#### CS 591: Formal Methods in Security and Privacy Probabilistic relational Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

#### CS 591: Formal Methods in Security and Privacy Probabilistic relational Hoare Logic

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Zoom Participants Cameras

Projects

- By the end of the week, everyone should know what to work on for the project.
- If you don't know yet what you want to work on, let's schedule a time by email to zoom with Alley and me about projects ideas.

From the previous classes

#### Information Flow Control

We want to guarantee that confidential inputs do not flow to nonconfidential outputs.



# Does this program satisfy noninterference?

```
s1:public
s2:private
r:private
i:public
proc Compare (s1:list[n] bool,s2:list[n] bool)
i:=0;
r:=0;
while i<n do
 if not(s1[i]=s2[i]) then
    r:=1
 i:=i+1
```

Noninterference as a Relational Property In symbols, c is noninterferent if and only if for every  $m_1 \sim_{low} m_2$ :

- 1) {C}<sub>m1</sub>= $\perp$  iff {C}<sub>m2</sub>= $\perp$
- 2) {c}<sub>m1</sub>=m<sub>1</sub>' and {c}<sub>m2</sub>=m<sub>2</sub>' implies m<sub>1</sub>'  $\sim_{low}$  m<sub>2</sub>'





#### Soundness

If we can derive  $\vdash c_1 \sim c_2 : P \Rightarrow Q$  through the rules of the logic, then the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is valid.

#### **Relative Completeness**

If a quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is valid, and we have an oracle to derive all the true statements of the form  $P \Rightarrow S$  and of the form  $R \Rightarrow Q$ , then we can derive  $\vdash c_1 \sim c_2 : P \Rightarrow Q$  through the rules of the logic.

Soundness and completeness with respect to Hoare Logic

#### $\vdash_{\text{RHL}} C_1 \sim C_2 : P \Rightarrow Q$ iff $\vdash_{\text{HL}} C_1; C_2 : P \Rightarrow Q$

Under the assumption that we can partition the memory adequately, and that we have termination.

#### **Probabilistic Noninterference**

A program prog is probabilistically noninterferent if and only if, whenever we run it on two low equivalent memories  $m_1$  and  $m_2$  we have that the probabilistic distributions we get as outputs are the same on public outputs.

# Probabilistic Noninterference as a Relational Property

- c is probabilistically noninterferent if and only if for every  $m_1 \sim_{low} m_2$ :
- {C}<sub>m1</sub>= $\mu_1$  and {C}<sub>m2</sub>= $\mu_2$  implies  $\mu_1 \sim_{low} \mu_2$



#### An example

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

Learning a ciphertext does not change any a priori knowledge about the likelihood of messages.

#### **Semantics of Commands**

This is defined on the structure of commands:

 $\{abort\}_m = \mathbf{O} \qquad \{skip\}_m = unit(m)$   $\{x:=e\}_m = unit(m[x \leftarrow \{e\}_m])$   $\{x:=\$ \ d\}_m = let \ a=\{d\}_m \text{ in } unit(m[x \leftarrow a])$   $\{c;c'\}_m = let \ m'=\{c\}_m \text{ in } \{c'\}_{m'}$   $\{if \ e \ then \ c_t \ else \ c_f\}_m = \{c_t\}_m \ |\mathbf{f} \ \{e\}_m = true$   $\{if \ e \ then \ c_t \ else \ c_f\}_m = \{c_f\}_m \ |\mathbf{f} \ \{e\}_m = false$   $\{while \ e \ do \ c\}_m = sup_{n \in Nat} \ \mu_n$   $\mu_n = let \ m'=\{(while^n \ e \ do \ c)\}_m \text{ in } \{if \ e \ then \ abort\}_{m'}$ 

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

How can we prove that this is noninterferent?

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

#### $m_1$ $m_2$

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher



OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher



Suppose we can now chose the key for m<sub>2</sub>. What could we choose?

