
Marco Gaboardi 
gaboardi@bu.edu  

Alley Stoughton 
stough@bu.edu

CS 591: Formal Methods in 
Security and Privacy 

Probabilistic relational Hoare Logic



Marco Gaboardi 
gaboardi@bu.edu  

Alley Stoughton 
stough@bu.edu

CS 591: Formal Methods in 
Security and Privacy 

Probabilistic relational Hoare Logic

Zoom 
Participants Cameras



Projects
By the end of the week, everyone should know what 
to work on for the project.  

If you don’t know yet what you want to work on, let’s 
schedule a time by email to zoom with Alley and me 
about projects ideas.



From the previous classes



Information Flow Control
We want to guarantee that  confidential inputs 
do not flow to nonconfidential outputs.

public public

private private



Does this program satisfy 
noninterference?

s1:public 
s2:private 
r:private 
i:public 

proc Compare (s1:list[n] bool,s2:list[n] bool) 
i:=0; 
r:=0; 
while i<n do 
 if not(s1[i]=s2[i]) then 
    r:=1 
 i:=i+1



Noninterference as a Relational Property

public

private private

C public

public

private private

C public
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In symbols, c is noninterferent if and only if 
for every m1 ~low m2  : 
1) {c}m1=⊥ iff {c}m2=⊥ 
2) {c}m1=m1’ and {c}m2=m2’ implies m1’ ~low m2’



Relational Hoare Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Program



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Relative Completeness

If a quadruple is valid, and we 

we can derive through

the rules of the logic.

have an oracle to derive all the true statements
of the form P⇒S and of the form R⇒Q , then

c1~c2:P⇒Q

⊢c1~c2:P⇒Q



Soundness and completeness 
with respect to Hoare Logic

⊢RHL c1~c2:P⇒Q

⊢HL c1;c2:P⇒Q
iff

Under the assumption that we can partition the memory 
adequately, and that we have termination.



Probabilistic Noninterference
A program prog is probabilistically 
noninterferent if and only if, whenever 
we run it on two low equivalent 
memories m1 and m2 we have that the 
probabilistic distributions we get as 
outputs are the same on public outputs. 



Probabilistic Noninterference as a 
Relational Property

c is probabilistically noninterferent if and only 
if for every m1 ~low m2  : 
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2
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C public
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private private
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An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Semantics of Commands
This is defined on the structure of commands:

{abort}m = O {skip}m = unit(m)

{c;c’}m =let m’={c}m in {c’}m’

{x:=e}m = unit(m[x←{e}m])

{if e then ct else cf}m = {ct}m {e}m=trueIf

{if e then ct else cf}m = {cf}m {e}m=falseIf

{x:=$ d}m =let a={d}m in unit(m[x←a])

{while e do c}m =supn∊Nat µn
µn = let m’={(whilen e do c)}m in {if e then abort}m’



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

How can we prove that this is noninterferent?
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m1 m2
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Suppose we 
can now 
chose the key 
for m2. What 
could we 
choose?

m1 m2
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Suppose we 
can now 
chose the key 
for m2. What 
could we 
choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)



Properties of xor
c⊕(a⊕c)=a



Properties of xor

Example:

c⊕(a⊕c)=a

100⊕(101⊕100)=

100⊕001=101
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cipher := msg xor key; 
return cipher  

Applying the 
property above
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Applying the 
property above

m1 m2

m1⊕k m1⊕k



Coupling
𝜇1 𝜇2



Coupling
𝜇1 𝜇2



Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25



Example of Our Coupling

k = 10⊕k⊕00
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO O1 1O 11
OO 0.25
O1 0.25
1O 0.25
11 0.25

OO 0.25
O1 0.25
1O 0.25
11 0.25



Coupling formally
Given two distributions µ1∈D(A), and 
µ2∈D(B), a coupling between them is a joint 
distribution µ∈D(AxB) whose marginal 
distributions are µ1 and µ2, respectively.

π2(μ)(b) = ∑
a

μ(a, b)π1(μ)(a) = ∑
b

μ(a, b)



Today:  
Probabilistic Relational 

Hoare Logic



Probabilistic Relational Hoare 
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q(μ1,μ2).



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q(μ1,μ2).

