EasyCrypt’s Relational Hoare Logic and Noninterference

These slides are an example-based introduction to EasyCrypt’s Relational Hoare Logic, focusing on how it can be used to prove noninterference results.

The EasyCrypt tactics for Relational Hoare Logic are motivated by the ones we’ve studied in class, but are different in some key ways.
First Example

Let’s start with this simple program:

```plaintext
module M1 = {
  var x : int (* private *)
  var y : int (* public *)
  proc f() : unit = {
    x <- y;
  }
}. 
```

EASYCRYPT doesn’t have a way of saying whether module variables or inputs/outputs to procedures should be considered to be “public” or “private”, but in this and the subsequent examples, we’ll note this using comments.
First Example

We can state the noninterference lemma for

\begin{verbatim}
module M1 = {
 var x : int (* private *)
 var y : int (* public *)
 proc f() : unit = {
 x <- y;
 }
}.
\end{verbatim}

as a Relational Hoare quadruple, as follows:

\begin{verbatim}
lemma lem1 :
 equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].
\end{verbatim}

In this notation, the two programs (identical, when stating noninterference), are separated by a tilde. They are followed by the pre- and postconditions, in which we use the notation \{1\} or \{2\} to say which memory we want a variable or expression to be interpreted in.
First Example

So in

\[
\text{lemma lem1 : } \\
\quad \text{equiv } [M1.f \sim M1.f : M1.y\{1\} = M1.y\{2\} \implies M1.y\{1\} = M1.y\{2\}].
\]

we are saying that if the values of the public variable \text{M1.y} in the two memories are equal before running \text{M1.f}, that either both executions of \text{M1.f} fail to terminate (which does not happen in this case), or they both terminate, and the values of \text{M1.y} in the resulting memories are equal.
First Example

When we prove this lemma, we are initially presented with the goal

Type variables: <none>

pre = ={M1.y}

M1.f ~ M1.f

post = ={M1.y}

Note that M1.y{1} = M1.y{2} has been abbreviated to ={M1.y}. We can use such abbreviations ourselves, writing, e.g.,

={x, y}

instead of

x{1} = x{2} \(\land\) y{1} = y{2}.

This only works with variables, not expressions.
First Example

As in Hoare logic, we start by running the tactic

proc.

to transform our goal

Type variables: <none>

pre = ={M1.y}

M1.f ~ M1.f

post = ={M1.y}

into
First Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M1.y}

(1) M1.x <- M1.y

post = ={M1.y}

Here the programs are in sync, and so are only listed once. &1 and &2 are how the memories of the two programs are named. For this goal, we can run

wp.

which in Relational Hoare Logic pushes the possibly nested conditionals and assignments at the ends of the two programs into the postcondition, giving us the goal
First Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = =\{M1.y\}

post = =\{M1.y\}

Note that the postcondition did not change, because there were no occurrences of the left-hand-side of the assignment in the postcondition.

From here, just as in Hoare Logic, we can run skip.

which gives us the goal
First Example

Type variables: <none>

forall &1 &2, ={M1.y} => ={M1.y}

The conclusion of this goal is the Ambient Logic formula assuming that for all memories &1 (of the first program) and &2 (of the second program), that if the values of M1.y in the two memories (M1.y{1} and M1.y{2}) are equal, that the values of M1.y in the two memories are equal. This can be proved by running

trivial.
Just as in Hoare Logic, we can abbreviate the proof of our lemma to

```
lemma lem1 :
  equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].
proof.
proc; wp; skip; trivial.
qed.
```

The tactic `auto` tries to use `wp`, `skip` and `trivial` to solve a goal, and we can in fact abbreviate our proof to

```
lemma lem1 :
  equiv [M1.f ~ M1.f : M1.y{1} = M1.y{2} ==> M1.y{1} = M1.y{2}].
proof.
proc; auto.
qed.
```

This abbreviation works with Hoare Logic as well.
Second Example

For our second example, consider the program

```plaintext
module M2 = {
  var x : int (* private *)
  var y : int (* public *)
  proc f() : unit = {
    y <- x;
  }
}.
```

Here we’ve swapped \(x \) and \(y \) in the assignment, so if we try to prove

```plaintext
lemma lem2 :
  equiv [M2.f ~ M2.f : ={M2.y} ==> ={M2.y}].
proof.
  proc; wp; skip.
```

we are given the goal
Second Example

Type variables: <none>

forall &1 &2, ={M2.y} => ={M2.x}

This goal cannot be solved, as knowing that the values in the two memories of M2.y are equal is of no help in concluding that the values in the two memories of M2.x are equal.

