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Cryptographic Security
• Cryptographic schemes (e.g., encryption) and protocols 

(e.g., key-exchange) can be specified at a high-level using 
our Probabilistic While (pWhile) language. 
• They generally make use of randomness, which can be 

modeled by random assignments from (sub-)distributions. 
• When these high-level specifications are implemented, 

this randomness must be realized using pseudorandom 
number generators, whose seeds make use of 
randomness from the underlying operating system. 

• They also often make use of primitives like pseudorandom 
functions (PRFs). 
• These primitives must also be implemented; e.g., PRFs 

can be implemented using hash functions like SHA-?.
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Cryptographic Security
• Our focus in this course will be at the specification level. 
• But there is research that addresses how to specify and prove 

the security of implementations of cryptographic schemes 
and protocols.
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pWhile in EasyCrypt
• E.g., here is a pWhile procedure that exclusive-ors two 

booleans chosen from the uniform distribution on booleans 
(each of true and false will be chosen with probability 1/2): 

module M = { 
  proc f() : bool = { 
    var x, y : bool; 
    x <$ {0,1}; y <$ {0,1}; 
    return x ^^ y; 
  } 
}. 

• And here is how we can state the lemma that M.f() returns 
true with probability 1/2 no matter what memory it’s run in: 

lemma M_f_true &m : 
  Pr[M.f() @ &m : res] = 1%r / 2%r. 
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Building Encryption from PRF + Randomness
• Our running example will be a symmetric encryption scheme 

built out of a pseudorandom function plus randomness. 
• Symmetric encryption means the same key is used for both 

encryption and decryption. 
• We’ll first define when a symmetric encryption scheme is 

secure under indistinguishability under chosen plaintext 
attack (IND-CPA). 

• Next we’ll define our instance of this scheme, and informally 
analyze adversaries’ strategies for breaking security.  

• We’ll return later in the course (in lecture and/or lab) to look at 
the proof in EasyCrypt of the IND-CPA security of our 
scheme.
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Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is 

parameterized by three types: 
type key.  (* encryption keys, key_len bits *) 
type text.  (* plaintexts, text_len bits *) 
type cipher.  (* ciphertexts - scheme specific *) 

• An encryption scheme is a stateless implementation of this 
module interface: 

module type ENC = { 
  proc key_gen() : key  (* key generation *) 
  proc enc(k : key, x : text) : cipher  (* encryption *) 
  proc dec(k : key, c : cipher) : text  (* decryption *) 
}. 
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Scheme Correctness
• An encryption scheme is correct if and only if the following 

procedure returns true with probability 1 for all arguments: 
module Cor (Enc : ENC) = { 
  proc main(x : text) : bool = { 
    var k : key; var c : cipher; var y : text; 
    k <@ Enc.key_gen(); 
    c <@ Enc.enc(k, x); 
    y <@ Enc.dec(k, c); 
    return x = y; 
  } 
}. 

• The module Cor is parameterized (may be applied to) an 
arbitrary encryption scheme, Enc.
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Encryption Oracles
• To define IND-CPA security of encryption schemes, we need 

the notion of an encryption oracle, which both the adversary 
and IND-CPA game will interact with: 

module type EO = { 
  (* initialization - generates key *) 
  proc * init() : unit 
  (* encryption by adversary before game's encryption *) 
  proc enc_pre(x : text) : cipher 
  (* one-time encryption by game *) 
  proc genc(x : text) : cipher 
  (* encryption by adversary after game's encryption *) 
  proc enc_post(x : text) : cipher 
}. 

