-RDP.

Theorem 1.27 (Composition for fl-zCDP). Let M1 : X n æ R1 be an
fl1-zCDP algorithm and let M2 : X n æ R2 be an fl2-zCDP algorithm.
Then their composition defined to be M1,2 : X n æ R1 ◊ R2 by the
mapping M1,2(D) = (M1(D), M2(D)) is fl1 + fl2-zCDP.

Definition 1.14 (Local sensitivity). The local sensitivity of a function
q : X n æ R at D œ X n is:

¸�q(D) = max
Ó

|q(D) ≠ q(DÕ)|
--- D ≥1 DÕ, DÕ œ X n

Ô



11Calibrating noise to the local 
sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy. 

Suppose that for a given D we have LS(D)=0 but that we 
also have D~D’ with LS(D’)=109.



11Calibrating noise to the local 
sensitivity

We may add noise proportional to the local sensitivity (LS).

Unfortunately, this does not guarantee privacy. 

Suppose that for a given D we have LS(D)=0 but that we 
also have D~D’ with LS(D’)=109.

We will see that we can do anyway better than GS.
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Smooth Sensitivity

[Nissim, Raskhodnikova, Smith ’06]

Definition 2.2 (Smooth sensitivity). For � > 0, the �-smooth sensitivity of f is

S
⇤
f,�(x) = max

y2Dn

⇣
LSf (y) · e��d(x,y)

⌘
.

Lemma 2.3. S
⇤
f,�

is a �-smooth upper bound on LSf . In addition, S⇤
f,�

(x)  S(x) for all x 2 D
n for

every �-smooth upper bound S on LSf .

Proof. To see that S⇤
f,�

is an upper bound on LSf , observe that

S
⇤
f,�(x) = max

✓
LSf (x), max

y 6=x; y2Dn

⇣
LSf (y) · e��d(x,y)

⌘◆

� LSf (x).

Next we show that S⇤
f,�

is �-smooth, i.e, that S⇤
f,�

(y) � e
��

S
⇤
f,�

(x) for all neighboring databases x

and y. Fix x, y 2 D
n with d(x, y) = 1. Let x0 2 D

n be such that S⇤
f,�

(x) = LSf (x0) · e��d(x,x0). By the
triangle inequality, d(y, x0)  d(y, x) + d(x, x0) = d(x, x0) + 1. Therefore,

S
⇤
f,�(y) � LSf (x

0) · e��d(y,x0)

� LSf (x
0) · e��(d(x,x0)�1)

= e
�� · LSf (x

0) · e��d(x,x0) = e
�� · S⇤

f,�(x).

Now let S be a function satisfying Definition 2.1. We will show that S(x) � S
⇤
f,�

(x) for all x 2 D
n.

To prove this, it is enough to establish that S(x) � LSf (y) · e��d(x,y) for all x, y 2 D
n. We demonstrate it

by induction on d(x, y).
The base case, S(x) � LSf (x), is the requirement (1) of Definition 2.1. For the induction step, suppose

S(x0) � LSf (y) · e��d(x0
,y) for all x0, y at distance k. Consider x, y at distance k + 1. There exists x

0:
d(x, x0) = 1, d(x0, y) = k. By requirement (2) of Definition 2.1, S(x) � S(x0) · e�� . Using the induction
hypothesis, S(x0) � LSf (y) · e��d(x0

,y), we get S(x) � LSf (y) · e��(d(x0
,y)+1) = LSf (y) · e��d(x,y), as

required.

2.2 Calibrating Noise According to Smooth Upper Bounds on LSf

This section explains how to select a noise distribution so that adding noise proportional to a smooth up-
per bound on the local sensitivity results in a differentially private algorithm. In our smooth sensitivity
framework, the noise magnitude is proportional to Sf (x)

↵
, where Sf is a �-smooth upper bound on the local

sensitivity of f , and ↵,� are parameters of the noise distribution.
For functions that return a single real value, we obtain the following concrete bounds, which follow from

Lemmas 2.7 and 2.9.

Corollary 2.4 (Calibrating Noise to Smooth Bounds on the Sensitivity, 1-Dimensional Case). Let f : Dn !
R be any real-valued function and let S : Dn ! R be a �-smooth upper bound on the local sensitivity of f .
Then

1. If �  ✏

2(�+1) and � > 1, the algorithm x 7! f(x) + 2(�+1)S(x)
✏

· ⌘, where ⌘ is sampled from the
distribution with density h(z) / 1

1+|z|� , is ✏-differentially private.

