Proving Cryptographic Security using EasyCrypt

Alley Stoughton

Boston University
Cryptographic Security

• Cryptographic schemes (e.g., encryption) and protocols (e.g., key-exchange) can be specified at a high-level using our Probabilistic While (pWhile) language.

• They generally make use of randomness, which can be modeled by random assignments from (sub-)distributions.

• When these high-level specifications are implemented, this randomness must be realized using pseudorandom number generators, whose seeds make use of randomness from the underlying operating system.

• They also often make use of primitives like pseudorandom functions (PRFs).

• These primitives must also be implemented; e.g., PRFs can be implemented using hash functions like SHA-?.
Cryptographic Security

• Our focus in this course will be at the specification level.

• But there is research that addresses how to specify and prove the security of implementations of cryptographic schemes and protocols.
Building Encryption from PRF + Randomness

• Our running example will be a symmetric encryption scheme built out of a pseudorandom function plus randomness.
 • Symmetric encryption means the same key is used for both encryption and decryption.

• We’ll first define when a symmetric encryption scheme is secure under indistinguishability under chosen plaintext attack (IND-CPA).
 • This is formalized via a “game”, which the adversary tries to win.

• Next we’ll define our instance of this scheme, and informally analyze adversaries’ strategies for breaking security.
Building Encryption from PRF + Randomness

- Later on, we’ll look at the proof in EasyCrypt of the IND-CPA security of our scheme.

- The EasyCrypt code is on GitHub:

 https://github.com/alleystoughton/EasyTeach/tree/master/encryption
Symmetric Encryption Schemes

• Our treatment of symmetric encryption schemes is parameterized by three types:

\[
\begin{align*}
type \text{ key} &. \quad (* \text{ encryption keys, key_len bits } *) \\
type \text{ text} &. \quad (* \text{ plaintexts, text_len bits } *) \\
type \text{ cipher} &. \quad (* \text{ ciphertexts – scheme specific } *)
\end{align*}
\]

• An encryption scheme is a \textit{stateless} implementation of this module interface:

\[
\text{module type ENC = } \{
\text{proc key_gen() : key } \quad (* \text{ key generation } *) \\
\text{proc enc(k : key, x : text) : cipher } \quad (* \text{ encryption } *) \\
\text{proc dec(k : key, c : cipher) : text } \quad (* \text{ decryption } *)
\}
\]
Scheme Correctness

• An encryption scheme is *correct* if and only if the following procedure returns true with probability 1 for all arguments:

```plaintext
module Cor (Enc : ENC) = {
    proc main(x : text) : bool = {
        var k : key; var c : cipher; var y : text;
        k <@ Enc.key_gen();
        c <@ Enc.enc(k, x);
        y <@ Enc.dec(k, c);
        return x = y;
    }
}
```

• The module *Cor* is parameterized (may be applied to) an arbitrary encryption scheme, *Enc*.
Encryption Oracles

- To define IND-CPA security of encryption schemes, we need the notion of an *encryption oracle*, which both the adversary and IND-CPA game will interact with:

```ocaml
module type E0 = {
 (* initialization – generates key *)
 proc init() : unit
 (* encryption by adversary before game's encryption *)
 proc enc_pre(x : text) : cipher
 (* one-time encryption by game *)
 proc genc(x : text) : cipher
 (* encryption by adversary after game's encryption *)
 proc enc_post(x : text) : cipher
}.
```
Standard Encryption Oracle

• Here is the standard encryption oracle, parameterized by an encryption scheme, Enc:

```
module EncO (Enc : ENC) : EO = {
  var key : key
  var ctr_pre : int
  var ctr_post : int

  proc init() : unit = {
    key @$\text{Enc.key\_gen}();
    ctr_pre <- 0; ctr_post <- 0;
  }
```

proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
}
Standard Encryption Oracle

proc genc(x : text) : cipher = {
 var c : cipher;
 c <$> Enc.enc(key, x);
 return c;
}

Standard Encryption Oracle

proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 } else {
 c <- ciph_def; (* default result *)
 }
 return c;
}.
Encryption Adversary

• An *encryption adversary* is parameterized by an encryption oracle:

```plaintext
module type ADV (EO : EO) = {
  (* choose a pair of plaintexts, x1/x2 *)
  proc choose() : text * text {EO(enc_pre)}

  (* given ciphertext c based on a random boolean b
   (the encryption using EO.genc of x1 if b = true,
    the encryption of x2 if b = false), try to guess b *)
  proc guess(c : cipher) : bool {EO(enc_post)}
}.
```

• Adversaries may be probabilistic.
IND-CPA Game

- The IND-CPA Game is parameterized by an encryption scheme and an encryption adversary:

```plaintext
module INDCPA (Enc : ENC, Adv : ADV) = {
  module EO = EncO(Enc)          (* make EO from Enc *)
  module A = Adv(EO)             (* connect Adv to EO *)
  proc main() : bool = {
    var b, b' : bool; var x1, x2 : text; var c : cipher;
    EO.init();                 (* initialize EO *)
    (x1, x2) <@ A.choose();    (* let A choose x1/x2 *)
    b <$> {0,1};                (* choose boolean b *)
    c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
    b' <@ A.guess(c);          (* let A guess b from c *)
    return b = b';             (* see if A won *)
  }
}. 
```
IND-CPA Game
IND-CPA Game

