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Feedback

Please fill out the (late) mid-semester evaluation.



Recording

This is a reminder that we will record the class and
we will post the link on Piazza.

This is also a reminder to myself to start recording!



From the previous classes



Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)




Privacy-preserving data analysis!

We want to release some information to a data analyst and
protect the privacy of the individuals contributing their
data.
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Data analyst




Quantitative notions of Privacy

® The impossibility results discussed above suggest a
quantitative notion of privacy,

® a notion where the privacy loss depends on the
number of queries that are allowed,

® and on the accuracy with which we answer them.



Privacy-preserving data analysis!?

® The analyst learn almost the same about me after the
analysis as what she would have learnt if | didn’t
contribute my data.
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Privacy-preserving data analysis!?

® The analyst learn almost the same about me after the
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Adjacent databases

® VWe can formalize the concept of contributing my data
or not in terms of a notion of distance between
datasets.

® Given two datasets D, D’eDB, their distance is defined
as:

DAD’=[{k<n | D(k)#D’(k)}|
® We will call two datasets adjacent when DAD’=1 and
we will write D~D’.



Privacy Loss

In general we can think about the following quantity as

the privacy loss incurred by observing r on the
databases D and D’.

o, PrIQ(D)=r]
0 =% PrQ(D)="]




(€,0)-Differential Privacy

Definition

Given €,0 2 0, a probabilistic query Q: Xn—R is
(€,0)-differentially private iff

for all adjacent database D, D and for every SCR:

PriQ(D)e S] < exp(€)Pr[Q(D’)e S] + ©




Differential Privacy

Q :db => R probabilistic
Q(D1uix}) Q(D1uty))
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Differential Privacy

d(Q(D1u{x}),Q(Du{y}))< € with probability 1-0




(€,0)-Differential Privacy

log PI"LQ(D)=I‘1
PrQ(D’)=r]

<€| with probability 1-0

yd




Today: Achieving
Differential Privacy



(€,0)-indistinguishability

When we defined statistical distance:
A(u1,p2)=maxeca | 41(E)-p2(E) | =0
we also used a notion of d-indistinguishability.

We say that two distributions 1, u2 eD(A), are at
O-indistinguishable if:

A(u1,u2)< 0



(€,0)-indistinguishability

We can define a s-skewed version of statistical
distance. We call this notion s-distance.

Ae(u1,u2)=supeca max(ui(E)-esu2(E), y2(E)-e*u1(E),0)

We say that two distributions 1, y2 €D(A), are at
(g,0)-indistinguishable If:

Ac(p1,u2) <0



Differential Privacy as a Relational
Property

c is differentially private if and only if for every
m1 ~ mz (extending the notion of adjacency
to memories):

{C}m1=M1 and {C}m2=[2 iImplies A:(1,h2) £ O

private private

D q C q U1
public public

Y, q q unit(m)
private private

D> q C q U2
public public

\Y q q unit(m)



Releasing the mean of
Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1i<size (d))
s:=s + d[i]
1:=1+1;

return (s/1)




Adding Noise




Adding Noise

-

-

Intuitive answer: it should depend on € or the accuracy we
want to achieve, and on the scale that a change of an
iIndividual can have on the output.

~




Global Sensitivity

GS, = max{ |g(D) —q(D")| s.t. D ~ D’}
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Global Sensitivity

GS, = max{ |g(D) —q(D")| s.t. D ~ D’}
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Laplace Distribution

1 — X
20 b skewness of
the curve,




Releasing privately the
mean of Some Data

Mean (d : private data) : public real
1:=0;
s:=0;

while (1<size(d))
s:=s + df[1i]

1:=1+1;
z:=S Laplace (sens/eps,0)
z:= (s/1)+z

return z




Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(e:real) : pub real
z:=$ Laplace (GS¢/e, 0)
z:= f£(d)+z

return z




Laplace Mechanism

Lap(d : priv data) (f: data -> real)

(e:real) : pub real
z:=$ Laplace (GS¢/e, 0)
z:= f£(d)+z

return z

It turns out that we could also write it as:

Lap(d : priv data) (f: data -> real)
(e:real) : pub real
z:=$ Laplace (GSs/e, £(d))
return z




Laplace Mechanism

Theorem (Privacy of the Laplace Mechanism)
The Laplace mechanism is (€,0)-differentially private.

