CS 591: Formal Methods in Security and Privacy Differential Privacy

Marco Gaboardi gaboardi@bu.edu

Alley Stoughton stough@bu.edu

Please fill out the (late) mid-semester evaluation.

- This is a reminder that we will record the class and we will post the link on Piazza.
- This is also a reminder to myself to start recording!

From the previous classes

A more realistic example

StreamCipher(m : private msg[n]) : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}*));
 cipher := msg xor pkey;
 return cipher

```
OneTimePad(m : private msg[n])
            : public msg[n]
            key :=$ Uniform({0,1}<sup>n</sup>);
            cipher := msg xor key;
            return cipher
```

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

<pre>OneTimePad(m : private msg[n])</pre>
: public msg[n]
key :=\$ Uniform({0,1} ⁿ);
cipher := msg xor key;
return cipher

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}*));
 cipher := msg xor pkey;
 return cipher

m

m

<pre>OneTimePad(m : private msg[n])</pre>
: public msg[n]
<pre>key :=\$ Uniform({0,1}ⁿ);</pre>
cipher := msg xor key;
return cipher

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

m

<pre>OneTimePad(m : private msg[n])</pre>
: public msg[n]
<pre>key :=\$ Uniform({0,1}ⁿ);</pre>
cipher := msg xor key;
return cipher

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

Approximate Probabilistic Relational Hoare Logic

Validity of approximate Probabilistic Hoare judgments

We say that the quadruple $\vdash_{\delta} c_1 \sim c_2 : P \Rightarrow Q$ is valid if and only if for every pair of memories m_1, m_2 such that $P(m_1, m_2)$ we have: $\{c_1\}_{m1} = \mu_1$ and $\{c_2\}_{m2} = \mu_2$ implies $Q_{\delta} * (\mu_1, \mu_2)$.

R-δ-Coupling

- Given two distributions $\mu_1 \in D(A)$, and $\mu_2 \in D(B)$, we have an R- δ -coupling between them, for R \subseteq AxB and $0 \le \delta \le 1$, if there are two joint distributions $\mu_{L,\mu_R} \in D(AxB)$ such that:
 - 1) $\pi_1(\mu_L) = \mu_1$ and $\pi_2(\mu_R) = \mu_2$,
 - the support of µ_L and µ_R is contained in R. That is, if µ_L(a,b)>0,then (a,b)∈R, and if µ_R(a,b)>0,then (a,b)∈R.
 Δ(µ_L,µ_R)≤δ

Probabilistic Relational Hoare Logic Skip

⊢_oskip~skip:P⇒P

Probabilistic Relational Hoare Logic Composition

$\vdash_{\delta_1} C_1 \sim C_2 : P \Rightarrow R \quad \vdash_{\delta_2} C_1' \sim C_2' : R \Rightarrow S$

 $\vdash_{\delta_1+\delta_2}C_1$; $C_1' \sim C_2$; C_2' : $P \Rightarrow S$

Probabilistic Relational Hoare Logic A specific rule for PRG

⊢2^-n x1 :=\$ Uniform({0,1}ⁿ) ~ x2 :=\$ PRG(Uniform({0,1}^k))

: True \Rightarrow x₁<1>=x₂<2>

```
OneTimePad(m : private msg[n])
            : public msg[n]
            key :=$ Uniform({0,1}<sup>n</sup>);
            cipher := msg xor key;
            return cipher
```

StreamCipher(m : private msg[n])
 : public msg[n]
 pkey :=\$ PRG(Uniform({0,1}k));
 cipher := msg xor pkey;
 return cipher

We can apply the PRG rule, the composition rule, and the assignment rule and prove:

$$\vdash_{2^{n}}$$
 OneTimePad~StreamCipher
: m<1> = m<2> \Rightarrow c<1> = c<2>

Differential Privacy

Releasing the mean of Some Data

```
Mean(d : private data) : public real
i:=0;
s:=0;
while (i<size(d))
    s:=s + d[i]
    i:=i+1;
return (s/i)</pre>
```

We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

We want to release some information to a data analyst and protect the privacy of the individuals contributing their data.

Fundamental Law of Information Reconstruction

The release of too many overly accurate statistics permits reconstruction attacks.

Reconstruction attack

We say that the attacker wins if

Reconstruction attack

We say that the attacker wins if

In this class case we can use Hamming distance

Quantitative notions of Privacy

- The impossibility results discussed above suggest a quantitative notion of privacy,
- a notion where the privacy loss depends on the number of queries that are allowed,
- and on the accuracy with which we answer them.

Differential privacy: understanding the <u>mathematical</u> and <u>computational</u> meaning of this tradeoff.

[Dwork, McSherry, Nissim, Smith, TCC06]

• The analyst knows no more about me after the analysis than what she knew before the analysis.

• The analyst knows no more about me after the analysis than what she knew before the analysis.

• The analyst knows no more about me after the analysis than what she knew before the analysis.

Prior Knowledge

Posterior Knowledge

Question: What is the problem with this requirement?

If nothing can be learned about an individual, then nothing at all can be learned at all!

[DworkNaor10]

Adjacent databases

- We can formalize the concept of contributing my data or not in terms of a notion of distance between datasets.
- Given two datasets D, D'∈DB, their distance is defined as:

 $D\Delta D' = |\{k \le n \mid D(k) \ne D'(k)\}|$

• We will call two datasets adjacent when $D\Delta D'=1$ and we will write $D\sim D'$.

Privacy Loss

In general we can think about the following quantity as the privacy loss incurred by observing r on the databases b and b'.

$$L_{b,b'}(r) = \log \frac{\Pr[Q(b)=r]}{\Pr[Q(b')=r]}$$

(ϵ, δ) -Differential Privacy

Definition

Given $\varepsilon, \delta \ge 0$, a probabilistic query $Q: X^n \rightarrow R$ is (ε, δ)-differentially private iff for all adjacent database b_1, b_2 and for every $S \subseteq R$: $Pr[Q(b_1) \in S] \le exp(\varepsilon)Pr[Q(b_2) \in S] + \delta$

Differential Privacy

$d(Q(b \cup \{x\}), Q(b \cup \{y\})) \le \mathcal{E}$ with probability $1-\delta$