We can thus run

abort.

to abort our proof, without making lem2 available for use.
Consider the following program and proof beginning

```plaintext
module M3 = {
  var x : int (* private *)
  var y : int (* public *)
  proc f() : unit = {
    y <- x;
    y <- 5;
  }
}. 

lemma lem3 :
  equiv [M3.f ~ M3.f : ={M3.y} ==> ={M3.y}].
proof.
proc.

which take us to the goal
```
Third Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M3.y}

(1) M3.y <- M3.x
(2) M3.y <- 5

post = ={M3.y}

Running

wp.

then takes us to the goal
Third Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M3.y}

post = 5 = 5

(Note how the first assignment has no effect on the postcondition, because wp applied it after M3.y{1} and M3.y{2} had been replaced by 5.) This goal can be solved by running

auto.
Fourth Example

As our fourth example, consider the program and proof beginning

```
module M4 = {
  var x : int (* private *)
  var y : int (* public *)
  proc f() : unit = {
    if (y %% 3 = 0) {
      x <- 0;
    } else {
      x <- 1;
    }
  }
}.
```

and

```
lemma lem4 :
  equiv [M4.f ~ M4.f : ={M4.y} ==> ={M4.y}].
proof.
proc.
```

which takes us to the goal
Fourth Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y}

(1--) if (M4.y \%\% 3 = 0) {
 (1.1) M4.x <- 0
 (1--) } else {
 (1?1) M4.x <- 1
 (1--) }

post = ={M4.y}

Because both programs begin with conditionals (equal in our case), we can apply the two-sided if tactic

if.

which gives us three subgoals
Fourth Example

Type variables: <none>

forall &1 &2,
 ={M4.y} =>
 M4.y{1} %% 3 = 0 <=> M4.y{2} %% 3 = 0

(which makes us prove that the boolean expression of the first program’s conditional holds in the first program’s memory if-and-only-if the boolean expression of the second program’s conditional holds in the second program’s memory; in our case, the conditionals and so their boolean expressions are the same, of course) and
Fourth Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y} \(\land\) M4.y{1} \(\mod\) 3 = 0

(1) M4.x <- 0

post = ={M4.y}

(for the then branch—if the conditionals of the two programs were different, we’d have the then branch of the first conditional on the left, and the then branch of the second conditional on the right, followed in each case by whatever came after the conditional in the two programs) and
Fourth Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M4.y} \ M4.y{1} \% 3 <> 0

(1) M4.x <- 1

post = ={M4.y}

(for the else branch—again, if the programs were not synchronized we’d have a pair of else branches, followed by whatever followed in the two programs). The second and third subgoals follow easily because \texttt{M4.x} does not appear in the postconditions (which are equal).
Fifth Example

On the other hand, suppose we modify the previous example so that we branch on whether the private variable x is divisible by 3, and set the public variable y instead of x:

```plaintext
module M5 = {
  var x : int (* private *)
  var y : int (* public *)
  proc f() : unit = {
    if (x %% 3 = 0) {
      y <- 0;
    }
  } else {
    y <- 1;
  }
};
```
Fifth Example

Then, the proof beginning

\[\text{lemma \ lem5 :} \]
\[\text{equiv \ [M5.f \sim M5.f : ={M5.y} \implies ={M5.y}].} \]
\[\text{proof.} \]
\[\text{proc; if.} \]

takes us to the three subgoals

Type variables: <none>

\[\text{forall \ &1 \ &2,} \]
\[\text{={M5.y} =>} \]
\[\text{M5.x\{1\} \mod 3 = 0 \iff M5.x\{2\} \mod 3 = 0} \]

and
Fifth Example

Type variables: <none>

&1 (left): {} [programs are in sync]
&2 (right): {}

pre = =\{M5.y\} \land M5.x{1} \mod 3 = 0

(1) M5.y <- 0

post = =\{M5.y\}

and
Fifth Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M5.y} \ M5.x{1} % 3 <> 0

(1) M5.y <- 1

post = ={M5.y}

Because we don’t know that the values of the private M5.x in the two memories are related in any way, we can’t complete this proof. (There is a one-sided if tactic, which we’ll see in the next example. But it won’t help either.)
Sixth Example

For our sixth example, consider the program

```
require import List.

module M6 = {
  var i : int (* public *)
  var xs : int list (* public *)
  var ys : int list (* private *)
  var r : bool (* private *)

  proc f() : unit = {
    i <- 0;
    r <- false;
    while (i < 10) {
      if (! (nth 0 xs i = nth 1 ys i)) {
        r <- true;
      }
      i <- i + 1;
    }
  }
}.
```
Sixth Example

Here we have imported the theory List from the EASYCRYPT Library, so that the type int list consists of all finite lists of integers. We do list subscripting using the operator nth: nth def xs i,

• returns the ith (counting from 0) element of xs, if i is at least 0 and is strictly less than the number of elements in xs; and

• returns the default element def, otherwise.