Proof: Intuitively
Pr
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Laplace Mechanism




Properties of
Differential Privacy



Some important properties

e Resilience to post-processing
e Group privacy
e Composition



Some important properties

e Resilience to post-processing
e Group privacy
e Composition

We will look at them in the context of (€,0)-differential privacy.
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Resilience to Post-processing

S > N



Resilience to Post-processing

foM is e-DP

S > N




Resilience to Post-processing




Resilience to Post-processing

Answer: Because it is what allows us to publicly
release the result of a differentially private analysis!




Group Privacy

M is e-DP




Group Privacy

M is ke-DP

Pr[M(D) € S] < exp(ke) Pr[M(D’) € 5]



Group Privacy




Group Privacy

Answer: Because it allows to reason about privacy at
different level of granularities!




Composition
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My is (€1,61)-DP
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Composition

My is (€1,61)-DP

< >

Mo IS (82,62)-DP

< >

Mn is (ek,0k)-DP

< >

[ The overall process is (€1+&2+...+&k,01+02+...+6k)-DP J




Composition

P
Let M;:DB —R, be a (€,0/)-differentially private program and
M,:DB —R3 be a (€2,0)-differentially private program.Then, their
composition M| 2:DB—R xR, defined as

Mi2(D)=(Mi(D),M2(D))
is (€1+€2,01+07)-differentially private.




Composition




Composition

Answer: Because it allows to reason about privacy as a
budget!




Composition

[ Budget=¢ggiobal
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Composition
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C D F Budget=¢€giobal - €1 -€2 -€3-€4
-&5 -& -E7 -€8

X={0,1}3 ordered 1 [:)1 [;2 [;3

wrt binary encoding. T

14 1 0 1

9*000(D) = .3+L(1/e1) DeXo= 15 1o 10 |0

d*001(D) = .4+L(1/e2) T

J*o010(D) = .6+L(1/e3) e | o | 1 | o

O 011(D) = .6+L(1/e4) 10 1 0 1
q*1oo(3) = .6+_(1/85)
g*101(D) = .9+L(1/e6)
g*110(D) = 1+L(1/e7)
q*111(D) = 1+L(1/es)

oo 001 010 011 100 101 110 111



Marginals

[ Budget=¢egiobar - €1 -€2 - €3 ]

D1 D2 D3

11 0 0 0

12 1 0 1

13 0 1 0

DeX0= 5 o o o

16 0 0 1

|7 1 1 0

q*1(D) = .4+L(1/(10%1)) R O

q*2(D) = .3+L(1/(10€2)) o | o |
margin | .4+Y1 | .3+Y2 || 4+Y3

g*3(D) = .4+L(1/(10*e3)) I




Budget=ggiobal - €1 - €2 -€3-€4
-&5 -&E6 -E7 - €8

000 001 010 011 100 101 110 111

D1 D2 D3

11 0 0 0

12 1 0 1

13 0 1 0

14 1 0 1

[Budget=8g|oba| -€1 -€2 - €3 ] e Hr
|7 1 1 0

18 0 0 0

19 0 1 0

10 1 0 1

margin | .4+Y: | .3+Y2 | 4+Y3



Privacy Budget vs Epsilon

Sometimes is more convenient to think in terms of Privagy
Budget: Budget=¢egiobal - 2 €iocal

a )
Sometimes is more convenient to think in terms of

epsilon: €giobai= 2 Elocal
\_ )




r )
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Releasing partial sums

DummySum(d : {0,1} list) : real list
1:= 0;
s:= 0;
r:= []7
t:= 0;
while (1<size d)
s:= s + d[i]
z:=S Laplace(l/eps,0)
t:i= s+z;
r:=1r ++ [t];
1:= 1+1;
return r




Releasing partial sums

DummySum(d : {0,1} list) : real list
1:=0;
s:=0;
r:=[1];
t:= 0;

while (1<size d)

z:=$ Laplace(l/eps,0)
te= d[1] + =z

s:= s + ¢

r:=r ++ [s];

1:=1+1;

return r




Parallel Composition

-

Let M;:DB —R be a (€,0)-differentially private program and

M,:DB —R be a (€2,02)-differentially private program. Suppose

that we partition D in a data-independent way into two datasets

D, and D». Then, the composition M| 2:DB—R defined as
MP12(D)=(Mi(D1),M2(D2))

is (max(€,€2),max(01,02))-differentially private.

-
