7
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Smooth Sensitivity

[Nissim, Raskhodnikova, Smith ’06]

2 Instance-Specific Additive Noise

Recall that in the interactive framework, the database is stored on the trusted server. When the user needs to
obtain f(x), he sends a query f to the server and gets f(x)+N(x)Z as a reply, where Z is a random variable
drawn from a noise distribution in Rd (fixed in advance and known to the user) with standard deviation 1 in
each coordinate. The sample from the noise distribution is multiplied by the scaling factor N(x), which we
refer to as the noise magnitude. As explained in the Introduction, [15] gave ✏-differentially private protocols
where the noise magnitude N(x) is proportional to global sensitivity of f(·) (and therefore independent
of database x). In this section, we explain how to safely release f(x) with potentially much smaller noise
magnitude, tailored to database x.

2.1 Smooth Upper Bounds on LSf and Smooth Sensitivity

For a query function f , our goal is to release f(x) with less noise when the local sensitivity of f at x is
lower. This would allow us to release functions with large global (worst case) sensitivity, but typically small
local sensitivity with much greater accuracy than allowed in [15].

Example 1. Let fmed(x) = median(x1, . . . , xn) where xi are real numbers from a bounded interval, say,
D = [0,⇤]. For simplicity, assume n is odd and the database entries are sorted in the nondecreasing order:
x1  · · ·  xn. Let m = n+1

2 be the rank of the median element. Global sensitivity of the median,
GSfmed

, is ⇤, since for x1 = · · · = xm = 0 and xm+1 = · · · = xn = ⇤, fmed(x1, . . . , xn) = 0 and
fmed(x1, . . . , xm�1,⇤, xm+1, . . . , xn) = ⇤. In this case, adding noise proportional to GSfmed

completely
destroys the information. However, on typical inputs, fmed is not very sensitive: LSfmed

(x) = max(xm �
xm�1, xm+1 � xm).

Ideally, we would like to release f(x) with noise magnitude proportional to LSf (x). However, noise
magnitude might reveal information about the database. For example, in the case of the median, if the
noise magnitude is proportional to LSfmed

(x), then the probability of receiving a non-zero answer when
x1 = · · · = xm+1 = 0, xm+2 = · · · = xn = ⇤ is zero (since the median is 0 and the local sensitivity is also
0) whereas the probability of receiving a non-zero answer on the neighboring database x1 = · · · = xm =
0, xm+1 = · · · = xn = ⇤ is significant (since the median is 0 but the local sensitivity is now ⇤). Thus, the
protocol is not (✏, �)-differentially private when � is small (regardless of ✏). }

The lesson from this example is that the noise magnitude has to be an insensitive function. To decide
on the noise magnitude we will use a smooth upper bound on the local sensitivity, namely, a function S that
is an upper bound on LSf at all points and such that ln(S(·)) has low sensitivity. We say S is �-smooth if
GSln(S(·))  �.

Definition 2.1 (A Smooth Bound on LS). For � > 0, a function S : Dn ! R+ is a �-smooth upper bound
on the local sensitivity of f if it satisfies the following requirements:

8x 2 D
n : S(x) � LSf (x) ; (1)

8x, y 2 D
n
, d(x, y) = 1 : S(x)  e

� · S(y) . (2)

Note that the constant function S(x) = GSf meets the requirements of Definition 2.1 with � = 0. When
� > 0 it is a very conservative upper bound on LSf . A function that is the smallest to satisfy Definition 2.1
is the smooth sensitivity of f :

6
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↵
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✏

· ⌘, where ⌘ is sampled from the
distribution with density h(z) / 1

1+|z|� , is ✏-differentially private.

7
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2. If �  ✏

2 ln( 2� )
and � 2 (0, 1), the algorithm x 7! f(x) + 2S(x)

✏
· ⌘, where ⌘ ⇠ Lap(1), is (✏, �)-

differentially private.

For functions taking values in Rd, the situation is more complicated since the smoothing parameter �
will depend on d as well as ✏ and �. Moreover, there are many natural choices of metrics with respect to
which one may measure sensitivity. We discuss the `1 (Lemma 2.9) and `2 metrics below (Lemma 2.10).

2.2.1 Admissible Noise Distributions

We start by abstracting out a requirement on admissible noise distributions in Definition 2.5. In Lemma 2.6,
we prove that adding admissible noise and releasing the result is differentially private. Then we give several
examples of admissible noise distributions, including Laplace and Gaussian, and work out their parameters.