For example:

• the value of nth 6 [1; 2; 3] 1 is 2;
• the value of nth 6 [1; 2; 3] (-1) is 6;
• the value of nth 6 [1; 2; 3] 3 is 6.
Sixth Example

Because the default values supplied to \texttt{nth} in

\begin{verbatim}
while (i < 10) {
 if (! (nth 0 xs i = nth 1 ys i)) {
 r <- true;
 }
 i <- i + 1;
}
\end{verbatim}

are different but might also appear in the lists, \(r \) can be set to \texttt{true} for the first time because

- we reach a point where \(i \) is a good index for both \(xs \) and \(ys \), but the \(i \)th elements of \(xs \) and \(ys \) are different;
- we reach a point where \(i \) is a bad index for both \(xs \) and \(ys \);
- we reach a point where \(i \) is a good index for \(xs \) and a bad index for \(ys \), but the \(i \)th element of \(xs \) is not \texttt{1};
- we reach a point where \(i \) is a bad index for \(xs \) and a good index for \(ys \), but the \(i \)th element of \(ys \) is not \texttt{0}.
Sixth Example

Let’s prove the lemma

\[
\text{lemma lem6 : }
\text{equiv } [M6.f \sim M6.f : ={M6.i, M6.xs} \implies ={M6.i, M6.xs} /\ P].
\]

where the operator P is defined by

\[
\text{op P } (x : \text{bool } \ast \text{bool}) : \text{bool} = \text{true}.
\]

and is only included in the postcondition so as to help illustrate how the while tactic works. After running

\[
\text{proc}.
\]

we are at goal
Sixth Example

Type variables: <none>

&1 (left): {} [programs are in sync]
&2 (right): {}

pre = =\{M6.i, M6.xs\}

(1----) M6.i <- 0
(2----) M6.r <- false
(3----) while (M6.i < 10) {
 (3.1--) if (nth 0 M6.xs
 (-) M6.i <>
 (-) nth 1 M6.ys
 (-) M6.i) {
 (3.1.1) M6.r <- true
 (3.1--) }
 (3.2--) M6.i <- M6.i + 1
 (3----) }

post = =\{M6.i, M6.xs\} \\ P (M6.r\{1\}, M6.r\{2\})
Sixth Example

It’s then convenient (but not necessary) to use the two-sided version of the \texttt{seq} tactic, which takes two arguments: the number of statements to take from the beginning of the left and right programs, respectively.

E.g., running

\begin{verbatim}
 seq 2 2 : (={M6.i, M6.xls}).
 auto.
\end{verbatim}

takes us to the goal
Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = =\{M6.i, M6.xs\}

(1----) while (M6.i < 10) {
(1.1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1.1) M6.r <- true
(1.1--) }
(1.2--) M6.i <- M6.i + 1
(1----) }

post = =\{M6.i, M6.xs\} \ \& \ P (M6.r\{1\}, M6.r\{2\})
Sixth Example

Because *both* programs (they are in sync) *end* with *while* loops, we can apply the *while* tactic, choosing a loop invariant

\[
\text{while } (=\{\text{M6.i, M6.xs}\}).
\]

saying that the values of the public variables M6.i and M6.xs stay equal in the two memories. This gives us the subgoals
Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
={M6.i, M6.xs} \ M6.i{1} < 10 \ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
={M6.i, M6.xs} /
(M6.i{1} < 10 <=> M6.i{2} < 10)

(goal 1—preservation of loop invariant) and
Sixth Example

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

post =
 (=\{M6.i, M6.xs\} /
 (M6.i\{1\} < 10 \iff M6.i\{2\} < 10)) /
 \forall (i_L : \text{int}) (r_L : \text{bool}) (i_R : \text{int})
 (r_R : \text{bool}),
 \neg i_L < 10 \implies
 \neg i_R < 10 \implies
 i_L = i_R \iff \neg \{M6.xs\} \implies
 (i_L = i_R \iff \neg \{M6.xs\}) \land P (r_L, r_R)

(goal 2—connection of loop with pre- and postconditions).
Sixth Example

Let’s consider goal 2, first. After we run

skip.

we have the goal

Type variables: <none>

forall &1 &2,
 ={M6.i, M6.xs} =>
 (={M6.i, M6.xs} /
 (M6.i{1} < 10 <=> M6.i{2} < 10)) /
forall (i_L : int) (r_L : bool) (i_R : int)
 (r_R : bool),
 ! i_L < 10 =>
 ! i_R < 10 =>
 i_L = i_R /
 ={M6.xs} =>
 (i_L = i_R /
 ={M6.xs}) /
 P (r_L, r_R)
Sixth Example

