
Marco Gaboardi
Boston University
gaboardi@bu.edu

Formal Reasoning for Security
and Privacy  
Lecture 2

Formal Semantics

Precondition
Program

Postcondition

formal semantics
of programs

We need to assign a formal meaning to the different
components: formal semantics

of specification
conditions

formal semantics
of specification

conditionsWe also need to describe the rules
which combine program and

specifications.

Programming Language
c::= abort
 | skip
 | x:=e
 | c;c
 | if e then c else c
 | while e do c

x,y,z,… program variables

e1,e2,… expressions

c1,c2,… commands

Semantics of Commands
This is defined on the structure of commands:
{abort}m = ⊥
{skip}m = m

{c;c’}m = {c’}m’ {c}m = m’If

{c;c’}m = ⊥ {c}m = ⊥If

{x:=e}m = m[x←{e}m]

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{while e do c}m =supn∊Nat{whilen e do c}m

whilen e do c = whilen e do c;if e then abort else skip

while0 e do c = skip
whilen+1 e do c = if e then (c;whilen e do c) else skip

where

and

Hoare triple

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Rules of Hoare Logic:

⊢skip: P⇒P ⊢x:=e : P[e/x]⇒P

⊢c;c’: P⇒Q
⊢c:P⇒R ⊢c’:R⇒Q

⊢c: P⇒Q
⊢c:S⇒RP⇒S R⇒Q

⊢if e then c1 else c2 : P⇒Q
⊢c1:e ⋀ P ⇒ Q ⊢c2:¬e ⋀ P ⇒ Q

⊢while e do c : P ⇒ P ⋀ ¬e
⊢c : e ⋀ P ⇒ P

Information Flow Control
And

Relational Hoare Logic
(RHL)

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Some Examples of Security
Properties

• Access Control
• Encryption
• Malicious Behavior Detection
• Information Filtering
• Information Flow Control

Private vs Public
We want to distinguish confidential information
that need to be kept secret from nonconfidential
information that can be accessed by everyone.

We assume that every variable is tagged with
one either public or private.

x:public x:private

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

Information Flow Control
We want to guarantee that confidential
information do not flow in what is considered
nonconfidential.

public public

private private

Is this program secure?

x:private
y:public

x:=y

Is this program secure?

x:private
y:public

x:=y

Secure

Is this program secure?

x:private
y:public

y:=x

Is this program secure?

x:private
y:public

y:=x

Insecure

Is this program secure?

x:private
y:public

y:=x;
y:=5

Is this program secure?

x:private
y:public

y:=x;
y:=5

Secure

Is this program secure?
x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Is this program secure?
x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

Secure

Is this program secure?
x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

Is this program secure?
x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=0

Insecure

How can we formulate a
policy that forbids flows
from private to public?

Low equivalence
Two memories m1 and m2 are low
equivalent if and only if they coincide in
the value that they assign to public
variables.

In symbols: m1 ~low m2

Noninterference
A program prog is noninterferent if and
only if, whenever we run it on two low
equivalent memories m1 and m2 we have
that:
1) Either both terminate or both non-

terminate
2) If they both terminate we obtain two

low equivalent memories m1’ and m2’.

Noninterference
In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

public public

private private

Does this program satisfy
noninterference?

x:private
y:public

x:=y

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k]

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]

Does this program satisfy
noninterference?

x:private
y:public

x:=y
Yes

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=k,y=k] mout2=[x=k,y=k]

x:private
y:public

y:=x

Does this program satisfy
noninterference?

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k]

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

x:private
y:public

y:=x

No

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=n1] mout2=[x=n2,y=n2]

x:private
y:public

y:=x
y:=5

Does this program satisfy
noninterference?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k]

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

x:private
y:public

y:=x
y:=5

Yes

Does this program satisfy
noninterference?

min1=[x=n1,y=k] min2=[x=n2,y=k]

mout1=[x=n1,y=5] mout2=[x=n2,y=5]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if y mod 3 = 0 then
 x:=1
else
 x:=0

Yes

min1=[x=n1,y=6] min2=[x=n2,y=6]

mout1=[x=1,y=6] mout2=[x=1,y=6]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

Does this program satisfy
noninterference?

x:private
y:public
if x mod 3 = 0 then
 y:=1
else
 y:=0

No

min1=[x=6,y=k] min2=[x=5,y=k]

mout1=[x=6,y=1] mout2=[x=5,y=0]

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Does this program satisfy
noninterference?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Does this program satisfy
noninterference?

No

How can we prove our
programs noninterferent?

Noninterference

Is this condition easy to check?

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Precondition
Program

Postcondition c : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Can we use the tool we
studied so far?

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity of Hoare triple
We say that the triple c:P⇒Q is valid

if and only if
for every memory m such that P(m)
and memory m’ such that {c}m=m’
we have Q(m’).

Validity talks only about one
memory. How can we manage

two memories?

