
Marco Gaboardi
gaboardi@bu.edu

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Formal Proofs for Cryptography

Cryptographic Security
• Cryptographic schemes (e.g., encryption) and protocols

(e.g., key-exchange) can be specified at a high-level using
our Probabilistic While (pWhile) language.
• They generally make use of randomness, which can be

modeled by random assignments from (sub-)distributions.
• When these high-level specifications are implemented,

this randomness must be realized using pseudorandom
number generators, whose seeds make use of
randomness from the underlying operating system.

• They also often make use of primitives like pseudorandom
functions (PRFs).
• These primitives must also be implemented; e.g., PRFs

can be implemented using hash functions like SHA-?.

2

Cryptographic Security
• Our focus in this course will be at the specification level.
• But there is research that addresses how to specify and prove

the security of implementations of cryptographic schemes
and protocols.

3

pWhile in EasyCrypt
• E.g., here is a pWhile procedure that exclusive-ors two

booleans chosen from the uniform distribution on booleans
(each of true and false will be chosen with probability 1/2):

module M = {
 proc f() : bool = {
 var x, y : bool;
 x <$ {0,1}; y <$ {0,1};
 return x ^^ y;
 }
}.

• And here is how we can state the lemma that M.f() returns
true with probability 1/2 no matter what memory it’s run in:

lemma M_f_true &m :
 Pr[M.f() @ &m : res] = 1%r / 2%r.

4

Building Encryption from PRF + Randomness
• Our running example will be a symmetric encryption scheme

built out of a pseudorandom function plus randomness.
• Symmetric encryption means the same key is used for both

encryption and decryption.
• We’ll first define when a symmetric encryption scheme is

secure under indistinguishability under chosen plaintext
attack (IND-CPA).

• Next we’ll define our instance of this scheme, and informally
analyze adversaries’ strategies for breaking security.

• We’ll return later in the course (in lecture and/or lab) to look at
the proof in EasyCrypt of the IND-CPA security of our
scheme.

5

Symmetric Encryption Schemes
• Our treatment of symmetric encryption schemes is

parameterized by three types:
type key. (* encryption keys, key_len bits *)
type text. (* plaintexts, text_len bits *)
type cipher. (* ciphertexts - scheme specific *)

• An encryption scheme is a stateless implementation of this
module interface:

module type ENC = {
 proc key_gen() : key (* key generation *)
 proc enc(k : key, x : text) : cipher (* encryption *)
 proc dec(k : key, c : cipher) : text (* decryption *)
}.

6

Scheme Correctness
• An encryption scheme is correct if and only if the following

procedure returns true with probability 1 for all arguments:
module Cor (Enc : ENC) = {
 proc main(x : text) : bool = {
 var k : key; var c : cipher; var y : text;
 k <@ Enc.key_gen();
 c <@ Enc.enc(k, x);
 y <@ Enc.dec(k, c);
 return x = y;
 }
}.

• The module Cor is parameterized (may be applied to) an
arbitrary encryption scheme, Enc.

7

Encryption Oracles
• To define IND-CPA security of encryption schemes, we need

the notion of an encryption oracle, which both the adversary
and IND-CPA game will interact with:

module type EO = {
 (* initialization - generates key *)
 proc * init() : unit
 (* encryption by adversary before game's encryption *)
 proc enc_pre(x : text) : cipher
 (* one-time encryption by game *)
 proc genc(x : text) : cipher
 (* encryption by adversary after game's encryption *)
 proc enc_post(x : text) : cipher
}.