- If the value b' that Adv returns is independent of the random boolean b, then the probability that Adv wins the game will be exactly 1/2.
 - E.g., if Adv always returns true, it’ll win half the time.
- The question is how much better it can do—and we want to prove that it can’t do much better than win half the time.
 - But this will depend upon the quality of the encryption scheme.
- An adversary that wins with probability greater than 1/2 can be converted into one that loses with that probability, and vice versa. When formalizing security, it’s convenient to upper-bound the distance between the probability of the adversary winning and 1/2.
IND-CPA Security

• In our security theorem for a given encryption scheme Enc and adversary Adv, we prove an upper bound on the absolute value of the difference between the probability that Adv wins the game and $1/2$:

\[\left| \Pr[\text{INDCPA}(Enc, Adv).\text{main}() @ &m : \text{res}] - \frac{1}{2} \right| \]

• Ideally, we’d like the upper bound to be 0, so that the probability that Enc wins is exactly $1/2$, but this won’t be possible.

• The upper bound may also be a function of the number of bits $text_len$ in $text$ and the encryption oracle limits $limit_pre$ and $limit_post$.
IND-CPA Security

- Q: Because the adversary can call the encryption oracle with the plaintexts x_1/x_2 it goes on to choose, why isn’t it impossible to define a secure scheme?
 - A: Because encryption can (must!) involve randomness.

- Q: What is the rationale for letting the adversary call `enc_pre` and `enc_post` at all?
 - A: It models the possibility that the adversary may be able to influence which plaintexts are encrypted.

- Q: What is the rationale for limiting the number of times `enc_pre` and `enc_post` may be called?
 - A: There will probably be some limit on the adversary’s influence on what is encrypted.
Pseudorandom Functions

• Our pseudorandom function (PRF) is an operator \(F \) with this type:

\[
\text{op } F : \text{key } \rightarrow \text{text } \rightarrow \text{text}.
\]

• For each value \(k \) of type \(\text{key} \), \((F \ k) \) is a function from \(\text{text} \) to \(\text{text} \).

• Since \(\text{key} \) is a bitstring of length \(\text{key_len} \), then there are at most \(2^{\text{key_len}} \) of these functions.

• If we wanted, we could try to spell out the code for \(F \), but we choose to keep \(F \) abstract.

• How do we know if \(F \) is a “good” PRF?
Pseudorandom Functions

• We will assume that $\text{dtext} \ (\text{dkey})$ is a sub-distribution on $\text{text} \ (\text{key})$ that is a distribution (is “lossless”), and where every element of $\text{text} \ (\text{key})$ has the same non-zero value:

\[
\text{op dtext} : \text{text distr.} \\
\text{op dkey} : \text{key distr.}
\]

• A random function is a module with the following interface:

\[
\text{module type RF = } \\
\text{proc init() : unit} \\
\text{proc f(x : text) : text}
\]
Pseudorandom Functions

• Here is a random function made from our PRF F:

```plaintext
module PRF : RF = {
    var key : key
    proc init() : unit = {
        key <$> dkey;
    }
    proc f(x : text) : text = {
        var y : text;
        y <- F key x;
        return y;
    }
}.
```
Pseudorandom Functions

• Here is a random function made from true randomness:

```plaintext
module TRF : RF = {
  (* mp is a finite map associating texts with texts *)
  var mp : (text, text) fmap
  proc init() : unit = {
    mp <- empty;  (* empty map *)
  }
  proc f(x : text) : text = {
    var y : text;
    if (! x \in mp) {   (* give x a random value in *)
      y <$ dtext;  (* mp if not already in mp's domain *)
      mp.[x] <- y;
    }
    return oget mp.[x];  (* return value of x in mp *)
  }  (* mp.[x] is: None if x is not in mp’s domain, *)
}.   (* and Some z if z is the value of x in mp *)
```
Pseudorandom Functions

• A random function adversary is parameterized by a random function module:

```haskell
module type RFA (RF : RF) = {
    proc * main() : bool {RF.f}
}.
```
Pseudorandom Functions

• Here is the random function game:

```haskell
module GRF (RF : RF, RFA : RFA) = {
  module A = RFA(RF)
  proc main() : bool = {
    var b : bool;
    RF.init();
    b <@ A.main();
    return b;
  }
}
```

• A random function adversary RFA tries to tell the PRF and true random functions apart, by returning true with different probabilities.
Pseudorandom Functions

- Our PRF F is “good” if and only if the following is small, whenever RFA is limited in the amount of computation it may do (maybe we say it runs in polynomial time):

 $\left| \Pr[\text{GRF}(PRF, RFA).\text{main()} @ \&m : \text{res}] - \Pr[\text{GRF}(TRF, RFA).\text{main()} @ \&m : \text{res}] \right|$

- **RFA** must be limited, because there will typically be many more true random functions than functions of the form $(F k)$, where k is a key (there are at most $2^{\text{key_len}}$ such functions).

- Since text_len is the number of bits in text, there will be $2^{\text{text_len}} \times 2^{\text{text_len}}$ distinct maps from text to text (e.g., $2^8 = 256$, $2^8 \times 2^8 \approx 10^{617}$).