Relational Property
In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V

U2

U1

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U2

U1 O1

O2

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Logic - RHL

Precondition
Program1 ~ Program2

Postcondition
c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Relational Assertions
c1 ∼ c2 : P ⇒ Q

Need to talk about variables
of the two memories

c1 ∼ c2 : x⟨1⟩ ≤ x⟨2⟩ ⇒ x⟨1⟩ ≥ x⟨2⟩

Tags describing which
memory we are referring to.

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Validity of Hoare quadruple
We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
1) {c1}m1=⊥ iff {c2}m2=⊥
2) {c1}m1=m1’and{c2}m2=m2’ implies
Q(m1’,m2’).

Is this easy to check?

Rules of Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

Correctness of an axiom
We say that an axiom is correct if we can prove
the validity of each instance of the conclusion.

Correctness of an axiom
We say that an axiom is correct if we can prove
the validity of each instance of the conclusion.

Is this still good for RHL?

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

⊢skip~skip:P⇒P

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’,
m2’ such that {skip}m1=m1’ and {skip}m2=m2’
we need P(m1’,m2’).

⊢skip~skip:P⇒P

Correctness of Skip Rule

To show this rule correct we need to show the
validity of the quadruple skip~skip: P⇒P.

For every m1,m2 such that P(m1,m2) and m1’,
m2’ such that {skip}m1=m1’ and {skip}m2=m2’
we need P(m1’,m2’).

Follow easily by our semantics:
{skip}m=m

⊢skip~skip:P⇒P

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can
show {abort}m1=⊥ iff {abort}m2=⊥.

Rules of Relational Hoare Logic
Abort

⊢abort~abort:true⇒false
To show this rule correct we need to show the
validity of the quadruple abort~abort:T⇒F.

For every m1,m2 such that P(m1,m2) we can
show {abort}m1=⊥ iff {abort}m2=⊥.

Follow easily by our semantics:
{abort}m=⊥

Rules of Relational Hoare Logic
Assignment

⊢x1:=e1~x2:=e2:
P[e1<1>/x1<1>,e2<2>/x2<2>]⇒P

Rules of Relational Hoare Logic
Assignment Example

⊢x:=x+1 ~ y:=y-1:
 x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

Rules of Relational Hoare Logic
Assignment Example

⊢x:=x+1 ~ y:=y-1:
(x<1> = -y<2>)
[(x<1>+1)/x<1>,(y<2>-1)/y<2>]
 ⇒
x<1> = -y<2>

Rules of Relational Hoare Logic
Consequence

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Consequence + Assignment
Example

⊢x:=x+1 ~ y:=y-1:
 x<1>=-y<2> ⇒ x<1>=-y<2>

Consequence + Assignment
Example

⊢x:=x+1 ~ y:=y-1:
x<1>+1=-(y<2>-1) ⇒ x<1>=-y<2>

⊢x:=x+1 ~ y:=y-1:
 x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>=-y<2>

x<1>=-y<2> ⇒ x<1>+1=-(y<2>-1)

Rules of Relational Hoare Logic
Composition

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S

⊢c1;c1’~c2;c2’:P⇒S

Rules of Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1> ⋀ e2<2> ⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1> ⋀ ¬e2<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Is this correct?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒

 {x<1>=n+1}

An example

Is this a valid quadruple?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒

 {x<1>=n+1}

An example

Is this a valid quadruple? ✗

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒

 {x<1>=n+1}

An example

Is this a valid quadruple? ✗
Can we prove it with the

rule above?

if true then skip else x:=x+1
 ~
if false then x:=x+1 else skip

⊢ :{x<1>=n}⇒

 {x<1>=n+1}

An example

Is this a valid quadruple? ✗
✓Can we prove it with the

rule above?

Rules of Relational Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

Rules of Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

Invariant

:P⇒P⋀¬e1<1>⊢

P ⇒ e1<1>=e2<2>

How can we prove this?
x:private
y:public

x:=y

: =low ⇒ =low

x:private
y:public

y:=x

: =low ⇒ =low

How can we prove this?

x:private
y:public

y:=x

: =low ⇒ =low

How can we prove this?

Can we prove it?

x:private
y:public

y:=x
y:=5

: =low ⇒ =low

How can we prove this?

x:private
y:public

if y mod 3 = 0 then
 x:=1
else
 x:=0

: =low ⇒ =low

How can we prove this?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

Can we prove it?

Rules of Relational Hoare Logic
If then else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2:e1<1>⋀ P ⇒ Q
⊢c1’~c2’:¬e1<1>⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ e1<1>=e2<2>

Rules of Relational Hoare Logic
If then else - left

if e then c1 else c1’
 ~
 c2

⊢c1~c2:e<1> ⋀ P ⇒ Q
⊢c1’~c2:¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

x:private
y:public

if x mod 3 = 0 then
 y:=1
else
 y:=1

: =low ⇒ =low

How can we prove this?