Notation. For a subset S of Rd, we write S + � for the set {z + � | z 2 S},́ and e
� · S for the set

{e� · z | z 2 S} . We also write a± b for the interval [a� b, a+ b].

Definition 2.5 (Admissible Noise Distribution). A probability distribution on Rd, given by a density func-
tion h, is (↵,�)-admissible (with respect to `1) if, for ↵ = ↵(✏, �),� = �(✏, �), the following two conditions
hold for all � 2 Rd and � 2 R satisfying k�k1  ↵ and |�|  �, and for all measurable subsets S ✓ Rd:
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Z 2 S

i
 e

✏
2 · Pr

Z⇠h

h
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+ �

2 .
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Figure 1: Sliding and dilation for the Laplace distribution with p.d.f. h(z) = 1
2e

�|z|, plotted as a solid line. The dotted lines plot
the densities h(z + 0.3) (left) and e0.3h(e0.3z) (right).

The definition requires the noise distribution to not change much under translation (sliding) and scaling
(dilation). See Fig. 1 for an example. A distribution satisfying the two properties can be used to add noise
proportional to a smooth upper bound on local sensitivity:

Lemma 2.6. Let h be an (↵,�)-admissible noise probability density function, and let Z be a fresh random
variable sampled according to h. For a function f : Dn ! Rd, let S : Dn ! R be a �-smooth upper bound
on the local sensitivity of f . Then algorithm A(x) = f(x) + S(x)

↵
· Z is (✏, �)-differentially private.

For two neighbor databases x and y, the output distribution A(y) is a shifted and scaled version of A(x).
The sliding and dilation properties ensure that Pr[A(x) 2 S] and Pr[A(y) 2 S] are close for all sets S of
outputs.

Proof of Lemma 2.6: For all neighboring x, y 2 D
n and all sets S , we need to show that

Pr[A(x) 2 S]  e
✏ · Pr[A(y) 2 S] + �.
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Admissible Noise

1. Smooth Sensitivity [85].

2. Propose-Test-Release [33].

3. Releasing Stable Values [95].

4. Privately Bounding Local Sensitivity [67].

We remark that yet another approach, called restricted sensitivity, aims to add even less noise than
the local sensitivity [12, 67, 27, 88]. The observation is that Proposition 3.1 does not say that the
error on x must be at least LSq(x)/2; rather it says that the error must be at least LSq(x)/2 on x
or one of its neighbors. Thus if we have a hypothesis that our dataset belongs to some set H ✓ X

n

(e.g. in the case of a social network, we might believe that the graph is of bounded degree), it might
su�ce to add noise proportional to the restricted sensitivity, where we maximize |q(x)� q(x0)| over
x ⇠ x0 2 H, which can be much smaller than even the local sensitivity. The noise will still need to
be at least LSq(x)/2 on some neighbors x0 of x, but these can be neighbors outside of H.

3.1 Smooth Sensitivity

Define Smooth Sensitivity of query q : Xn ! R at x as follows:

SS"q(x) = max{LSq(x0)e�"d(x,x0) : x0 2 X
n},

where d(x, x0) denotes Hamming distance. Intuitively, we are smoothing out the local sensitivity,
so that it does not change much between neighboring datasets.

Nissim, Raskhodnikova, and Smith [85] introduced the notion of smooth sensitivity and showed
that:

• Adding noise O(SS"q(x)/") (according to a Cauchy distribution) is su�cient for "-di↵erential
privacy.

• SSq can be computed e�ciently when q is the Median query (despite the fact that it is defined
as the maximum over a set of size |X|n), as well as for a variety of graph statistics (under
edge-level di↵erential privacy, cf. Section 3.4).

Zhang et al. [110] gave an alternative approach to “smoothing out” local sensitivity, which empiri-
cally provides improvements in accuracy.

3.2 Propose-Test-Release

A di↵erent way to provide less noise is to simply not allow certain queries. That is: rather than
using Laplace noise at a level that is high enough no matter what possible dataset might be queried,
an alternative is to initially propose an amount of noise that seems tolerable, and then test whether
answering a query with this amount of noise would violate privacy (namely, if the noise magnitude
is less than the local sensitivity in a neighborhood of the current dataset). If the test passes, then
we release a noisy answer. If the test fails, then we simply But perhaps you detect that adding
this (small) amount of noise would violate privacy. In that case, you simply refuse to answer. Of
course, we should carry out the test in a di↵erentially private manner.