- Thus, with enough running time, **RFA** may be able to tell with reasonable probability if it’s interacting with a PRF random function or a true random function.
Our Symmetric Encryption Scheme

• We construct our encryption scheme Enc out of F:

$$(^\lor) : \text{text} \rightarrow \text{text} \rightarrow \text{text} \quad (* \text{bitwise exclusive or} \ or \ *)$$

type cipher = text * text. (* ciphers *)

module Enc : ENC = {
 proc key_gen() : key = {
 var k : key;
 k <$ dkey;
 return k;
 }
}
Our Symmetric Encryption Scheme

proc enc(k : key, x : text) : cipher = {
 var u : text;
 u <$> dtext;
 return (u, x +^ F k u);
}

proc dec(k : key, c : cipher) : text = {
 var u, v : text;
 (u, v) <- c;
 return v +^ F k u;
}

}.
Correctness

- Suppose that $\text{enc}(k, x)$ returns $c = (u, x +^ F k u)$, where u is randomly chosen.
- Then $\text{dec}(k, c)$ returns $(x +^ F k u) +^ F k u = x$.

Adversarial Attack Strategy

• Before picking its pair of plaintexts, the adversary can call \texttt{enc_pre} some number of times with the same argument, \texttt{text0} (the bitstring of length \texttt{text_len} all of whose bits are 0).

• This gives us ..., \((u_i, \texttt{text0} \oplus \texttt{F key u_i})\), ..., i.e., ..., \((u_i, \texttt{F key u_i})\), ...

• Then, when \texttt{genc} encrypts one of \(x_1/x_2\), it \emph{may happen} that we get a pair \((u_i, x_j \oplus \texttt{F key u_i})\) for one of them, where \(u_i\) appeared in the results of calling \texttt{enc_pre}.

• But then

\[
\texttt{F key u_i} \oplus (x_j \oplus \texttt{F key u_i}) = \texttt{text0} \oplus x_j = x_j
\]
Adversarial Attack Strategy

• Similarly, when calling \texttt{enc_post}, before returning its boolean judgement \(b\) to the game, a collision with the left-side of the cipher text passed from the game to the adversary will allow it to break security.

• Suppose, again, that the adversary repeatedly encrypts \texttt{text}_0 using \texttt{enc_pre}, getting \(\ldots, (u_i, F \text{ key } u_i), \ldots\)

• Then by \textit{experimenting directly} with \(F\) with different keys, it may learn enough to guess, with reasonable probability, \texttt{key} itself.

• This will enable it to decrypt the cipher text \(c\) given it by the game, also breaking security.

• Thus we must assume some bounds on how much work the adversary can do (we can’t tell if it’s running \(F\)).
IND-CPA Security for Our Scheme

- Our security upper bound

\[|\Pr[\text{INDCPA}(\text{Enc, Adv}).\text{main()} @ &m : \text{res}] - 1/2| \leq ... \]

will be a function of:

1. the ability of a random function adversary constructed from \textbf{Adv} to tell the PRF random function from the true random function
 - this lets us switch in our proof from using \textbf{F} to using a true random function
2. the number of bits \textbf{text_len} in \textbf{text} and the encryption oracles limits \textbf{limit_pre} and \textbf{limit_post}
 - this quantifies the possibility of collisions in the values of \textbf{u}
IND-CPA Security for Our Scheme

• Our security upper bound

\[|Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main()} @ \&m : \text{res}] - 1/2| \leq \ldots \]

will be a function of:

(1) the ability of a random function adversary constructed from \text{Adv} to tell the PRF random function from the true random function; and

(2) the number of bits \text{text_len} in \text{text} and the encryption oracles limits \text{limit_pre} and \text{limit_post}.

• Q: Why doesn’t the upper bound also involve \text{key_len}, the number of bits in \text{key}?

• A: that’s part of (1).
Sequence of Games Approach

• Our proof of IND-CPA security uses the *sequence of games approach*, which is used to connect a “real” game R with an “ideal” game I via a sequence of intermediate games.

• Each of these games is parameterized by the adversary, and each game has a `main` procedure returning a boolean.

• We want to establish an upper bound for

$$\left| \Pr[R.\text{main()} @ \&m : \text{res}] - \Pr[I.\text{main()} : \text{res}] \right|$$

![Diagram of the sequence of games approach with R, G₁, G₂, G₃, and I]
Sequence of Games Approach

• Suppose we can prove

\[| \Pr[R\text{.main()} @ &m : res] - \Pr[G_1\text{.main()} : res] | \leq b_1 \]

\[| \Pr[G_1\text{.main()} @ &m : res] - \Pr[G_2\text{.main()} : res] | \leq b_2 \]

\[| \Pr[G_2\text{.main()} @ &m : res] - \Pr[G_3\text{.main()} : res] | \leq b_3 \]

\[| \Pr[G_3\text{.main()} @ &m : res] - \Pr[I\text{.main()} : res] | \leq b_4 \]

for some \(b_1, b_2, b_3 \) and \(b_4 \). Then we can conclude

\[| \Pr[R\text{.main()} @ &m : res] - \Pr[I\text{.main()} @ &m : res] | \leq \ ? \]
Sequence of Games Approach

• Suppose we can prove

\[| \Pr[R.\text{main}() @ &m : \text{res}] - \Pr[G_1.\text{main}() : \text{res}] | \leq b_1 \]
\[| \Pr[G_1.\text{main}() @ &m : \text{res}] - \Pr[G_2.\text{main}() : \text{res}] | \leq b_2 \]
\[| \Pr[G_2.\text{main}() @ &m : \text{res}] - \Pr[G_3.\text{main}() : \text{res}] | \leq b_3 \]
\[| \Pr[G_3.\text{main}() @ &m : \text{res}] - \Pr[I.\text{main}() : \text{res}] | \leq b_4 \]

for some \(b_1, b_2, b_3 \) and \(b_4 \). Then we can conclude

\[| \Pr[R.\text{main}() @ &m : \text{res}] - \Pr[I.\text{main}() @ &m : \text{res}] | \leq b_1 + b_2 + b_3 + b_4 \]
Sequence of Games Approach