The conclusion of this goal makes us prove two conjuncts, given the knowledge that the loop’s precondition holds on the two memories. The first conjunct is

\[(=\{M6.i, M6.xs\} \land (M6.i\{1\} \lt 10 \iff M6.i\{2\} \lt 10))\]

In words, we have to show that the loop invariant is true at the beginning of the loop’s execution, and that the boolean expression \(M6.i \lt 10\) is either true in both memories or false in both memories.
Sixth Example

The second conjunct is

$$\forall (i_L : \text{int}) (r_L : \text{bool}) (i_R : \text{int}) (r_R : \text{bool}),$$

$$! i_L < 10 \Rightarrow ! i_R < 10 \Rightarrow$$

$$i_L = i_R \land \{M6.xs\} \Rightarrow$$

$$(i_L = i_R \land \{M6.xs\}) \land P (r_L, r_R)$$

It quantifies over the variables that change during the execution of the loop:

- $M6.i\{1\}$, which is turned into i_L;
- $M6.i\{2\}$, which is turned into i_R;
- $M6.r\{1\}$, which is turned into r_L; and
- $M6.r\{2\}$, which is turned into r_R.

(If we’d left out the conjunct $P (r\{1\}, r\{2\})$ from the overall postcondition, EASYCRYPT would have simplified away the entire second conjunct, making it easier to prove but harder to understand!)
Sixth Example

When proving this second conjunct, we are given the knowledge that the boolean expression of the loop is \textit{false} in both memories, but that the loop invariant holds. We then have to prove the postcondition of the loop.
Sixth Example

Now, let’s go back to the first subgoal:

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
={M6.i, M6.xs} \& M6.i{1} < 10 \& M6.i{2} < 10

(1--)

if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
={M6.i, M6.xs} /\
(M6.i{1} < 10 <=) M6.i{2} < 10)
Sixth Example

The pre- and postconditions both include the loop invariant. In addition, the precondition tells us that the boolean expression holds in both memories (if the left and right programs were different while loops, we’d have that the left loop’s boolean expression held in the first memory, and the right loop’s boolean expression held in the second memory).

In the postcondition, we also have to prove that the left loop’s boolean expression holds in the first memory if-and-only-if the right loop’s boolean expression holds in the second memory.
Sixth Example

Because the boolean expression of the conditional depends upon the possibly different values of the private variable M6.ys in the two memories, we can't use the two-sided if tactic. Instead we have to use its one-sided versions, which are applicable when the given program (one/left or two/right) begins with a conditional. Running

 if{1}.

give us two subgoals where the second (right) program is unchanged. In the first subgoal, we are given the additional assumption (just about memory one) that

 nth 0 M6.xls{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1}

and the left program becomes

 M6.r <- true; (* the then branch *)
 M6.i <- M6.i + 1; (* what follows the conditional *)
Sixth Example

In the second subgoal, we are given the additional assumption (again about memory one) that

![(nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1})

and the left program becomes

(* the else branch - empty! *)
M6.i <- M6.i + 1; (* what follows the conditional *)

In both of these subgoals, we must run the one-sided if tactic on the right program (program two)

if{2}.

All four of the resulting goals can then be solved using auto.
Sixth Example

For example, the third of these goals is (some of what EasyCrypt prints has been elided so it fits on the slide!):

\[
\text{pre} = (\{M6.i, M6.xs\} \land M6.i\{1\} < 10 \land M6.i\{2\} < 10) \land \neg \text{nth 0}\ M6.xs\{1\}\ M6.i\{1\} \not= \text{nth 1}\ M6.ys\{1\}\ M6.i\{1\}) \land \text{nth 0}\ M6.xs\{2\}\ M6.i\{2\} \not= \text{nth 1}\ M6.ys\{2\}\ M6.i\{2\})
\]

\[
M6.i \leftarrow M6.i + 1
\]

(1) M6.r \leftarrow true

(2) M6.i \leftarrow M6.i + 1

\[
\text{post} = \{M6.i, M6.xs\} \land (M6.i\{1\} < 10 \leftrightarrow M6.i\{2\} < 10)
\]

Here we have the `else` (empty) branch of the conditional of the left program, but the then branch of the conditional of the right program—because we’re in the goal where the boolean expression was `false` in the first memory, but `true` in the second memory.
Sixth Example