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

 $\begin{array}{cccc} m_1 & m_2 & & Suppose we \\ \downarrow & \downarrow & \downarrow \\ m_1 \oplus k & m_2 \oplus (m_1 \oplus k \oplus m_2) \end{array} & \begin{array}{c} \text{Suppose we} \\ \text{can now} \\ \text{chose the key} \\ \text{for } m_2. \end{array} \\ \begin{array}{c} \text{What} \\ \text{could we} \\ \text{choose?} \end{array}$ 

#### **Properties of xor**

 $C \oplus (a \oplus C) = a$ 

# Properties of xor

 $C \oplus (a \oplus C) = a$ 

Example:

 $100 \oplus (101 \oplus 100) =$  $100 \oplus 001 = 101$ 

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

#### m<sub>1</sub> m<sub>2</sub>

OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher

 $m_2$ 



OneTimePad(m : private msg) : public msg
 key :=\$ Uniform({0,1}<sup>n</sup>);
 cipher := msg xor key;
 return cipher



#### Coupling





### Coupling



### Example of Our Coupling

| 00 | 0.25 |                             | 00 | 0.25 |
|----|------|-----------------------------|----|------|
| O1 | 0.25 |                             | 01 | 0.25 |
| 10 | 0.25 | $k = 10 \oplus k \oplus 00$ | 10 | 0.25 |
| 11 | 0.25 |                             | 11 | 0.25 |

# Example of Our Coupling

| 00 | 0.25 |
|----|------|
| 01 | 0.25 |
| 10 | 0.25 |
| 11 | 0.25 |

| 00 | 0.25 |
|----|------|
| 01 | 0.25 |
| 10 | 0.25 |
| 11 | 0.25 |

|    | 00   | O1   | 10   | 11   |
|----|------|------|------|------|
| 00 |      |      | 0.25 |      |
| O1 |      |      |      | 0.25 |
| 10 | 0.25 |      |      |      |
| 11 |      | 0.25 |      |      |

# Coupling formally

Given two distributions  $\mu_1 \in D(A)$ , and  $\mu_2 \in D(B)$ , a coupling between them is a joint distribution  $\mu \in D(A \times B)$  whose marginal distributions are  $\mu_1$  and  $\mu_2$ , respectively.

$$\pi_1(\mu)(a) = \sum_b \mu(a, b) \qquad \pi_2(\mu)(b) = \sum_a \mu(a, b)$$

Today: Probabilistic Relational Hoare Logic



### Validity of Probabilistic Hoare quadruple

We say that the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is

valid if and only if for every pair of memories  $m_1, m_2$  such that  $P(m_1, m_2)$  we have:  $\{c_1\}_{m1}=\mu_1$  and  $\{c_2\}_{m2}=\mu_2$  implies  $Q(\mu_1, \mu_2)$ .

### Validity of Probabilistic Hoare quadruple

We say that the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is

valid if and only if for every pair of memories  $m_1, m_2$  such that  $P(m_1, m_2)$  we have:  ${c_1}_{m1} = \mu_1$  and  ${c_2}_{m2} = \mu_2$  implies  $Q(\mu_1, \mu_2).$ 

Is this correct?!?

# **Relational Assertions** $c_1 \sim c_2 : P \Rightarrow Q$ logical formula logical formula over pair of memories over ???? (i.e. relation over memories)

# **R-Coupling**

Given two distributions  $\mu_1 \in D(A)$ , and  $\mu_2 \in D(B)$ , an *R*-coupling between them, for  $R \subseteq AxB$ , is a joint distribution  $\mu \in D(AxB)$ such that:

- the marginal distributions of µ are µ<sub>1</sub> and µ<sub>2</sub>, respectively,
- 2) the support of  $\mu$  is contained in R. That is, if  $\mu(a,b)>0$ , then  $(a,b)\in R$ .

# Relational lifting of a predicate

We say that two subdistributions  $\mu_1 \subseteq D(A)$ and  $\mu_2 \subseteq D(B)$  are in the relational lifting of the relation  $R \subseteq AxB$ , denoted  $\mu_1 R * \mu_2$  if and only if there exist a subdistribution  $\mu \subseteq D(AxB)$  such that:

1) if  $\mu(a,b) > 0$ , then  $(a,b) \in Q$ .

2) 
$$\pi_1(\mu) = \mu_1$$
 and  $\pi_2(\mu) = \mu_2$ 

# Relational lifting of a predicate

We say that two subdistributions  $\mu_1 \subseteq D(A)$ and  $\mu_2 \subseteq D(B)$  are in the relational lifting of the relation  $R \subseteq AxB$ , denoted  $\mu_1 R * \mu_2$  if and only if there exist a subdistribution  $\mu \subseteq D(AxB)$  such that:

- 1) if  $\mu(a,b) > 0$ , then  $(a,b) \in Q$ .
- 2)  $\pi_1(\mu) = \mu_1$  and  $\pi_2(\mu) = \mu_2$

Does it remind you something?