• This follows using the triangular inequality:

\[|x - z| \leq |x - y| + |y - z|. \]

• Q: what can our strategy be to establish an upper bound for the following?

\[|\text{Pr}[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main}() @ &m : \text{res}] - 1%r / 2%r| \]

• A: We can use a sequence of games to connect \text{INDCPA}(\text{Enc}, \text{Adv}) to an ideal game \text{I} such that

\[\text{Pr}[\text{I}.\text{main}() @ &m : \text{res}] = 1%r / 2%r. \]

• The overall upper bound will be the sum \(b_1 + \ldots + b_n \) of the sequence \(b_1, \ldots, b_n \) of upper bounds of the steps of the sequence of games.
Sequence of Games Approach

• Q: But how do we know what this I should be?

• A: We start with $\text{INDCPA}(\text{Enc}, \text{Adv})$ and make a sequence of simplifications, hoping to get to such an I.

• Some simplifications work using code rewriting, like inlining. (The upper bound for such a step is 0.)

• Some simplifications work using cryptographic reductions, like the reduction to the security of PRFs.
 • The upper bound for such a step involves a constructed adversary for the security game of the reduction.

• Some simplifications make use of “up to bad” reasoning, meaning they are only valid when a bad event doesn’t hold.

• The upper bound for such a step is the probability of the bad event happening.
Starting the Proof in a Section

• First, we enter a “section”, and declare our adversary Adv as not interfering with certain modules and as being lossless:

section.
declare module Adv : ADV{-EncO, -PRF, -TRF, -Adv2RFA}.
axiom Adv_choose_ll :
 forall (EO <: EO{-Adv}),
 islossless EO.enc_pre => islossless Adv(EO).choose.
axiom Adv_guess_ll :
 forall (EO <: EO{-Adv}),
 islossless EO.enc_post => islossless Adv(EO).guess.
Step 1: Replacing PRF with TRF

• In our first step, we switch to using a true random function instead of a pseudorandom function in our encryption scheme.

 • We have an exact model of how the TRF works.

• When doing this, we inline the encryption scheme into a new kind of encryption oracle, \texttt{EO_RF}, which is parameterized by a random function.

• We also instrument \texttt{EO_RF} to detect two kinds of “clashes” (repetitions) in the generation of the inputs to the random function.

 • This is in preparation for Steps 2 and 3.
Step 1: Replacing PRF with TRF

```plaintext
local module EO_RF (RF : RF) : EO = {
  var ctr_pre : int
  var ctr_post : int
  var inps_pre : text fset
  var clash_pre : bool
  var clash_post : bool
  var genc_inp : text

  proc init() = {
    RF.init();
    ctr_pre <- 0; ctr_post <- 0; inps_pre <- fset0;
    clash_pre <- false; clash_post <- false;
    genc_inp <- text0;
  }
}
Step 1: Replacing PRF with TRF

```plaintext
proc enc_pre(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 u <$ dtext;
 inps_pre <- inps_pre `|` fset1 u;
 v @$ RF.f(u);
 c <- (u, x ^ v);
 } else {
 c <- (text0, text0);
 }
 return c;
}
```

size of `inps_pre` is at most `limit_pre`
Step 1: Replacing PRF with TRF

```plaintext
proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$ dtext;
 if (mem inps_pre u) {
 clash_pre <- true;
 }
 genc_inp <- u;
 v @ RF.f(u);
 c <- (u, x +^ v);
 return c;
}
```
Step 1: Replacing PRF with TRF

```plaintext
proc enc_post(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 u <$ dtext;
 if (u = genc_inp) {
 clash_post <- true;
 }
 v <$> RF.f(u);
 c <- (u, x +^ v);
 }
 else {
 c <- (text0, text0);
 }
 return c;
}
```
Step 1: Replacing PRF with TRF

• Now, we define a game $G_1$ using $E_0\_RF$:

```plaintext
local module G1 (RF : RF) = {
 module E = E0_RF(RF)
 module A = Adv(E)

 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 E.init();
 (x1, x2) <$> A.choose();
 b <$> {0,1};
 c <$> E.genc(b ? x1 : x2);
 b' <$> A.guess(c);
 return b = b';
 }
}
```
Step 1: Replacing PRF with TRF

• Then it is easy to prove:

\[ \text{local lemma INDCPA}_\text{G1}_\text{PRF} \ &m : \\
    \Pr[\text{INDCPA}(\text{Enc}, \text{Adv})\text{.main()} @ &m : \text{res}] = \\
    \Pr[\text{G1}(\text{PRF})\text{.main()} @ &m : \text{res}] . \]

• To upper-bound

\[ | \Pr[\text{G1}(\text{PRF})\text{.main()} @ &m : \text{res}] - \\
    \Pr[\text{G1}(\text{TRF})\text{.main()} @ &m : \text{res}] | , \]

we need to construct a module \( \text{Adv2RFA} \) that transforms \( \text{Adv} \) into a random function adversary:

\[ \text{module Adv2RFA(Adv : ADV, RF : RF) = \{ } \]
\[ \quad \text{...} \]
\[ \quad \text{proc main(): bool = \{ ... \}} \]
\[ \text{\}}. \]
Step 1: Replacing PRF with TRF

• Our goal in defining Adv2RFA is for this lemma to be provable:

