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Formal Semantics

Precondition
Program 

Postcondition

formal semantics 
of programs

We need to assign a formal meaning to the different 
components: formal semantics 

of specification 
conditions

formal semantics 
of specification 

conditionsWe also need to describe the rules 
which combine program and 

specifications.



Programming Language
c::= abort                   
   | skip                 
   | x:=e 
   | c;c 
   | if e then c else c  
   | while e do c 

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands



Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip 

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip 

where

and



Hoare triple

Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)



Rules of Hoare Logic: 

⊢skip: P⇒P ⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P



Information Flow Control 
And 

Relational Hoare Logic 
(RHL) 



Some Examples of Security 
Properties

• Access Control 
• Encryption 
• Malicious Behavior Detection 
• Information Filtering 
• Information Flow Control



Some Examples of Security 
Properties

• Access Control 
• Encryption 
• Malicious Behavior Detection 
• Information Filtering 
• Information Flow Control



Private vs Public
We want to distinguish confidential information 
that need to be kept secret from nonconfidential 
information that can be accessed by everyone.

We assume that every variable is tagged with 
one either public or private. 

x:public x:private



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.



Information Flow Control
We want to guarantee that  confidential 
information do not flow in what is considered 
nonconfidential.

public public

private private



Is this program secure?

x:private 
y:public 

x:=y



Is this program secure?

x:private 
y:public 

x:=y

Secure



Is this program secure?

x:private 
y:public 

y:=x



Is this program secure?

x:private 
y:public 

y:=x

Insecure



Is this program secure?

x:private 
y:public 

y:=x; 
y:=5



Is this program secure?

x:private 
y:public 

y:=x; 
y:=5

Secure



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0



Is this program secure?
x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Secure



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0



Is this program secure?
x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

Insecure



How can we formulate a 
policy that forbids flows 
from private to public?



Low equivalence
Two memories m1 and m2 are low 
equivalent if and only if they coincide in 
the value that they assign to public 
variables.

In symbols: m1 ~low m2



Noninterference
A program prog is noninterferent if and 
only if, whenever we run it on two low 
equivalent memories m1 and m2 we have 
that: 
1) Either both terminate or both non-

terminate 
2) If they both terminate we obtain two 

low equivalent memories m1’ and m2’.



Noninterference
In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

public public

private private



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y
Yes



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y
Yes

min1=[x=n1,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=k,y=k] mout2=[x=k,y=k]



x:private 
y:public 

y:=x

Does this program satisfy 
noninterference?



x:private 
y:public 

y:=x

No

Does this program satisfy 
noninterference?



x:private 
y:public 

y:=x

No

Does this program satisfy 
noninterference?

min1=[x=n1,y=k]



x:private 
y:public 

y:=x

No

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]



x:private 
y:public 

y:=x

No

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=n1] mout2=[x=n2,y=n2]



x:private 
y:public 

y:=x 
y:=5

Does this program satisfy 
noninterference?



x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?



x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?

min1=[x=n1,y=k]



x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]



x:private 
y:public 

y:=x 
y:=5

Yes

Does this program satisfy 
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=5] mout2=[x=n2,y=5]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if y mod 3 = 0 then 
 x:=1 
else 
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

mout1=[x=1,y=6] mout2=[x=1,y=6]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]



Does this program satisfy 
noninterference?

x:private 
y:public 
if x mod 3 = 0 then 
 y:=1 
else 
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

mout1=[x=6,y=1] mout2=[x=5,y=0]



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program satisfy 
noninterference?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1

Does this program satisfy 
noninterference?

No



How can we prove our 
programs noninterferent?



Noninterference

Is this condition easy to check?

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Precondition
Program 

Postcondition c : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Can we use the tool we 
studied so far?



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).



Validity of Hoare triple
We say that the triple c:P⇒Q is valid 

if and only if  
for every memory m such that P(m) 
and memory m’ such that {c}m=m’ 
we have Q(m’).

Validity talks only about one 
memory. How can we manage 

two memories?



Relational Property
In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V

U2

U1

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩



Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables 
of the two memories 

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which  
memory we are referring to.



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).



Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
1) {c1}m1=⊥ iff {c2}m2=⊥ 
2) {c1}m1=m1’and{c2}m2=m2’ implies 
Q(m1’,m2’).

Is this easy to check?



Rules of Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



Correctness of an axiom
We say that an  axiom is correct if we can prove 
the validity of each instance of  the conclusion.



Correctness of an axiom
We say that an  axiom is correct if we can prove 
the validity of each instance of  the conclusion.

Is this still good for RHL?



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

⊢skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’, 
m2’ such that {skip}m1=m1’ and {skip}m2=m2’ 
we need P(m1’,m2’).

⊢skip~skip:P⇒P



Correctness of Skip Rule

To show this rule correct we need to show the 
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’, 
m2’ such that {skip}m1=m1’ and {skip}m2=m2’ 
we need P(m1’,m2’).

Follow easily by our semantics: 
{skip}m=m  

⊢skip~skip:P⇒P



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the 
validity of the quadruple abort~abort:T⇒F.



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the 
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can 
show {abort}m1=⊥ iff {abort}m2=⊥.