### Validity of Probabilistic Hoare quadruple

We say that the quadruple  $c_1 \sim c_2 : P \Rightarrow Q$  is

valid if and only if for every pair of memories  $m_1, m_2$  such that  $P(m_1, m_2)$  we have:  $\{c_1\}_{m1}=\mu_1$  and  $\{c_2\}_{m2}=\mu_2$  implies  $Q^*(\mu_1, \mu_2)$ .

#### Probabilistic Relational Hoare Logic Skip

#### $\vdash skip \sim skip: P \Rightarrow P$

#### Probabilistic Relational Hoare Logic Assignment

 $\vdash x_1 := e_1 \sim x_2 := e_2 :$  $P[e_1 < 1 > / x_1 < 1 >, e_2 < 2 > / x_2 < 2 >] \Rightarrow P$ 

#### Probabilistic Relational Hoare Logic Composition

#### $\vdash c_1 \sim c_2 : P \Rightarrow \mathbb{R} \qquad \vdash c_1 \prime \sim c_2 \prime : \mathbb{R} \Rightarrow \mathbb{S}$

 $\vdash c_1; c_1' \sim c_2; c_2' : P \Rightarrow S$ 

#### Probabilistic Relational Hoare Logic Consequence

$$P \Rightarrow S \qquad \vdash c_1 \sim c_2 : S \Rightarrow R \qquad R \Rightarrow Q$$

$$\vdash c_1 \sim c_2 : P \Rightarrow Q$$

We can weaken P, i.e. replace it by something that is implied by P. In this case S.

We can strengthen Q, i.e. replace it by something that implies Q. In this case R.

**Probabilistic Relational Hoare Logic If-then-else**  $P \Rightarrow (e_1 < 1 > \Leftrightarrow e_2 < 2 >)$  $\vdash c_1 \sim c_2$ :  $e_1 < 1 > \land P \Rightarrow O$  $\vdash c_1' \sim c_2' : \neg e_1 < 1 > \land P \Rightarrow O$ if  $e_1$  then  $c_1$  else  $c_1'$ :P⇒O if  $e_2$  then  $c_2$  else  $c_2'$ 

#### Probabilistic Relational Hoare Logic While

# $P \Rightarrow (e_1 < 1> \Leftrightarrow e_2 < 2>)$ $\vdash c_1 \sim c_2 : e_1 < 1> \land P \Rightarrow P$ while $e_1$ do $c_1$ $\sim : P \Rightarrow P \land \neg e_1 < 1>$

while  $e_2$  do  $c_2$ 

Probabilistic Relational Hoare Logic If-then-else - left

#### $\vdash c_1 \sim c_2$ : $e < 1 > \land P \Rightarrow Q$

 $\vdash c_1' \sim c_2$ :  $\neg e < 1 > \land P \Rightarrow Q$ 

if e then  $c_1$  else  $c_1'$ -  $\sim : P \Rightarrow Q$  $C_2$  Probabilistic Relational Hoare Logic If-then-else - right

 $\vdash c_1 \sim c_2$  :  $e < 2 > \land P \Rightarrow Q$ 

 $\vdash c_1 \sim c_2'$  :  $\neg e < 2 > \land P \Rightarrow Q$ 



#### Probabilistic Relational Hoare Logic Assignment - left

# $\begin{array}{l} \vdash x := e & \sim & skip: \\ P[e < 1 > / x < 1 > ] \implies P \end{array} \end{array}$

How about the random assignment?

#### Probabilistic Relational Hoare Logic Random Assignment

$$\vdash x_1 := \ d_1 \sim x_2 := \ d_2 : ??$$

#### We would like to have: $P(m_1, m_2)$ $\Rightarrow$ let $a = \{d_1\}_{m_1}$ in unit $(m_1[x_1 \leftarrow a])$ O\*let $a = \{d_2\}_{m_2}$ in unit $(m_2[x_2 \leftarrow a])$ $\vdash x_1 :=$ $d_1 \sim x_2 :=$ $d_2 : P \Rightarrow Q$

#### We would like to have: $P(m_1, m_2)$ $\Rightarrow$ let $a = \{d_1\}_{m_1}$ in unit $(m_1[x_1 \leftarrow a])$ O\*let $a = \{d_2\}_{m_2}$ in unit $(m_2[x_2 \leftarrow a])$ $\vdash x_1 :=$ $d_1 \sim x_2 :=$ $d_2 : P \Rightarrow Q$ What is the problem with this rule?