```
local lemma G1_GRF (RF <: RF{-E0_RF, -Adv, -Adv2RFA}) &m :
 Pr[G1(RF).main() @ &m : res] =
 Pr[GRF(RF, Adv2RFA(Adv)).main() @ &m : res].
```

• Recall the definition of GRF:

```
module GRF (RF : RF, RFA : RFA) = {
 module A = RFA(RF)
 proc main() : bool = {
 var b : bool;
 RF.init();
 b <@ A.main();
 return b;
 }
}.```

Step 1: Replacing PRF with TRF

module Adv2RFA(Adv : ADV, RF : RF) = {
 module EO : EO = { (* uses RF *)
 var ctr_pre : int
 var ctr_post : int

 proc init() : unit = {
 (* RF.init will be called by GRF *)
 ctr_pre <- 0; ctr_post <- 0;
 }
 }
}
Step 1: Replacing PRF with TRF

```plaintext
proc enc_pre(x : text) : cipher = {
    var u, v : text; var c : cipher;
    if (ctr_pre < limit_pre) {
        ctr_pre <- ctr_pre + 1;
        u <$ dtext;
        v @$ RF.f(u);
        c <- (u, x +^ v);
    } else {
        c <- (text0, text0);
    }
    return c;
}
```

identical to
EO_RF
(minus instrumentation)
Step 1: Replacing PRF with TRF

```plaintext
proc genc(x : text) : cipher = {
  var u, v : text; var c : cipher;
  u <$ dtext;
  v <$ RF.f(u);
  c <- (u, x +^ v);
  return c;
}
```

identical to
EO_RF
(minus instrumentation)
proc enc_post(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 u <$> dtext;
 v @$ RF.f(u);
 c <- (u, x +^ v);
 }
 else {
 c <- (text0, text0);
 }
 return c;
}

identical to

EO_RF
(minus instrumentation)
Step 1: Replacing PRF with TRF

module A = Adv(E0)

proc main(): bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init();
 (x1, x2) <@ A.choose();
 b <$ {0,1};
 c <@ EO.genc(b ? x1 : x2);
 b' <@ A.guess(c);
 return b = b';
}

Like G1, except Adv and main use EO instead of E0_RF(RF)
Step 1: Replacing PRF with TRF

• From

local lemma G1_GRF (RF <= RF{-E0_RF, -Adv, -Adv2RFA}) &m :
Pr[G1(RF).main() @ &m : res] =
Pr[GRF(RF, Adv2RFA(Adv)).main() @ &m : res].

we can conclude

Pr[INDCPA(Enc, Adv).main() @ &m : res] =
Pr[G1(PRF).main() @ &m : res] =
Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res]

and

Pr[G1(TRF).main() @ &m : res] =
Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]
Step 1: Replacing PRF with TRF

• Thus

\[
\text{local lemma INDCPA}_G_1_TRF \ &m : \\
\quad |Pr[\text{INDCPA}(Enc, Adv).main() @ &m : res] - \\
\quad \text{Pr}[G1(\text{TRF}).main() @ &m : res]| = \\
\quad |Pr[\text{GRF}(\text{PRF}, \text{Adv2RFA}(Adv)).main() @ &m : res] - \\
\quad \text{Pr}[\text{GRF}(\text{TRF}, \text{Adv2RFA}(Adv)).main() @ &m : res]|.
\]

• Here, we have an exact upper bound.
Step 2: Oblivious Update in \textit{genc}

- In Step 2, we make use of \textit{up to bad reasoning}, to transition to a game in which the encryption oracle, \textit{E0_0}, uses a true random function and \textit{genc} “obliviously” (“O” for “oblivious”) updates the true random function’s map — i.e., overwrites what may already be stored in the map.
Step 2: Oblivious Update in \textit{gend}

\begin{verbatim}
local module EO_0 : EO = {
 var ctr_pre : int
 var ctr_post : int
 var clash_pre : bool
 var clash_post : bool
 var genc_inp : text

 proc init() = {
 TRF.init();
 ctr_pre <- 0; ctr_post <- 0; clash_pre <- false;
 clash_post <- false; genc_inp <- text0;
 }
}
\end{verbatim}

don’t need \textit{inps_pre} — can use \textit{TRF_mp}'s domain
proc enc_pre(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 u <$ dtext;
 v @$ TRF.f(u);
 c <- (u, x +^ v);
 }
 else {
 c <- (text0, text0);
 }
 return c;
}
Step 2: Oblivious Update in \texttt{genc}

\begin{verbatim}
proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$> dtext;
 if (u \in TRF.mp) {
 clash_pre <- true;
 }
 genc_inp <- u;
 v <$> dtext;
 TRF.mp.[u] <- v;
 c <- (u, x +^ v);
 return c;
}
\end{verbatim}

can now use \texttt{TRF.mp}'s domain

what has changed from \texttt{E0_RF(TRF)}?
Step 2: Oblivious Update in \texttt{genc}

\begin{verbatim}
proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$ dtext;
 if (u \in TRF.mp) {
 clash_pre <- true;
 }
 genc_inp <- u;
 v <$ dtext;
 TRF.mp.[u] <- v;
 c <- (u, x ^+ v);
 return c;
}
\end{verbatim}

can now use \texttt{TRF.mp}'s domain

\begin{verbatim}
 oget (TRF.mp.[u]) would be used for \texttt{v} when \texttt{u} already in \texttt{TRF.mp}'s domain
\end{verbatim}
Step 2: Oblivious Update in \texttt{gen}\textsubscript{c}