Rules of Relational Hoare-Logic
One-sided Rules

What do we do if our two programs
have different forms? There are
three pairs of one-sided rules.

Rules of Relational Hoare Logic
If-then-else — left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
If-then-else — right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Rules of Relational Hoare Logic
Assignment — left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

Rules of Relational Hoare Logic
Assignment — right

⊢skip ~ x:=e:
 P[e<2>/x<2>] ⇒ P

Also pair of one-sided rules for while — we’ll
ignore for now

Rules of Relational Hoare-Logic
Rules for Program Equivalence

RHL also has some rules allowing
one to reason modulo program
equivalence - we will not see there
here.

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n /\ r=0 do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ ¬(=low)

How can we prove this?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

: n>0 /\ =low ⇒ =low

How can we prove this?

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Relative Completeness

If a quadruple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Probabilistic Language

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Probabilistic While (PWhile)
c::= abort
 | skip
 | x:= e
 | x:=$ d
 | c;c
 | if e then c else c
 | while e do c

d1,d2,… probabilistic expressions

Probabilistic Expressions
We extend the language with expression describing probability
distributions.

Where f is a distribution declaration

d::= f(e1,…,en,d1,…,dk)

Some expression examples

uniform({0,1}n) gaussian(k,σ) laplace(k,b)

Semantics of Probabilistic
Expressions

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

but is the result just a value?

Probabilistic Subdistributions
A discrete subdistribution over a set A is a function
µ : A → [0, 1]
such that the mass of µ,

verifies |µ| ≤ 1.

The support of a discrete subdistribution µ,
supp(µ) = {a ∈ A | µ(a) > 0}
is necessarily countable, i.e. finite or countably infinite.

We will denote the set of sub-distributions over A by D(A),
and say that µ is of type D(A) denoted µ:D(A) if µ ∈ D(A).

|μ | = ∑
a∈A

μ(a)

Probabilistic Subdistributions
We call a subdistribution with mass exactly 1, a distribution.

We define the probability of an event E⊆A with respect to
the subdistribution µ:D(A) as

ℙμ[E] = ∑
a∈E

μ(a)

Probabilistic Subdistributions
Let’s consider µ∈D(A), and E⊆A, we have the following
properties

ℙμ[A] ≤ 1

ℙμ[∅] = 0

0 ≤ ℙμ[E] ≤ 1

 E⊆F⊆A implies ℙμ[E] ≤ ℙμ[F]

 E⊆A and F⊆A implies ℙμ[E ∪ F] ≤ ℙμ[E] + ℙμ[F] − ℙμ[E ∩ F]

We will denote by O the subdistribution µ defined as constant 0.

Operations over
Probabilistic Subdistributions

Let’s consider an arbitrary a∈A, we will often use the
distribution unit(a) defined as:

ℙunit(a)[{b}] ={ 1 if a=b

0 otherwise

We can think about unit as a function of type unit:A → D(A)

Operations over
Probabilistic Subdistributions

Let’s consider a distribution µ∈D(A), and a function
M:A → D(B) then we can define their composition by means
of an expression let a =µ in M a defined as:

ℙlet a =µ in M a[E] = ∑
a∈supp(µ)

ℙμ[{a}] ⋅ ℙ(Ma)[E]

Semantics of Probabilistic
Expressions - revisited

We would like to define it on the structure:

{f(e1,…,en,d1,…,dk)}m = {f}({e1}m,…,{en}m,{d1}m,…,{dk}m)

With input a memory m and output a subdistribution µ∈D(A) over
the corresponding type A. E.g.

{uniform({0,1}n)}m∈D({0,1}n)

{gaussian(k,σ)}m∈D(Real)

Semantics of PWhile
Commands

What is the meaning of the following command?

k:=$ uniform({0,1}n); z:= x mod k;

Semantics of PWhile
Commands

What is the meaning of the following command?

We can give the semantics as a function between command,
memories and subdistributions over memories.

We will denote this relation as:

Cmd * Mem → D(Mem)

{c}m=µ

k:=$ uniform({0,1}n); z:= x mod k;

Semantics of Commands
This is defined on the structure of commands:

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

Semantics of While
What about while

How did we handle the deterministic case?

Semantics of While
What about while

{while e do c}m = ???

How did we handle the deterministic case?

Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Semantics of While

{while e do c}m =supn∊Nat µn

We defined it as

µn =
let m’={(whilen e do c)}m in {if e then abort}m’

Where

Is this well defined?

Semantics of Commands
This is defined on the structure of commands:

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf
{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O
{skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m ={ct}m {e}m=trueIf
{if e then ct else cf}m ={cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn=let m’={(whilen e do c)}m in {if e then abort}m’

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

How do we formalize this?

Probabilistic Noninterference

A program prog is probabilistically
noninterferent if and only if, whenever
we run it on two low equivalent
memories m1 and m2 we have that the
probabilistic distributions we get as
outputs are the same on public outputs.