8

Standard Encryption Oracle
• Here is the standard encryption oracle, parameterized by an

encryption scheme, Enc:
module EncO (Enc : ENC) : EO = {
 var key : key
 var ctr_pre : int
 var ctr_post : int

 proc init() : unit = {
 key <@ Enc.key_gen();
 ctr_pre <- 0; ctr_post <- 0;
 }

9

Standard Encryption Oracle
 proc enc_pre(x : text) : cipher = {
 var c : cipher;
 if (ctr_pre < limit_pre) {
 ctr_pre <- ctr_pre + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }

10

Standard Encryption Oracle
 proc genc(x : text) : cipher = {
 var c : cipher;
 c <@ Enc.enc(key, x);
 return c;
 }

11

Standard Encryption Oracle
 proc enc_post(x : text) : cipher = {
 var c : cipher;
 if (ctr_post < limit_post) {
 ctr_post <- ctr_post + 1;
 c <@ Enc.enc(key, x);
 }
 else {
 c <- ciph_def; (* default result *)
 }
 return c;
 }
}.

12

Encryption Adversary
• An encryption adversary is parameterized by an encryption

oracle:
module type ADV (EO : EO) = {
 (* choose a pair of plaintexts, x1/x2 *)
 proc * choose() : text * text {EO.enc_pre}

 (* given ciphertext c based on a random boolean b
 (the encryption using EO.genc of x1 if b = true,
 the encryption of x2 if b = false), try to guess b
 *)
 proc guess(c : cipher) : bool {EO.enc_post}
}.

• Adversaries may be probabilistic.

13

IND-CPA Game
• The IND-CPA Game is parameterized by an encryption

scheme and an encryption adversary:
module INDCPA (Enc : ENC, Adv : ADV) = {
 module EO = EncO(Enc) (* make EO from Enc *)
 module A = Adv(EO) (* connect Adv to EO *)
 proc main() : bool = {
 var b, b' : bool; var x1, x2 : text; var c : cipher;
 EO.init(); (* initialize EO *)
 (x1, x2) <@ A.choose(); (* let A choose x1/x2 *)
 b <$ {0,1}; (* choose boolean b *)
 c <@ EO.genc(b ? x1 : x2); (* encrypt x1 or x2 *)
 b' <@ A.guess(c); (* let A guess b from c *)
 return b = b'; (* see if A won *)
 }
}.

14

IND-CPA Game

15

Enc

EO Adv

Game

IND-CPA Game
• If the value b’ that Adv returns is independent of the random

boolean b, then the probability that Adv wins the game will be
exactly 1/2.
• E.g., if Adv always returns true, it’ll win half the time.

• The question is how much better it can do—and we want to
prove that it can’t do much better than win half the time.
• But this will depend upon the quality of the encryption

scheme.
• An adversary that wins with probability greater than 1/2 can

be converted into one that loses with that probability, and vice
versa. When formalizing security, it’s convenient to upper-
bound the distance between the probability of the adversary
winning and 1/2.

16

IND-CPA Security
• In our security theorem for a given encryption scheme Enc

and adversary Adv, we prove an upper bound on the
absolute value of the difference between the probability that
Adv wins the game and 1/2:

`|Pr[INDCPA(Enc, Adv).main() @ &m : res] - 1%r / 2%r|
 <= … Adv …
• Ideally, we’d like the upper bound to be 0, so that the

probability that Enc wins is exactly 1/2, but this won’t be
possible.

• The upper bound may also be a function of the number of bits
text_len in text and the encryption oracle limits
limit_pre and limit_post.

17

IND-CPA Security
• Q: Because the adversary can call the encryption oracle with

the plaintexts x1/x2 it goes on to choose, why isn’t it
impossible to define a secure scheme?
• A: Because encryption can (must!) involve randomness.

• Q: What is the rationale for letting the adversary call enc_pre
and enc_post at all?
• A: It models the possibility that the adversary may be able

to influence which plaintexts are encrypted.
• Q: What is the rationale for limiting the number of times
enc_pre and enc_post may be called?
• A: There will probably be some limit on the adversary’s

influence on what is encrypted.

18

Next class: Defining an encryption scheme
from a pseudorandom function and

randomness, and informally analyzing
adversaries’ strategies for breaking security

19