More precisely, Propose-Test-Release consists of the following three steps (parameterized by a
query q : Xn ! R and ", �,� � 0), yielding a mechanism M : Xn ! R[ {?} that does the following
on a dataset x 2 X

n:

22

[Nissim, Raskhodnikova, Smith ’06]

Laplace and Gauss give (ε,δ)-DP
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Computing the Smooth Sensitivity can be intractable.
[Nissim, Raskhodnikova, Smith ’06]

Laplace and Gauss give (ε,δ)-DP



Accuracy revisited
Accuracy Theorem (smooth sensitivity using Laplace):  

| |q(D) − r | |∞ ∈ O( S(D)
ϵ )

Where
| | ⃗v | |∞ = max

i=0
|vi |
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Propose Test Release

1. Propose a target bound � on local sensitivity.

2. Let d̂ = d(x, {x0 : LSq(x0) > �}) + Lap(1/"), where d denotes Hamming distance.

3. If d̂  ln(1/�)/", output ?.

4. If d̂ > ln(1/�)/", output q(x) + Lap(�/").

Proposition 3.2 (propose-test-release [33]). For every query q : Xn ! R and ", �,� � 0, the above
algorithm is (2", �)-di↵erentially private.

Proof. Consider any two neighboring datasets x ⇠ x0. Because of the Laplacian noise in the
definition of d̂ and the fact that Hamming distance has global sensitivity at most 1, it follows that

Pr[M(x) = ?] 2 [e�" · Pr[M(x0) = ?], e" · Pr[M(x0) = ?]]. (3)

Also, for those outputs that are not ?, we have two cases:

Case 1: LSq(x) > �. In this case, d(x, {x00 : LSq(x00) > �}) = 0, so the probability that d̂ will
exceed ln(1/�)/" is at most �. Thus, for every set T ✓ R [ {?}, we have:

Pr[M(x) 2 T ]  Pr[M(x) 2 T \ {?}] + Pr[M(x) 6= ?]

 e" · Pr[M(x0) 2 T \ {?}] + �

 e" · Pr[M(x0) 2 T ] + �,

where the second inequality follows from (3), noting that T \ {?} equals either {?} or ;.

Case 2: LSq(x)  �. In this case, |q(x)�q(x0)|  �, which in turn implies the (", 0)-indistinguishability
of q(x) + Lap(�/") and q(x0) + Lap(�/"). Thus, by (3) and Basic Composition, we have (2", 0)-
indistinguishability overall.

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x0 : LSq(x0) > �})
enumerates over all datasets x0 2 X

n. Nevertheless, for the median function, it can again be
computed e�ciently.

3.3 Releasing Stable Values

A special case of interest in Propose-Test-Release is when � = 0. Then it can be verified that
d(x, {x0 : LSq(x0) > �}) = d(x, {x0 : q(x0) 6= q(x)}) � 1, so the algorithm is testing whether the
function q is constant in a neighborhood of x (of radius roughly ln(1/�)/") and if so, it outputs q
with no noise. That is, if q is stable around x, then we can safely release the value q(x) (exactly, with
no noise!), provided our test of stability is di↵erentially private. This also applies to, and indeed
makes the most sense for, discrete-valued functions q : Xn ! Y. In more detail, the mechanism
works as follows on x 2 X

n:

1. Let d̂ = d(x, {x0 : q(x0) 6= q(x)}) + Lap(1/"), where d denotes Hamming distance.

2. If d̂  1 + ln(1/�)/", output ?.
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Stability-based algorithms
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3. Otherwise output q(x).

Similarly to Proposition 3.2, we have:

Proposition 3.3 (releasing stable values). For every query q : Xn ! Y and ", � > 0, the above
algorithm is (", �)-di↵erentially private.

Consider, for example, the mode function q : Xn ! X, where q(x) is defined to be the most
frequently occurring data item in x (breaking ties arbitrarily). Then d(x, {x0 : q(x0) 6= q(x)}) equals
half of the gap in the number of occurrences between the mode and the second-most frequently
occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe X, n 2 N, ", � � 0, there is an
(", �)-di↵erentially private algorithm M : Xn ! X such that for every dataset x 2 X

n where the
di↵erence between the number of occurrences of the mode and the 2nd most frequently occurring
item is larger than 4dln(1/�)/"e, M(x) outputs the mode of x with probability at least 1� �.

If instead we had used the Laplace Histogram of Proposition 2.8 (outputting the bin y 2 X

with the largest noisy count), we would require a gap of ⇥(log |X|)/" in the worst-case, so the
stability-based method is better when |X| is large compared to 1/�. Indeed, let us now show how
stability-based ideas can in fact produce noisy histograms with an error bound of O(log(1/�))/"n.