\begin{verbatim}
proc enc_post(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 u <$ dtext;
 if (u = genc_inp) {
 clash_post <- true;
 }
 v <$> TRF.f(u);
 c <- (u, x ^+ v);
 } else {
 c <- (text0, text0);
 }
 return c;
}
\end{verbatim}
Step 2: Oblivious Update in genc

```
local module G2 = {
    module A = Adv(E0_0)

    proc main() : bool = {
        var b, b' : bool; var x1, x2 : text; var c : cipher;
        EO_0.init();
        (x1, x2) <$> A.choose();
        b <$> {0,1};
        c <$> EO_0.genc(b ? x1 : x2);
        b' <$> A.guess(c);
        return b = b';
    }
}.
```
local lemma G1_TRF_G2_main :
equiv
[G1(TRF).main ~ G2.main :
 ={glob Adv} ==>
 ={clash_pre}(EO_RF, E0_0) /
 (! E0_RF.clash_pre{1} => ={res})].

local lemma G2_main_clash_ub &m :
Pr[G2.main() @ &m : E0_0.clash_pre] <=
limit_pre%r / (2 ^ text_len)%r.

local lemma G1_TRF_G2 &m :
`|Pr[G1(TRF).main() @ &m : res] -
 Pr[G2.main() @ &m : res]| <=
limit_pre%r / (2 ^ text_len)%r.
Step 2: Oblivious Update in `gen

• Then we can use the triangular inequality to summarize:

```
local lemma INDCPA_G2 &m :
  `|Pr[INDCPA(Enc, Adv).main() @ &m : res] -
    Pr[G2.main() @ &m : res]| <=
  `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] -
    Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| +
  limit_pre%r / (2 ^ text_len)%r.
```
Step 3: Independent Choice in $\text{gen}c$

- In Step 3, we again make use of up to bad reasoning, this time transitioning to a game in which the encryption oracle, E_{0_I}, chooses the text value to be exclusive or-ed with the plaintext in a way that is “independent” (“I” for “independent”) from the true random function’s map, i.e., without updating that map.

- We no longer need to detect “pre” clashes (clashes in $\text{gen}c$ with a u chosen in a call to enc_pre).
Step 3: Independent Choice in \texttt{gend}

local module \texttt{EO_I} : EO = {
 var \texttt{ctr_pre} : int
 var \texttt{ctr_post} : int
 var \texttt{clash_post} : bool
 var \texttt{gend_inp} : text

 proc \texttt{init}() = {
 TRF.init();
 \texttt{ctr_pre} <- 0; \texttt{ctr_post} <- 0;
 \texttt{clash_post} <- false; \texttt{gend_inp} <- text0;
 }

 no longer need \texttt{clash_pre}
Step 3: Independent Choice in \texttt{gen}c

\begin{verbatim}
proc enc_pre(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 u <$ dtext;
 v @$ TRF.f(u);
 c <- (u, x ^+ v);
 }
 else {
 c <- (text0, text0);
 }
 return c;
}
\end{verbatim}

no changes from \texttt{EO_0}
Step 3: Independent Choice in \texttt{genc}

\begin{verbatim}
proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$ dtext;
 genc_inp <- u;
 v <$ dtext;
 (* removed: TRF.mp.[u] <- v; *)
 c <- (u, x +^ v);
 return c;
}
\end{verbatim}
Step 3: Independent Choice in \texttt{gen}

\begin{verbatim}
proc enc_post(x : text) : cipher = {
 var u, v : text; var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 u <$ dtext;
 if (u = genc_inp) {
 clash_post <- true;
 }
 v @$ TRF.f(u);
 c <- (u, x +^ v);
 }
 else {
 c <- (text0, text0);
 }
 return c;
}
\end{verbatim}
local module G3 = {
 module A = Adv(E0_I)

 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO_I.init();
 (x1, x2) <@ A.choose();
 b <$ {0,1};
 c <@ EO_I.genc(b ? x1 : x2);
 b' <@ A.guess(c); (* calls enc_post *)
 return b = b';
 }
}.}
Step 3: Independent Choice in \texttt{genc}

\begin{verbatim}
local lemma G2_G3_main :
equiv
[G2.main \sim G3.main :
 =\{glob Adv\} \implies
 =\{clash_post\}(E0_0, E0_I) \land
(! E0_0.clash_post\{1\} \implies =\{res\})].
\end{verbatim}

- The subtle issue with this proof is that after the calls to \texttt{E0_0.genc / E0_I.genc} the maps will almost certainly give different values to \texttt{genc_inp} — but if \texttt{clash_post} doesn’t get set, that won’t matter.

- Because the up to bad reasoning involves \texttt{Adv’s guess} procedure (which uses \texttt{enc_post}), we need that \texttt{guess} is lossless.
Step 3: Independent Choice in \texttt{genc}

local lemma G3_main_clash_ub &m :
 Pr[G3.main() @ &m : EO_I.clash_post] \leq
 \text{limit}_\text{post} / (2 \wedge \text{text}_\text{len}).

• This is proved using the \texttt{fel} (failure event lemma) tactic, which lets us upper-bound the probability that calling \texttt{Adv.guess} (which calls \texttt{EO_I.enc_post}) will cause \texttt{EO_I.clash_post} to be set.

