
Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Probabilistic relational Hoare Logic

Marco Gaboardi
gaboardi@bu.edu  

Alley Stoughton
stough@bu.edu

CS 591: Formal Methods in
Security and Privacy 

Probabilistic relational Hoare Logic

Zoom
Participants Cameras

Projects
By the end of the week, everyone should know what
to work on for the project.

If you don’t know yet what you want to work on, let’s
schedule a time by email to zoom with Alley and me
about projects ideas.

From the previous classes

Information Flow Control
We want to guarantee that confidential inputs
do not flow to nonconfidential outputs.

public public

private private

Does this program satisfy
noninterference?

s1:public
s2:private
r:private
i:public

proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
 r:=1
 i:=i+1

Noninterference as a Relational Property

public

private private

C public

public

private private

C public

V

V W

W

U

U O

O

In symbols, c is noninterferent if and only if
for every m1 ~low m2 :
1) {c}m1=⊥ iff {c}m2=⊥
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’

Relational Hoare Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Program

Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.

Relative Completeness

If a quadruple is valid, and we

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q

Soundness and completeness
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory
adequately, and that we have termination.

Probabilistic Noninterference
A program prog is probabilistically
noninterferent if and only if, whenever
we run it on two low equivalent
memories m1 and m2 we have that the
probabilistic distributions we get as
outputs are the same on public outputs.

Probabilistic Noninterference as a
Relational Property

c is probabilistically noninterferent if and only
if for every m1 ~low m2 :
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2

public

private private

C public

public

private private

C public

V

V

U

U µpr1

µpu2

µpr2

µpu1

An example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Learning a ciphertext does not change any a priori
knowledge about the likelihood of messages.

Semantics of Commands
This is defined on the structure of commands:

{abort}m = O {skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn = let m’={(whilen e do c)}m in {if e then abort}m’

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

How can we prove that this is noninterferent?

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we
can now
chose the key
for m2. What
could we
choose?

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Suppose we
can now
chose the key
for m2. What
could we
choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)

Properties of xor
c⊕(a⊕c)=a

Properties of xor

Example:

c⊕(a⊕c)=a

100⊕(101⊕100)=

100⊕001=101

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Applying the
property above

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Applying the
property above

m1 m2

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Applying the
property above

m1 m2

m1⊕k

Revisiting the example
OneTimePad(m : private msg) : public msg
 key :=$ Uniform({0,1}n);
cipher := msg xor key;
return cipher

Applying the
property above

m1 m2

m1⊕k m1⊕k

Coupling
𝜇1 𝜇2

Coupling
𝜇1 𝜇2

Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25

Coupling formally
Given two distributions µ1∈D(A), and
µ2∈D(B), a coupling between them is a joint
distribution µ∈D(AxB) whose marginal
distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)

Today:
Probabilistic Relational

Hoare Logic

Probabilistic Relational Hoare
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic
Program

Precondition
(a logical formula)

Postcondition
(a logical formula)

Probabilistic
Program

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q(μ1,μ2).

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q(μ1,μ2).

Is this correct?!?

Relational Assertions

c1 ∼ c2 : P ⇒ Q
logical formula

over pair of memories 
(i.e. relation over memories)

logical formula
over ????

R-Coupling
Given two distributions µ1∈D(A), and
µ2∈D(B), an R-coupling between them, for
R⊆AxB, is a joint distribution µ∈D(AxB)
such that:
1) the marginal distributions of µ are µ1

and µ2, respectively,
2) the support of µ is contained in R. That

is, if μ(a,b)>0, then (a,b)∈R.

Relational lifting of a
predicate

We say that two subdistributions μ1⊆D(A)
and μ2⊆D(B) are in the relational lifting of
the relation R⊆AxB, denoted μ1 R* μ2 if
and only if there exist a subdistribution
μ⊆D(AxB) such that:
1) if μ(a,b)>0, then (a,b)∈Q.
2) and π1(μ) = μ1 π2(μ) = μ2

Relational lifting of a
predicate

We say that two subdistributions μ1⊆D(A)
and μ2⊆D(B) are in the relational lifting of
the relation R⊆AxB, denoted μ1 R* μ2 if
and only if there exist a subdistribution
μ⊆D(AxB) such that:
1) if μ(a,b)>0, then (a,b)∈Q.
2) and π1(μ) = μ1 π2(μ) = μ2

Does it remind you something?

Validity of Probabilistic
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is
valid if and only if for every pair of memories
m1,m2 such that P(m1,m2) we have:
{c1}m1=μ1 and {c2}m2=μ2 implies
Q*(μ1,μ2).

Probabilistic Relational Hoare Logic
Skip

⊢skip~skip:P⇒P

⊢x1:=e1~x2:=e2:
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒ P

Probabilistic Relational Hoare Logic
Assignment

⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S
⊢c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic
Composition

P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P.
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q.
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Probabilistic Relational Hoare Logic
Consequence

Probabilistic Relational Hoare Logic
If-then-else

if e1 then c1 else c1’
 ~
if e2 then c2 else c2’

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)

Probabilistic Relational Hoare Logic
While

while e1 do c1
 ~
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)

Probabilistic Relational Hoare Logic
If-then-else - left

if e then c1 else c1’
 ~
 c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q

Probabilistic Relational Hoare Logic
If-then-else - right

 c1
 ~
if e then c2 else c2’

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q

Probabilistic Relational Hoare Logic
Assignment - left

⊢x:=e ~ skip:
 P[e<1>/x<1>] ⇒ P

How about the random
assignment?

⊢x1 :=$ d1 ~ x2 :=$ d2 : ??

Probabilistic Relational Hoare Logic
Random Assignment

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
P(m1,m2)
⇒
let a={d1}m1 in unit(m1[x1←a])
Q*
let a={d2}m2 in unit(m2[x2←a])

⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
P(m1,m2)
⇒
let a={d1}m1 in unit(m1[x1←a])
Q*
let a={d2}m2 in unit(m2[x2←a])

What is the problem with this rule?