Theorem 3.5 (stability-based histograms [22]). For every finite data universe X, n 2 N, " 2
(0, lnn), and � 2 (0, 1/n) there is an (", �)-di↵erentially private mechanism M : Xn ! RX that on
every dataset x 2 X

n, with high probability M(x) answers all of the counting queries in Q
pt(X) to

within error

O

✓
log(1/�)

"n

◆
.

The intuition for the algorithm is that if we only released noisy answers for point functions
qy that are nonzero on the dataset x, the error bound in Proposition 2.8 would improve from
O(log |X|)/"n to O(log n)/"n  O(log(1/�))/"n, since at most n point functions can be nonzero on
any dataset (namely those corresponding to the rows of the dataset). However, revealing which
point functions are nonzero would not be di↵erentially private. Thus, we only release the point
functions that are far from being zero (i.e. ones where the query is nonzero on all datasets at noisy
distance at most O(log(1/�)/") from the given dataset, analogously to Proposition 3.3).

Proof. The algorithm is the same as the Laplace Histogram of Proposition 2.8, except that we do not
add noise to counts that are zero, and reduce all noisy counts that are smaller than O(log(1/�)/"n
to zero.

Specifically, given a dataset x 2 X
n, the algorithm works as follows:

1. For every point y 2 X:

(a) If qy(x) = 0, then set ay = 0.

(b) If qy(x) > 0, then:

i. Set ay  qy(x) + Lap(2/"n).

ii. If ay < 2 ln(2/�)/"n+ 1/n, then set ay  0.

2. Output (ay)y2X.

Now let’s analyze this algorithm.

24



17
Stability-based algorithms

Releasing stable values Given q : Xn ! R, ✏, � � 0

1. Propose a target bound � on local sensitivity.

2. Let d̂ = d(x, {x0 : LSq(x0) > �}) + Lap(1/"), where d denotes Hamming distance.

3. If d̂  ln(1/�)/", output ?.

4. If d̂ > ln(1/�)/", output q(x) + Lap(�/").

Proposition 3.2 (propose-test-release [33]). For every query q : Xn ! R and ", �,� � 0, the above
algorithm is (2", �)-di↵erentially private.

Proof. Consider any two neighboring datasets x ⇠ x0. Because of the Laplacian noise in the
definition of d̂ and the fact that Hamming distance has global sensitivity at most 1, it follows that

Pr[M(x) = ?] 2 [e�" · Pr[M(x0) = ?], e" · Pr[M(x0) = ?]]. (3)

Also, for those outputs that are not ?, we have two cases:

Case 1: LSq(x) > �. In this case, d(x, {x00 : LSq(x00) > �}) = 0, so the probability that d̂ will
exceed ln(1/�)/" is at most �. Thus, for every set T ✓ R [ {?}, we have:

Pr[M(x) 2 T ]  Pr[M(x) 2 T \ {?}] + Pr[M(x) 6= ?]

 e" · Pr[M(x0) 2 T \ {?}] + �

 e" · Pr[M(x0) 2 T ] + �,

where the second inequality follows from (3), noting that T \ {?} equals either {?} or ;.

Case 2: LSq(x)  �. In this case, |q(x)�q(x0)|  �, which in turn implies the (", 0)-indistinguishability
of q(x) + Lap(�/") and q(x0) + Lap(�/"). Thus, by (3) and Basic Composition, we have (2", 0)-
indistinguishability overall.

Notice that, like smooth sensitivity, the naive algorithm for computing d(x, {x0 : LSq(x0) > �})
enumerates over all datasets x0 2 X

n. Nevertheless, for the median function, it can again be
computed e�ciently.

3.3 Releasing Stable Values

A special case of interest in Propose-Test-Release is when � = 0. Then it can be verified that
d(x, {x0 : LSq(x0) > �}) = d(x, {x0 : q(x0) 6= q(x)}) � 1, so the algorithm is testing whether the
function q is constant in a neighborhood of x (of radius roughly ln(1/�)/") and if so, it outputs q
with no noise. That is, if q is stable around x, then we can safely release the value q(x) (exactly, with
no noise!), provided our test of stability is di↵erentially private. This also applies to, and indeed
makes the most sense for, discrete-valued functions q : Xn ! Y. In more detail, the mechanism
works as follows on x 2 X

n:

1. Let d̂ = d(x, {x0 : q(x0) 6= q(x)}) + Lap(1/"), where d denotes Hamming distance.

2. If d̂  1 + ln(1/�)/", output ?.

23

3. Otherwise output q(x).

Similarly to Proposition 3.2, we have:

Proposition 3.3 (releasing stable values). For every query q : Xn ! Y and ", � > 0, the above
algorithm is (", �)-di↵erentially private.