• Until the limit \texttt{limit}_\text{post} is exceeded, each call of \texttt{EO_I.enc_post} has a $1 / (2 \wedge \text{text}_\text{len})$ chance of generating an input u to the true random function that clashes with \texttt{genc_inp}, and so of setting \texttt{EO_I.clash_post}.
Step 3: Independent Choice in \(\text{genc} \)

local lemma G2_G3 \&m :
\[
\left| \Pr[\text{G2.main()} @ \&m : \text{res}] - \Pr[\text{G3.main()} @ \&m : \text{res}] \right| \leq \frac{\text{limit_post}\%r}{(2 ^ \text{text_len})}\%r.
\]

local lemma INDCPA_G3 \&m :
\[
\left| \Pr[\text{INDCPA(Enc, Adv).main()} @ \&m : \text{res}] - \Pr[\text{G3.main()} @ \&m : \text{res}] \right| \leq \left| \Pr[\text{GRF(PRF, Adv2RFA(Adv)).main()} @ \&m : \text{res}] - \Pr[\text{GRF(TRF, Adv2RFA(Adv)).main()} @ \&m : \text{res}] \right| + \frac{\text{limit_pre}\%r}{(2 ^ \text{text_len})}\%r + \frac{\text{limit_post}\%r}{(2 ^ \text{text_len})}\%r.
\]
Step 3: Independent Choice in \textit{genc}

local lemma G2_G3 \&m :
 `|Pr[G2.main() @ \&m : res] - Pr[G3.main() @ \&m : res]| <= limit_post\%r / (2 ^ \text{text_len})\%r.

local lemma INDCPA_G3 \&m :
 `|Pr[INDCPA(Enc, Adv).main() @ \&m : res] - Pr[G3.main() @ \&m : res]| <=
 `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ \&m : res] - Pr[GRF(TRF, Adv2RFA(Adv)).main() @ \&m : res]| +
 (limit_pre\%r + limit_post\%r) / (2 ^ \text{text_len})\%r.
Step 4: One-time Pad Argument

• In Step 4, we can switch to an encryption oracle $E_{0,N}$ in which the right side of the ciphertext produced by $E_{0,N}.\text{genc}$ makes no (“N” for “no”) reference to the plaintext.

• We no longer need any instrumentation for detecting clashes.
Step 4: One-time Pad Argument

local module EO_N : EO = {
 var ctr_pre : int
 var ctr_post : int

 proc init() = {
 TRF.init();
 ctr_pre <- 0; ctr_post <- 0;
 }
}
Step 4: One-time Pad Argument

```
proc enc_pre(x : text) : cipher = {
    var u, v : text; var c : cipher;
    if (ctr_pre < limit_pre) {
        ctr_pre <- ctr_pre + 1;
        u <$ dtext;
        v <$> TRF.f(u);
        c <- (u, x ^ v);
    }
    else {
        c <- (text0, text0);
    }
    return c;
}
```
Step 4: One-time Pad Argument

```plaintext
proc genc(x : text) : cipher = {
  var u, v : text; var c : cipher;
  u <$ dtext;
  v <$ dtext;
  (* was: c <- (u, x +^ v); *)
  c <- (u, v);
  return c;
}
```

what is odd now?
Step 4: One-time Pad Argument

proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$ dtext;
 v <$ dtext;
 (* was: c <- (u, x +^ v); *)
 c <- (u, v);
 return c;
}

\(C\) is independent from \(x\)
Step 4: One-time Pad Argument

```
proc enc_post(x : text) : cipher = {
    var u, v : text; var c : cipher;
    if (ctr_post < limit_post) {
        ctr_post <- ctr_post + 1;
        u <$ dtext;
        v <@ TRF.f(u);
        c <- (u, x +^ v);
    }
    else {
        c <- (text0, text0);
    }
    return c;
}
```
local module G4 = {
 module A = Adv(E0_N)
}

proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO_N.init();
 (x1, x2) <+ A.choose();
 b <$ {0,1};
 c <+ EO_N.genc(text0);
 b' <+ A.guess(c);
 return b = b';
}.

what is different, here?
Step 4: One-time Pad Argument

local module G4 = {
 module A = Adv(EO_N)

 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO_N.init();
 (x1, x2) <$> A.choose();
 b <$> {0,1};
 c <$> EO_N.genc(text0);
 b' <$> A.guess(c);
 return b = b';
 }
}.

argument to genc is irrelevant
Step 4: One-time Pad Argument

• When proving

\[
\text{local lemma EO}_I_EO_N_genc :
\text{equiv[EO}_I\text{.genc }\sim \text{ EO}_N\text{.genc :}
\text{true }\implies =\{\text{res}\}].
\]

we apply a standard one-time pad use of the \texttt{rnd} tactic to show that

\[
v \<$ \texttt{dtext};
\]
\[
c \leftarrow (u, x +\texttt{^} v);
\]

is equivalent to

\[
v \<$ \texttt{dtext};
\]
\[
c \leftarrow (u, v);
\]
Step 4: One-time Pad Argument

local lemma G3_G4 &m :
 Pr[G3.main() @ &m : res] = Pr[G4.main() @ &m : res].

local lemma INDCPA_G4 &m :
 \(|Pr[INDCPA(Enc, Adv).main() @ &m : res] - Pr[G4.main() @ &m : res]| \leq |
 Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] - Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| +
 (\text{limit_pre%r} + \text{limit_post%r}) / (2 ^ \text{text_len})%r.\)
Step 5: Proving G_4’s Probability

- When proving

\[
\text{local lemma } G4_\text{prob } \&m : \\
\Pr[G4.\text{main}() \oplus \&m : \text{res}] = \frac{1}{2}.
\]

we can reorder

\[
\begin{align*}
 b &\leftarrow \{0,1\}; \\
 c &\leftarrow \text{EO}_N.\text{genc}(\text{text0}); \\
 b' &\leftarrow A.\text{guess}(c); \\
 \text{return } b = b';
\end{align*}
\]

to

\[
\begin{align*}
 c &\leftarrow \text{EO}_N.\text{genc}(\text{text0}); \\
 b' &\leftarrow A.\text{guess}(c); \\
 b &\leftarrow \{0,1\}; \\
 \text{return } b = b';
\end{align*}
\]

- We use that Adv’s procedures are lossless.
IND-CPA Security Result

lemma INDCPA' &m :
 `|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| <=
 `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] - Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| + (limit_pre%r + limit_post%r) / (2 ^ text_len)%r.

end section.