8



Standard Encryption Oracle
• Here is the standard encryption oracle, parameterized by an 

encryption scheme, Enc:
module EncO (Enc : ENC) : EO = { 
  var key : key 
  var ctr_pre : int 
  var ctr_post : int 

  proc init() : unit = { 
    key <@ Enc.key_gen(); 
    ctr_pre <- 0; ctr_post <- 0; 
  } 
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Standard Encryption Oracle
  proc enc_pre(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_pre < limit_pre) { 
      ctr_pre <- ctr_pre + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 
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Standard Encryption Oracle
  proc genc(x : text) : cipher = { 
    var c : cipher; 
    c <@ Enc.enc(key, x); 
    return c; 
  } 
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Standard Encryption Oracle
  proc enc_post(x : text) : cipher = { 
    var c : cipher; 
    if (ctr_post < limit_post) { 
      ctr_post <- ctr_post + 1; 
      c <@ Enc.enc(key, x); 
    } 
    else { 
      c <- ciph_def;  (* default result *) 
    }   
    return c; 
  } 
}. 
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Encryption Adversary
• An encryption adversary is parameterized by an encryption 

oracle: 
module type ADV (EO : EO) = { 
  (* choose a pair of plaintexts, x1/x2 *) 
  proc * choose() : text * text {EO.enc_pre} 

  (* given ciphertext c based on a random boolean b 
     (the encryption using EO.genc of x1 if b = true, 
      the encryption of x2 if b = false), try to guess b  
  *) 
  proc guess(c : cipher) : bool {EO.enc_post} 
}. 

• Adversaries may be probabilistic. 
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IND-CPA Game
• The IND-CPA Game is parameterized by an encryption 

scheme and an encryption adversary: 
module INDCPA (Enc : ENC, Adv : ADV) = { 
  module EO = EncO(Enc)        (* make EO from Enc *) 
  module A = Adv(EO)           (* connect Adv to EO *) 
  proc main() : bool = { 
    var b, b' : bool; var x1, x2 : text; var c : cipher; 
    EO.init();                 (* initialize EO *) 
    (x1, x2) <@ A.choose();    (* let A choose x1/x2 *) 
    b <$ {0,1};                (* choose boolean b *) 
    c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *) 
    b' <@ A.guess(c);          (* let A guess b from c *) 
    return b = b';             (* see if A won *) 
  } 
}. 
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IND-CPA Game
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IND-CPA Game
• If the value b’ that Adv returns is independent of the random 

boolean b, then the probability that Adv wins the game will be 
exactly 1/2. 
• E.g., if Adv always returns true, it’ll win half the time. 

• The question is how much better it can do—and we want to 
prove that it can’t do much better than win half the time. 
• But this will depend upon the quality of the encryption 

scheme. 
• An adversary that wins with probability greater than 1/2 can 

be converted into one that loses with that probability, and vice 
versa. When formalizing security, it’s convenient to upper-
bound the distance between the probability of the adversary 
winning and 1/2. 
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IND-CPA Security
• In our security theorem for a given encryption scheme Enc 

and adversary Adv, we prove an upper bound on the 
absolute value of the difference between the probability that 
Adv wins the game and 1/2: 

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r| 
   <= … Adv … 
• Ideally, we’d like the upper bound to be 0, so that the 

probability that Enc wins is exactly 1/2, but this won’t be 
possible. 

• The upper bound may also be a function of the number of bits 
text_len in text and the encryption oracle limits 
limit_pre and limit_post.
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IND-CPA Security
• Q: Because the adversary can call the encryption oracle with 

the plaintexts x1/x2 it goes on to choose, why isn’t it 
impossible to define a secure scheme? 
• A: Because encryption can (must!) involve randomness. 

• Q: What is the rationale for letting the adversary call enc_pre 
and enc_post at all? 
• A: It models the possibility that the adversary may be able 

to influence which plaintexts are encrypted. 
• Q: What is the rationale for limiting the number of times 
enc_pre and enc_post may be called? 
• A: There will probably be some limit on the adversary’s 

influence on what is encrypted.
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Next class: Defining an encryption scheme 
from a pseudorandom function and 

randomness, and informally analyzing 
adversaries’ strategies for breaking security
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