Consider, for example, the mode function q : Xn ! X, where q(x) is defined to be the most
frequently occurring data item in x (breaking ties arbitrarily). Then d(x, {x0 : q(x0) 6= q(x)}) equals
half of the gap in the number of occurrences between the mode and the second-most frequently
occurring item (rounded up). So we have:

Proposition 3.4 (stability-based mode). For every data universe X, n 2 N, ", � � 0, there is an
(", �)-di↵erentially private algorithm M : Xn ! X such that for every dataset x 2 X

n where the
di↵erence between the number of occurrences of the mode and the 2nd most frequently occurring
item is larger than 4dln(1/�)/"e, M(x) outputs the mode of x with probability at least 1� �.

If instead we had used the Laplace Histogram of Proposition 2.8 (outputting the bin y 2 X
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i. Set ay  qy(x) + Lap(2/"n).
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Now let’s analyze this algorithm.
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The intuition for the algorithm is that if we only released noisy answers for point functions
qy that are nonzero on the dataset x, the error bound in Proposition 2.8 would improve from
O(log |X|)/"n to O(log n)/"n  O(log(1/�))/"n, since at most n point functions can be nonzero on
any dataset (namely those corresponding to the rows of the dataset). However, revealing which
point functions are nonzero would not be di↵erentially private. Thus, we only release the point
functions that are far from being zero (i.e. ones where the query is nonzero on all datasets at noisy
distance at most O(log(1/�)/") from the given dataset, analogously to Proposition 3.3).

Proof. The algorithm is the same as the Laplace Histogram of Proposition 2.8, except that we do not
add noise to counts that are zero, and reduce all noisy counts that are smaller than O(log(1/�)/"n
to zero.

Specifically, given a dataset x 2 X
n, the algorithm works as follows:

1. For every point y 2 X:

(a) If qy(x) = 0, then set ay = 0.

(b) If qy(x) > 0, then:

i. Set ay  qy(x) + Lap(2/"n).

ii. If ay < 2 ln(2/�)/"n+ 1/n, then set ay  0.

2. Output (ay)y2X.

Now let’s analyze this algorithm.
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Utility: The algorithm gives exact answers for queries qy where qy(x) = 0. There are at most n
queries qy with qy(x) > 0 (namely, ones where y 2 {x1, . . . , xn}). By the tails of the Laplace distri-
bution and a union bound, with high probability all of the noisy answers qy(x)+Lap(2/"n) computed
in Step 1(b)i have error at most O((log n)/"n)  O(log(1/�)/"n). Truncating the small values to
zero in Step 1(b)ii introduces an additional error of up to 2 ln(1/�)/"n+ 1/n = O(log(1/�)/"n).

Privacy: Consider two neighboring datasets x ⇠ x0, where dataset x0 is obtained by replacing
row xi with x0

i
. Then the only point queries that di↵er on x and x0 are qxi and qx0

i
. Since the

answers to di↵erent queries qy are independent, we can analyze the answer to each query separately
and then apply composition. Consider the answers axi(x) and axi(x

0) to query qxi on datasets x
and x0, respectively. We know that qxi(x) > 0 (since row xi is in x). If we also have qxi(x

0) > 0,
then axi(x) and axi(x

0) are ("/2, 0)-indistinguishable by the di↵erential privacy of the Laplace
mechanism. (We can view the truncation step as postprocessing.) If qxi(x

0) = 0, then axi(x
0) is

always 0, and qxi(x) = 1/n (since x and x0 agree on all other rows), which means that Pr[axi(x) 6=
0] = Pr[Lap(2/"n) � 2 ln(2/�)/"n]  �/2 and we have (0, �/2)-indistinguishability. Thus, in all
cases, axi(x) and axi(x

0) are ("/2, �/2)-indistinguishable. By symmetry the same holds for the
answers ax0

i
(x) and ax0

i
(x0). On all other queries y, ay(x) and ay(x0) are identically distributed. By

basic composition, the joint distributions of all answers are (", �)-indistinguishable.