Rules of Relational Hoare Logic 
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the 
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can 
show {abort}m1=⊥ iff {abort}m2=⊥.

Follow easily by our semantics: 
{abort}m=⊥  



Rules of Relational Hoare Logic 
Assignment

⊢x1:=e1~x2:=e2:  
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P



Rules of Relational Hoare Logic 
Assignment Example

⊢x:=x+1 ~ y:=y-1:  
 x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>



Rules of Relational Hoare Logic 
Assignment Example

⊢x:=x+1 ~ y:=y-1: 
(x<1> = -y<2>) 
[(x<1>+1)/x<1>,(y<2>-1)/y<2>] 
 ⇒ 
x<1> = -y<2>



Rules of Relational Hoare Logic 
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R



Consequence + Assignment 
Example

⊢x:=x+1 ~ y:=y-1:  
 x<1>=-y<2> ⇒ x<1>=-y<2>



Consequence + Assignment 
Example

⊢x:=x+1 ~ y:=y-1:  
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:  
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)



Rules of Relational Hoare Logic 
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S



Rules of Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Is this correct?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒ 
   
     {x<1>=n+1}

An example

Is this a valid quadruple?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒ 
   
     {x<1>=n+1}

An example

Is this a valid quadruple? ✗



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒ 
   
     {x<1>=n+1}

An example

Is this a valid quadruple? ✗
Can we prove it with the 

rule above?



if true then skip else x:=x+1  
          ~ 
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒ 
   
     {x<1>=n+1}

An example

Is this a valid quadruple? ✗
✓Can we prove it with the 

rule above?



Rules of Relational Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>



Rules of Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>



How can we prove this?
x:private 
y:public 

x:=y 

: =low ⇒ =low



x:private 
y:public 

y:=x 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

y:=x 

: =low ⇒ =low

How can we prove this?

Can we prove it?



x:private 
y:public 

y:=x 
y:=5 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if y mod 3 = 0 then 
 x:=1 
else 
 x:=0 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?

Can we prove it?



Rules of Relational Hoare Logic 
If then else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>



Rules of Relational Hoare Logic 
If then else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2:e<1> ⋀ P ⇒ Q
⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



x:private 
y:public 

if x mod 3 = 0 then 
 y:=1 
else 
 y:=1 

: =low ⇒ =low

How can we prove this?



Rules of Relational Hoare-Logic 
One-sided Rules

What do we do if our two programs 
have different forms? There are 
three pairs of one-sided rules.



Rules of Relational Hoare Logic 
If-then-else — left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
If-then-else — right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Rules of Relational Hoare Logic 
Assignment — left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



Rules of Relational Hoare Logic 
Assignment — right

⊢skip ~ x:=e:  
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll 
ignore for now



Rules of Relational Hoare-Logic 
Rules for Program Equivalence

RHL also has some rules allowing 
one to reason modulo program 
equivalence - we will not see there 
here.



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n /\ r=0 do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?



s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1 

: n>0 /\ =low ⇒ =low

How can we prove this?



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Probabilistic Language



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic While (PWhile)
c::= abort                   
   | skip                 
   | x:= e 
   | x:=$ d 
   | c;c 
   | if e then c else c  
   | while e do c 

d1,d2,… probabilistic expressions



Probabilistic Expressions
We extend the language with expression describing probability 
distributions. 

Where f is a distribution declaration

d::= f(e1,…,en,d1,…,dk)                

Some expression examples

uniform({0,1}n) gaussian(k,σ) laplace(k,b)



Semantics of Probabilistic 
Expressions

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

but is the result just a value?



Probabilistic Subdistributions
A discrete subdistribution over a set A is a function  
µ : A → [0, 1]  
such that the mass of µ, 

  

verifies |µ| ≤ 1.  

The support of a discrete subdistribution µ, 
supp(µ) = {a ∈ A | µ(a) > 0}  
is necessarily countable, i.e. finite or countably infinite.  

We will denote the set of sub-distributions over A by D(A), 
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).  

|μ | = ∑
a∈A

μ(a)



Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution. 

We define the probability of an event E⊆A with respect to 
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)



Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following 
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.



Operations over  
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the 
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)



Operations over  
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function  
M:A → D(B) then we can define their composition by means 
of an expression  let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]



Semantics of Probabilistic 
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over 
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)



Semantics of PWhile 
Commands

What is the meaning of the following command?

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of PWhile 
Commands

What is the meaning of the following command?

We can give the semantics as a function between command, 
memories and subdistributions over memories.

We will denote this relation as:

Cmd * Mem → D(Mem)

{c}m=µ

k:=$ uniform({0,1}n); z:= x mod k;



Semantics of Commands
This is defined on the structure of commands:
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Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])
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How did we handle the deterministic case?



Semantics of While
What about while

{while e do c}m = ???

How did we handle the deterministic case?



Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’

Where



Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn = 
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Is this well defined?
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{skip}m = unit(m)
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Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages. 

How do we formalize this?



Probabilistic Noninterference

A program prog is probabilistically 
noninterferent if and only if, whenever 
we run it on two low equivalent 
memories m1 and m2 we have that the 
probabilistic distributions we get as 
outputs are the same on public outputs. 