Is this correct?!?



Relational Assertions

c1 ∼ c2 : P ⇒ Q
logical formula  

over pair of memories 
(i.e. relation over memories)

logical formula  
over ????



R-Coupling 
Given two distributions µ1∈D(A), and 
µ2∈D(B), an R-coupling between them, for 
R⊆AxB, is a joint distribution µ∈D(AxB) 
such that: 
1) the marginal distributions of µ are µ1 

and µ2, respectively,  
2) the support of µ is contained in R. That 

is, if μ(a,b)>0, then (a,b)∈R.



Relational lifting of a 
predicate

We say that two subdistributions μ1⊆D(A) 
and μ2⊆D(B) are in the relational lifting of 
the relation R⊆AxB, denoted μ1 R* μ2 if 
and only if there exist a subdistribution 
μ⊆D(AxB) such that: 
1) if μ(a,b)>0, then  (a,b)∈Q. 
2)  and π1(μ) = μ1 π2(μ) = μ2



Relational lifting of a 
predicate

We say that two subdistributions μ1⊆D(A) 
and μ2⊆D(B) are in the relational lifting of 
the relation R⊆AxB, denoted μ1 R* μ2 if 
and only if there exist a subdistribution 
μ⊆D(AxB) such that: 
1) if μ(a,b)>0, then  (a,b)∈Q. 
2)  and π1(μ) = μ1 π2(μ) = μ2

Does it remind you something?



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q*(μ1,μ2).



Probabilistic Relational Hoare Logic 
Skip

⊢skip~skip:P⇒P



⊢x1:=e1~x2:=e2:  
 P[e1<1>/x1<1>,e2<2>/x2<2>]⇒ P

Probabilistic Relational Hoare Logic 
Assignment



⊢c1~c2:P⇒R ⊢c1’~c2’:R⇒S
⊢c1;c1’~c2;c2’:P⇒S

Probabilistic Relational Hoare Logic 
Composition



P⇒S R⇒Q

We can weaken P, i.e. replace it by something that is implied by P. 
In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. 
In this case R.

⊢c1~c2:P⇒Q
⊢c1~c2:S⇒R

Probabilistic Relational Hoare Logic 
Consequence



Probabilistic Relational Hoare Logic 
If-then-else

if e1 then c1 else c1’  
          ~ 
if e2 then c2 else c2’ 

⊢c1~c2 : e1<1> ⋀ P ⇒ Q
⊢c1’~c2’: ¬e1<1> ⋀ P ⇒ Q

⊢ :P⇒Q

P ⇒ (e1<1> ⇔ e2<2>)



Probabilistic Relational Hoare Logic 
While

while e1 do c1 
          ~ 
while e2 do c2

⊢c1~c2 : e1<1> ⋀ P ⇒ P

:P⇒P⋀¬e1<1>⊢

P ⇒ (e1<1> ⇔ e2<2>)



Probabilistic Relational Hoare Logic 
If-then-else - left

if e then c1 else c1’  
          ~ 
          c2

⊢c1~c2 : e<1> ⋀ P ⇒ Q
⊢c1’~c2 : ¬e<1> ⋀ P ⇒ Q

⊢ :P⇒Q



Probabilistic Relational Hoare Logic 
If-then-else - right

          c1 
          ~ 
if e then c2 else c2’          

⊢c1~c2 : e<2> ⋀ P ⇒ Q
⊢c1~c2’ : ¬e<2> ⋀ P ⇒ Q

⊢ :P⇒Q



Probabilistic Relational Hoare Logic 
Assignment - left

⊢x:=e ~ skip:  
 P[e<1>/x<1>] ⇒ P



How about the random 
assignment? 



⊢x1 :=$ d1 ~ x2 :=$ d2 : ??

Probabilistic Relational Hoare Logic 
Random Assignment



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
P(m1,m2) 
⇒  
let a={d1}m1 in unit(m1[x1←a])  
Q*  
let a={d2}m2 in unit(m2[x2←a]) 



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

We would like to have:
P(m1,m2) 
⇒  
let a={d1}m1 in unit(m1[x1←a])  
Q*  
let a={d2}m2 in unit(m2[x2←a]) 

What is the problem with this rule?