• When we exit the section, the universal quantification of Adv, and the assumptions that its procedures are lossless are automatically added to INDCPA’. By moving the quantification over &m to before the losslessness assumptions, we get our security result:
IND-CPA Security Result

lemma INDCPA (Adv <: ADV{¬EncO, ¬PRF, ¬TRF, ¬Adv2RFA}) &m :
 (forall (EO <: EO{¬Adv}),
 islossless EO.enc_pre => islossless Adv(EO).choose) =>
 (forall (EO <: EO{¬Adv}),
 islossless EO.enc_post => islossless Adv(EO).guess) =>
 `\left| \Pr[\text{INDCPA}(Enc, Adv).main() @ &m : res] - \right.\right|
 1\%r / 2\%r\right| \leq
 `\left| \Pr[\text{GRF}(PRF, Adv2RFA(Adv)).main() @ &m : res] -
 \Pr[\text{GRF}(TRF, Adv2RFA(Adv)).main() @ &m : res]\right| +
 (\text{limit_pre}\%r + \text{limit_post}\%r) / (2 ^ \text{text_len})\%r.

• Q: How small is this upper bound?

• A: We can make assumptions about the goodness of the PRF F, the efficiency of Adv (and inspect $Adv2RFA$ to see it too is efficient), and we can tune limit_pre, limit_post and text_len.
lemma INDCPA (Adv <: ADV{¬EncO, ¬PRF, ¬TRF, ¬Adv2RFA}) &m :
(forall (EO <: EO{¬Adv}),
 islossless EO.enc_pre => islossless Adv(EO).choose) =>
(forall (EO <: EO{¬Adv}),
 islossless EO.enc_post => islossless Adv(EO).guess) =>
`\Pr[\text{INDCPA}(\text{Enc}, \text{Adv}).\text{main}()] @ \&m : \text{res}] -
1/%r / 2/%r| <=
`\Pr[\text{GRF}(\text{PRF}, \text{Adv2RFA}(\text{Adv})).\text{main}()] @ \&m : \text{res}] -
\Pr[\text{GRF}(\text{TRF}, \text{Adv2RFA}(\text{Adv})).\text{main}()] @ \&m : \text{res}]| +
(limit_pre%r + limit_post%r) / (2 ^ \text{text_len})%r.

• Q: If we remove the restriction on Adv (¬EncO, ¬PRF, ¬TRF, ¬Adv2RFA), what would happen?

• A: Various tactic applications would fail; e.g., calls to the Adv’s procedures, as they could invalidate assumptions.
lemma INDCPA (Adv <: ADV{¬EncO, ¬PRF, ¬TRF, ¬Adv2RFA}) &m :
 (forall (EO <: EO{¬Adv}),
 islossless EO.enc_pre => islossless Adv(EO).choose) =>
 (forall (EO <: EO{¬Adv}),
 islossless EO.enc_post => islossless Adv(EO).guess) =>
 `|Pr[IND CPA(Enc, Adv).main() @ &m : res] -
 1%r / 2%r| <=
 `|Pr[GRF(PRF, Adv2RFA(Adv)).main() @ &m : res] -
 Pr[GRF(TRF, Adv2RFA(Adv)).main() @ &m : res]| +
 (limit_pre%r + limit_post%r) / (2 ^ text_len)%r.

• Q: If we remove the losslessness assumptions, what would happen?

• A: Up to bad reasoning and proof that G4.main returns true with probability 1%r / 2%r would fail.
IND-CPA Security Result

• Q: Why did we start our sequence of games by switching from using the PRF \(F \) to using a true random function?

• A: We need true randomness for one-time pad argument.

```plaintext
proc genc(x : text) : cipher = {
    var u, v : text; var c : cipher;
    u <$ dtext;
    if (u \in TRF.mp) {
        clash_pre <- true;
    }
    genc_inp <- u;
    v <$ dtext;
    TRF.mp.[u] <- v;
    c <- (u, x ^ v);
    return c;
}
```

We could have still been using `inps_pre`
IND-CPA Security Result

proc genc(x : text) : cipher = {
 var u, v : text; var c : cipher;
 u <$ dtext;
 genc_inp <- u;
 v <$ dtext;
 (* removed: TRF.mp.[u] <- v; *)
c <- (u, x +^ v);
 return c;
}

now, \(v \) is only used once, so we can use one-time pad technique
IND-CPA Security Result

```plaintext
proc genc(x : text) : cipher = {
    var u, v : text; var c : cipher;
    u <$ dtext;
    v <$ dtext;
    c <- (u, v);
    return c;
}
```

Lets us prove G_4 returns $true$ with probability $\frac{1}{2^r}$.

EO_N
Questions?