3.4 Privately Bounding Local Sensitivity

Rather than proposing (arbitrarily) a threshold � as in Propose-Test-Release, more generally we
might try to compute a di↵erentially private upper bound on the local sensitivity. That is, we will
try to compute a di↵erentially private estimate �̂ = �̂(x) such that, with probability at least 1� �,
LSq(x)  �̂. If we can do this, then outputting q(x) + Lap(�̂/") will give an (", �)-di↵erentially
private algorithm, by an analysis as in the previous section.

The setting in which we will explore this possibility is where our dataset is a graph and we want
to estimate the number of triangles in the graph.

There are (at least) two notions of privacy that one might wish to consider for graph algorithms:

• Edge-level Privacy. In this setting, we say that G ⇠ G0 if the graphs G and G0 di↵er on one
edge. This is a special case of the setting we’ve been studying, where think of an n-vertex
graph as a dataset consisting of

�
n

2

�
rows from universe X = {0, 1} .

• Node-level Privacy. In this setting, we say that G ⇠ G0 if the graphs G and G0 di↵er only
on edges that are adjacent to one vertex. This does not quite fit in the tuple-dataset setting
we’ve been studying, but the concept of di↵erential privacy naturally generalizes to this (as
well as any other family of “datasets” with some notion of “neighbors”.)

In applications (e.g. to social networks), node-level privacy is a preferable notion of privacy,
since it simultaneously protects all of the relationships associated with a vertex (which typically is
associated with an individual person), rather than just a single relationship at a time. However,
since our goal is only to illustrate the Privately Bounding Local Sensitivity method, we will consider
only edge-level privacy. Let q�(G) be the number of triangles in G (where the � is meant to be
evocative of a triangle). It can be verified that:

LSq�(G) = max{j : 9u9v u and v have j common neighbors}.
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Histogram
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An example
FastExponentiation(n, k : Nat) : Nat 
n’:= n; k’:= k; r := 1;  
if k’ > 0 then  

   while k’ > 1 do 
    if even(k’) then 
      n’ := n’ ∗ n’;  
      k’ := k’/2;  

     else  
       r := n’ ∗ r; 
       n’ := n’ ∗ n’; 
       k’ := (k’ − 1)/2;  
   r := n’ ∗ r; 
 (* result is r *) 



Programming Language
c::= abort                   
   | skip                 
   | x:=e 
   | c;c 
   | if e then c else c  
   | while e do c 

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands



Expressions
We want to be able to write complex programs with our language. 

Where f can be any arbitrary operator.

e::= x       
   | f(e1,…,en)                

Some expression examples

x+5 x mod k x[i] (x[i+1] mod 4)+5



Memories
We can formalize a memory as a map m from variables to values.

m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.



Memories
We can formalize a memory as a map m from variables to values.

m=[x1 ⟼ v1,…,xn ⟼ vn]

We consider only maps that respect types.
We want to read the value associated to a particular variable:

We want to update the value associated to a particular variable:
m(x)

m[x←v]
This is defined as

m[x←v](y)=
v
m(y)

If x=y
Otherwise{



Semantics of Expressions
What is the meaning of the following expressions?
x+5 x mod k x[i] (x[i+1] mod 4)+5



Semantics of Expressions
What is the meaning of the following expressions?

We can give the semantics as a relation between expressions, 
memories and values.

We will denote this relation as:

Exp * Mem * Val

{e}m=v

x+5 x mod k x[i] (x[i+1] mod 4)+5



Semantics of Expressions
What is the meaning of the following expressions?

We can give the semantics as a relation between expressions, 
memories and values.

We will denote this relation as:

Exp * Mem * Val

{e}m=v

x+5 x mod k x[i] (x[i+1] mod 4)+5

This is commonly typeset 
as: JeKm = v



Semantics of Commands
What is the meaning of the following command?

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2



Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command, 
memories and memories or failure.

We will denote this relation as:

Exp * Mem * (Mem | ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

{c}m=⊥Or



Semantics of Commands
What is the meaning of the following command?

We can give the semantics as a relation between command, 
memories and memories or failure.

We will denote this relation as:

Exp * Mem * (Mem | ⊥)

{c}m=m’

k:=2; z:=x mod k; if z=0 then r:=1 else r:=2

This is commonly typeset 
as:

JcKm = m0{c}m=⊥Or



Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 
where

and



Semantics of Commands
This is defined on the structure of commands:

{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip 

where

and
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Formal Semantics

Precondition
Program 

Postcondition

formal semantics 
of programs

We need to assign a formal meaning to the different 
components: formal semantics 

of specification 
conditions

formal semantics 
of specification 

conditionsWe also need to describe the rules 
which combine program and 

specifications.



Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition
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Some examples

: {0 < k} ⇒ {r = nk}i:=0;
r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1 Is it a good 

specification?

Precondition

Postcondition

✗
min = [k = 1,n = 2,i = 0,r = 0]
mout = [k = 1,n = 2,i = 2,r = 4]
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Some examples
: {0 ≤ k} ⇒ {r = ni}i:=0;

r:=1;
while(i≤k)do
 r:=r * n;  
 i:=i + 1

Is it a good 
specification?

Precondition

Postcondition

✓



How do we determine the 
validity of an Hoare triple?
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Validity of Hoare triple

c : P ⇒ Q
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

We are interested only 
in inputs that meets P 
and we want to have 
outputs satisfying Q.

How shall we formalize 
this intuition?
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Validity of Hoare triple
We say that the triple c:P⇒Q is valid if 

and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Is this condition easy to check?



Rules of Hoare Logic: 
⊢skip: P⇒P ⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P



Rules of Hoare Logic: 
⊢skip: P⇒P ⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P



Rules of Hoare Logic: 
⊢skip: P⇒P ⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P



Some examples

Is this a valid triple?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}
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Some examples

Is this a valid triple? ✓
Can we prove it with the 

rules that we have?

⊢ x := z * 2; z := x * 2
: {z * 4 = 8} ⇒ {z = 8}

✓



Some Examples

⊢ x := z * 2; z := x * 2: {z * 4 = 8} ⇒ {z = 8}

⊢ x := z * 2: {z * 4 = 8} ⇒ {x * 2 = 8} ⊢ z := x * 2 : {x * 2 = 8} ⇒ {z = 8}

: {(z * 2) * 2 = 8} ⇒ {x * 2 = 8}⊢ x := z * 2

{z * 4 = 8} ⇒ {(z * 2) * 2 = 8}



Soundness

⊢c : P ⇒ QIf we can derive through

the rules of the logic, then the triple

c : P ⇒ Q is valid.



Relative Completeness
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Relative Completeness

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢c : Pre ⇒ Post

c : Pre ⇒ PostIf a triple is valid, and we 

we can derive through
the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q ,which

we can use in applications of the conseq rule, then 



A logic for  
information flow control



Private vs Public
We want to distinguish confidential information 
that need to be kept secret from nonconfidential 
information that can be accessed by everyone.

We assume that every variable is tagged with 
one either public or private. 

x:public x:private



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.

public public

private private



Is this program secure?
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y:public 
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Is this program secure?

x:private 
y:public 

y:=x

Insecure



Is this program secure?

x:private 
y:public 

y:=x; 
y:=5



Is this program secure?

x:private 
y:public 

y:=x; 
y:=5

Secure



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Secure



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

Insecure



How can we formulate a 
policy that forbids flows 
from private to public?



Low equivalence
Two memories m1 and m2 are low 
equivalent if and only if they coincide in 
the value that they assign to public 
variables.

In symbols: m1 ~low m2



Noninterference
In symbols 
m1 ~low m2 and {c}m1=m1’ and {c}m2=m2’ 
implies m1’ ~low m2’

public public

private private
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x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=5] mout2=[x=n2,y=5]
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Does this program 
x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

mout1=[x=1,y=6] mout2=[x=1,y=6]
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Does this program 
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if x mod 3 = 0 then 
 y:=1 
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Does this program 
x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No
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Does this program 
x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

mout1=[x=6,y=1] mout2=[x=5,y=0]



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program 



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program 

No



How can we prove our 
programs noninterferent?



Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Can we use the tool we 
studied so far?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid if 

and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid if 

and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Validity talks only about one 
memory. How can we manage 

two memories?
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public

private private

C public

public

private private

C public

V

V W

W

U2

U1

In symbols, c is noninterferent if and only if for 
every m1 ~low m2,  {c}m1=m1’ and {c}m2=m2’ 
implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if for 
every m1 ~low m2,  {c}m1=m1’ and {c}m2=m2’ 
implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program
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Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which  
memory we are referring to.



Rules of Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



Rules of Relational Hoare Logic 
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S



Rules of Relational Hoare Logic 
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Rules of Relational Hoare Logic 
Assignment

⊢x1:=e1~x2:=e2:  
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P



Rules of Relational Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>



Rules of Relational Hoare Logic 
If then else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2:e<1> ⋀ P ⇒ Q
⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If then else - left

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2:e<2>⋀ P ⇒ Q
⊢c1~c2’:¬e<2>⋀ P ⇒ Q

⊢ :P⇒Q



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Questions?