Going back again to the goal

Type variables: <none>

--
&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre =
 ={M6.i, M6.xs} \ M6.i\{1\} < 10 \ M6.i\{2\} < 10

(1--) if (nth 0 M6.xs
 (-) M6.i <>
 (-) nth 1 M6.ys
 (-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post =
 ={M6.i, M6.xs} /
 (M6.i\{1\} < 10 <=> M6.i\{2\} < 10)
Sixth Example

it’s worth noting that in Relational Hoare Logic, \(wp \) is capable of pushing possibly nested conditionals and assignments at the ends of the two programs into the postcondition. Running

\[wp. \]

transforms our goal into a goal with postcondition
Sixth Example

if nth 0 M6.xs{2} M6.i{2} <> nth 1 M6.ys{2} M6.i{2} then
 let i_R = M6.i{2} + 1 in
 (if nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1} then
 let i_L = M6.i{1} + 1 in
 (i_L = i_R \= M6.xs) \= (i_L < 10 <=>$> i_R < 10)
 else
 let i_L = M6.i{1} + 1 in
 (i_L = i_R \= M6.xs) \= (i_L < 10 <=>$> i_R < 10))
else
 let i_R = M6.i{2} + 1 in
 (if nth 0 M6.xs{1} M6.i{1} <> nth 1 M6.ys{1} M6.i{1} then
 let i_L = M6.i{1} + 1 in
 (i_L = i_R \= M6.xs) \= (i_L < 10 <=>$> i_R < 10)
 else
 let i_L = M6.i{1} + 1 in
 (i_L = i_R \= M6.xs) \= (i_L < 10 <=>$> i_R < 10))

This goal can be solved with
 skip; trivial.

so we could actually solve the original goal with auto.
Sixth Example

If we only want to prove noninterference, we can get rid of the use of \(P \) in the postcondition:

```lean
lemma lem :
equiv [M6.f ~ M6.f : ={M6.i, M6.xs} ==> ={M6.i, M6.xs}].
```

Furthermore, because our program ends with a `while` loop, and the proof of the first subgoal generated by the `while` tactic doesn’t actually depend on \(xs \) being the same in the two memories, we can begin our proof like this:

```lean
proc.
while (=M6.i).
```

This gives us the goals
Sixth Example

Type variables: <none>

&1 (left): {} [programs are in sync]
&2 (right): {}

pre = ={M6.i} \ M6.i{1} < 10 \ M6.i{2} < 10

(1--) if (nth 0 M6.xs
(-) M6.i <>
(-) nth 1 M6.ys
(-) M6.i) {
(1.1) M6.r <- true
(1--) }
(2--) M6.i <- M6.i + 1

post = ={M6.i} \ (M6.i{1} < 10 <= M6.i{2} < 10)

(which can be solved with auto) and
Sixth Example

Type variables: <none>

&1 (left) : {} [programs are in sync]
&2 (right) : {}

pre = ={M6.i, M6.xs}

(1) M6.i <- 0
(2) M6.r <- false

post =
({M6.i} /
 (M6.i{1} < 10 <=> M6.i{2} < 10)) /
forall (i_L i_R : int),
 ! i_L < 10 =>
 ! i_R < 10 =>
 i_L = i_R => i_L = i_R /
 ={M6.xs}

(which can also be solved by auto, because the occurrence of ={M6.xs} in the postcondition is assumed in the precondition).
Thus our lemma and its proof can be:

```lean
lemma lem :
  equiv [M6.f ∼ M6.f : ={M6.i, M6.xs} ==> ={M6.i, M6.xs}].
proof.
  proc; while ({M6.i}); auto.
qed.
```
Finally, let’s take our sixth example and restructure it so

- the lists xs (public) and ys (private) are arguments to the procedure $M7.f$; and

- the variables that are initialized without reference to the arguments—i (public) and r (private)—are returned as the procedure’s result;

Because neither xs nor ys are modified, we don’t return them.
So our program is now

```plaintext
module M7 = {
    proc f(xs : int list, (* public *)
          ys : int list) (* private *)
          : int * (* i's value - public *)
          bool = {
            (* r's value - private *)
            var i : int; (* public *)
            var r : bool; (* private *)
            i <- 0;
            r <- false;
            while (i < 10) {
                if (! (nth 0 xs i = nth 1 ys i)) {
                    r <- true;
                }
                i <- i + 1;
            }
            return (i, r);
        }
    }.
```
And our noninterference lemma and proof are:

```lean
lemma lem7 :
    equiv [M7.f ~ M7.f : ={xs} ==> res{1}.‘1 = res{2}.‘1].
    (* the second character of .‘ is the backtick character *)
proof.
    proc; while (=i}); auto.
qed.
```