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Q&A

To increase interactivity, I will ask more question to 
each one of you.

It is not a test, you can always answer “pass!”



Projects

Everyone should have a project now.

Please, don’t hesitate in contacting us if there is 
some issue with your project. 



Recording
This is a reminder that we will record the class and 
we will post the link on Piazza. 

This is also a reminder to myself to start recording!



From the previous classes



An example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Learning a ciphertext does not change any a priori 
knowledge about the likelihood of messages.  



Probabilistic Noninterference as a 
Relational Property

c is probabilistically noninterferent if and only 
if for every m1 ~low m2  : 
{c}m1=µ1 and {c}m2=µ2 implies µ1 ~low µ2
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Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

m1 m2

m1⊕k



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Suppose we 
can now 
chose the key 
for m2. What 
could we 
choose?

m1 m2

m1⊕k



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

Suppose we 
can now 
chose the key 
for m2. What 
could we 
choose?

m1 m2

m1⊕k m2⊕(m1⊕k⊕m2)



Revisiting the example
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

m1 m2

m1⊕k m1⊕k



Probabilistic Relational Hoare 
Quadruples

Precondition

Program1 ~ Program2
Postcondition

c1 ∼ c2 : P ⇒ Q

Probabilistic 
Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program



R-Coupling 
Given two distributions µ1∈D(A), and 
µ2∈D(B), an R-coupling between them, for 
R⊆AxB, is a joint distribution µ∈D(AxB) 
such that: 
1) the marginal distributions of µ are µ1 

and µ2, respectively,  
2) the support of µ is contained in R. That 

is, if μ(a,b)>0, then (a,b)∈R.



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q*(μ1,μ2).



Consequences of Coupling

⊢ c1 ∼ c2 : True ⇒ Q
Given the following  pRHL judgment

We have that:

if , then Q ⇒ (R⟨1⟩ ⟺ S⟨2⟩) Pr[c1 : R] = Pr[c2 : S]

if , then Q ⇒ (R⟨1⟩ ⇒ S⟨2⟩) Pr[c1 : R] ≤ Pr[c2 : S]



A sufficient condition for R-Coupling 
Given two distributions µ1∈D(A), and µ2∈D(B), and a 
relation R⊆AxB, if there is a mapping h:A→B such 
that: 

1) h is a bijective map between elements in 
supp(µ1) and supp(µ2), 

2) for every a∈supp(µ1),  (a,h(a))∈R
3) Prx~µ1[x=a]=Prx~µ2[x=h(a)] 

Then, there is an R-coupling between µ1 and µ2. 
We write h⊲(µ1,µ2) in this case. 



⊢x1 :=$ d1 ~ x2 :=$ d2 : P ⇒ Q

h⊲({d1},{d2}) 
P=∀v,v∈supp({d1}) 
⇒ Q[v/x1<1>,h(v)/x2<2>]

Probabilistic Relational Hoare Logic 
Random Assignment



⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=(m<1>⊕k⊕m<2>)⊲({d1},{d2}) 
P=∀k,k∈{0,1}n 
⇒ m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]= 

  m<1>⊕k=m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example



⊢k1:=$Uniform({0,1}n)~k2:=$Uniform({0,1}n): 
   True ⇒ m<1>⊕k1<1>=m<2>⊕k2<2>

h(k)=(m<1>⊕k⊕m<2>)⊲({d1},{d2}) 
P=∀k,k∈{0,1}n 
⇒ m<1>⊕k1<1>=m<2>⊕k2<2>[v/k1<1>,h(v)/k2<2>]= 

  m<1>⊕k=m<2>⊕(m<1>⊕k⊕m<2>)

Back to our example

Using the assignment rule, we can conclude.



Soundness

⊢c1~c2:P⇒QIf we can derive through

the rules of the logic, then the quadruple

c1~c2:P⇒Q is valid.



Completeness?



Today:  
approximate probabilistic 

noninterference



One time pad
OneTimePad(m : private msg) : public msg 
 key :=$ Uniform({0,1}n); 
cipher := msg xor key; 
return cipher  

What are the drawbacks of one time pads?



A more realistic example
StreamCipher(m : private msg[n]) : public msg[n] 
 pkey :=$ PRG(Uniform({0,1}k)); 
 cipher := msg xor pkey; 
 return cipher  



What guarantees do we 
want from a PRG?



Properties of PRG
We would like the PRG to increase the number of 
random bits but also to guarantee the result to be 
(almost) random. 

PRG: {0,1}k → {0,1}n for n>k

PRG(Uniform({0,1}k) ≋ Uniform({0,1}n

We can express this as:

How can we measure the similarity between the 
result of PRG and the uniform distribution?



Statistical distance
We say that two distributions µ1, µ2 ∈D(A), are at 
statistical distance δ if and only if:

Δ(µ1,µ2)=maxE⊆A | Prx~µ1[x∈E]-Prx~µ2[x∈E] | = δ



Properties of PRG
We would like the PRG to increase the number of 
random bits but also to guarantee the result to be 
(almost) random. 

PRG: {0,1}k → {0,1}n for n>k

Δ(PRG(Uniform({0,1}k),Uniform({0,1}n) ≤ 2-n 

We can express this as:

In fact this is a too strong requirement - usually we 
require that every polynomial time adversary cannot 
distinguish the two distributions in statistical distance



How can we prove this 
secure?

StreamCipher(m : private msg[n])  

            : public msg[n] 

 pkey :=$ PRG(Uniform({0,1}k)); 

 cipher := msg xor pkey; 

 return cipher  

OneTimePad(m : private msg[n])  

          : public msg[n] 

 key :=$ Uniform({0,1}n); 

 cipher := msg xor key; 

 return cipher  
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How can we prove this 
secure?

StreamCipher(m : private msg[n])  

            : public msg[n] 

 pkey :=$ PRG(Uniform({0,1}k)); 

 cipher := msg xor pkey; 

 return cipher  

OneTimePad(m : private msg[n])  

          : public msg[n] 

 key :=$ Uniform({0,1}n); 

 cipher := msg xor key; 

 return cipher  
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How can we prove this 
secure?

StreamCipher(m : private msg[n])  

            : public msg[n] 

 pkey :=$ PRG(Uniform({0,1}k)); 

 cipher := msg xor pkey; 

 return cipher  

OneTimePad(m : private msg[n])  

          : public msg[n] 

 key :=$ Uniform({0,1}n); 

 cipher := msg xor key; 

 return cipher  

~

m m

m⊕k m⊕pk



How can we prove this 
secure?

StreamCipher(m : private msg[n])  

            : public msg[n] 

 pkey :=$ PRG(Uniform({0,1}k)); 

 cipher := msg xor pkey; 

 return cipher  

OneTimePad(m : private msg[n])  

          : public msg[n] 

 key :=$ Uniform({0,1}n); 

 cipher := msg xor key; 

 return cipher  

~

m m

m⊕k m⊕pkΔ( ), ≤ δ



How to reason formally about 
this formally?



Approximate Probabilistic 
Relational Hoare Logic

⊢δ c1 ∼ c2 : P ⇒ Q
Probabilistic 

Program

Precondition 
(a logical formula)

Postcondition 
(a logical formula)

Probabilistic 
Program

Indistinguishability 
parameter



How can we define validity?



Validity of Probabilistic 
Hoare quadruple

We say that the quadruple c1~c2:P⇒Q is 
valid if and only if for every pair of memories 
m1,m2 such that P(m1,m2) we have: 
{c1}m1=μ1 and {c2}m2=μ2 implies 
Q*(μ1,μ2).


